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Abstract

Recent advances in tabular deep learning have
demonstrated the importance of embeddings
for numerical features, where scalar values are
mapped to high-dimensional spaces before be-
ing processed by the main model. Here, we
propose an embedding method using the hyper-
bolic tangent (tanh) activation function that al-
lows neural networks to achieve better accuracy
on tabular data via an inductive bias similar to
that of decision trees. To make training with the
new embedding method reliable and efficient,
we additionally propose a principled initializa-
tion method. Experiments demonstrate that the
new approach improves upon or matches accu-
racy results from previously proposed embed-
ding methods across multiple tabular datasets
and model architectures.

1 Introduction
Deep learning has achieved success in various do-
mains, from computer vision to natural language
processing. However, its application to tabular data
has been challenging, with gradient-boosted deci-
sion trees (GBDTs) typically outperforming neural
networks. This has led researchers to investigate
how neural networks can better capture the induc-
tive bias that makes tree-based models effective on
tabular data.

Work by Gorishniy et al. (2022) has demon-
strated that proper embedding of numerical features
is beneficial for achieving competitive performance
with GBDTs. Recent developments have intro-
duced additional approaches to tabular embeddings.
Li et al. (2024) use tree ensembles to transform nu-
merical variables into binarized embeddings, while
Wu et al. (2024) suggest a two-step feature expan-
sion and deep transformation technique.

We propose here an approach to numerical fea-
ture embeddings based on properties of the hy-
perbolic tangent (tanh) function. The tanh activa-
tion exhibits a dual nature that aligns well with

Figure 1: With a large weight w, tanhwx approximates
indicator functions, enabling tree-like decision bound-
aries and with small it is nearly in the central region,
allowing smooth feature transformations.

the structure of tabular data: with large weight w,
tanh(wx + b) captures a tree-like inductive bias
by creating a sharp decision boundary, while with
small w it approximates a linear function; see Fig-
ure 1.

However, with poor initialization, neural net-
work training using tanh can lead to vanishing gra-
dients and unstable learning. To overcome this,
we introduce an initialization method based on a
simple probability argument. The new method en-
sures that the embedding parameters w and b start
in a region that facilitates both tree-like and linear
representations. Empirically, the new initialization
method does achieve the desired benefits of more
stable training and better accuracy.

Experiments demonstrate the effectiveness of
our approach in two scenarios. In the first scenario,
we compare embeddings using fixed dimensions,
where the model hyperparameters are tuned with-
out considering the embedding layer. In this case,
the new tanh-based approach consistently outper-
forms previous embedding methods across various
datasets and model architectures. In the second
scenario, we compare against previous ReLU em-
beddings, where both the model parameters and the
embedding dimensions were tuned for the use of
ReLU. Even in this challenging comparison, tanh-



based embeddings lead to accuracy improvements.
Overall, the new approach can achieve competi-
tive or superior performance with minimal tuning
overhead, making it particularly practical for sce-
narios where extensive hyperparameter search is
not feasible.

2 Related Work
The application of deep learning to tabular data has
historically been challenging, with GBDTs often
achieving superior performance (Ke et al., 2017).
Recent studies provide insights into this perfor-
mance gap: Grinsztajn et al. (2022) demonstrated
that tree-based models’ success stems from their in-
herent ability to learn effective decision boundaries
and handle heterogeneous features, while McEl-
fresh et al. (2023) identified specific data charac-
teristics where neural networks can potentially out-
perform GBDTs.

Traditional neural networks treat numerical fea-
tures as direct inputs without specialized process-
ing. This approach has limitations in captur-
ing complex feature interactions and non-linear
relationships. Recent work by Gorishniy et al.
(2022) has studied simple differentiable embed-
dings, which apply a linear transformation followed
by an activation function, and piecewise linear em-
beddings, which creates disjoint learnable bins for
feature values. Their experiments demonstrated
that these embeddings can significantly improve
neural network performance on tabular data.

