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The phenotypic and functional states of cells are modulated by a complex

interactive molecular hierarchy of multiple omics layers, involving the
genome, epigenome, transcriptome, proteome and metabolome. Spatial
omics approaches have enabled the study of these layers in tissue context
but are often limited to one or two modalities, offering anincomplete

view of cellular identity. Here we present spatial-Mux-seq, a multimodal
spatial technology that allows simultaneous profiling of five different
modalities: two histone modifications, chromatin accessibility, whole
transcriptome and a panel of proteins at tissue scale and cellular level
inaspatially resolved manner. We applied this technology to mouse
embryos and mouse brains, generating detailed multimodal tissue maps
thatidentified more cell types and states compared to unimodal data.

This analysis uncovered spatiotemporal relationships among histone
modifications, chromatin accessibility, gene expression and protein levels
during neuron differentiation, and revealed a radial glia niche with spatially
dynamic epigenetic signals. Collectively, the spatial multi-omics approach
heralds anew erafor characterizing tissue and cellular heterogeneity that
single-modality studies alone could not reveal.

Theintricateinterplay between genotype and phenotype is shaped by
amolecular hierarchy spanning multiple omics layers, involving the
genome, epigenome, transcriptome, proteome and metabolome' . In
addition, the organization of cellular compartments, structures and
intercellular interactions is critical to the functional state of a cell in
multicellular organisms®. Therefore, methodological and technological
advances that allow simultaneous measurement of different layers of
molecularinformation from cells within their native tissue context are

crucial'. Recent advancements in multimodal spatial omics have aided
in resolving biological complexity by studying different molecular
analytes within their original tissue contexts*®. For example, parallel
epigenomic profiling with gene expression uncovered new information
of epigenetic priming, differentiation and gene regulation within the
tissue architecture*’. Spatial comapping of the whole transcriptome
and a panel of proteins substantially improved cell clustering and
enhanced the discovery power across tissue regions, compared with
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unimodal measurements®®. However, experimental integration of all
these modalities remains limited, providing anincomplete representa-
tion of cellular states; thus, it isinadequate to develop afundamental
understanding of the complex biological systems and their underlying
regulatory mechanisms. In addition, cellular transcription programs
are determined through the action of multiple epigenetic modalities,
including transcription factors (TFs) and co-occurrence of synergistic
or antagonistic histone marks’. The effects of these interactive chro-
matin regulatory factors on downstream gene or protein expression
are missing from current single-cell and spatial approaches.

Inthis study, we reportamultimodal spatial technology that allows
simultaneous profiling of up to five different modalities, including
open chromatinand two histone modifications, whole transcriptome
and a panel of proteins at tissue scale and cellular level in a spatially
resolved manner. This was achieved by integrating microfluidicin situ
barcoding®”'°" and the nanobody-tethered transposition chemis-
try directly in tissue followed by high-throughput next-generation
sequencing”?. We applied this new technology to generate multimodal
tissue maps in mouse embryos and mouse brains, which enabled inves-
tigation of the intermolecular dynamics among chromatin states char-
acterized by combinations of epigenetic factors, gene and/or protein
expression and tissue development, in a spatially resolved manner.

Results

The spatial-Mux-seq workflow

The spatial-Mux-seq technology for simultaneous chromatin accessibil-
ity, histone modifications, gene expression and surface protein profil-
ingoncryosectionsis depicted in Extended DataFig. 1. In this workflow,
the frozen tissue section was first fixed with formaldehyde, followed
by in situ Tn5 transposition, which inserts barcoded DNA adapters
and a unique ligation linker into regions of accessible chromatin. The
sectionwas thenincubated with two primary antibodies targeting dif*-
ferent histone modifications. The species-specificnanobody-Tn5 fusion
proteinsloaded with unique ligation linkers were added to enable the
demultiplexing of different histone modification loci. For coprofiling
of proteins, the fixed frozen tissue section was stained with a panel
of poly-A-tailed oligo-conjugated antibodies, which recognize sur-
face antigens. Next, insitu reverse transcription was performed using
the biotinylated poly-T reverse transcription primer to capture both
oligo-conjugated antibodies and messenger RNA (mRNA). Next, bar-
codes A (A1-A50 or A1-A100) and barcodes B (B1-B50 or B1-B100) were
sequentially flowed over the tissue using microchannels and ligated
to the universal ligation linker, which formed a two-dimensional grid
of spatially barcoded tissue pixels (n=2,500 or 10,000), allowing all
modalities from the same pixel to share the same spatial barcodes.
Finally, barcoded complementary DNA (cDNA) and genomic DNA
(gDNA) fragments were released by reverse crosslinking. cDNAs were
separated from gDNA by streptavidin beads. Sequencing libraries for
cDNAs and gDNA were then separately constructed. The protein library
and mRNA library can be further separated by SPRI beads.

Spatial coprofiling of two histone modifications
Nanobody-based multimodal CUT&Tag had not previously been
applied directly to tissues, so we first evaluated its specificity using
species-specific nanobody-Tn5 fusion proteins (Fig. 1a). We targeted
two mutually exclusive histone modifications: H3K27me3, a repres-
sive mark involved in gene silencing and cell identity maintenance,
and H3K27ac, an active mark found at enhancers and promoters
associated with gene expression. These marks represent opposing
chromatin states, making them ideal for testing the specificity of the
nanobody-based in situ transposition method.

We first benchmarked spatial-Mux-seq in E13 sagittal mouse
embryo sectionsat50-pmresolution (E13_50_pm_1), obtainingamedian
of'17,677 and 9,893 unique fragments per pixel for H3K27me3 and
H3K27ac, respectively (SupplementaryFig.1a,b). These metrics aligned

well with previously published single-modality spatial-CUT&Tag
datasets", demonstrating comparable transcriptional start site (TSS)
enrichment scores for both modalities (Supplementary Fig.1c). Repro-
ducibility across replicates (E13_50_um_land E13_50_um_2) was high,
with Pearson correlation of r = 0.93 for H3K27me3 and r = 0.91 for
H3K27ac (Extended DataFig. 2a-d). Additionally, consistent peaks were
obtained across replicates (Extended Data Fig. 2e), and the expected
nucleosomal phasing pattern for both histone marks was confirmed
(Extended DataFig. 2f).

Unsupervised clustering identified 19 clusters for H3K27me3 (An)
and16 clusters for H3K27ac (Bn), each showing distinct spatial patterns
consistent with tissue histology of an adjacent section stained with
hematoxylin and eosin (Fig. 1b and Supplementary Fig. 1d). For exam-
ple, H3K27me3 cluster A10 and H3K27ac cluster B15 corresponded to
theembryonicheart, while H3K27me3 cluster A9 and H3K27ac cluster
B2mappedtotheliver.Integration of both modalities using weighted
nearest neighbor (WNN) analysis'® improved and refined clusters by
each histone mark (Fig. 1b and Supplementary Fig. 2a,b). Cell types
were assigned by transferring labels from mouse embryonic (E13.5)
single-cell RNA sequencing (scRNA-seq) data' to spatial-Mux-seq data
(H3K27ac) (Fig. 1c), revealing distinct populations such as definitive
erythroid cells in the liver, cardiac muscle lineages in the heart and
myocytes in both skeletal muscles (Fig. 1d).

We then explored the spatial patterns of specific marker genes
to examine the interplay between active (H3K27ac) and repressive
(H3K27me3) histone marks. For H3K27me3 and H3K27ac, the chroma-
tinsilencing score (CSS) and gene activity score (GAS) were calculated
to predict the gene expression, respectively”. Hand2, an important
regulator of craniofacial and cardiac development'®”, was enriched
for H3K27acbut not H3K27me3 in the jaw and heart region (Fig.1e).In
the liver, Gfilb, crucial for erythroid and megakaryocytic lineages'®,
showed high GAS of H3K27ac and low CSS of H3K27me3 in that region.
Similarly, H3K27ac was enriched at Npri3locus in the liver (Extended
Data Fig. 3a), emphasizing its role in erythroid development'*. Sox2
was enriched for H3K27me3 in most regions except the spinal cord
(Extended DataFig. 3b), whereitisrequired to maintain the properties
of neural progenitor cells within that region®.

