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Multiplexed spatial mapping of chromatin 
features, transcriptome and proteins in 
tissues
 

Pengfei Guo    1,8  , Liran Mao    1,2,3,8, Yufan Chen4, Chin Nien Lee    1, 
Angelysia Cardilla4, Mingyao Li    1,2, Marek Bartosovic    5   & 
Yanxiang Deng    1,6,7 

The phenotypic and functional states of cells are modulated by a complex 
interactive molecular hierarchy of multiple omics layers, involving the 
genome, epigenome, transcriptome, proteome and metabolome. Spatial 
omics approaches have enabled the study of these layers in tissue context 
but are often limited to one or two modalities, offering an incomplete 
view of cellular identity. Here we present spatial-Mux-seq, a multimodal 
spatial technology that allows simultaneous profiling of five different 
modalities: two histone modifications, chromatin accessibility, whole 
transcriptome and a panel of proteins at tissue scale and cellular level 
in a spatially resolved manner. We applied this technology to mouse 
embryos and mouse brains, generating detailed multimodal tissue maps 
that identified more cell types and states compared to unimodal data. 
This analysis uncovered spatiotemporal relationships among histone 
modifications, chromatin accessibility, gene expression and protein levels 
during neuron differentiation, and revealed a radial glia niche with spatially 
dynamic epigenetic signals. Collectively, the spatial multi-omics approach 
heralds a new era for characterizing tissue and cellular heterogeneity that 
single-modality studies alone could not reveal.

The intricate interplay between genotype and phenotype is shaped by 
a molecular hierarchy spanning multiple omics layers, involving the 
genome, epigenome, transcriptome, proteome and metabolome1–3. In 
addition, the organization of cellular compartments, structures and 
intercellular interactions is critical to the functional state of a cell in 
multicellular organisms3. Therefore, methodological and technological 
advances that allow simultaneous measurement of different layers of 
molecular information from cells within their native tissue context are 

crucial1. Recent advancements in multimodal spatial omics have aided 
in resolving biological complexity by studying different molecular 
analytes within their original tissue contexts4–8. For example, parallel 
epigenomic profiling with gene expression uncovered new information 
of epigenetic priming, differentiation and gene regulation within the 
tissue architecture4,5. Spatial comapping of the whole transcriptome 
and a panel of proteins substantially improved cell clustering and 
enhanced the discovery power across tissue regions, compared with 
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well with previously published single-modality spatial-CUT&Tag 
datasets11, demonstrating comparable transcriptional start site (TSS) 
enrichment scores for both modalities (Supplementary Fig. 1c). Repro-
ducibility across replicates (E13_50_µm_1 and E13_50_µm_2) was high, 
with Pearson correlation of r = 0.93 for H3K27me3 and r = 0.91 for 
H3K27ac (Extended Data Fig. 2a–d). Additionally, consistent peaks were 
obtained across replicates (Extended Data Fig. 2e), and the expected 
nucleosomal phasing pattern for both histone marks was confirmed 
(Extended Data Fig. 2f).

Unsupervised clustering identified 19 clusters for H3K27me3 (An) 
and 16 clusters for H3K27ac (Bn), each showing distinct spatial patterns 
consistent with tissue histology of an adjacent section stained with 
hematoxylin and eosin (Fig. 1b and Supplementary Fig. 1d). For exam-
ple, H3K27me3 cluster A10 and H3K27ac cluster B15 corresponded to 
the embryonic heart, while H3K27me3 cluster A9 and H3K27ac cluster 
B2 mapped to the liver. Integration of both modalities using weighted 
nearest neighbor (WNN) analysis13 improved and refined clusters by 
each histone mark (Fig. 1b and Supplementary Fig. 2a,b). Cell types 
were assigned by transferring labels from mouse embryonic (E13.5) 
single-cell RNA sequencing (scRNA-seq) data14 to spatial-Mux-seq data 
(H3K27ac) (Fig. 1c), revealing distinct populations such as definitive 
erythroid cells in the liver, cardiac muscle lineages in the heart and 
myocytes in both skeletal muscles (Fig. 1d).

We then explored the spatial patterns of specific marker genes 
to examine the interplay between active (H3K27ac) and repressive 
(H3K27me3) histone marks. For H3K27me3 and H3K27ac, the chroma-
tin silencing score (CSS) and gene activity score (GAS) were calculated 
to predict the gene expression, respectively15. Hand2, an important 
regulator of craniofacial and cardiac development16,17, was enriched 
for H3K27ac but not H3K27me3 in the jaw and heart region (Fig. 1e). In 
the liver, Gfi1b, crucial for erythroid and megakaryocytic lineages18, 
showed high GAS of H3K27ac and low CSS of H3K27me3 in that region. 
Similarly, H3K27ac was enriched at Nprl3 locus in the liver (Extended 
Data Fig. 3a), emphasizing its role in erythroid development19,20. Sox2 
was enriched for H3K27me3 in most regions except the spinal cord 
(Extended Data Fig. 3b), where it is required to maintain the properties 
of neural progenitor cells within that region21.

The correlation between epigenetic marks and transcript 
abundance was further studied by comparing the CSS and GAS with 
scRNA-seq data14. In excitatory neurons, we observed a positive correla-
tion between H3K27ac and gene expression, alongside an anticorrela-
tion with H3K27me3 (Extended Data Fig. 4a–c). Marker genes such as 
Ina, Crmp1 and Atp1a3 exhibited notable enrichment with H3K27ac and 
minimal enrichment with H3K27me3 in the excitatory neuron region 
(Extended Data Fig. 4d), highlighting the interplay between active 
(H3K27ac) and repressive (H3K27me3) histone marks in regulating 
gene expression.

We verified the specificity of each modality by analyzing charac-
teristic peaks for H3K27me3 and H3K27ac in the liver. This revealed 
substantial enrichment of the respective modifications within their cor-
responding marker peaks (Fig. 1f). Moreover, we analyzed H3K27me3 
and H3K27ac signals in liver and heart clusters, finding no clear correla-
tions between these histone marks (Fig. 1g). Collectively, these results 
highlight the robustness of spatial-Mux-seq in coprofiling epigenetic 
marks and its potential for studying complex developmental processes.

Four-modal profiling of epigenome and transcriptome
Single-cell nanobody-based CUT&Tag has been used for comeasure-
ment of open chromatin9 or cell surface markers12, although tran-
scriptomic analysis remains unexplored. To address this limitation, 
we developed a method for simultaneous profiling of chromatin acces-
sibility (assay for transposase-accessible chromatin (ATAC)), two his-
tone modifications (H3K4me3 and H3K27me3) and transcriptome 
in the same section at 50-µm resolution (E13_50_µm_3). We achieved 
a median of 39,014 unique fragments for ATAC, 6,657 for H3K4me3 

unimodal measurements6–8. However, experimental integration of all 
these modalities remains limited, providing an incomplete representa-
tion of cellular states; thus, it is inadequate to develop a fundamental 
understanding of the complex biological systems and their underlying 
regulatory mechanisms. In addition, cellular transcription programs 
are determined through the action of multiple epigenetic modalities, 
including transcription factors (TFs) and co-occurrence of synergistic 
or antagonistic histone marks9. The effects of these interactive chro-
matin regulatory factors on downstream gene or protein expression 
are missing from current single-cell and spatial approaches.

In this study, we report a multimodal spatial technology that allows 
simultaneous profiling of up to five different modalities, including 
open chromatin and two histone modifications, whole transcriptome 
and a panel of proteins at tissue scale and cellular level in a spatially 
resolved manner. This was achieved by integrating microfluidic in situ 
barcoding4,7,10,11 and the nanobody-tethered transposition chemis-
try directly in tissue followed by high-throughput next-generation 
sequencing9,12. We applied this new technology to generate multimodal 
tissue maps in mouse embryos and mouse brains, which enabled inves-
tigation of the intermolecular dynamics among chromatin states char-
acterized by combinations of epigenetic factors, gene and/or protein 
expression and tissue development, in a spatially resolved manner.

Results
The spatial-Mux-seq workflow
The spatial-Mux-seq technology for simultaneous chromatin accessibil-
ity, histone modifications, gene expression and surface protein profil-
ing on cryosections is depicted in Extended Data Fig. 1. In this workflow, 
the frozen tissue section was first fixed with formaldehyde, followed 
by in situ Tn5 transposition, which inserts barcoded DNA adapters 
and a unique ligation linker into regions of accessible chromatin. The 
section was then incubated with two primary antibodies targeting dif-
ferent histone modifications. The species-specific nanobody-Tn5 fusion 
proteins loaded with unique ligation linkers were added to enable the 
demultiplexing of different histone modification loci. For coprofiling 
of proteins, the fixed frozen tissue section was stained with a panel 
of poly-A-tailed oligo-conjugated antibodies, which recognize sur-
face antigens. Next, in situ reverse transcription was performed using 
the biotinylated poly-T reverse transcription primer to capture both 
oligo-conjugated antibodies and messenger RNA (mRNA). Next, bar-
codes A (A1–A50 or A1–A100) and barcodes B (B1–B50 or B1–B100) were 
sequentially flowed over the tissue using microchannels and ligated 
to the universal ligation linker, which formed a two-dimensional grid 
of spatially barcoded tissue pixels (n = 2,500 or 10,000), allowing all 
modalities from the same pixel to share the same spatial barcodes. 
Finally, barcoded complementary DNA (cDNA) and genomic DNA 
(gDNA) fragments were released by reverse crosslinking. cDNAs were 
separated from gDNA by streptavidin beads. Sequencing libraries for 
cDNAs and gDNA were then separately constructed. The protein library 
and mRNA library can be further separated by SPRI beads.