More recently, Li et al. (2024) proposed a tree-
regularized method that uses tree ensembles to
transform numerical variables into binarized em-
beddings, and Wu et al. (2024) introduced a unified
framework employing lightweight neural networks
for both numerical and categorical features, utiliz-
ing two-step feature expansion and transformation.
Importantly, neither of these methods is a standard
single neural network that can be trained by back-
propagation in a standard way, unlike the method
that we suggest below.

Recent research has also made progress in clos-
ing the performance gap with GBDTs through
other innovations in feature processing and model
architecture. Transformer-based models such as
TabTransformer (Huang et al., 2020) and FT-
Transformer (Gorishniy et al., 2021) tokenize the
features, using attention mechanisms to capture
complex feature interactions. Hybrid approaches
such as NODE (Popov et al., 2020) incorporate
tree-like structures into neural architectures, while

DCN V2 (Wang et al., 2021) uses cross networks
to model feature interactions. However, these meth-
ods are also not a simple single neural network that
is trainable in a standard way.

2.1 Activation functions and initialization

ReLU (Nair and Hinton, 2010) has become the
default choice for activation function due primar-
ily to its ability to mitigate the vanishing gradient
problem. However, it has limitations, including
that neurons can become inactive during training.
Alternatives proposed to address these limitations
include Leaky ReLU (Maas et al., 2013) and Para-
metric ReLU (He et al., 2015) which introduce a
small negative slope, while ELU (Clevert et al.,
2016) and GELU (Hendrycks and Gimpel, 2016)
offer smoother gradients.

The hyperbolic tangent (tanh) function, although
less commonly used in modern architectures, has
useful properties. Its bounded output between −1
and 1 provides natural normalization, while its sig-
moidal shape enables both smooth transformations
and sharp transitions that are similar to decision
boundaries in trees.

Proper initialization is crucial for training stabil-
ity and convergence, particularly in the context of
tabular data where feature scales and distributions
can vary significantly. Glorot and Bengio (2010)
introduced Xavier initialization, scaling weights
based on layer dimensions to maintain variance.
He et al. (2015) extended this for ReLU activations,
accounting for the activation’s non-linearity. For
tanh activations, LeCun et al. (2012) proposed scal-
ing weights by the square root of fan-in to maintain
variance.

While these approaches provide solid founda-
tions for neural network training, adapting them for
tabular data embeddings presents challenges due
to varying feature distributions and the need to bal-
ance linear and non-linear representations. Recent
data-dependent methods such as LSUV initializa-
tion (Mishkin and Matas, 2016) are adaptive, but
can be computationally intensive.

3 The tanh-based embedding method
Given a tabular dataset with numerical features, our
goal is to develop an embedding method that can
capture both linear and non-linear relationships in
the data. Let x ∈ Rp represent a numerical feature
vector, where p is the number of features. The
embedding maps each feature xi to Rd, where d is
the embedding dimension.



Previous approaches using ReLU activation func-
tions in the embedding layer can be expressed as
ei = ReLU(Wixi + bi) where Wi ∈ Rd×1 and
bi ∈ Rd are learnable parameters and ei ∈ Rd is
the embedding of xi (Gorishniy et al., 2022).

We propose replacing the ReLU activation with
tanh, so ei = tanh(Wixi + bi). The advantage is
that with large embedding weights Wi,j ≫ 1, each
component of the embedding captures a tree-like
inductive bias, by creating a sharp decision bound-
ary. Conversely, with a small weight Wi,j ≪ 1, a
component approximates a linear transformation,
because tanh(x) ≈ x for small x. See Figure 1.

We also propose an enhanced embedding variant
with a second transformation layer:

ei = σ(Mi tanh(Wixi + bi) + ci)

where Mi ∈ Rd×d and ci ∈ Rd are additional
learnable parameters, and σ is another activation
function, possibly ReLU. This two-layer method
allows for more complex feature transformations
while keeping the benefits of the tanh approach.