The correlation between epigenetic marks and transcript
abundance was further studied by comparing the CSS and GAS with
scRNA-seqdata™. Inexcitatory neurons, we observed a positive correla-
tionbetween H3K27ac and gene expression, alongside an anticorrela-
tion with H3K27me3 (Extended Data Fig. 4a-c). Marker genes such as
Ina, Crmpl and Atpla3exhibited notable enrichment with H3K27ac and
minimal enrichment with H3K27me3 in the excitatory neuron region
(Extended Data Fig. 4d), highlighting the interplay between active
(H3K27ac) and repressive (H3K27me3) histone marks in regulating
gene expression.

We verified the specificity of each modality by analyzing charac-
teristic peaks for H3K27me3 and H3K27ac in the liver. This revealed
substantial enrichment of the respective modifications within their cor-
responding marker peaks (Fig. 1f). Moreover, we analyzed H3K27me3
and H3K27acs signalsinliver and heart clusters, finding no clear correla-
tions between these histone marks (Fig. 1g). Collectively, these results
highlight the robustness of spatial-Mux-seq in coprofiling epigenetic
marks andits potential for studying complex developmental processes.

Four-modal profiling of epigenome and transcriptome

Single-cell nanobody-based CUT&Tag has been used for comeasure-
ment of open chromatin’ or cell surface markers', although tran-
scriptomic analysis remains unexplored. To address this limitation,
we developed amethod for simultaneous profiling of chromatinacces-
sibility (assay for transposase-accessible chromatin (ATAC)), two his-
tone modifications (H3K4me3 and H3K27me3) and transcriptome
in the same section at 50-pum resolution (E13_50_um_3). We achieved
amedian of 39,014 unique fragments for ATAC, 6,657 for H3K4me3
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and 8,496 for H3K27me3 per pixel (Supplementary Fig. 3a,b). These
results were benchmarked by comparing with the individual omics
data from spatial-CUT&Tag" as well as coprofiled modalities from
spatial-ATAC-RNA-seq*. Each modality exhibited similar counts of
unique fragments and matched TSS enrichment scores, demonstrat-
ing that the inclusion of more modalities does not compromise data
quality (Supplementary Fig. 1c). For the RNA portion, a total of 22,171
genes were detected with an average of 1,569 genes and 2,538 unique
molecularidentifiers (UMIs) per pixel, consistent with RNA results from
spatial-ATAC-RNA-seq"* performed on the same tissue type (Supplemen-
tary Fig. 3b,c). Unsupervised clustering analysis revealed 10 clusters
for ATAC (An), 7 clusters for H3K4me3 (Bn), 9 clusters for H3K27me3
(Cn) and 11 clusters for RNA (Rn), which showed concordance in clus-
ter assignment and agreed with tissue histology (Fig. 2a). The heart
region, for instance, was detected across all modalities: cluster A4 of
ATAC, cluster B5 of H3K4me3, cluster C3 of H3K27me3 and cluster R6
of RNA data. However, the liver region could only be distinguished
into two distinct clusters (Al and A2) from ATAC data, which was not
observed in the histone modification data (Fig. 2a), where canonical

E2F activator E2f2 had stronger open chromatin signals inthe A2 liver
cluster compared with Al liver cluster (Fig. 2b,c). Additionally, we inter-
sected ATAC, H3K4me3 and H3K27me3 peaks fromthe liver cluster, and
observed that H3K4me3 and ATAC peaks showed strong overlap (8,324
overlappingregions), and a subset of genomic regions demonstrated
variability in all three modalities simultaneously (4,165 overlapping
regions) (Supplementary Fig. 3d).

To further leverage the multimodal datasets, we conducted WNN
analysis to integrate all trimodal and quadrimodal matrices. This
approach enhanced the clustering identified by individual modality
and revealed new clusters that were not detectable with any single
modality alone (Fig. 2a and Supplementary Fig. 4). For instance, the
craniofacial region exhibited additional subclusters when analyzed
through tri- or quadrimodal integration. Similarly, the heart region
was further divided into two distinct subclusters through the integra-
tion of ATAC/H3K27me3/RNA or ATAC/H3K4me3/RNA modalities
(Supplementary Fig. 4).

The coprofiling of chromatin accessibility and gene expression
offers valuable insights into the regulatory mechanisms of gene
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expressionand cellular function**. However, there are situationsthat ~ ATAC data exhibited a greater abundance of postmitotic premature

two modalities are not consistently correlated*, which could poten-  neurons compared to the H3K4me3, suggesting potential differences
tially be elucidated by considering additional epigenomic informa-  inchromatin states between neuron clusters.

tion. For example, E2fI-3genes were lowly expressed during fetal liver Toexplore the spatiotemporal relationship between gene expres-
development'*?*, despite high chromatin accessibility was observed  sion, chromatin accessibility and histone modifications, we examined
intheliver region (Fig. 2b and Supplementary Fig. 5a,b). This discrep-  the developmental trajectory from radial glia to differentiated neu-
ancy could be explained by the comeasured H3K27me3 signals, which  rons®. A radial glia niche in the dorsal spinal cord was revealed by all
were also enriched at the promoter regions of E2f genes (Fig. 2cand  four modalities: cluster A10 of ATAC, cluster B7 of H3K4me3, cluster
SupplementaryFig. 5¢,d), indicating bivalency of E2fpromoterinfetal C7 of H3K27me3 and cluster R10 of RNA data (Fig. 2a and Extended
liver. To further explore cellidentity, we integrated ATACand H3K4me3  Data Fig. 5b). Through pseudotime analysis® of ATAC data, we visual-
data with scRNA-seq mouse embryo dataset™. This revealed clusters ized thistrajectory (Fig. 2d). Several marker genes were identified and
that conformed well to known cell types (Extended Data Fig. 5a,b), showed dynamic changes along this trajectory. For instance, Sox2, a
such as chondrocytes and osteoblasts (cluster A5 and B4), excitatory  key regulator of neural development®, exhibited elevated chromatin
neurons (cluster A9 and B6) and radial glia (cluster A10 and B7). The  accessibility and H3K4me3 with low levels of H3K27me3 in the radial
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glia (Fig.2e-g). Furthermore, spatial RNA data revealed region-specific
gene expression of Sox2 within the radial glia cluster. During the tran-
sition to postmitotic premature neurons and excitatory neurons, we
observed a marked decrease in Sox2 gene expression, along with the
inaccessible chromatin, reduced H3K4me3 enrichment, and increased
levels of H3K27me3. Conversely, genes involved in neuronal develop-
ment” and synaptic transmission®, such as Ank3 and Gria2, showed
increased gene expression, along with accessible chromatin, consistent
H3K4me3 enrichment, and low H3K27me3 enrichment at their gene
loci (Extended Data Fig. 5c-e). We further analyzed Gene Ontology
(GO) with spatial RNA data from radial glia and differentiated neu-
ron clusters, and the results agreed with the anatomical annotation
(Extended DataFig. 5f,g).

Developmental gene expression programs are orchestrated by a
complex interplay between cis-regulatory elements and trans-acting
factors, forming gene regulatory networks (GRNs). To infer GRNSs,
we integrated our multimodal data for GRNs analysis using the FigR
framework?, linking distal cis-regulatory elements with target genes.
Analysis of coprofiled spatial-ATAC-seq and RNA-seq datasets identified
411lineage-determining genes marked as distinct domains of regula-
tory chromatin (DORC)* (Fig.2h and Supplementary Table 8), enriched
forrolesin lineage determination and development (Supplementary
Fig. 6a). Notably, Neurod2 stands out as a critical gene known for its
pivotal role in guiding the differentiation of neural progenitor cells
into mature neurons®. The spatial distribution of Neurod2 showed high
DORC accessibility and gene expression within clusters of postmitotic
premature neurons and excitatory neurons (Fig. 2k), and changes in
DORC accessibility of Neurod2 preceded that of its gene expression
alongthe differentiation trajectory due to the lineage priming (Fig. 2j).
We then calculated the enrichment of TF motifs within the Neurod2
DORC, to deduce potential TF activators (Fig. 2i). We identified Pou4f1,
Lhx5 and LmxI1b as prominent transcriptional activators involved in
dorsal spinal cord development®’. Their elevated expression was con-
firmed in differentiated neurons (Fig. 2l and Supplementary Fig. 6b).
Further GRN analysis revealed that Neurod2 could directly control
Nfib expression (Supplementary Fig. 6c). Additionally, Neurod2 and
Nfib coregulated genes such as Seci4l1, Ap2al and Lingol, enriched in
intermediate-stage neurons (Supplementary Fig. 6d). Collectively, our
approach offered apowerful tool to elucidate regulatory mechanisms
driving neural development.