Spatial coprofiling of two histone modifications
Nanobody-based multimodal CUT&Tag had not previously been 
applied directly to tissues, so we first evaluated its specificity using 
species-specific nanobody-Tn5 fusion proteins (Fig. 1a). We targeted 
two mutually exclusive histone modifications: H3K27me3, a repres-
sive mark involved in gene silencing and cell identity maintenance, 
and H3K27ac, an active mark found at enhancers and promoters 
associated with gene expression. These marks represent opposing 
chromatin states, making them ideal for testing the specificity of the 
nanobody-based in situ transposition method.

We first benchmarked spatial-Mux-seq in E13 sagittal mouse 
embryo sections at 50-µm resolution (E13_50_µm_1), obtaining a median 
of 17,677 and 9,893 unique fragments per pixel for H3K27me3 and 
H3K27ac, respectively (Supplementary Fig. 1a,b). These metrics aligned 
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and 8,496 for H3K27me3 per pixel (Supplementary Fig. 3a,b). These 
results were benchmarked by comparing with the individual omics 
data from spatial-CUT&Tag11 as well as coprofiled modalities from 
spatial-ATAC-RNA-seq4. Each modality exhibited similar counts of 
unique fragments and matched TSS enrichment scores, demonstrat-
ing that the inclusion of more modalities does not compromise data 
quality (Supplementary Fig. 1c). For the RNA portion, a total of 22,171 
genes were detected with an average of 1,569 genes and 2,538 unique 
molecular identifiers (UMIs) per pixel, consistent with RNA results from 
spatial-ATAC-RNA-seq4 performed on the same tissue type (Supplemen-
tary Fig. 3b,c). Unsupervised clustering analysis revealed 10 clusters 
for ATAC (An), 7 clusters for H3K4me3 (Bn), 9 clusters for H3K27me3 
(Cn) and 11 clusters for RNA (Rn), which showed concordance in clus-
ter assignment and agreed with tissue histology (Fig. 2a). The heart 
region, for instance, was detected across all modalities: cluster A4 of 
ATAC, cluster B5 of H3K4me3, cluster C3 of H3K27me3 and cluster R6 
of RNA data. However, the liver region could only be distinguished 
into two distinct clusters (A1 and A2) from ATAC data, which was not 
observed in the histone modification data (Fig. 2a), where canonical 

E2F activator E2f2 had stronger open chromatin signals in the A2 liver 
cluster compared with A1 liver cluster (Fig. 2b,c). Additionally, we inter-
sected ATAC, H3K4me3 and H3K27me3 peaks from the liver cluster, and 
observed that H3K4me3 and ATAC peaks showed strong overlap (8,324 
overlapping regions), and a subset of genomic regions demonstrated 
variability in all three modalities simultaneously (4,165 overlapping 
regions) (Supplementary Fig. 3d).

To further leverage the multimodal datasets, we conducted WNN 
analysis to integrate all trimodal and quadrimodal matrices. This 
approach enhanced the clustering identified by individual modality 
and revealed new clusters that were not detectable with any single 
modality alone (Fig. 2a and Supplementary Fig. 4). For instance, the 
craniofacial region exhibited additional subclusters when analyzed 
through tri- or quadrimodal integration. Similarly, the heart region 
was further divided into two distinct subclusters through the integra-
tion of ATAC/H3K27me3/RNA or ATAC/H3K4me3/RNA modalities 
(Supplementary Fig. 4).

The coprofiling of chromatin accessibility and gene expression 
offers valuable insights into the regulatory mechanisms of gene 
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Fig. 1 | Spatial-Mux-seq coprofiling of H3K27me3 and H3K27ac modifications 
in E13 mouse embryos with integrative analysis. Sample E13_50_μm_1. a, A 
schematic overview illustrating the workflow for spatial multimodal profiling 
of chromatin modifications at the tissue scale. b, Spatial distribution and UMAP 
embeddings derived from unsupervised clustering analysis of H3K27me3 
and H3K27ac histone modifications. The integrated analysis uses the WNN 
methodology. c, Integration of scRNA-seq data14 with spatial-Mux-seq H3K27ac 
profiling. The alignment of cell types identified in scRNA-seq (left) with 
spatially resolved H3K27ac data (middle). The cell types identified through 

scRNA-seq are listed (right). d, Spatial mapping of selected cell types identified 
through label transfer from scRNA-seq to H3K27ac data. e, Spatial mapping 
of key developmental marker genes with H3K27me3 and H3K27ac histone 
modifications. f, Metagene plots showing the distribution of H3K27me3 and 
H3K27ac in fetal liver clusters obtained by spatial-Mux-seq around specific 
H3K27me3 and H3K27ac peaks. The peaks were defined from ENCODE datasets. 
g, Scatter plots showing correlation of H3K27me3 and H3K27ac signal in the liver 
and heart clusters. The peaks were defined from ENCODE datasets. r, Pearson 
correlation coefficient. Scale bar, 500 μm.
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expression and cellular function4,22. However, there are situations that 
two modalities are not consistently correlated4, which could poten-
tially be elucidated by considering additional epigenomic informa-
tion. For example, E2f1-3 genes were lowly expressed during fetal liver 
development14,23, despite high chromatin accessibility was observed 
in the liver region (Fig. 2b and Supplementary Fig. 5a,b). This discrep-
ancy could be explained by the comeasured H3K27me3 signals, which 
were also enriched at the promoter regions of E2f genes (Fig. 2c and 
Supplementary Fig. 5c,d), indicating bivalency of E2f promoter in fetal 
liver. To further explore cell identity, we integrated ATAC and H3K4me3 
data with scRNA-seq mouse embryo dataset14. This revealed clusters 
that conformed well to known cell types (Extended Data Fig. 5a,b), 
such as chondrocytes and osteoblasts (cluster A5 and B4), excitatory 
neurons (cluster A9 and B6) and radial glia (cluster A10 and B7). The 

ATAC data exhibited a greater abundance of postmitotic premature 
neurons compared to the H3K4me3, suggesting potential differences 
in chromatin states between neuron clusters.

To explore the spatiotemporal relationship between gene expres-
sion, chromatin accessibility and histone modifications, we examined 
the developmental trajectory from radial glia to differentiated neu-
rons24. A radial glia niche in the dorsal spinal cord was revealed by all 
four modalities: cluster A10 of ATAC, cluster B7 of H3K4me3, cluster 
C7 of H3K27me3 and cluster R10 of RNA data (Fig. 2a and Extended 
Data Fig. 5b). Through pseudotime analysis25 of ATAC data, we visual-
ized this trajectory (Fig. 2d). Several marker genes were identified and 
showed dynamic changes along this trajectory. For instance, Sox2, a 
key regulator of neural development26, exhibited elevated chromatin 
accessibility and H3K4me3 with low levels of H3K27me3 in the radial 
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Fig. 2 | Spatial coprofiling of ATAC, RNA, H3K4me3 and H3K27me3 in mouse 
embryos. Sample, E13_50_μm_3. a, Spatial distribution and UMAP embeddings 
from unsupervised clustering analysis of four different modalities—ATAC, RNA, 
H3K4me3 and H3K27me3—profiling in E13 mouse embryos at a 50-μm pixel 
resolution. b, Spatial mapping of E2f2 gene with ATAC, RNA, H3K4me3 and 
H3K27me3 marks. c, Genome browser tracks of the E2f2 gene showing ATAC, 
H3K4me3, H3K27me3 and RNA expression in liver clusters A1 and A2, as defined 
by ATAC-seq clustering. d, Integration of ATAC data with scRNA-seq data14 
from E13.5 mouse embryos, followed by pseudotime analysis. The pseudotime 
trajectory from radial glia to postmitotic premature neurons and excitatory 
neurons is plotted in spatial coordinates. e, Spatial mapping of the Sox2 gene 
across ATAC, RNA, H3K4me3 and H3K27me3 modalities in the developing mouse 
brain. f, Genome browser tracks of Sox2 gene in ATAC, H3K4me3 and H3K27me3 
modalities. The selected cell types are radial glia and postmitotic premature 
neurons. g, Scatter plot showing the dynamics of ATAC, H3K4me3 and H3K27me3 
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indicating the 95% confidence interval. h, ATAC and RNA data are used for DORC 
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genes with >5 linkages, defining domains of regulatory chromatin (DORCs). The 
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per gene to qualify as a DORC. i, Identification of candidate TF regulators of 
Neurod2 using DORC analysis. Highlighted points represent top-hit TFs with 
regulation score ≥1 (−log10 scale), with all other TFs shown in gray. j, Comparison 
of chromatin (DORC) dynamics versus gene expression (RNA-seq) for Neurod2. 
k, Spatial patterns of DORC Neurod2 and its gene expression. l, Spatial gene 
expression of the TF Pou4f1. Scale bar, 500 μm.
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glia (Fig. 2e–g). Furthermore, spatial RNA data revealed region-specific 
gene expression of Sox2 within the radial glia cluster. During the tran-
sition to postmitotic premature neurons and excitatory neurons, we 
observed a marked decrease in Sox2 gene expression, along with the 
inaccessible chromatin, reduced H3K4me3 enrichment, and increased 
levels of H3K27me3. Conversely, genes involved in neuronal develop-
ment27 and synaptic transmission28, such as Ank3 and Gria2, showed 
increased gene expression, along with accessible chromatin, consistent 
H3K4me3 enrichment, and low H3K27me3 enrichment at their gene 
loci (Extended Data Fig. 5c–e). We further analyzed Gene Ontology 
(GO) with spatial RNA data from radial glia and differentiated neu-
ron clusters, and the results agreed with the anatomical annotation 
(Extended Data Fig. 5f,g).