3.1 Connection to decision trees

A decision tree can be expressed as a function as
follows. First, each node in the tree is an indicator
function of some feature. Next, a path from the
root to a leaf node, which represents a sequence of
decisions, is a product of these indicator functions
or their negations along the path. Finally, the entire
tree is a combination of decision path functions:

f(x) =
∑
p∈P

cp
∏
i∈p

Di(xi, θi)

where P is the set of all paths from root to leaves,
cp is the constant value assigned to the leaf node
at the end of path p, and Di(xi, θi) is either 1xi≥θi

or 1xi<θi for feature xi with threshold θi, where
the choice depends on the split direction and which
half-domain the node represents. As a simple ex-
ample, see Figure 2.

Each component of a tanh embedding can ap-
proximate a smoothed version of an indicator func-
tion as follows. Consider component j of the vector
ei, as the weight Wi,j approaches infinity. Given
bi,j = −θi,jWi,j for a fixed θi,j , the tanh function
approaches an indicator function:

lim
Wi,j→∞

tanh(Wi,jxi + bi,j) = 1xi≥θi,j .

Each component j can capture a different decision
boundary, allowing the model to learn a rich set of
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Figure 2: A example of decision tree of depth 2 operat-
ing on features x1 and x2, showing both branches at the
root but only expanding the right subtree (x1 ≥ 1).

decision rules while maintaining differentiability,
which is crucial for gradient-based optimization.

The piecewise linear embedding method in Gor-
ishniy et al. (2022) partitions each feature’s range
into bins with predefined boundaries. In contrast,
the tanh-based approach allows the model to adapt
the location and the sensitivity of bin boundaries.

3.2 Principled initialization

Proper initialization of embedding weights is im-
portant for the success of tanh-based embeddings.
We propose a principled method that takes advan-
tage of the properties of tanh. We first preprocess
all numerical features using min-max scaling to
the range [−1, 1]. Our method uses the fact that
tanh(t) behaves approximately linearly for t in
[−0.5, 0.5].

When initializing an embedding that maps a fea-
ture xi into d dimensions, we aim to create uni-
formly distributed bins across the [−1, 1] range,
with each bin having a length of 2/d. We initialize
the embedding parameters as

Wi,j = d/2 and bi,j ∼ Uniform(−d/2, d/2).

As training progresses, the model learns to adjust
the weights and biases to capture both linear rela-
tionships (when Wi,jxi+bi,j is within [−1, 1]) and
non-linear relationships (otherwise).

In the appendix, we prove that this initializa-
tion strategy ensures that for any input value x ∈
[−1, 1], the expected number of bins where pre-
activation wx+ b falls within [−0.5, 0.5] is 1.

The effectiveness of the proposed initialization
strategy is empirically validated through analysis of
learned weight distributions in Section 5.3, which
shows that the embeddings maintain good coverage
of the feature space while adapting to local feature
complexity.



Table 1: Dataset properties. “MSE” (↓: lower is better) denotes mean-square error, “AUC” (↑: higher is better)
denotes area under the ROC curve. Dataset abbreviations: GE (gesture), CH (churn), CA (california), HO (house),
AD (adult), OT (otto), HI (higgs-small), FB (fb-comments), SA (santander), CO (covtype).

Regression Classification

CA FB HO AD CH CO GE HI OT SA

#objects 20640 197080 22784 48842 10000 581012 9873 98049 61878 200000
#num. features 8 50 16 6 10 54 32 28 93 200
#cat. features 0 1 0 8 1 0 0 0 0 0
metric MSE↓ MSE↓ MSE↓ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑
#classes – – – 2 2 7 5 2 9 2
majority class – – – 76% 79% 48% 29% 52% 26% 89%

Table 2: Naming scheme for model variants. Each
variant name consists of a prefix (experiment scenario),
embedding variants, and initialization suffix. For ex-
ample, 2B-LT-a is a model using optimized piecewise
linear embedding parameters (2B-), with Tanh-based
embedding, and optimized initialization (-a).