Coprofiling of protein, transcriptome and epigenome

H3K4me3 and H3K27me3 are histone modifications with opposing
roles in gene regulation. H3K4me3 is typically linked to active gene
transcription, marking promoters of genes, while H3K27me3 is associ-
ated withgenerepression, marking regions where gene expressionis
silenced. During development, the co-occurrence of these two marks
atthe promoters of developmental genes creates a ‘bivalent chroma-
tin’ state®, keeping genes in a poised condition for rapid activation
or repression. However, the direct analysis of bivalent chromatin
state and its downstream effects on gene and/or protein expression
at the genome scale is still limited. To address this, we coprofiled
H3K27me3/H3K4me3, gene expression, and a panel of seven cell
surface proteins from the E13 hindbrain at near single-cell resolu-
tion (E13_20_pm, Supplementary Table 7). We obtained a median of
1,510 (H3K27me3) and 897 (H3K4me3) unique fragments per pixel
(Supplementary Fig. 7a,b), with matched TSS enrichment scores for
each histone modification (Supplementary Fig. 7c). For the RNA por-
tion, total 22,165 genes were detected with an average of 1,258 genes
and 1,999 UMIs per pixel (Supplementary Fig. 7b,e). To evaluate the
impact of different pixel sizes on data quality, we compared samples
E13_50_pm_3 and E13_20_pm, both derived from mouse embryonic
day13tissue and sharing three modalities: H3K4me3, H3K27me3 and
RNA. After downscaling to the same sequencing depth, the 50-pm
samples captured more unique fragments, gene counts and UMlIs

(SupplementaryFig.7d,e), due to the larger areaand higher number of
nuclei per pixel.

Unsupervised clustering identified clusters with distinct spatial
patterns across H3K27me3, H3K4me3 and RNA data, aligning with tis-
sue morphology (Fig.3a,b). H3K27me3 clusters A1-A9, H3K4me3 clus-
ters B1I-B5and RNA clusters R1-R12 revealed cell-type-specific spatial
distributions, although H3K4me3 was less effective at discriminating
cell types at this developmental stage. We then integrated RNA data
with scRNA-seq dataset™ to assign cell types to each cluster (Fig. 3a,b
and Extended Data Fig. 6a). Marker genes of spatial RNA dataidentified
major celltypes, such as Colla (osteoblasts), Elavl2 (sensory neurons),
Hmga?2 (epithelial cells), Sox2/Pax3(radial glia) and Bcl11b (postmitotic
premature neurons). In the hindbrain region, we explored the spati-
otemporal relationship between H3K4me3, H3K27me3 and gene and/
or protein expression. Radial gliaand postmitotic premature neurons
wereenriched in overlapping clustersin both H3K27me3 (cluster A1-3)
and H3K4me3 (cluster B4-5) datasets (Fig. 3a). Neural progenitor cells,
derived from radial glia, were revealed only by integrated analysis
(Fig. 3a). To investigate the dynamic changes in bivalency during the
transition from radial glia to differentiated neurons, we identified
active promoters specific to neural cell types and plotted H3K4me3
and H3K27me3 signals (Fig. 3b,c). Radial gliahad the lowest H3K27me3
enrichment at H3K4me3-defined promoters, suggesting reduced
bivalency compared to differentiating neurons.

Bivalency scores* provided a quantitative measure of bivalent
chromatin domains, offering insights into gene regulation at specific
loci. For example, the Sox2 and Pax3 loci showed higher bivalency
scores in postmitotic premature neurons compared to radial glia
cluster (Fig. 3d and Extended Data Fig. 6b), reflecting an increase in
H3K27me3 and adecrease in H3K4me3 signals during differentiation.
In contrast, the AlxI gene showed decreased bivalency scores and
H3K4me3 signals during differentiation, while H3K27me3 remained
high, correlating with its gene repression (Extended Data Fig. 6b).

In parallel with epigenome and gene expression profiling, we
expanded our investigation to include a detailed analysis of surface
protein distribution within the tissue. CD140a protein was mainly
detected in nonneuronal region, consistent with its gene expression
and H3K4me3 presence, but without H3K27me3 (Fig. 3e). In the epi-
thelial cell cluster, bivalent H3K27me3/H3K4me3 at the CD140alocus
corresponded with undetectable gene expression and absence of the
protein. Visualizing the expression of seven proteins revealed dis-
tinct spatial patterns (Supplementary Fig. 8), CD133 and B220 exhibit
distinct spatial patterns, which is consistent with the spatial distribu-
tion observed in the Allen mouse brain In Situ Hybridization datasets
(Supplementary Fig. 8a,b). The spatial distribution of CD90 proteins
was assessed using antibodies specific to Thy-1.1 (CD90.1) and Thy-
1.2 (CD90.2), which differ by a single amino acid®. As shown in the
Supplementary Fig. 8c, CD90.1 proteins exhibited a distinct pattern
in the hindbrain region. In contrast, CD90.2 proteins demonstrated
abroader distribution, with a noticeable presence in non-hindbrain
regions. This differential expression underscores the importance
of considering protein isoforms when assessing regional specificity
during neurodevelopmental studies. In summary, spatial-Mux-seq
enables the simultaneous measurement of modalities across two his-
tone modifications, gene expression and proteins from the same tissue
section at nearly single-cell resolution.

Multiplexed spatial mapping of mouse brain

To evaluate the application of spatial-Mux-seq across different tissue
types, we coprofiled H3K27me3/H3K27ac and transcriptome from
the mouse postnatal day 21 hippocampus at near single-cell resolu-
tion (P21_20_pm). Amedian of 3,571 (H3K27me3) and 1,249 (H3K27ac)
unique fragments per pixel (Supplementary Fig. 9a-c) were obtained,
andatotal 0f23,090 genes were detected with an average of 1,499 genes
and 2,848 UMIs per pixel (Supplementary Fig. 9b,e). Unsupervised
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clustering identified 11 H3K27me3 clusters (An), 10 H3K27ac clus-
ters (Bn) and 9 RNA clusters (Rn), which aligned with the anatomical
annotationsinahematoxylin and eosin-stained adjacent tissue section

(Fig. 4a,b). By integrating scRNA-seq dataset*® from the mouse brain
atlaswithspatial RNA-seq data, we deconvoluted major cell types using
robust cell-type decomposition®. We generated single-cell resolved
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Fig. 4| Spatial mapping of RNA, H3K27ac and H3K27me3 in mouse juvenile
brain. Sample, P21_20_pm. a, Spatial distribution and UMAP embeddings of
unsupervised clustering analysis of H3K27me3, H3K27ac, RNA and WNN with
mouse juvenile brain (P21, 20-pm pixel size). b, Hematoxylin and eosin (H&E)
stained image of an adjacent tissue section from the juvenile mouse brain (n =1).
¢, Spatial mapping of two distinct hippocampal dentate gyrus subclusters: the
dentate gyrus subgranular zone (DG-sgz) and the dentate gyrus granular cell
layer (DG-sg).d, UMAP embeddings of the DG-sgz and DG-sg clusters, illustrating
their distinct separation based on their molecular signatures. e, Differential
expression of genes in DG-sgz clusters and DG-sg clusters. Volcano plot depicting
the differentially expressed genes in DG-sgz clusters compared with DG-sg
clusters (two-tailed t-test, P,y < 0.05, logFC.threshold = 0.25, where FCis

fold change). f, Spatial mapping of the /gfbplI gene, showing its expression
across RNA, H3K27ac and H3K27me3 modalities. g, Genome browser tracks for
the gfbpll gene within the DG-sg and DG-sgz clusters, detailing the chromatin
landscape at this locus. The selected TSS region of IgfbplI was shown as agray
box. h,i, Pearson correlation between /gfbpl1 expression and histone mark
H3K27ac (h) or H3K27me3 (i) gene scores. The gene scores are derived based on
the gene model surrounding the TSS covering the DG-sg and DG-sgz clusters.
Thered dashed lineindicates a linear regression between gene expression and
histone modification levels at the [gfbplI TSS.j, Correlation of H3K27ac GAS and
RNA gene expression. k, Correlation of H3K27me3 CSS and gene expression.
Scale bar, 500 pm.

cell-type maps across the mouse brain, which revealed distinct spatial
patterns that delineated various brainregions (Supplementary Fig. 9f).
Forinstance, within the hippocampus, weidentified distinct cell popu-
lations, including dentate gyrus granule neuroblasts and dentate gyrus
granule neurons localized to the dentate gyrus, while CA excitatory
neurons (telencephalic glutamatergic neurons, TEGLU) were mapped
to the cornu ammonis region. In the thalamus, habenula cholinergic
neurons and thalamus excitatory neurons exhibited distinct spatial
distributions, each corresponding to specific subregions.