Developmental gene expression programs are orchestrated by a 
complex interplay between cis-regulatory elements and trans-acting 
factors, forming gene regulatory networks (GRNs). To infer GRNs, 
we integrated our multimodal data for GRNs analysis using the FigR 
framework29, linking distal cis-regulatory elements with target genes. 
Analysis of coprofiled spatial-ATAC-seq and RNA-seq datasets identified 
411 lineage-determining genes marked as distinct domains of regula-
tory chromatin (DORC)30 (Fig. 2h and Supplementary Table 8), enriched 
for roles in lineage determination and development (Supplementary 
Fig. 6a). Notably, Neurod2 stands out as a critical gene known for its 
pivotal role in guiding the differentiation of neural progenitor cells 
into mature neurons31. The spatial distribution of Neurod2 showed high 
DORC accessibility and gene expression within clusters of postmitotic 
premature neurons and excitatory neurons (Fig. 2k), and changes in 
DORC accessibility of Neurod2 preceded that of its gene expression 
along the differentiation trajectory due to the lineage priming (Fig. 2j). 
We then calculated the enrichment of TF motifs within the Neurod2 
DORC, to deduce potential TF activators (Fig. 2i). We identified Pou4f1, 
Lhx5 and Lmx1b as prominent transcriptional activators involved in 
dorsal spinal cord development32. Their elevated expression was con-
firmed in differentiated neurons (Fig. 2l and Supplementary Fig. 6b). 
Further GRN analysis revealed that Neurod2 could directly control 
Nfib expression (Supplementary Fig. 6c). Additionally, Neurod2 and 
Nfib coregulated genes such as Sec14l1, Ap2a1 and Lingo1, enriched in 
intermediate-stage neurons (Supplementary Fig. 6d). Collectively, our 
approach offered a powerful tool to elucidate regulatory mechanisms 
driving neural development.

Coprofiling of protein, transcriptome and epigenome
H3K4me3 and H3K27me3 are histone modifications with opposing 
roles in gene regulation. H3K4me3 is typically linked to active gene 
transcription, marking promoters of genes, while H3K27me3 is associ-
ated with gene repression, marking regions where gene expression is 
silenced. During development, the co-occurrence of these two marks 
at the promoters of developmental genes creates a ‘bivalent chroma-
tin’ state33, keeping genes in a poised condition for rapid activation 
or repression. However, the direct analysis of bivalent chromatin 
state and its downstream effects on gene and/or protein expression 
at the genome scale is still limited. To address this, we coprofiled 
H3K27me3/H3K4me3, gene expression, and a panel of seven cell 
surface proteins from the E13 hindbrain at near single-cell resolu-
tion (E13_20_µm, Supplementary Table 7). We obtained a median of 
1,510 (H3K27me3) and 897 (H3K4me3) unique fragments per pixel 
(Supplementary Fig. 7a,b), with matched TSS enrichment scores for 
each histone modification (Supplementary Fig. 7c). For the RNA por-
tion, total 22,165 genes were detected with an average of 1,258 genes 
and 1,999 UMIs per pixel (Supplementary Fig. 7b,e). To evaluate the 
impact of different pixel sizes on data quality, we compared samples 
E13_50_µm_3 and E13_20_µm, both derived from mouse embryonic 
day 13 tissue and sharing three modalities: H3K4me3, H3K27me3 and 
RNA. After downscaling to the same sequencing depth, the 50-µm 
samples captured more unique fragments, gene counts and UMIs 

(Supplementary Fig. 7d,e), due to the larger area and higher number of  
nuclei per pixel.

Unsupervised clustering identified clusters with distinct spatial 
patterns across H3K27me3, H3K4me3 and RNA data, aligning with tis-
sue morphology (Fig. 3a,b). H3K27me3 clusters A1–A9, H3K4me3 clus-
ters B1–B5 and RNA clusters R1–R12 revealed cell-type-specific spatial 
distributions, although H3K4me3 was less effective at discriminating 
cell types at this developmental stage. We then integrated RNA data 
with scRNA-seq dataset14 to assign cell types to each cluster (Fig. 3a,b 
and Extended Data Fig. 6a). Marker genes of spatial RNA data identified 
major cell types, such as Col1a (osteoblasts), Elavl2 (sensory neurons), 
Hmga2 (epithelial cells), Sox2/Pax3 (radial glia) and Bcl11b (postmitotic 
premature neurons). In the hindbrain region, we explored the spati-
otemporal relationship between H3K4me3, H3K27me3 and gene and/
or protein expression. Radial glia and postmitotic premature neurons 
were enriched in overlapping clusters in both H3K27me3 (cluster A1–3) 
and H3K4me3 (cluster B4–5) datasets (Fig. 3a). Neural progenitor cells, 
derived from radial glia, were revealed only by integrated analysis 
(Fig. 3a). To investigate the dynamic changes in bivalency during the 
transition from radial glia to differentiated neurons, we identified 
active promoters specific to neural cell types and plotted H3K4me3 
and H3K27me3 signals (Fig. 3b,c). Radial glia had the lowest H3K27me3 
enrichment at H3K4me3-defined promoters, suggesting reduced 
bivalency compared to differentiating neurons.

Bivalency scores34 provided a quantitative measure of bivalent 
chromatin domains, offering insights into gene regulation at specific 
loci. For example, the Sox2 and Pax3 loci showed higher bivalency 
scores in postmitotic premature neurons compared to radial glia 
cluster (Fig. 3d and Extended Data Fig. 6b), reflecting an increase in 
H3K27me3 and a decrease in H3K4me3 signals during differentiation. 
In contrast, the Alx1 gene showed decreased bivalency scores and 
H3K4me3 signals during differentiation, while H3K27me3 remained 
high, correlating with its gene repression (Extended Data Fig. 6b).

In parallel with epigenome and gene expression profiling, we 
expanded our investigation to include a detailed analysis of surface 
protein distribution within the tissue. CD140a protein was mainly 
detected in nonneuronal region, consistent with its gene expression 
and H3K4me3 presence, but without H3K27me3 (Fig. 3e). In the epi-
thelial cell cluster, bivalent H3K27me3/H3K4me3 at the CD140a locus 
corresponded with undetectable gene expression and absence of the 
protein. Visualizing the expression of seven proteins revealed dis-
tinct spatial patterns (Supplementary Fig. 8), CD133 and B220 exhibit 
distinct spatial patterns, which is consistent with the spatial distribu-
tion observed in the Allen mouse brain In Situ Hybridization datasets 
(Supplementary Fig. 8a,b). The spatial distribution of CD90 proteins 
was assessed using antibodies specific to Thy-1.1 (CD90.1) and Thy-
1.2 (CD90.2), which differ by a single amino acid35. As shown in the 
Supplementary Fig. 8c, CD90.1 proteins exhibited a distinct pattern 
in the hindbrain region. In contrast, CD90.2 proteins demonstrated 
a broader distribution, with a noticeable presence in non-hindbrain 
regions. This differential expression underscores the importance 
of considering protein isoforms when assessing regional specificity 
during neurodevelopmental studies. In summary, spatial-Mux-seq 
enables the simultaneous measurement of modalities across two his-
tone modifications, gene expression and proteins from the same tissue 
section at nearly single-cell resolution.