(Abbr.) (Embedding Variants)
Base model MLP, ResNet, FT-Transformer
FR control group with ReLU activation
FT control group with Tanh activation
LR embedding with ReLU activation
LT embedding with Tanh activation
LRLR LR + linear layer + ReLU
LTLR LT + linear layer + ReLU

(Abbr. suffix) (Initialization)
-s standard initialization
-a principled initialization

(Abbr. prefix) (Scenarios)
(#)- preassigned embedding dim (#)
2A- see the main text
2B- see the main text

4 Design of Experiments

The embedding dimension is a hyperparameter that
has to be chosen to balance model expressiveness
with computational efficiency. We conduct ex-
periments under two scenarios that differ in how
base model parameters (e.g., hidden dimensions of
MLP) and embedding dimensions are selected.

Scenario 1 - Preassigned Dimensions: In this
scenario, we adopt the optimized base model pa-
rameters (hidden dimensions and dropout rates for
MLP, number of blocks etc. for ResNet and Trans-
former) obtained from hyperparameter search with-
out considering embeddings, and use preassigned
embedding dimensions. This allows us to evaluate
the impact of replacing ReLU with tanh activations
while keeping all architectural choices fixed.

Scenario 2 - ReLU-Optimized Dimensions: Here,
we adopt both the base model parameters and em-
bedding dimensions that are obtained from hyper-
parameter search for ReLU embeddings variants.

This scenarios is split into two cases. Scenario 2A
uses tuned hyperparameter for linear embedding,
and Scenario 2B uses tuned hyperparameter for
piecewise linear embedding, as reported in Gor-
ishniy et al. (2022). This creates a challenging
comparison where we replace ReLU with tanh in
settings optimized for ReLU, demonstrating the
robustness of our approach.

Importantly, we do not perform additional hyperpa-
rameter search for model parameters or embedding
dimensions for the tanh-based approach. This eval-
uation strategy demonstrates that the benefits of our
method are inherent rather than the result of hyper-
parameter search, making it a drop-in replacement
for ReLU-based embeddings in applications where
extensive tuning may be infeasible.

As baselines for comparison, we consider two
control groups that, before feeding the input data
to the base model, process it through an extra
single fully-connected layer for all features, with
either ReLU or tanh activation functions. Thus
e = σ(Wx + b) where W ∈ Rd×p, b ∈ Rd and
σ is either ReLU or tanh. These control groups
isolate the impact of our feature-wise embedding
approach from the increase in dimensionality by
comparing against a baseline fully-connected layer.

We evaluate three base model architectures, fol-
lowing the implementations in Gorishniy et al.
(2022).

MLP: A multi-layer perceptron with multiple hid-
den layers.

ResNet: A residual network adapted for tabular
data, incorporating skip connections to facilitate
training of deeper architectures.

FT-Transformer: A Feature Tokenizer Trans-
former architecture that treats tabular features as a
sequence, enabling feature interactions through the
attention mechanism.

For each base architecture, we evaluate several vari-



Table 3: Performance of MLP variants on multiple datasets in Scenario 1. All rows are variations of MLP.

MSE↓ AUC↑
MLP-variants CA FB HO AD CH CO GE HI OT SA

MLP .0682 .0115 .0483 .8972 .8568 .9953 .7954 .7392 .9541 .8575
30-FR-s .0575 .0115 .0483 .9027 .8544 .9957 .7932 .7296 .9608 .8520
30-FT-s .0578 .0117 .0486 .9029 .8590 .9925 .7947 .7584 .9632 .8549
30-LR-s .0577 .0108 .0495 .9101 .8640 .9925 .7746 .5554 .9663 .8927
30-LT-s .0591 .0108 .0508 .9085 .8615 .9956 .7827 .5000 .9686 .8601
30-LT-a .0497 .0098 .0526 .9110 .8490 .9839 .8052 .7619 .9589 .8926
30-LRLR-s .0584 .0099 .0500 .9096 .8611 .9962 .6181 .5000 .9678 .8932
30-LTLR-s .0566 .0100 .0493 .9097 .8574 .9960 .7955 .6681 .9658 .8958
30-LTLR-a .0525 .0096 .0492 .9125 .8538 .9969 .8099 .7990 .9664 .8958

Table 4: Performance of ResNet variants on multiple datasets in Scenario 1. All rows are variations of ResNet.