Building on these findings, we examined the spatial distributions
of specific markers to further distinguish cell types. We observed
arobust enrichment of H3K27ac and elevated gene expression lev-
els of Mbp specifically within the white matter of corpus callosum,
whereas the H3K27me3 signal exhibited the strongest intensity in the
medial habenularegion (Extended DataFig.7a). ProxI gene was highly
expressed and was associated with strong enrichment of H3K27acinthe
dentate gyrus of hippocampus. ProxI was heavily marked by H3K27me3
specifically in the hippocampal CA region. Additional marker genes,
such as Scubel and Grial, exhibited specific H3K27me3 patterns in
dentate gyrus or CAregions of hippocampus suggesting active involve-
ment of H3K27me3 and polycomb repressive complexin the develop-
mentof hippocampusin certain brainregions (Extended Data Fig. 7a).

We leveraged multimodal datasets by performing WNN analysis,
which enhanced clustering and identified novel clusters. The integra-
tive analysis effectively enhanced the clustering identified by each
modality, and additionally captured novel clusters that could not
be detected by any individual modality (Fig. 4a and Extended Data
Fig.7b). Within the thalamus region, further subdivisionrevealed three
novel clusters: the stria medullaris (cluster W4), the central lateral
nucleus of the thalamus (cluster W1) and the lateral dorsal nucleus
of the thalamus (cluster W2). In adult mammals, radial glia-like cells
generate granule cells from the dentate gyrus subgranular zone’.
The maturation of granule cells occurs in the third postnatal week,
which establishes a distinct granule cell identity®. To further reveal
the diversity and molecular properties of mouse hippocampal pro-
genitors, we subclustered the dentate gyrus granule cells and further
identified two subclusters: dentate gyrus granule cell layer (DG-sg,
cluster W6_0) and a thin layer of dentate gyrus granule subgranular
zone (DG-sgz, cluster W6 _1) (Fig. 4c,d). Differential gene expression
analysis revealed that during the transition from DG-sgz to DG-sg,
243 genes were downregulated, while 361 genes were upregulated
(Pagjustea < 0.05, avg_log fold change >0.25) (Fig. 4e). For example,
Igfbpll expression was reduced in DG-sg relative to DG-sgz (Fig. 4f),
whereas ProxlI exhibited elevated expression in DG-sg compared to
DG-sgz (Extended Data Fig. 7a). On analyzing their histone modifica-
tions along granular maturation, we noticed that the alteration in
Igfbpll expression coincided with a decrease in its H3K27ac signal
without substantial increase in H3K27me3 (Fig. 4g-i), whereas the
change observed in ProxI expression was associated with a decrease
inH3K27me3signaland anincrease in H3K27ac signal (Extended Data
Fig. 7c-e). In the hippocampal dentate gyrus, we observed a robust

correlation between H3K27ac and gene expression and an anticor-
relation between H3K27me3 and gene expression (Fig. 4j,k), includ-
ing Prox1, Wipf2 and Bhlhe22, which exhibited notable enrichment
with H3K27ac and minimal enrichment with H3K27me3, confirming
the regulatory mechanism involving mutually exclusive H3K27me3/
H3K27acin gene expression regulation.

Five-modal profiling of epigenome, RNA and protein

We applied spatial-Mux-seq to coprofile five modalities—chromatin
accessibility, two histone modifications, transcriptome and a large
panel of cell surface proteins—in the same tissue section. By optimiz-
ing the sequential capture of different modalities, we generated ATAC/
H3K27me3/H3K27ac, RNA and 122 oligo-tagged antibody (Supplemen-
tary Table7) libraries from an adult mouse brain section (Extended Data
Fig.8a). Most of the oligo-tagged antibodies present in the commercial
panel areimmune markers and thus we specifically analyzed the mouse
model of neuroinflammation-experimental autoimmune encephalo-
myelitis (EAE), awidely used model for multiple sclerosis that replicates
key disease features likeimmune activation andinfiltrationinto the cen-
tral nervous system*’. Using a100 x 100 barcode scheme, the mapping
area covered almost one hemisphere of the mouse brain in a coronal
section. We obtained amedian 0f1,930 (ATAC), 1,433 (H3K27me3) and
405 (H3K27ac) unique fragments per pixel (Extended Data Fig. 8b-d),
and a total 25,515 genes were detected with an average of 1,458 genes
and 2,976 UMIs per pixel (Extended Data Fig. 8e). For the cell surface
markers, we detected a median of 88 proteins and 728 protein UMIs
per pixel (Extended Data Fig. 8e).

Unsupervised clustering across modalities identified 4 ATAC
clusters (An), 11 H3K27me3 clusters (Bn), 8 H3K27ac clusters (Cn), 17
RNA clusters (Rn) and 7 protein clusters (Pn) (Extended Data Fig. 9a).
Integration with scRNA-seq data* identified major cell types: Medium
Spiny Neurons (MSN1/2) were predominantly located in the striatum,
mature oligodendrocytes (MOL2) in the corpus callosumand TEGLU8
inthe cortex (Extended Data Fig. 9b,c). Validation using region-specific
markers confirmed spatial localization and cell-type specificity. For
example, Bcl11b expression was predominantly in deep layer neurons
andinthedorsal striatum, whereas H3K27me3 repressed it in superfi-
cial cortex layers and the corpus callosum (Supplementary Fig. 10a).
Despite the dorsal-specific expression of Bcl11b, H3K27ac was depos-
ited inboth dorsal and ventral striatum. TbrI exhibited open chromatin
and H3K27ac signals predominantly in the cortex, with anticorrelated
H3K27me3 deposition (Supplementary Fig. 10a). DIxI expression
was predominantly localized to the lateral ventricle, as shown in the
Supplementary Fig. 10a, with more widespread H3K27ac deposition
and chromatin accessibility extending into the surrounding regions.
Although DixI expressionwas absentin the striatum, it was not marked
by H3K27me3-mediated repression in this area. In contrast, DIxI was
repressed by H3K27me3 in the cortex, highlighting region-specific
regulatory mechanisms.

Comparing chromatin accessibility, histone modifications, RNA
and protein expression highlighted notable differences across these

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02576-0

molecular layers. For example, in the corpus callosum, CD140a pro-
tein, RNA, ATAC and histone modifications revealed distinct varia-
tions (Extended Data Fig. 10a). CD140a protein expression exhibited
ahighly localized and defined pattern, contrasting with the more dif-
fuse RNA signal. Chromatin accessibility closely mirrored the protein
expression pattern, suggesting that regions with accessible chromatin
correlate with CD140a protein localization. The histone modifica-
tionsadded another layer of complexity to this regulatory landscape.
H3K27ac, typically associated with active enhancers, displayed amore
widespread distribution, which did not directly correspond with the
spatially well-defined expression of the CD140a protein. In contrast,
H3K27me3 exhibited a distinct and opposing spatial pattern, suggest-
ingthat certain CDI140isoforms might be epigenetically suppressed. On
further analysis of individual CD140 isoforms in the corpus callosum,
we found that the longest CD140isoform showed higher RNA expres-
sion, correlating with a lower H3K27me3 signal at its TSS, compared
with other isoforms (Extended Data Fig. 10b). This suggests that the
epigenetic landscape may selectively allow the transcription of certain
isoforms while repressing others, highlighting the role of epigenetic
mechanismsin precisely regulating gene expression.