Multiplexed spatial mapping of mouse brain
To evaluate the application of spatial-Mux-seq across different tissue 
types, we coprofiled H3K27me3/H3K27ac and transcriptome from 
the mouse postnatal day 21 hippocampus at near single-cell resolu-
tion (P21_20_μm). A median of 3,571 (H3K27me3) and 1,249 (H3K27ac) 
unique fragments per pixel (Supplementary Fig. 9a–c) were obtained, 
and a total of 23,090 genes were detected with an average of 1,499 genes 
and 2,848 UMIs per pixel (Supplementary Fig. 9b,e). Unsupervised 
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clustering identified 11 H3K27me3 clusters (An), 10 H3K27ac clus-
ters (Bn) and 9 RNA clusters (Rn), which aligned with the anatomical 
annotations in a hematoxylin and eosin-stained adjacent tissue section 

(Fig. 4a,b). By integrating scRNA-seq dataset36 from the mouse brain 
atlas with spatial RNA-seq data, we deconvoluted major cell types using 
robust cell-type decomposition37. We generated single-cell resolved 
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Fig. 3 | Spatial coprofiling of protein, RNA, H3K4me3 and H3K27me3 in mouse 
embryos. Sample, E13_20_μm. a, Spatial distribution and UMAP embeddings 
of unsupervised clustering analysis performed on each modality—H3K27me3, 
H3K4me3, RNA and WNN integration—at a 20-μm pixel resolution in E13 
mouse embryos. b, Integration of spatial RNA data with scRNA-seq data14 
from E13.5 mouse embryos enables high-resolution mapping of selected cell 
types, including radial glia, neural progenitor cells and postmitotic premature 
neurons. The red square highlights the region captured for spatial analysis. c, 

Deconvolution analysis of potential H3K4me3/H3K27me3 bivalency for clusters 
as determined in b. d, Spatial mapping of the Sox2 gene across RNA, H3K4me3, 
H3K27me3 modalities and the calculated Sox2 bivalency score. The bivalency 
score is calculated by chromatin bivalency analysis and described in the 
Methods. e, Spatial patterns of the CD140a gene, visualized across protein levels 
(using antibody-derived DNA tags), RNA expression, H3K4me3, H3K27me3 and 
the CD140a bivalency score. Scale bar, 500 μm.
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cell-type maps across the mouse brain, which revealed distinct spatial 
patterns that delineated various brain regions (Supplementary Fig. 9f). 
For instance, within the hippocampus, we identified distinct cell popu-
lations, including dentate gyrus granule neuroblasts and dentate gyrus 
granule neurons localized to the dentate gyrus, while CA excitatory 
neurons (telencephalic glutamatergic neurons, TEGLU) were mapped 
to the cornu ammonis region. In the thalamus, habenula cholinergic 
neurons and thalamus excitatory neurons exhibited distinct spatial 
distributions, each corresponding to specific subregions.

Building on these findings, we examined the spatial distributions 
of specific markers to further distinguish cell types. We observed 
a robust enrichment of H3K27ac and elevated gene expression lev-
els of Mbp specifically within the white matter of corpus callosum, 
whereas the H3K27me3 signal exhibited the strongest intensity in the 
medial habenula region (Extended Data Fig. 7a). Prox1 gene was highly 
expressed and was associated with strong enrichment of H3K27ac in the 
dentate gyrus of hippocampus. Prox1 was heavily marked by H3K27me3 
specifically in the hippocampal CA region. Additional marker genes, 
such as Scube1 and Gria1, exhibited specific H3K27me3 patterns in 
dentate gyrus or CA regions of hippocampus suggesting active involve-
ment of H3K27me3 and polycomb repressive complex in the develop-
ment of hippocampus in certain brain regions (Extended Data Fig. 7a).

We leveraged multimodal datasets by performing WNN analysis, 
which enhanced clustering and identified novel clusters. The integra-
tive analysis effectively enhanced the clustering identified by each 
modality, and additionally captured novel clusters that could not 
be detected by any individual modality (Fig. 4a and Extended Data 
Fig. 7b). Within the thalamus region, further subdivision revealed three 
novel clusters: the stria medullaris (cluster W4), the central lateral 
nucleus of the thalamus (cluster W1) and the lateral dorsal nucleus 
of the thalamus (cluster W2). In adult mammals, radial glia-like cells 
generate granule cells from the dentate gyrus subgranular zone38. 
The maturation of granule cells occurs in the third postnatal week, 
which establishes a distinct granule cell identity39. To further reveal 
the diversity and molecular properties of mouse hippocampal pro-
genitors, we subclustered the dentate gyrus granule cells and further 
identified two subclusters: dentate gyrus granule cell layer (DG-sg, 
cluster W6_0) and a thin layer of dentate gyrus granule subgranular 
zone (DG-sgz, cluster W6_1) (Fig. 4c,d). Differential gene expression 
analysis revealed that during the transition from DG-sgz to DG-sg, 
243 genes were downregulated, while 361 genes were upregulated 
(Padjusted < 0.05, avg_log fold change >0.25) (Fig. 4e). For example, 
Igfbpl1 expression was reduced in DG-sg relative to DG-sgz (Fig. 4f), 
whereas Prox1 exhibited elevated expression in DG-sg compared to 
DG-sgz (Extended Data Fig. 7a). On analyzing their histone modifica-
tions along granular maturation, we noticed that the alteration in 
Igfbpl1 expression coincided with a decrease in its H3K27ac signal 
without substantial increase in H3K27me3 (Fig. 4g–i), whereas the 
change observed in Prox1 expression was associated with a decrease 
in H3K27me3 signal and an increase in H3K27ac signal (Extended Data 
Fig. 7c–e). In the hippocampal dentate gyrus, we observed a robust 

correlation between H3K27ac and gene expression and an anticor-
relation between H3K27me3 and gene expression (Fig. 4j,k), includ-
ing Prox1, Wipf2 and Bhlhe22, which exhibited notable enrichment 
with H3K27ac and minimal enrichment with H3K27me3, confirming 
the regulatory mechanism involving mutually exclusive H3K27me3/
H3K27ac in gene expression regulation.

Five-modal profiling of epigenome, RNA and protein
We applied spatial-Mux-seq to coprofile five modalities—chromatin 
accessibility, two histone modifications, transcriptome and a large 
panel of cell surface proteins—in the same tissue section. By optimiz-
ing the sequential capture of different modalities, we generated ATAC/
H3K27me3/H3K27ac, RNA and 122 oligo-tagged antibody (Supplemen-
tary Table 7) libraries from an adult mouse brain section (Extended Data 
Fig. 8a). Most of the oligo-tagged antibodies present in the commercial 
panel are immune markers and thus we specifically analyzed the mouse 
model of neuroinflammation-experimental autoimmune encephalo-
myelitis (EAE), a widely used model for multiple sclerosis that replicates 
key disease features like immune activation and infiltration into the cen-
tral nervous system40. Using a 100 × 100 barcode scheme, the mapping 
area covered almost one hemisphere of the mouse brain in a coronal 
section. We obtained a median of 1,930 (ATAC), 1,433 (H3K27me3) and 
405 (H3K27ac) unique fragments per pixel (Extended Data Fig. 8b–d), 
and a total 25,515 genes were detected with an average of 1,458 genes 
and 2,976 UMIs per pixel (Extended Data Fig. 8e). For the cell surface 
markers, we detected a median of 88 proteins and 728 protein UMIs 
per pixel (Extended Data Fig. 8e).

Unsupervised clustering across modalities identified 4 ATAC 
clusters (An), 11 H3K27me3 clusters (Bn), 8 H3K27ac clusters (Cn), 17 
RNA clusters (Rn) and 7 protein clusters (Pn) (Extended Data Fig. 9a). 
Integration with scRNA-seq data36 identified major cell types: Medium 
Spiny Neurons (MSN1/2) were predominantly located in the striatum, 
mature oligodendrocytes (MOL2) in the corpus callosum and TEGLU8 
in the cortex (Extended Data Fig. 9b,c). Validation using region-specific 
markers confirmed spatial localization and cell-type specificity. For 
example, Bcl11b expression was predominantly in deep layer neurons 
and in the dorsal striatum, whereas H3K27me3 repressed it in superfi-
cial cortex layers and the corpus callosum (Supplementary Fig. 10a). 
Despite the dorsal-specific expression of Bcl11b, H3K27ac was depos-
ited in both dorsal and ventral striatum. Tbr1 exhibited open chromatin 
and H3K27ac signals predominantly in the cortex, with anticorrelated 
H3K27me3 deposition (Supplementary Fig. 10a). Dlx1 expression 
was predominantly localized to the lateral ventricle, as shown in the 
Supplementary Fig. 10a, with more widespread H3K27ac deposition 
and chromatin accessibility extending into the surrounding regions. 
Although Dlx1 expression was absent in the striatum, it was not marked 
by H3K27me3-mediated repression in this area. In contrast, Dlx1 was 
repressed by H3K27me3 in the cortex, highlighting region-specific 
regulatory mechanisms.