MSE↓ AUC↑
ResNet variants CA FB HO AD CH CO GE HI OT SA

ResNet .0662 .0107 .0420 .9106 .8610 .9978 .8273 .8129 .9695 .8658
30-FR-s .0598 .0103 .0447 .9093 .8546 .9976 .8153 .7940 .9689 .8713
30-FT-s .0633 .0107 .0426 .9058 .8630 .9975 .8162 .7907 .9694 .8609
30-LR-s .0752 .0092 .0416 .9119 .8623 .9980 .8092 .8160 .9698 .8786
30-LT-s .0648 .0093 .0420 .9120 .8627 .9977 .8152 .8175 .9696 .8628
30-LT-a .0463 .0095 .0506 .9117 .8484 .9974 .8180 .7997 .9638 .8894
30-LRLR-s .0699 .0090 .0463 .9111 .8644 .9978 .7239 .8178 .9698 .8819
30-LTLR-s .0610 .0091 .0419 .9121 .8659 .9978 .7520 .8179 .9696 .8699
30-LTLR-a .0456 .0087 .0516 .9158 .8622 .9983 .8146 .8146 .9656 .8901

ants to assess the impact of different embedding
approaches. The base model is the architecture
without any specialized embedding layer, serving
as our primary baseline. The variants are:

• ReLU-based: Simple differentiable embed-
dings with ReLU activation

• Tanh-based: Our approach using tanh activa-
tion

• Enhanced: Additional linear transformation
layer after the activation function for both
ReLU and tanh variants

• Control: A fully-connected layer with spec-
ified activation function. (For the FT-
transformer, we do not test control group vari-
ants as they are not applicable.)

Standard initialization follows Kaiming for
ReLU-based models and Xavier for tanh-based
models. For the FT-transformer, we use the ini-
tialization method from Gorishniy et al. (2022). “
Principled" refers to our initialization method de-
scribed above. Names for the model variants and
hyperparameter settings are in Table 2.

4.1 Datasets and metrics

We evaluate our approach on the nine tabular
datasets used in Gorishniy et al. (2022), which

represent a range of real-world scenarios with vary-
ing mixtures of numerical and categorical features,
both regression and classification problems, and
sizes. For categorical features, we employ label
encoding without additional preprocessing in the
MLP and ResNet models, and tokenization in the
FT-Transformer model. Table 1 provides statistics
for each dataset, including the number of numeri-
cal and categorical features, sample sizes, and task
types.

For evaluation of model performance, we em-
ploy task-specific metrics as follows.

Classification: We use the Area Under the Re-
ceiver Operating Characteristic Curve (AUC-ROC)
as our primary metric. AUC-ROC provides a mea-
sure of classification performance that is indepen-
dent of the chosen decision threshold and han-
dles class imbalance. For multi-class classification
tasks, we report the average one-vs-rest AUC-ROC
across all classes.

Regression: We evaluate using Mean Squared Er-
ror (MSE), which measures the average squared
difference between predicted and actual values.
Lower MSE values indicate better accuracy.

Training Efficiency: We record the training time
for each initialization method to compare conver-
gence speed and training efficiency.



Table 5: Performance of MLP model variants on multiple datasets in Scenario 2A and 2B. All rows are variations of
MLP.