Discussion

The latest advances in spatial omics*”*, a rapidly evolving field,
has enabled the investigation of complex biological systems with
high-throughput quantifications of gene expression and epigenetic reg-
ulationwithin tissue context. However, gene and protein expression are
regulated by different omicslayers, such as DNA methylation*’, chroma-
tin remodeling*, histone modifications** and genome architecture®.
Despite recentadvancesin single-cell technologies for trimodal meas-
urements of RNA + ATAC + proteins*®*, H3K27me3 + H3K27ac + protein
(ref.12) or ATAC + H3K27me3 + H3K27ac (ref. 9), current spatial meth-
odsare limited to map two modalities at atime (such as ATAC + RNA**,
CUT&Tag + RNA* or protein + RNA®®),

We developed spatial-Mux-seq that overcomes existing limita-
tions in spatial multi-omics by simultaneously profiling multiple
histone modifications, chromatin accessibility, gene expression and
cell surface protein markers within the same tissue sections. To vali-
date its performance, we rigorously benchmarked spatial-Mux-seq
against existing methods*", evaluating key metrics such as unique
fragment counts, gene features and UMIs. The results demonstrate
that spatial-Mux-seq matches the performance of previous tech-
niques, confirming its capability to simultaneously profile multiple
omics layers—histone modifications, chromatin accessibility, tran-
scriptome and proteins—without compromising the data quality from
individual modality. To demonstrate the versatility of spatial-Mux-seq,
we conducted four key tests: (1) histone modification coprofiling, in
which we validated spatial-Mux-seq by coprofiling two mutually exclu-
sive histone marks, H3K27me3 and H3K27ac, confirming its accuracy
in capturing distinct epigenetic landscapes. (2) Simultaneous profil-
ing of four modalities, in which we profiled H3K27me3, H3K4me3,
transcriptome and chromatinaccessibility, allowing us to study gene
regulation during neural development. (3) Integration of protein
profiling, inwhich weincluded surface proteins alongside mRNA and
histone modifications, enabling comprehensive characterization of
the epigenome, transcriptome and proteome. (4) Comprehensive
five-modality profiling, in which we simultaneously measured chro-
matin accessibility, two histone modifications (H3K27me3, H3K27ac),
mRNA and 122 surface proteins, providing deeper insightsinto cellular
states and tissue biology.

Despite these advancements, spatial-Mux-seq is limited to
coprofiling two histone modifications at a time, due to restricted
nanobody-Tn5 availability™. Future improvements could overcome
this limitation by developing additional nanobody-Tn5s from different
species or by pre-conjugating primary antibodies with nanobody-TnS5s.
Our study focuses on three critical histone marks: H3K27me3 (gene

4,741

silencing), H3K4me3 (active promoters) and H3K27ac (active enhanc-
ersor promoters). While these marks are extensively used in epigenetic
research for theirimportancein chromatin states and gene regulation,
the exclusion of other histone marks may limit the scope of our con-
clusions. However, the selection was driven by antibody availability,
reflecting technical constraints rather than a deliberate omission of
other notable marks.

In conclusion, spatial-Mux-seq represents a major advancement
inspatial omics, offering apowerful tool for simultaneously assessing
multiple regulatory layers within tissue context. By providing a more
comprehensive understanding of complex biological systems and
their underlying regulatory mechanisms, spatial-Mux-seq holds great
promise foradvancing our knowledge in fields such as developmental
biology, disease research and tissue engineering.
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Methods

Preparation of tissue slides

Mouse C57 embryo sagittal frozen sections (MF-104-13-C57) were
purchased from Zyagen.Juvenile mouse brain tissue (P21) was obtained
from the C57BL/6 mice housed in the University of Pennsylvania Ani-
mal Care Facilities under pathogens-free conditions. All mice were
maintained in12-hlight/12-h dark cycle at room temperatures ranging
between 20 and 25 °C and humidities between 40 and 60%. All proce-
duresused were preapproved by the Institutional Animal Care and Use
Committee.Juvenile (P21) and adult mice (5 months) were euthanized
by CO,, and brain was harvested and embedded in Tissue-Tek O.C.T.
compound (Sakura) and snap frozen using a mixture of dry ice and
methylbutanol. Then 7-10-pum tissue sections were cut and collected
on poly-L-lysine coated glass slides. The samples were stored at —80 °C.

Microfluidic device fabrication and assembly
Polydimethylsiloxane (PDMS) microfluidic molds were fabricated
using standard photolithography. SU-8 photoresist (nos. SU-2025
and SU-2010, Microchem) was spin-coated onto silicon wafers (no.
C04004, WaferPro) per the manufacturer’s guidelines, with feature
heights of -20 and ~-50 um. The PDMS mixture (1:10 ratio of curing and
base agents) was poured onto the molds, degassed for 30 minand cured
at 70 °C for 2 h. The fabrication and preparation of the PDMS device
follow the published protocol*®.

Nanobody-Tn5 production and preparation of the Tn5
transposome

Nanobody-Tn5was purified and loaded with barcoded oligos following
published protocols’. Unloaded Tn5 was purchased from Diagenode,
and the transposome was assembled with Tn5MErev and TnSME-A
or TnSME-B5/6/7 oligos. The oligo sequences used for transposome
assembly were Tn5MErev: 5’-/Phos/CTGTCTCTTATACACATCT-3';
Tn5SME-A: 5"-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’;
Tn5SME-BS (wild-type Tn5): 5’-/Phos/CATCGGCGTACGACTTA
GCCTAGATGTGTATAAGAGACAG-3’; TnSME-B6 (Mouse-nano-Tn5):
5’-/Phos/CATCGGCGTACGACTATAGAGAGATGTGTATAAGAG
ACAG-3’; and TnSME-B7 (Rabbit-nano-Tn5): 5’-/Phos/CATCGGC
GTACGACTCCTATCAGATGTGTATAAGAGACAG-3'.

DNA oligos, DNA barcode sequences and other key reagents
DNA oligos used for library construction and PCR (Supplementary
Table 4), DNA barcode sequences (A1-100, B1-100) (Supplementary
Tables5and 6) and all other key reagents (Supplementary Table 7) are
provided.

Antibodies

Antibodies used were H3K27me3 (1:50, Abcam, ab6002), H3K27ac
(1:50, cell signaling technology, 8173), H3K4me3 (1:50, cell signaling
technology, 9751) and cell surface antibodies including CD3 (A0182),
CD4(A0001),CD34 (A0857),CD140a (A0573),CD133 (A1037),CD90.1
(A0380),CD90.2 (A0075),B220 (A0103) and mouse antibody cocktail
(199901) were purchased from Biolegend (1:400 dilution).

Spatial coprofiling of ATAC, histone modifications, proteins
and RNA

Frozentissue slides were first thawed for 1 min at 37 °C. Tissue was fixed
with 0.2% formaldehyde for 5 min and quenched with 1.25 M glycine.
Following fixation, tissue was washed DPBS and cleaned with ddH,0.
RNase inhibitor was included in all RNA profiling experiments.

(1) ATAC-seq: tissue sections were permeabilized with lysis buffer
(3 mM MgCl,, 0.01% Tween-20, 10 mM Tris-HCI pH 7.4, 0.01%
NP40,10 mM NaCl, 1% BSA, 0.001% digitonin) for 15 min and
incubated with wash buffer (10 mM Tris-HCI pH 7.4, 10 mM
NaCl, 3 mM MgCl,, 1% BSA, 0.1% Tween-20) for 5 min. Transposi-

2

(3)

4)

5

(6)

tion mix (5 pl of Tn5 transposome, 33 pl of 1x DPBS, 50 pl of 2x
Tagmentation buffer, 1 pl of 1% digitonin, 1 pl of 10% Tween-20,
10 pl of ddH,0) was added and incubated at 37 °C for 30 min.
Transposition was stopped by adding EDTA.