Comparing chromatin accessibility, histone modifications, RNA 
and protein expression highlighted notable differences across these 

Fig. 4 | Spatial mapping of RNA, H3K27ac and H3K27me3 in mouse juvenile 
brain. Sample, P21_20_μm. a, Spatial distribution and UMAP embeddings of 
unsupervised clustering analysis of H3K27me3, H3K27ac, RNA and WNN with 
mouse juvenile brain (P21, 20-μm pixel size). b, Hematoxylin and eosin (H&E) 
stained image of an adjacent tissue section from the juvenile mouse brain (n = 1). 
c, Spatial mapping of two distinct hippocampal dentate gyrus subclusters: the 
dentate gyrus subgranular zone (DG-sgz) and the dentate gyrus granular cell 
layer (DG-sg). d, UMAP embeddings of the DG-sgz and DG-sg clusters, illustrating 
their distinct separation based on their molecular signatures. e, Differential 
expression of genes in DG-sgz clusters and DG-sg clusters. Volcano plot depicting 
the differentially expressed genes in DG-sgz clusters compared with DG-sg 
clusters (two-tailed t-test, Padjusted < 0.05, logFC.threshold = 0.25, where FC is 

fold change). f, Spatial mapping of the Igfbpl1 gene, showing its expression 
across RNA, H3K27ac and H3K27me3 modalities. g, Genome browser tracks for 
the Igfbpl1 gene within the DG-sg and DG-sgz clusters, detailing the chromatin 
landscape at this locus. The selected TSS region of Igfbpl1 was shown as a gray 
box. h,i, Pearson correlation between Igfbpl1 expression and histone mark 
H3K27ac (h) or H3K27me3 (i) gene scores. The gene scores are derived based on 
the gene model surrounding the TSS covering the DG-sg and DG-sgz clusters. 
The red dashed line indicates a linear regression between gene expression and 
histone modification levels at the Igfbpl1 TSS. j, Correlation of H3K27ac GAS and 
RNA gene expression. k, Correlation of H3K27me3 CSS and gene expression. 
Scale bar, 500 μm.
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molecular layers. For example, in the corpus callosum, CD140a pro-
tein, RNA, ATAC and histone modifications revealed distinct varia-
tions (Extended Data Fig. 10a). CD140a protein expression exhibited 
a highly localized and defined pattern, contrasting with the more dif-
fuse RNA signal. Chromatin accessibility closely mirrored the protein 
expression pattern, suggesting that regions with accessible chromatin 
correlate with CD140a protein localization. The histone modifica-
tions added another layer of complexity to this regulatory landscape. 
H3K27ac, typically associated with active enhancers, displayed a more 
widespread distribution, which did not directly correspond with the 
spatially well-defined expression of the CD140a protein. In contrast, 
H3K27me3 exhibited a distinct and opposing spatial pattern, suggest-
ing that certain CD140 isoforms might be epigenetically suppressed. On 
further analysis of individual CD140 isoforms in the corpus callosum, 
we found that the longest CD140 isoform showed higher RNA expres-
sion, correlating with a lower H3K27me3 signal at its TSS, compared 
with other isoforms (Extended Data Fig. 10b). This suggests that the 
epigenetic landscape may selectively allow the transcription of certain 
isoforms while repressing others, highlighting the role of epigenetic 
mechanisms in precisely regulating gene expression.

Discussion
The latest advances in spatial omics4,7,41, a rapidly evolving field, 
has enabled the investigation of complex biological systems with 
high-throughput quantifications of gene expression and epigenetic reg-
ulation within tissue context. However, gene and protein expression are 
regulated by different omics layers, such as DNA methylation42, chroma-
tin remodeling43, histone modifications44 and genome architecture45. 
Despite recent advances in single-cell technologies for trimodal meas-
urements of RNA + ATAC + proteins46,47, H3K27me3 + H3K27ac + protein 
(ref. 12) or ATAC + H3K27me3 + H3K27ac (ref. 9), current spatial meth-
ods are limited to map two modalities at a time (such as ATAC + RNA4,5, 
CUT&Tag + RNA4 or protein + RNA6–8).

We developed spatial-Mux-seq that overcomes existing limita-
tions in spatial multi-omics by simultaneously profiling multiple 
histone modifications, chromatin accessibility, gene expression and 
cell surface protein markers within the same tissue sections. To vali-
date its performance, we rigorously benchmarked spatial-Mux-seq 
against existing methods4,11, evaluating key metrics such as unique 
fragment counts, gene features and UMIs. The results demonstrate 
that spatial-Mux-seq matches the performance of previous tech-
niques, confirming its capability to simultaneously profile multiple 
omics layers—histone modifications, chromatin accessibility, tran-
scriptome and proteins—without compromising the data quality from 
individual modality. To demonstrate the versatility of spatial-Mux-seq, 
we conducted four key tests: (1) histone modification coprofiling, in 
which we validated spatial-Mux-seq by coprofiling two mutually exclu-
sive histone marks, H3K27me3 and H3K27ac, confirming its accuracy 
in capturing distinct epigenetic landscapes. (2) Simultaneous profil-
ing of four modalities, in which we profiled H3K27me3, H3K4me3, 
transcriptome and chromatin accessibility, allowing us to study gene 
regulation during neural development. (3) Integration of protein 
profiling, in which we included surface proteins alongside mRNA and 
histone modifications, enabling comprehensive characterization of 
the epigenome, transcriptome and proteome. (4) Comprehensive 
five-modality profiling, in which we simultaneously measured chro-
matin accessibility, two histone modifications (H3K27me3, H3K27ac), 
mRNA and 122 surface proteins, providing deeper insights into cellular 
states and tissue biology.

Despite these advancements, spatial-Mux-seq is limited to 
coprofiling two histone modifications at a time, due to restricted 
nanobody-Tn5 availability12. Future improvements could overcome 
this limitation by developing additional nanobody-Tn5s from different 
species or by pre-conjugating primary antibodies with nanobody-Tn5s. 
Our study focuses on three critical histone marks: H3K27me3 (gene 

silencing), H3K4me3 (active promoters) and H3K27ac (active enhanc-
ers or promoters). While these marks are extensively used in epigenetic 
research for their importance in chromatin states and gene regulation, 
the exclusion of other histone marks may limit the scope of our con-
clusions. However, the selection was driven by antibody availability, 
reflecting technical constraints rather than a deliberate omission of 
other notable marks.

In conclusion, spatial-Mux-seq represents a major advancement 
in spatial omics, offering a powerful tool for simultaneously assessing 
multiple regulatory layers within tissue context. By providing a more 
comprehensive understanding of complex biological systems and 
their underlying regulatory mechanisms, spatial-Mux-seq holds great 
promise for advancing our knowledge in fields such as developmental 
biology, disease research and tissue engineering.
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Methods
Preparation of tissue slides
Mouse C57 embryo sagittal frozen sections (MF-104-13-C57) were 
purchased from Zyagen. Juvenile mouse brain tissue (P21) was obtained 
from the C57BL/6 mice housed in the University of Pennsylvania Ani-
mal Care Facilities under pathogens-free conditions. All mice were 
maintained in 12-h light/12-h dark cycle at room temperatures ranging 
between 20 and 25 °C and humidities between 40 and 60%. All proce-
dures used were preapproved by the Institutional Animal Care and Use 
Committee. Juvenile (P21) and adult mice (5 months) were euthanized 
by CO2, and brain was harvested and embedded in Tissue-Tek O.C.T. 
compound (Sakura) and snap frozen using a mixture of dry ice and 
methylbutanol. Then 7–10-μm tissue sections were cut and collected 
on poly-l-lysine coated glass slides. The samples were stored at −80 °C.

Microfluidic device fabrication and assembly
Polydimethylsiloxane (PDMS) microfluidic molds were fabricated 
using standard photolithography. SU-8 photoresist (nos. SU-2025 
and SU-2010, Microchem) was spin-coated onto silicon wafers (no. 
C04004, WaferPro) per the manufacturer’s guidelines, with feature 
heights of ~20 and ~50 μm. The PDMS mixture (1:10 ratio of curing and 
base agents) was poured onto the molds, degassed for 30 min and cured 
at 70 °C for 2 h. The fabrication and preparation of the PDMS device 
follow the published protocol48.

Nanobody-Tn5 production and preparation of the Tn5 
transposome
Nanobody-Tn5 was purified and loaded with barcoded oligos following 
published protocols9. Unloaded Tn5 was purchased from Diagenode, 
and the transposome was assembled with Tn5MErev and Tn5ME-A 
or Tn5ME-B5/6/7 oligos. The oligo sequences used for transposome 
assembly were Tn5MErev: 5′-/Phos/CTGTCTCTTATACACATCT-3′; 
Tn5ME-A: 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′;  
Tn5ME-B5 (wild-type Tn5): 5′-/Phos/CATCGGCGTACGACTTA 
GCCTAGATGTGTATAAGAGACAG-3′; Tn5ME-B6 (Mouse-nano-Tn5): 
5’-/Phos/CATCGGCGTACGACTATAGAGAGATGTGTATAAGAG 
ACAG-3′; and Tn5ME-B7 (Rabbit-nano-Tn5): 5’-/Phos/CATCGGC 
GTACGACTCCTATCAGATGTGTATAAGAGACAG-3′.

DNA oligos, DNA barcode sequences and other key reagents
DNA oligos used for library construction and PCR (Supplementary 
Table 4), DNA barcode sequences (A1–100, B1–100) (Supplementary 
Tables 5 and 6) and all other key reagents (Supplementary Table 7) are 
provided.

Antibodies
Antibodies used were H3K27me3 (1:50, Abcam, ab6002), H3K27ac 
(1:50, cell signaling technology, 8173), H3K4me3 (1:50, cell signaling 
technology, 9751) and cell surface antibodies including CD3 (A0182), 
CD4 (A0001), CD34 (A0857), CD140a (A0573), CD133 (A1037), CD90.1 
(A0380), CD90.2 (A0075), B220 (A0103) and mouse antibody cocktail 
(199901) were purchased from Biolegend (1:400 dilution).