MSE↓ AUC↑
MLP-variants CA FB HO AD CH CO GE HI OT SA

MLP .0682 .0115 .0483 .8972 .8568 .9953 .7954 .7392 .9541 .8575
2A-LR-s .0530 .0104 .0715 .8923 .8546 .9666 .7833 .5494 .9704 .8940
2A-LT-s .0530 .0106 .0566 .8888 .8521 .9783 .7798 .6638 .8988 .8618
2A-LT-a .0496 .0099 .0442 .8717 .8495 .9201 .8274 .7955 .9066 .8955
2A-LRLR-s .0575 .0093 .0651 .9105 .8582 .9692 .7897 .7990 .8970 .8770
2A-LTLR-s .0574 .0101 .0444 .9091 .8520 .9896 .8414 .7885 .6885 .8966
2A-LTLR-a .0470 .0073 .0360 .9174 .8520 .9963 .8545 .8013 .9649 .9028
2B-LR-s .0832 .0104 .0509 .9020 .8572 .9965 .8058 .7377 .9652 .8946
2B-LT-s .0858 .0111 .0513 .8971 .8502 .9979 .8033 .6883 .9639 .8790
2B-LT-a .0528 .0092 .0464 .8856 .8482 .9979 .8121 .7881 .9611 .8946
2B-LRLR-s .0511 .0106 .0457 .9088 .8598 .9914 .7987 .7874 .9553 .8909
2B-LTLR-s .0524 .0100 .0466 .9095 .8614 .9946 .7998 .7999 .9644 .8906
2B-LTLR-a .0510 .0087 .0434 .9143 .8488 .9915 .8181 .8112 .9737 .9054

Table 6: Performance of ResNet model variants on multiple datasets in Scenario 2A and 2B. All rows are variations
of ResNet.

MSE↓ AUC↑
ResNet variants CA FB HO AD CH CO GE HI OT SA

ResNet .0662 .0107 .0420 .9106 .8610 .9978 .8273 .8129 .9695 .8658
2A-LR-s .0725 .0082 .0365 .9176 .8644 .9909 .8228 .8237 .9712 .8895
2A-LT-s .0704 .0096 .0428 .9119 .8607 .9949 .8815 .8045 .9736 .8827
2A-LT-a .0427 .0089 .0481 .9170 .8516 .9985 .8619 .7941 .9736 .9077
2B-LR-s .0601 .0096 .0449 .9124 .8617 .9972 .7971 .8182 .9685 .8928
2B-LT-s .0671 .0094 .0428 .9146 .8602 .9955 .8065 .8198 .9684 .8849
2B-LT-a .0477 .0089 .0459 .9135 .8492 .9970 .8093 .7897 .9643 .8919

We employ 5-fold cross-validation. We split the
data into five shares, and in each fold, pick one
share as test set and split the rest as training and
validation set. We report the mean metrics across
all five folds, and we consider one result to be better
than another if its mean score is better and its stan-
dard deviation is less than the difference between
the best and the second best result. Unless other-
wise specified, we use hyperparameters that were
tuned on 80% of the original dataset by (Gorishniy
et al., 2022).

We adapt the training framework from TabSur-
vey (Borisov et al., 2024) and begin with the model
implementations from Gorishniy et al. (2021). All
models are implemented in PyTorch and trained us-
ing the Adam optimizer with hypertuned learning
rate, batch size of 128, and at most 300 epochs
with early stopping based on validation perfor-
mance. All experiments are conducted on a sin-
gle NVIDIA A100 GPU. Our code is available at
https://github.com/liu-bingyan/numbed.

5 Results and Analysis
In Tables 3 to 7 “MSE” (↓: lower is better) denotes
mean-square error and “AUC” (↑: higher is better)
denotes area under the ROC curve. Best results

for each dataset are shown in bold. Multiple bold
entries in the same column indicate results that are
statistically equivalent. Table 2 explains the model
variant abbreviations used in the results.

5.1 Scenario 1: Preassigned Dimensionality

We first evaluate the effectiveness of our method in
Scenario 1 as defined above.

For MLP models (Table 3), the tanh-based em-
bedding exhibits better performance compared
to the ReLU-based embedding across almost all
test cases. Furthermore, our initialization method
shows notable improvements in the enhanced vari-
ants.