Nanobody-based CUT&Tag: tissue was washed with wash buffer
(150 mM NaCl, 20 mM HEPES pH 7.5, 1 x protease inhibitor cock-
tail, 0.5 mM Spermidine), followed by NP40-digitonin wash buff-
er (0.01% digitonin, 0.01% NP40 in wash buffer) for 5 min. The
primary antibody (1:50 dilution with antibody buffer (0.001%
BSA,2 mM EDTA in NP40-digitonin wash buffer) was added

and incubated at 4 °C overnight. A 1:100 dilution of nano-Tn5
adapter complex mixture (rabbit-nano-Tn5/mouse-nano-Tn5)

in 300-wash buffer (1 x protease inhibitor cocktail, 300 mM
NaCl, 0.5 mM Spermidine, 20 mM HEPES pH 7.5) was added

and incubated at room temperature for 1 h, followed by a 5-min
wash with 300-wash buffer. Tagmentation buffer (10 mM MgCl,
in 300-wash buffer) was added and incubated at 37 °C for 1 h.
Transposition was stopped by adding EDTA.

Staining with cell surface markers: tissue was washed with Cell
Staining Buffer and blocked with 1:20 mouse TruStain FcX in
Cell Staining Buffer at 4 °C for 15 min. Cell surface proteins were
then detected with oligonucleotide-labeled antibody-derived
tags (ADT) diluted in Cell Staining Buffer (1:400) at 4 °C for

30 min, followed by a 5 min wash with Cell Staining Buffer. A1:25
dilution of Fab Fragment (goat anti-mouse IgG) in Cell Staining
Buffer was added and incubated at 4 °C for 15 min.

In situ reverse transcription: tissue was refixed with 2% formal-
dehyde for 10 min and quenched with glycine for 5 min. The
tissue was permeabilized with 0.5% Triton X-100 for 20 min.
The tissue was then washed twice with 0.5x DPBS for 5 min.

The reverse transcription reaction mix (12.5 pl of 5x reverse
transcription buffer, 4.5 pl of ddH,0, 0.4 pl of Enzymatic RNase
inhibitor, 3.1 pl of 10 mM dNTP, 6.2 pl of Maxima H Minus Re-
verse Transcriptase, 25 pl of 0.5x PBS and 10 pl of reverse tran-
scription primer (100 uM)) was applied, incubated for 30 min
at room temperature, then at 42 °C for 90 min. After the reverse
transcription reaction, tissues were washed with 1x NEBuffer 3.1
for 5min.

Ligation of barcode A: barcode A was pre-annealed with ligation
linker 1: 10 pl of 100 pM ligation linker, 10 pl of 100 pM individu-
al barcode An oligo and 20 pl of 2x annealing buffer (20 mM Tris
pH 7.5,100 mM NaCl, 2 mM EDTA) was mixed and reacted for an-
nealing (95 °C for 5 min and cycling from 95°C to 12 °C, 0.01°C
per cycle). For the first barcode (barcode A) in situ ligation,

the PDMS chip A was covered to the region of interest (ROI).

For alignment purposes, a10x objective lens (BZ-X800 Series,
Keyence) was used to take a brightfield image. The PDMS device
and tissue slide were clamped tightly with ahomemade acrylic
clamp. For each channel, 5 pl of ligation master mix contain-
ing individual barcode was loaded, it was prepared by mixing

2 pl of ligation mixture (27 pl of T4 DNA ligase buffer, 72.4 pl

of ddH,0, 5.4 pl of 5% Triton X-100, 11 pl of T4 DNA ligase), 2 pl
of 1x NEBuffer 3.1and 1 pl of each annealed DNA barcode An

(25 pM). Vacuum was used to load the ligation master mix into
50 channels of the device, followed by incubation at 37 °C for
30 minin a wet box. The PDMS chip and clamp were removed
after incubation and washed with 1x NEBuffer 3.1 for 5 min. Then
the slide was washed with water and dried with compressed air.
Ligation of barcode B: barcode B was pre-annealed with liga-
tion linker 2: 10 pl of 100 uM ligation linker, 10 pl of 100 uM
individual barcode Bn oligo and 20 pl of 2x annealing buffer

(20 mM Tris pH 7.5,100 mM NaCl, 2 mM EDTA) was mixed and
reacted for annealing (95 °C for 5 min and cycling from 95 °C
to12°C, 0.01°C per cycle). For the second barcode (barcode B)
in situ ligation, the PDMS chip B was covered to the ROl and a
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further brightfield image was taken with the x10 objective lens.
An acrylic clamp was applied to clamp the PDMS, and the tissue
slide together. Annealing of barcodes Bn (25 uM) and prepara-
tion of the ligation master mix were carried out as for barcodes
B. The tissue was then incubated at 37 °C for 30 min in a wet
box. After incubation, the PDMS chip and clamp were removed,
and tissue was washed once for 5 min. The slide was then
washed with water and dried with compressed air. A brightfield
image covering each barcoding axis was then taken for further
alignment.

(7) Reverse crosslink: last, the ROl on the tissue was digested with
100 pl of reverse crosslinking mixture (0.4 mg ml™ proteinase
K,1mMEDTA, 50 mM Tris-HCI pH 8.0, 200 mM NacCl, 1% SDS)
at 58 °C for 2 h. The lysate was then collected in a PCR tube and
incubated at 60 °C overnight.

(8) gDNA and cDNA separation: for gDNA and cDNA separation,
the lysate was purified with Zymo DNA Clean & Concentrator-5
column and eluted with 100 pl of ddH,0. 1x B&W buffer with
0.05% Tween-20 was used to wash 40 pl of Dynabeads MyOne
Streptavidin C1 beads three times. Then, 100 pl of 2x B&W
buffer with 2.5 pl of SUPERase-In inhibitor was used to resus-
pend the beads, which were mixed with the eluted DNA-cDNA
mixture and allowed to bind the biotinylated cDNA fragments
atroom temperature for 1 h with agitation.

(9) Library construction: amagnetic rack was used to separate
beads (containing cDNA/ADT) and supernatant (containing
gDNA) in the eluent. The supernatant was collected and purified
with with Zymo DNA Clean & Concentrator-5 column and eluted
with 20 pl of ddH,0 for ATAC/nano-CUT&Tag library construc-
tion. Then 30 pl of PCR mixture (25 pl of 2x NEBNext Master
Mix, 2.5 pl of 10 uM indexed N7XX primer, 2.5 pl of 10 uM N501
PCR primer) was added to elute the gDNA. PCR reaction was
first performed with the following program: 58 °C for 5 min,
72°C for 5min, 98 °C for 30 s and then cycling at 98 °C for 10 s,
60 °C for 30 s, 13 times. The final PCR product was purified by
1.3x SPRI beads (65 pl) and eluted in 20 pl of ddH,0.

The separated beads were used for cDNA/ADT library construc-
tion. They were first washed twice with 1x B&W buffer with
0.05% Tween-20 and once with 10 mM Tris pH 8.0 containing
0.1% Tween-20. The separated beads were washed with ddH,0.
Streptavidin beads with bound cDNA/ADT molecules were
resuspended in TSO solution (22 pl of 10 mM dNTP, 44 pl of

5x Maxima reverse transcription buffer, 44 pl of 20% Ficoll
PM-400 solution, 88 pl of ddH,0, 5.5 ul of 100 uM template
switch primer, 11 pl of Maxima H Minus Reverse Transcriptase,
5.5 pul of Enzymatic RNase Inhibitor) and were incubated at
room temperature for 30 min and then at 42 °C for 90 min, with
gentle shaking. After incubation, beads were washed once with
10 mM Tris and 0.1% Tween-20 and then with ddH,0. Washed
beads were resuspended in PCR solution (110 pl of 2x Kapa HiFi
HotStart Master Mix, 8.8 pl of 10 uM PCR primer 1 and primer
2,0.3 pl of 10 puM primer 3 (cite-seq), 92.4 pl of ddH,0), then
aliquoted 50 pl of beads mixture per PCR tube, and run on PCR
thermocycling with the following program: 95 °C for 3 min and
cycling at 98 °C for 20 s, 65 °C for 45 s and 72 °C for 3 min, for
five cycles. After the PCR reaction, beads were removed from
the PCR product. 1x SYBR Green was added to the PCR product
and run the following quantitative PCR (qPCR) conditions: 95 °C
for 3 min, cycling at 98 °C for 20 s, 65 °C for 20 s and 72 °C for

3 min, 15 times, followed by 5 min at 72 °C. The reaction was
stopped once the qPCR curve signal began to plateau. The PCR
product was then purified with 0.6x SPRI beads. The superna-
tant was saved for protein library and the separated SPRI beads
were eluted in 20 pl of ddH,O for RNA library construction. The
RNA library was performed according to the manufacturer’s

guidelines in the Nextera XT DNA Library Prep Kit.