Spatial coprofiling of ATAC, histone modifications, proteins 
and RNA
Frozen tissue slides were first thawed for 1 min at 37 °C. Tissue was fixed 
with 0.2% formaldehyde for 5 min and quenched with 1.25 M glycine. 
Following fixation, tissue was washed DPBS and cleaned with ddH2O. 
RNase inhibitor was included in all RNA profiling experiments.

	(1)	 ATAC-seq: tissue sections were permeabilized with lysis buffer 
(3 mM MgCl2, 0.01% Tween-20, 10 mM Tris-HCl pH 7.4, 0.01% 
NP40, 10 mM NaCl, 1% BSA, 0.001% digitonin) for 15 min and 
incubated with wash buffer (10 mM Tris-HCl pH 7.4, 10 mM 
NaCl, 3 mM MgCl2, 1% BSA, 0.1% Tween-20) for 5 min. Transposi-

tion mix (5 μl of Tn5 transposome, 33 μl of 1× DPBS, 50 μl of 2× 
Tagmentation buffer, 1 μl of 1% digitonin, 1 μl of 10% Tween-20, 
10 μl of ddH2O) was added and incubated at 37 °C for 30 min. 
Transposition was stopped by adding EDTA.

	(2)	 Nanobody-based CUT&Tag: tissue was washed with wash buffer 
(150 mM NaCl, 20 mM HEPES pH 7.5, 1 × protease inhibitor cock-
tail, 0.5 mM Spermidine), followed by NP40-digitonin wash buff-
er (0.01% digitonin, 0.01% NP40 in wash buffer) for 5 min. The 
primary antibody (1:50 dilution with antibody buffer (0.001% 
BSA, 2 mM EDTA in NP40-digitonin wash buffer) was added 
and incubated at 4 °C overnight. A 1:100 dilution of nano-Tn5 
adapter complex mixture (rabbit-nano-Tn5/mouse-nano-Tn5) 
in 300-wash buffer (1 × protease inhibitor cocktail, 300 mM 
NaCl, 0.5 mM Spermidine, 20 mM HEPES pH 7.5) was added 
and incubated at room temperature for 1 h, followed by a 5-min 
wash with 300-wash buffer. Tagmentation buffer (10 mM MgCl2 
in 300-wash buffer) was added and incubated at 37 °C for 1 h. 
Transposition was stopped by adding EDTA.

	(3)	 Staining with cell surface markers: tissue was washed with Cell 
Staining Buffer and blocked with 1:20 mouse TruStain FcX in 
Cell Staining Buffer at 4 °C for 15 min. Cell surface proteins were 
then detected with oligonucleotide-labeled antibody-derived 
tags (ADT) diluted in Cell Staining Buffer (1:400) at 4 °C for 
30 min, followed by a 5 min wash with Cell Staining Buffer. A 1:25 
dilution of Fab Fragment (goat anti-mouse IgG) in Cell Staining 
Buffer was added and incubated at 4 °C for 15 min.

	(4)	 In situ reverse transcription: tissue was refixed with 2% formal-
dehyde for 10 min and quenched with glycine for 5 min. The 
tissue was permeabilized with 0.5% Triton X-100 for 20 min. 
The tissue was then washed twice with 0.5× DPBS for 5 min. 
The reverse transcription reaction mix (12.5 μl of 5× reverse 
transcription buffer, 4.5 μl of ddH2O, 0.4 μl of Enzymatic RNase 
inhibitor, 3.1 μl of 10 mM dNTP, 6.2 μl of Maxima H Minus Re-
verse Transcriptase, 25 μl of 0.5× PBS and 10 μl of reverse tran-
scription primer (100 μM)) was applied, incubated for 30 min 
at room temperature, then at 42 °C for 90 min. After the reverse 
transcription reaction, tissues were washed with 1× NEBuffer 3.1 
for 5 min.

	(5)	 Ligation of barcode A: barcode A was pre-annealed with ligation 
linker 1: 10 μl of 100 μM ligation linker, 10 μl of 100 μM individu-
al barcode An oligo and 20 μl of 2× annealing buffer (20 mM Tris 
pH 7.5, 100 mM NaCl, 2 mM EDTA) was mixed and reacted for an-
nealing (95 °C for 5 min and cycling from 95 °C to 12 °C, 0.01 °C 
per cycle). For the first barcode (barcode A) in situ ligation, 
the PDMS chip A was covered to the region of interest (ROI). 
For alignment purposes, a 10× objective lens (BZ-X800 Series, 
Keyence) was used to take a brightfield image. The PDMS device 
and tissue slide were clamped tightly with a homemade acrylic 
clamp. For each channel, 5 μl of ligation master mix contain-
ing individual barcode was loaded, it was prepared by mixing 
2 μl of ligation mixture (27 μl of T4 DNA ligase buffer, 72.4 μl 
of ddH2O, 5.4 μl of 5% Triton X-100, 11 μl of T4 DNA ligase), 2 μl 
of 1× NEBuffer 3.1 and 1 μl of each annealed DNA barcode An 
(25 μM). Vacuum was used to load the ligation master mix into 
50 channels of the device, followed by incubation at 37 °C for 
30 min in a wet box. The PDMS chip and clamp were removed 
after incubation and washed with 1× NEBuffer 3.1 for 5 min. Then 
the slide was washed with water and dried with compressed air.

	(6)	 Ligation of barcode B: barcode B was pre-annealed with liga-
tion linker 2: 10 μl of 100 μM ligation linker, 10 μl of 100 μM 
individual barcode Bn oligo and 20 μl of 2× annealing buffer 
(20 mM Tris pH 7.5, 100 mM NaCl, 2 mM EDTA) was mixed and 
reacted for annealing (95 °C for 5 min and cycling from 95 °C 
to 12 °C, 0.01 °C per cycle). For the second barcode (barcode B) 
in situ ligation, the PDMS chip B was covered to the ROI and a 
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further brightfield image was taken with the ×10 objective lens. 
An acrylic clamp was applied to clamp the PDMS, and the tissue 
slide together. Annealing of barcodes Bn (25 μM) and prepara-
tion of the ligation master mix were carried out as for barcodes 
B. The tissue was then incubated at 37 °C for 30 min in a wet 
box. After incubation, the PDMS chip and clamp were removed, 
and tissue was washed once for 5 min. The slide was then 
washed with water and dried with compressed air. A brightfield 
image covering each barcoding axis was then taken for further 
alignment.

	(7)	 Reverse crosslink: last, the ROI on the tissue was digested with 
100 μl of reverse crosslinking mixture (0.4 mg ml−1 proteinase 
K, 1 mM EDTA, 50 mM Tris-HCl pH 8.0, 200 mM NaCl, 1% SDS) 
at 58 °C for 2 h. The lysate was then collected in a PCR tube and 
incubated at 60 °C overnight.

	(8)	 gDNA and cDNA separation: for gDNA and cDNA separation, 
the lysate was purified with Zymo DNA Clean & Concentrator-5 
column and eluted with 100 μl of ddH2O. 1× B&W buffer with 
0.05% Tween-20 was used to wash 40 μl of Dynabeads MyOne 
Streptavidin C1 beads three times. Then, 100 μl of 2× B&W 
buffer with 2.5 μl of SUPERase•In inhibitor was used to resus-
pend the beads, which were mixed with the eluted DNA–cDNA 
mixture and allowed to bind the biotinylated cDNA fragments 
at room temperature for 1 h with agitation.

	(9)	 Library construction: a magnetic rack was used to separate 
beads (containing cDNA/ADT) and supernatant (containing 
gDNA) in the eluent. The supernatant was collected and purified 
with with Zymo DNA Clean & Concentrator-5 column and eluted 
with 20 μl of ddH2O for ATAC/nano-CUT&Tag library construc-
tion. Then 30 μl of PCR mixture (25 μl of 2× NEBNext Master 
Mix, 2.5 μl of 10 μM indexed N7XX primer, 2.5 μl of 10 μM N501 
PCR primer) was added to elute the gDNA. PCR reaction was 
first performed with the following program: 58 °C for 5 min, 
72 °C for 5 min, 98 °C for 30 s and then cycling at 98 °C for 10 s, 
60 °C for 30 s, 13 times. The final PCR product was purified by 
1.3× SPRI beads (65 μl) and eluted in 20 μl of ddH2O. 
The separated beads were used for cDNA/ADT library construc-
tion. They were first washed twice with 1× B&W buffer with 
0.05% Tween-20 and once with 10 mM Tris pH 8.0 containing 
0.1% Tween-20. The separated beads were washed with ddH2O. 
Streptavidin beads with bound cDNA/ADT molecules were 
resuspended in TSO solution (22 μl of 10 mM dNTP, 44 μl of 
5× Maxima reverse transcription buffer, 44 μl of 20% Ficoll 
PM-400 solution, 88 μl of ddH2O, 5.5 μl of 100 uM template 
switch primer, 11 μl of Maxima H Minus Reverse Transcriptase, 
5.5 μl of Enzymatic RNase Inhibitor) and were incubated at 
room temperature for 30 min and then at 42 °C for 90 min, with 
gentle shaking. After incubation, beads were washed once with 
10 mM Tris and 0.1% Tween-20 and then with ddH2O. Washed 
beads were resuspended in PCR solution (110 μl of 2× Kapa HiFi 
HotStart Master Mix, 8.8 μl of 10 μM PCR primer 1 and primer 
2, 0.3 μl of 10 μM primer 3 (cite-seq), 92.4 μl of ddH2O), then 
aliquoted 50 μl of beads mixture per PCR tube, and run on PCR 
thermocycling with the following program: 95 °C for 3 min and 
cycling at 98 °C for 20 s, 65 °C for 45 s and 72 °C for 3 min, for 
five cycles. After the PCR reaction, beads were removed from 
the PCR product. 1× SYBR Green was added to the PCR product 
and run the following quantitative PCR (qPCR) conditions: 95 °C 
for 3 min, cycling at 98 °C for 20 s, 65 °C for 20 s and 72 °C for 
3 min, 15 times, followed by 5 min at 72 °C. The reaction was 
stopped once the qPCR curve signal began to plateau. The PCR 
product was then purified with 0.6× SPRI beads. The superna-
tant was saved for protein library and the separated SPRI beads 
were eluted in 20 μl of ddH2O for RNA library construction. The 
RNA library was performed according to the manufacturer’s 