For ResNet models (Table 4), we observe consis-
tent improvements similar to those observed in the
MLP architecture. The tanh-based enhanced em-
bedding demonstrates superior performance com-
pared to the ReLU-based embedding across the
majority of test cases. The new initialization sig-
nificantly improves performance for CA and SA
datasets.

The results from Scenario 1 demonstrate that
given a preassigned embedding dimension, the
new tanh-based method effectively outperforms
the ReLU-based embedding, particularly in the en-

https://github.com/liu-bingyan/numbed


Table 7: Performance evaluation of FT-Transformer model variants on multiple datasets in Scenario 2A and 2B. All
rows are variations of FT-Transformer.

MSE↓ AUC↑
FT-Transformer variants CA FB HO AD CH CO GE HI OT SA

2A-LR-s .0555 .0098 .0604 .9205 .8690 .9982 .8865 .8093 .9672 .8987
2A-LT-s .0519 .0099 .0502 .9194 .8689 .9981 .8501 .8069 .9657 .8939
2A-LT-a .0396 .0090 .0476 .9224 .8562 .9967 .8446 .8015 .9665 .8954
2B-LR-s .0679 .0098 .0478 .9158 .8619 .9981 .8026 .8074 .9677 .8988
2B-LT-s .0685 .0098 .0466 .9144 .8650 .9975 .8470 .8082 .9661 .8943
2B-LT-a .0443 .0091 .0313 .9259 .8623 .9968 .8718 .8040 .9655 .8949

hanced variants.

5.2 Scenario 2: ReLU-Optimized Dimensions

Models with carefully tuned hyperparameters are
Scenario 2. While the improvements are more mod-
est, they remain consistent across architectures.

For MLP (Table 5), tanh-based enhanced embed-
dings demonstrate superior performance compared
to ReLU-based embeddings across all test cases
in both Scenarios 2A and 2B. This suggests that
our method effectively combines the advantages
of both linear embeddings and piecewise linear
embeddings. Notably, this performance advantage
holds even though the hyperparameters are tuned
for the comparison model, demonstrating the gen-
erality and robustness of our approach.

For ResNet (Table 6), while the original ReLU-
based embedding shows competitive performance,
our tanh-based enhanced embedding maintains bet-
ter performance in more than half of the test cases.
This demonstrates that our method achieves com-
parable or better performance than hyperparameter-
tuned models. Additionally, our initialization
method improves performance in more than half
of the test cases and does not significantly degrade
performance in the remaining cases.

For FT-Transformer (Table 7), our method shows
significant improvement in some datasets, reducing
MSE to .0396 on dataset CA, while stays competi-
tive in other cases.

5.3 Further Analyses

Figure 3 visualizes the learned embeddings for the
first feature from the California Housing dataset.
Compared to standard initialization, principled ini-
tialization allows bins to concentrate in regions
where the conditional expectation of the label
changes rapidly with the feature.

A significant advantage of our method lies in
its computational efficiency, as demonstrated in
Table 8. The average number of epochs required

Figure 3: Comparison of embedding spaces learned
with different initializations for the first feature x of the
California Housing dataset (left standard, right princi-
pled). The center of each box is the embedding center
c = −b/w in the expression w(x−c) = wx+b, and the
width is 1/w. The horizontal line represents width 2/w.
Boxes are sorted by their centers; the vertical position
of each box is for display only and carries no meaning.

for convergence is consistently improved for MLP
models, with many cases showing convergence
twice as fast compared to the ReLU-based embed-
ding.

Table 8: Number of epochs required for convergence
across different MLP variants in Scenario 1. Lower
values indicate faster convergence. Best values in each
group are bolded.