For the protein library, the saved supernatant was purified with
1.4x SPRI beads and eluted in 20 pl of ddH,0. The eluted sample
was repurified with 2.0x SPRI beads and finally eluted in 45 pl

of ddH,0. PCR master solution (50 pl of 2x Kapa HiFi HotStart
Master Mix, 2.5 pul of 10 pM P5 oligo (cite-seq), 2.5 pl of 10 pM
indexed N7XX primer) was added to the eluted sample and
performed the PCR reaction with the following program: 95 °C
for 3 min, cycling at 95 °Cfor 20's, 60 °Cfor30s,72°Cfor20s
and 72 °C for 5 min, for six cycles. The PCR product was purified
with 1.6x SPRI beads to obtain the protein library.

(10) Library quality control and sequencing: the Agilent D5000
Screentape was used to determine the size distribution and con-
centration of the library before sequencing. Next-generation
sequencing was conducted on an l[llumina NovaSeq 6000/No-
vaSeq X Plus sequencer (paired-end, 150-base-pair mode).

A detailed step by step protocol for spatial-Mux-seq is available
on protocols.io: (https://www.protocols.io/private/IEBICC1B65A81
1EF8B450A58A9FEACO02).

Data preprocessing

For ATAC/CUT&Tag data, linkers1and 2 are used for targeted filtering,
with alignment via BWA followed by sorting and indexing using Sam-
tools. This process assigned genome sequences to the first read and
incorporated barcodes Aand Binto the second read. The fastq files were
aligned to mouse (GRCm38) reference genomes, producing fragment
files enriched with spatial and genomic information through barcode
pairs integration. ArchR v.1.0.2 (ref. 49) was used to generate ArchR-
Project for downstream analysis. Peaks were called with pseudo-bulk
bam files using MACS2 with parameters ‘~keep-dup=1-1local 100000-
min-length 1000-max-gap 1000-broad-cutoff=0.1"

For RNA-seq data, read 2 was refined to extract barcode A/B, and
UMILI. The Spatial Transcriptomics pipeline (v.1.7.2) mapped data to the
mouse (GRCm38) genome references, producing a gene matrix that
captured both gene expression and spatial data. The gene matrix was
thenreadinto Seurat v.4.3.0 (ref.13) as a Seurat object.

For cDNAs from ADTs, the fastq file of read 2 was reformatted in
the same way as cDNAs from RNA. CITE-seq-Countv.1.4.2 (ref. 50) was
used to count ADT UMIs per antibody, generating a protein expression
matrix containing the spatial locations and protein expression levels.

Data clustering and visualization

First, we identified the location of pixels on tissue from the bright-
field image captured by Keyence fluorescence microscope BZ-X800,
which was done through a custom Python script (https://github.com/
liranmao/Spatial_multi_omics).

For ATAC and CUT&Tag data, based on the ArchRProject, the nor-
malization and dimension reduction were conducted using Latent
Semantic Indexing and uniform manifold approximation and projec-
tion (UMAP). Then we used the getGeneScore from ArchR package
to get the GAS and the CSS scores. For spatial data visualization, to
facilitate the mapping of data onto the original tissue, the gene score
matrix derived from ArchRwasimportedinto Seurat as aSeurat object.
Then we plotted the spatial maps using SpatialPlot. The size of the
pixels was adjusted for visualization by modifying the ‘pt.size.factor’
parameter within the Seurat package.

For RNA data, based onthe Seurat object, we used the SCTransform
function for the data normalization and variance stabilization. Then
the dimension reduction was done by RunPCA. We then constructed
the nearest neighbor graph on the first 30 principal components by
using the function FindNeighbors. The clusters were identified with
appropriate resolutions. Ultimately, we computed a UMAP embed-
ding leveraging the initial 30 principal components using RunUMAP.
SpatialPlot was used for spatial plot visualization.
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Protein datawere normalized using the centered log ratio transfor-
mationmethod. All heat maps were plotted using ggplot2. SpatialPlot
was used for spatial plot visualization, which is the same as ATAC and
CUT&Tag data.

Multi-omics integration

For our multi-omics dataintegration, we consolidated ATAC, CUT&Tag
and RNA datasets into a single Seurat object. The ATAC and CUT&Tag
data integration used a peak matrix with 501-base pair fixed-width
peaks from the 1-base pair summits generated by addReproduci-
blePeakSet from ArchR, applying Macs2 for peak calling. RNA data
integration was based on a log-normalized gene expression matrix.
We applied WNN analysis with FindMultiModalNeighbors for cluster-
ing, using UMAP and spatial mapping for visualization. Subsequently,
cell-type clusters were refined through FindClusters within Seurat,
based on the wsnn graph. This streamlined approach facilitated a
precise analysis of cellular heterogeneity within the multi-omics data-
set. The detailed joint analysis of the data from Fig. 1 is available on
GitHub (https://github.com/liranmao/Spatial_multi_omics/blob/main/
Data_visualization/Figl_joint_analysis.Rmd) and figshare (https://doi.
org/10.6084/m9.figshare.27265410)°".

Integrative data analysis and cell-type identification

To delineate cell identities within each pixel, we used the addGeneln-
tegrationMatrix function from ArchR, integrating chromatin acces-
sibility or histone modification data with transcription data. To get a
higher resolution cell-type inference inside one pixel, we used robust
cell-type decomposition” to decompose cell-type mixtures by leverag-
ing cell-type profiles learned from scRNA-seq.

Downstream analysis

For assessing the correlation of CSS/GAS and gene expression, we per-
formed the analysis for certainidentified cell-type clusters, dentate gyrus
specifically. Marker genes from the RNA dataset were identified using the
FindMarkers function, applying the Wilcoxon rank sum test with a log,
fold change threshold of 0.10. We further filtered the RNA markers based
onanadjusted Pvalue threshold of 0.01. Similarly, for chromatinfeatures,
including GAS and CSS, we used the FindMarkers function with identical
parameters to determine the marker genes. GO analysis was conducted
using enrichGO function from R package clusterProfiler v.4.8.3 (ref.52).

Chromatin dynamics analysis

Pseudotime analysis on RNA was performed using Slingshotv.2.2.1. The
trajectory analysis on ATAC was conducted using the addTrajectory
function from ArchR. For chromatin bivalency analysis, we considered
genes exhibiting high levels of both H3K4me3 and H3K27me3 as biva-
lent. For a certain gene, the H3K4me3 and H3K27me3 signal of each
pixel was calculated by getGeneScore function from ArchR package,
identifying the subset of signals that were within the gene window
weighted by distance. The bivalency score was calculated according
toapreviously published method**.

Gene regulation analysis

We used FigR v.0.1.0 (ref. 29) to infer the transcriptional regulation
by integrating ATAC and RNA data. The runGenePeakcorr function
facilitated peak-gene association testing. DORCs were defined as genes
with arelatively high number of notable peak-gene associations (n > 5).
DORC accessibility scores were obtained using the getDORCScores
function. To pinpoint potential TFs regulating DORC, the runFigGRN
function was used to identify TF binding motifs enriched within spe-
cificDORC, indicating their potential role in driving DORC regulation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw and processed data reported in this study are deposited in the
Gene Expression Omnibus with the accession code GSE263333.
Resulting fastq files were aligned to the mouse reference genome
(GRCm38). Published data for data quality comparison and integra-
tive dataanalysis include the mouse reference genome GRCm38: Mus
musculus genome assembly GRCm38 (GCF_000001635.20); mouse
organogenesis cell atlas (MOCA): https://oncoscape.v3.sttrcancer.
org/atlas.gs.washington.edu.mouse.rna/downloads; mouse embryo
H3K27me3 and H3K27ac chip-seq (E13.5): https://www.encodepro-
ject.org/; mouse brain cell atlas: http://mousebrain.org/adolescent/
downloads.html; Allen Developing Mouse Brain Atlas: https://devel-
opingmouse.brain-map.org/; spatial-CUT&Tag data: GSE165217 and
spatial-ATAC-RNA-seq data: GSE205055.