guidelines in the Nextera XT DNA Library Prep Kit. 
For the protein library, the saved supernatant was purified with 
1.4× SPRI beads and eluted in 20 μl of ddH2O. The eluted sample 
was repurified with 2.0× SPRI beads and finally eluted in 45 μl 
of ddH2O. PCR master solution (50 μl of 2× Kapa HiFi HotStart 
Master Mix, 2.5 μl of 10 μM P5 oligo (cite-seq), 2.5 μl of 10 μM 
indexed N7XX primer) was added to the eluted sample and 
performed the PCR reaction with the following program: 95 °C 
for 3 min, cycling at 95 °C for 20 s, 60 °C for 30 s, 72 °C for 20 s 
and 72 °C for 5 min, for six cycles. The PCR product was purified 
with 1.6× SPRI beads to obtain the protein library.

	(10)	Library quality control and sequencing: the Agilent D5000 
Screentape was used to determine the size distribution and con-
centration of the library before sequencing. Next-generation 
sequencing was conducted on an Illumina NovaSeq 6000/No-
vaSeq X Plus sequencer (paired-end, 150-base-pair mode).

A detailed step by step protocol for spatial-Mux-seq is available 
on protocols.io: (https://www.protocols.io/private/1EB1CC1B65A81
1EF8B450A58A9FEAC02).

Data preprocessing
For ATAC/CUT&Tag data, linkers 1 and 2 are used for targeted filtering, 
with alignment via BWA followed by sorting and indexing using Sam-
tools. This process assigned genome sequences to the first read and 
incorporated barcodes A and B into the second read. The fastq files were 
aligned to mouse (GRCm38) reference genomes, producing fragment 
files enriched with spatial and genomic information through barcode 
pairs integration. ArchR v.1.0.2 (ref. 49) was used to generate ArchR-
Project for downstream analysis. Peaks were called with pseudo-bulk 
bam files using MACS2 with parameters ‘–keep-dup=1–llocal 100000–
min-length 1000–max-gap 1000–broad-cutoff=0.1’.

For RNA-seq data, read 2 was refined to extract barcode A/B, and 
UMI. The Spatial Transcriptomics pipeline (v.1.7.2) mapped data to the 
mouse (GRCm38) genome references, producing a gene matrix that 
captured both gene expression and spatial data. The gene matrix was 
then read into Seurat v.4.3.0 (ref. 13) as a Seurat object.

For cDNAs from ADTs, the fastq file of read 2 was reformatted in 
the same way as cDNAs from RNA. CITE-seq-Count v.1.4.2 (ref. 50) was 
used to count ADT UMIs per antibody, generating a protein expression 
matrix containing the spatial locations and protein expression levels.

Data clustering and visualization
First, we identified the location of pixels on tissue from the bright-
field image captured by Keyence fluorescence microscope BZ-X800, 
which was done through a custom Python script (https://github.com/
liranmao/Spatial_multi_omics).

For ATAC and CUT&Tag data, based on the ArchRProject, the nor-
malization and dimension reduction were conducted using Latent 
Semantic Indexing and uniform manifold approximation and projec-
tion (UMAP). Then we used the getGeneScore from ArchR package 
to get the GAS and the CSS scores. For spatial data visualization, to 
facilitate the mapping of data onto the original tissue, the gene score 
matrix derived from ArchR was imported into Seurat as a Seurat object. 
Then we plotted the spatial maps using SpatialPlot. The size of the 
pixels was adjusted for visualization by modifying the ‘pt.size.factor’ 
parameter within the Seurat package.

For RNA data, based on the Seurat object, we used the SCTransform 
function for the data normalization and variance stabilization. Then 
the dimension reduction was done by RunPCA. We then constructed 
the nearest neighbor graph on the first 30 principal components by 
using the function FindNeighbors. The clusters were identified with 
appropriate resolutions. Ultimately, we computed a UMAP embed-
ding leveraging the initial 30 principal components using RunUMAP. 
SpatialPlot was used for spatial plot visualization.
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Protein data were normalized using the centered log ratio transfor-
mation method. All heat maps were plotted using ggplot2. SpatialPlot 
was used for spatial plot visualization, which is the same as ATAC and 
CUT&Tag data.

Multi-omics integration
For our multi-omics data integration, we consolidated ATAC, CUT&Tag 
and RNA datasets into a single Seurat object. The ATAC and CUT&Tag 
data integration used a peak matrix with 501-base pair fixed-width 
peaks from the 1-base pair summits generated by addReproduci-
blePeakSet from ArchR, applying Macs2 for peak calling. RNA data 
integration was based on a log-normalized gene expression matrix. 
We applied WNN analysis with FindMultiModalNeighbors for cluster-
ing, using UMAP and spatial mapping for visualization. Subsequently, 
cell-type clusters were refined through FindClusters within Seurat, 
based on the wsnn graph. This streamlined approach facilitated a 
precise analysis of cellular heterogeneity within the multi-omics data-
set. The detailed joint analysis of the data from Fig. 1 is available on 
GitHub (https://github.com/liranmao/Spatial_multi_omics/blob/main/
Data_visualization/Fig1_joint_analysis.Rmd) and figshare (https://doi.
org/10.6084/m9.figshare.27265410)51.

Integrative data analysis and cell-type identification
To delineate cell identities within each pixel, we used the addGeneIn-
tegrationMatrix function from ArchR, integrating chromatin acces-
sibility or histone modification data with transcription data. To get a 
higher resolution cell-type inference inside one pixel, we used robust 
cell-type decomposition37 to decompose cell-type mixtures by leverag-
ing cell-type profiles learned from scRNA-seq.

Downstream analysis
For assessing the correlation of CSS/GAS and gene expression, we per-
formed the analysis for certain identified cell-type clusters, dentate gyrus 
specifically. Marker genes from the RNA dataset were identified using the 
FindMarkers function, applying the Wilcoxon rank sum test with a log2 
fold change threshold of 0.10. We further filtered the RNA markers based 
on an adjusted P value threshold of 0.01. Similarly, for chromatin features, 
including GAS and CSS, we used the FindMarkers function with identical 
parameters to determine the marker genes. GO analysis was conducted 
using enrichGO function from R package clusterProfiler v.4.8.3 (ref. 52).

Chromatin dynamics analysis
Pseudotime analysis on RNA was performed using Slingshot v.2.2.1. The 
trajectory analysis on ATAC was conducted using the addTrajectory 
function from ArchR. For chromatin bivalency analysis, we considered 
genes exhibiting high levels of both H3K4me3 and H3K27me3 as biva-
lent. For a certain gene, the H3K4me3 and H3K27me3 signal of each 
pixel was calculated by getGeneScore function from ArchR package, 
identifying the subset of signals that were within the gene window 
weighted by distance. The bivalency score was calculated according 
to a previously published method34.

Gene regulation analysis
We used FigR v.0.1.0 (ref. 29) to infer the transcriptional regulation 
by integrating ATAC and RNA data. The runGenePeakcorr function 
facilitated peak-gene association testing. DORCs were defined as genes 
with a relatively high number of notable peak-gene associations (n ≥ 5). 
DORC accessibility scores were obtained using the getDORCScores 
function. To pinpoint potential TFs regulating DORC, the runFigGRN 
function was used to identify TF binding motifs enriched within spe-
cific DORC, indicating their potential role in driving DORC regulation.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed data reported in this study are deposited in the 
Gene Expression Omnibus with the accession code GSE263333. 
Resulting fastq files were aligned to the mouse reference genome 
(GRCm38). Published data for data quality comparison and integra-
tive data analysis include the mouse reference genome GRCm38: Mus 
musculus genome assembly GRCm38 (GCF_000001635.20); mouse 
organogenesis cell atlas (MOCA): https://oncoscape.v3.sttrcancer.
org/atlas.gs.washington.edu.mouse.rna/downloads; mouse embryo 
H3K27me3 and H3K27ac chip-seq (E13.5): https://www.encodepro-
ject.org/; mouse brain cell atlas: http://mousebrain.org/adolescent/
downloads.html; Allen Developing Mouse Brain Atlas: https://devel-
opingmouse.brain-map.org/; spatial-CUT&Tag data: GSE165217 and 
spatial-ATAC-RNA-seq data: GSE205055.