MLP variants AD CA CH CO FB GE HI HO OT SA

MLP 62 94 38 100 113 31 54 63 89 20
30-FR 76 84 27 101 104 33 40 65 79 18
30-FT 57 99 28 55 74 29 74 62 47 18

30-LR-s 56 117 85 207 105 78 44 106 216 93
30-LT-s 51 89 79 124 116 109 32 78 240 41
30-LT-a 38 74 22 46 72 61 30 35 94 22

30-LRLR-s 50 90 67 129 126 41 23 141 90 87
30-LTLR-s 45 97 50 122 104 41 50 106 74 99
30-LTLR-a 34 51 26 74 56 28 63 46 33 26

6 Discussion

In summary, the experimental results above show
that:



• In Scenario 1 (preassigned dimensions), the
new method achieves better accuracy than the
ReLU-based method, particularly in enhanced
variants.

• In Scenario 2 (ReLU-optimized dimensions),
the new method maintains competitive perfor-
mance against hyperparameter-tuned models,
suggesting it captures a useful inductive bias.

In both scenarios, our initialization’s performance
varies for different models, but it doesn’t degrade
performance and improves it in half of the cases.
Moreover, the new method improves computational
efficiency, reducing training time while maintain-
ing or improving model accuracy.

Overall, tanh-based embeddings appear to consti-
tute a practical and effective solution for using nu-
merical features in tabular deep learning, offering
both accuracy improvements and computational
benefits, without the need for extensive hyperpa-
rameter tuning.

Limitations and Future Work
While our method demonstrates promising results
across multiple architectures and datasets, there are
several directions for future exploration.

Our current evaluation is based on the bench-
mark datasets from Gorishniy et al. (2022). Future
work could extend this evaluation to more recent
benchmarks, such as those proposed in Gorishniy
et al. (2024a) and Holzmüller et al. (2024), to fur-
ther validate the effectiveness of our approach.

In terms of model architectures, we have demon-
strated the effectiveness of our method on the mod-
els presented in Gorishniy et al. (2022), which
includes MLP, ResNet, and Transformer archi-
tectures. Future work could explore the integra-
tion of our method with more recent architectures,
such as TabR (Gorishniy et al., 2024b), RealMLP
(Holzmüller et al., 2024) and others.
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A Analysis of Initialization Strategy
This appendix analyzes the proposed initialization
strategy for the embedding parameters. Consider
a numerical feature x normalized to the interval
[−1, 1] and its embedding tanh(wx + b). For
optimal learning of decision boundaries, the pre-
activation values wx+ b should lie predominantly
within [−0.5, 0.5], where the tanh function exhibits
linear behavior.

Lemma 1. Let {ci}di=1 be independent and iden-
tically distributed random variables following a
uniform distribution on [−1, 1]. For each i, let
Ii = [ci − r, ci + r] be the closed interval of ra-
dius r centered at ci. Then, for any fixed point
x ∈ [−1, 1], the expected number of intervals con-
taining x is more than dr/2.

Proof. For any fixed x ∈ [−1, 1] and each interval
Ii, we have

P(x ∈ Ii) = P(ci − r ≤ x ≤ ci + r)

=

{
r if x ∈ [−1 + r, 1− r],
r+1−|x|

2 if |x| > 1− r,

Thus the P(x ∈ Ii) ≥ r/2. By the linearity of
expectation, the expected number of intervals con-
taining x is

E

[
d∑

i=1

1x∈Ii

]
=

d∑
i=1

P(x ∈ Ii) ≥ dr/2

The proposed initialization strategy sets w =
d/2, so r = 1/d, because −0.5 < wx + b < 0.5
is equivalent to −0.5/w < (x + b/w) < 0.5/w
and r = 0.5/w = 1/d. Therefore the expected
number of bins where the tanh activation provides
meaningful gradients for learning, for any given
data point, is at least 1.

This property ensures effective gradient propa-
gation during training while keeping the bins rela-
tively small for discriminative learning. The theo-
retical justification for this choice stems from the
trade-off between gradient propagation and fea-
ture discrimination: a higher coverage probabil-
ity would lead to excessive activation and reduced
discriminative capacity, while a lower probability
would risk insufficient gradient flow during train-
ing.
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