Code availability

The whole analysis pipeline and instructions for reproduction are
available at GitHub (https://github.com/liranmao/Spatial_multi_omics)
andviaZenodo at https://doi.org/10.5281/zenod0.13964086 (ref. 53).
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to label cell surface proteins. In situ reverse transcription was then performed,
followed by two rounds of DNA barcoding to create a mosaic of tissue pixels.
Finally, gDNA and cDNA were collected and separated, and library construction
was completed with PCR amplification.

incubation with two secondary nanobody-Tn5s. Next, a panel of ADTs was used
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mapping of marker genes in E13 mouse embryo. a, Spatial mapping of
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section. Neuronal clusters are visualized with distinct patterns, emphasizing
their spatial distribution within the embryo. b, Correlation of H3K27ac

GAS and scRNA-seq data' in the cluster of excitatory neurons, highlighting
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the transcriptional activity associated with these regions. ¢, Correlation of
H3K27me3 CSS and scRNA-seq data' in the cluster of excitatory neurons,
emphasizing the gene silencing characteristics of these neurons. d, Heatmaps
showing spatial mapping of marker genes associated with H3K27me3 and
H3K27ac modifications, with variations in color intensity indicating differential
expression and histone modification patterns across the embryo tissue.
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Extended Data Fig. 5| Spatial-Mux-seq (co-profiled H3K4me3/H3K27me3/
ATAC/RNA) mapping of E13 mouse embryos. a, Spatial ATAC data and H3K4me3
datawere integrated with scRNA-seq" from mouse embryo (E13.5). Unsupervised
clustering of the combined data was colored by different cell types. b, Spatial
mapping of selected cell types identified by label transferring from scRNA-seq to
spatial H3K4me3 data or spatial ATAC data. ¢, Spatial mapping of Ank3 and Gria2

genes with RNA, ATAC, H3K4me3, and H3K27me3 modalities. d-e, Scatter plot
showing scaled values of Ank3 and Gria2 ATAC, H3K4me3, and H3K27me3 score
across pseudotime from radial glia to differentiated neurons. f-g, GO enrichment
analysis for genes from radial glia (f) to differentiated neurons (g). The Padj value
indicates the Benjamini-Hochberg adjusted Pvalue obtained from the one-tailed
Fisher’s exact test. The top ten GO terms for each category are displayed.
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Extended Data Fig. 6 | Spatial coprofiling of protein, RNA, H3K4me3, and cells within the embryonic tissue. The spatial patterns of marker genes of each
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seq" from E13.5 mouse embryos. This integration enabled the spatial mapping captured for spatial analysis. b, Spatial mapping of selected genes with RNA,
of specific cell types, including osteoblasts, sensory neurons, and epithelial H3K4me3, H3K27me3 and bivalency score. Scale bar, 500 um.
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Extended Data Fig. 7 | See next page for caption.
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Extended DataFig. 7 | Spatial coprofiling of RNA, H3K27ac, and H3K27me3 TSSregion of Prox1was shown as alight blue box. d-e, Pearson correlation
inmouse juvenile brain. a, Spatial mapping of selected genes with RNA, between ProxI expression and histone mark H3K27me3 (d) or H3K27ac (e) gene
H3K27ac, and H3K27me3 modalities. b, Unsupervised clustering analysis and scores. The gene scores are derived based on the gene model surrounding the
spatial distribution of each modality with different resolution from Fig. 4a: transcription start site (TSS). Arrows indicate the high expression region of
H3K27me3 (Resolution: 3), H3K27ac (Resolution: 3), and RNA (Resolution:5).c, marker genes.

Genome browser tracks of Prox1 genein clusters DG-sg and DG-sgz. The selected
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Extended DataFig. 9 | Spatial coprofiling of proteins, mRNA, H3K27me3, and integrated with scRNA-seq* from mouse brain. ¢, Spatial mapping of cell types
H3K27acin a EAE mouse brain. Sample: SM_20_um. a, Spatial distribution and identified by label transfer from scRNA-seq to ATAC (top), H3K27ac (middle) and
UMAP embeddings of unsupervised clustering analysis of ATAC (An), H3K27me3 RNA (bottom). MSN: medium spiny neurons. MOL: mature oligodendrocytes 2.
(Bn), H3K27ac (Cn), RNA (Rn), and proteins (Pn) with five months old EAE TEGLU: Telencephalic Glutamatergic Neurons.

mouse brainsample (pixel size). b, Spatial ATAC, H3K27ac and RNA data were
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aligned to the mouse reference genome (GRCm38). Published data for data quality comparison and integrative data analysis include: mouse reference genome
GRCmM38: Mus musculus genome assembly GRCm38 - NCBI - NLM (nih.gov); mouse organogenesis cell atlas (MOCA): https://oncoscape.v3.sttrcancer.org/
atlas.gs.washington.edu.mouse.rna/downloads; mouse embryo H3K27me3 and H3K27ac chip-seq (E13.5): https://www.encodeproject.org/; mouse brain cell atlas:
http://mousebrain.org/adolescent/downloads.html; Allen Developing Mouse Brain Atlas: https://developingmouse.brain-map.org/; spatial-CUT&Tag data:
GSE165217; spatial-ATAC-RNA-seq data: GSE205055.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No directly relevant. No sample size calculation was performed. The current manuscript mainly described a new method Spatial-Mux-seq:
Multiplexed spatial mapping of chromatin features, transcriptome, and proteins at tissue scale. The sample sizes are sufficient because each
sample serves as a proof-of-concept for the new technologies.

Data exclusions  No data were excluded from the study.

Replication All attempts at replication was successful. The replicate experiments have been done on adjacent tissue sections as shown in Extended Data
Fig. 3.

Randomization  Not relevant to the study as no comparisons across treatment groups was performed.

Blinding Not relevant to the study as no treatments were performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging

|Z Animals and other organisms
|:| Clinical data
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Antibodies

Antibodies used

Validation

Anti-H3K27me3 antibody (Clone number: mAbcam 6002), ab6002; Anti-H3K27ac antibody (Clone number: DSE4), cell signaling
technology #8173; Anti-H3K4me3 antibody (Clone number: C42D8), cell signaling technology #9751; cell surface markers are ordered
from Biolegend, including: Anti mouse CD4 (AOOQI), Anti mouse CD3 (A0182), Anti mouse CD34 (A0857), Anti mouse CD140a (A0573),
Anti mouse CD133 (A1037), Anti mouse CD90.! (A0380), Anti mouse CD90.2 (AO075), Anti mouse B220 (A0103), mouse antibody
cocktail (199901).

Abcam 6002 was validated by the manufacturer using ChIP, WB, ELISA, ICC/IF.

Cell signaling technology 8173 was validated by the manufacturer using ChIP, WB, IF, CUT&RUN, CUT&Tag.

Cell signaling technology 9751 was validated by the manufacturer using ChIP, WB, IF, CUT&RUN, CUT&Tag.

Biolegend A0O001, A0182, A0857, A0573, A1037, A0380, AO075, A0103, and 199901 were validated by the manufacturer using
immunofluorescent staining with flow cytometric analysis and the oligomer sequence is confirmed by sequencing.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals

Reporting on sex

Field-collected samples

Ethics oversight

All mice used were on a C57BI/6 background. All mice were maintained in 12 h light/12 h dark cycle at room temperatures ranging
between 20-25 °C and humidities between 40-60%. P21 mouse and 5-month EAE mouse were used in Spatial-Mux-seq.

No wild animals were used in the study.

Sex was not important for this study since the tissues are used to benchmark a new genomics protocol, which we anticipate would
provide identical results regardless of sex.

No field collected samples were used in the study.
Juvenile mouse brain tissue (P21) was obtained from the C57BL/6 mice housed in the University of Pennsylvania Animal Care

Facilities under pathogens-free conditions. All procedures used were pre-approved by the Institutional Animal Care and Use
Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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