Code availability
The whole analysis pipeline and instructions for reproduction are 
available at GitHub (https://github.com/liranmao/Spatial_multi_omics) 
and via Zenodo at https://doi.org/10.5281/zenodo.13964086 (ref. 53).
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Extended Data Fig. 1 | Workflow of spatial-Mux-seq. Schematic workflow for 
spatial coprofiling of ATAC, two histone modifications, transcriptomes and cell 
surface proteins: A tissue section was first incubated with wildtype Tn5. Two 
primary antibodies against different histone marks were then added, followed by 
incubation with two secondary nanobody-Tn5s. Next, a panel of ADTs was used 

to label cell surface proteins. In situ reverse transcription was then performed, 
followed by two rounds of DNA barcoding to create a mosaic of tissue pixels. 
Finally, gDNA and cDNA were collected and separated, and library construction 
was completed with PCR amplification.
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Extended Data Fig. 2 | Reproducibility of Spatial-Mux-seq. Spatial-Mux-
seq profiling of a mouse embryo tissue section (sample: E13_50_μm_2). a, 
Scatterplots showing TSS enrichment score versus unique nuclear fragments 
per pixel. b, Unique fragment counts in spatial-Mux-seq epigenome mapping of 
sample E13_μm_2 (50 μm pixel size: H3K27me3 and H3K27ac). c, Unsupervised 
clustering analysis is performed, revealing the spatial distribution of clusters 

corresponding to H3K27me3 and H3K27ac marks. d, Reproducibility between 
two biological replicates (samples E13_μm_1 and E13_μm_2) is shown, comparing 
the data for H3K27me3 and H3K27ac histone modifications. e, Venn diagram 
shows the overlap of peaks from two different spatial-Mux-seq experiments 
(co-profiled H3K27me3/H3K27ac). f, Distribution of insert size for histone 
modification fragments in the spatial-Mux-seq datasets.
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Extended Data Fig. 3 | Spatial-Mux-seq (co-profiled H3K27me3/H3K27ac) 
mapping of marker genes in E13 mouse embryos. The spatial mapping (top) and 
genome browser tracks (bottom) illustrate gene silencing marked by H3K27me3, 
and gene activity marked by H3K27ac modifications. Two marker genes are 

highlighted: Nprl3 (a), representing gene silencing through H3K27me3, and Sox2 
(b), showcasing gene activity associated with H3K27ac modification. Nprl3 and 
Sox2 genes were shown as a gray box.
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Extended Data Fig. 4 | Spatial-Mux-seq (co-profiled H3K27me3/H3K27ac) 
mapping of marker genes in E13 mouse embryo. a, Spatial mapping of 
excitatory neurons identified through label transferring, overlaid on a tissue 
section. Neuronal clusters are visualized with distinct patterns, emphasizing 
their spatial distribution within the embryo. b, Correlation of H3K27ac 
GAS and scRNA-seq data14 in the cluster of excitatory neurons, highlighting 

the transcriptional activity associated with these regions. c, Correlation of 
H3K27me3 CSS and scRNA-seq data14 in the cluster of excitatory neurons, 
emphasizing the gene silencing characteristics of these neurons. d, Heatmaps 
showing spatial mapping of marker genes associated with H3K27me3 and 
H3K27ac modifications, with variations in color intensity indicating differential 
expression and histone modification patterns across the embryo tissue.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Spatial-Mux-seq (co-profiled H3K4me3/H3K27me3/
ATAC/RNA) mapping of E13 mouse embryos. a, Spatial ATAC data and H3K4me3 
data were integrated with scRNA-seq14 from mouse embryo (E13.5). Unsupervised 
clustering of the combined data was colored by different cell types. b, Spatial 
mapping of selected cell types identified by label transferring from scRNA-seq to 
spatial H3K4me3 data or spatial ATAC data. c, Spatial mapping of Ank3 and Gria2 

genes with RNA, ATAC, H3K4me3, and H3K27me3 modalities. d-e, Scatter plot 
showing scaled values of Ank3 and Gria2 ATAC, H3K4me3, and H3K27me3 score 
across pseudotime from radial glia to differentiated neurons. f-g, GO enrichment 
analysis for genes from radial glia (f) to differentiated neurons (g). The P adj value 
indicates the Benjamini–Hochberg adjusted P value obtained from the one-tailed 
Fisher’s exact test. The top ten GO terms for each category are displayed.
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Extended Data Fig. 6 | Spatial coprofiling of protein, RNA, H3K4me3, and 
H3K27me3 in mouse embryos. a, Spatial RNA data were integrated with scRNA-
seq14 from E13.5 mouse embryos. This integration enabled the spatial mapping 
of specific cell types, including osteoblasts, sensory neurons, and epithelial 

cells within the embryonic tissue. The spatial patterns of marker genes of each 
cell type are performed with RNA modality. The red square highlights the region 
captured for spatial analysis. b, Spatial mapping of selected genes with RNA, 
H3K4me3, H3K27me3 and bivalency score. Scale bar, 500 μm.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02576-0

Extended Data Fig. 7 | See next page for caption.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02576-0

Extended Data Fig. 7 | Spatial coprofiling of RNA, H3K27ac, and H3K27me3 
in mouse juvenile brain. a, Spatial mapping of selected genes with RNA, 
H3K27ac, and H3K27me3 modalities. b, Unsupervised clustering analysis and 
spatial distribution of each modality with different resolution from Fig. 4a: 
H3K27me3 (Resolution: 3), H3K27ac (Resolution: 3), and RNA (Resolution: 5). c, 
Genome browser tracks of Prox1 gene in clusters DG-sg and DG-sgz. The selected 

TSS region of Prox1 was shown as a light blue box. d-e, Pearson correlation 
between Prox1 expression and histone mark H3K27me3 (d) or H3K27ac (e) gene 
scores. The gene scores are derived based on the gene model surrounding the 
transcription start site (TSS). Arrows indicate the high expression region of 
marker genes.
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Extended Data Fig. 8 | Quality control metrics for spatial-Mux-seq datasets. 
Sample: 5M_20_µm. a, Spatial-Mux-seq profiling of ATAC, H3K27me3, H3K27ac, 
RNA and proteins from EAE mouse brain section. Left: tissue scanning of the 
region of interest, aligned with the region annotation of a corresponding section 
from Allen Mouse Brain Atlas (P56). Middle and right: 20-µm-microfluidic 
device with 100x100 pixels. Two-time spatial barcodes (A1-100 and B1-100) were 
sequentially flowed over tissue section. The red square highlights the region 
captured for spatial analysis. b, Unique fragments, gene feature counts and 
protein counts in spatial-Mux-seq mapping of five months mouse brain obtained 

with 20-µm pixel size. c, Scatterplots showing the TSS enrichment score versus 
unique nuclear fragments per pixel for three modalities: ATAC, H3K27me3 and 
H3K27ac. d, Violin plots of unique fragments and TSS enrichment values of 
ATAC, H3K27ac and H3K27me3. e, Violin plots of gene counts and gene UMIs 
distribution. f, Violin plots of protein counts and protein UMIs distribution. d-f, 
Number of pixels in 5 M_20_µm, 9,688. Box plots show the median (center line), 
the first and third quartiles (box limits) and 1.5x interquartile range (whiskers). 
Scale bar, 500 μm.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Spatial coprofiling of proteins, mRNA, H3K27me3, and 
H3K27ac in a EAE mouse brain. Sample: 5M_20_μm. a, Spatial distribution and 
UMAP embeddings of unsupervised clustering analysis of ATAC (An), H3K27me3 
(Bn), H3K27ac (Cn), RNA (Rn), and proteins (Pn) with five months old EAE 
mouse brain sample (pixel size). b, Spatial ATAC, H3K27ac and RNA data were 

integrated with scRNA-seq36 from mouse brain. c, Spatial mapping of cell types 
identified by label transfer from scRNA-seq to ATAC (top), H3K27ac (middle) and 
RNA (bottom). MSN: medium spiny neurons. MOL: mature oligodendrocytes 2. 
TEGLU: Telencephalic Glutamatergic Neurons.
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Extended Data Fig. 10 | Spatial coprofiling of ATAC, H3K27me3, H3K27ac, 
protein and RNA of selected genes for 5M-old mouse brain. a, Spatial mapping 
marker genes: Cd63, CD140a, CD133 and Jaml by all five modalities: ATAC, 
H3K27me3, H3K27ac, protein and RNA. b, Genome browser tracks of CD140a 

(Pdgfra) gene expression and H3K27me3 signal in corpus callosum defined by 
spatial H3K27me3 data (cluster B8 from Extended Data Fig. 9a). The selected TSS 
and 3’ coding regions of CD140a longest isoforms were labeled with yellow and 
blue boxes, respectively.
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