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Due to the huge amount of biological and medical data available today, along with well-established
machine learning algorithms, the design of largely automated drug development pipelines can now be
envisioned. These pipelines may guide, or speed up, drug discovery; provide a better understanding of
diseases and associated biological phenomena; help planning preclinical wet-lab experiments, and even
future clinical trials. This automation of the drug development process might be key to the current issue
of low productivity rate that pharmaceutical companies currently face. In this survey, we will particularly
focus on two classes of methods: sequential learning and recommender systems, which are active
biomedical fields of research.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

A great variety of experimental data, at a chemical, transcrip-
tomic, or genomic-level is available to readily use for drug develop-
ment. Summarizing the huge amount of biological data at hand
into meaningful models, to grasp the full mechanism of diseases,
seems harder and harder. However, systems biology and machine
learning approaches are continuously enhanced in order to acceler-
ate the path to efficient drug development. We will focus on three
significant related and intermingled questions, that can be subject
to automation: drug discovery, drug testing, and drug repurposing.
Firstly, this review briefly dwells on the current context in drug
development. Later, we will review generic machine learning algo-
rithms, and more specifically, we will focus on sequential learning
algorithms and recommender systems. These algorithms have also
proven themselves useful in other research fields, and are active
biomedical fields of research.
1.1. Drug development

1.1.1. Current context in drug development
Development of new drugs is a time-consuming and costly pro-

cess. Indeed, in order to ensure both the patients’ safety and drug
effectiveness, prospective drugs must undergo a competitive and
long procedure. Drug development is roughly split into four major
stages, called phases. Phase 0 comprises basic research/drug dis-
covery and preclinical tests, which aim at assessing the efficiency
and body processing of the drug candidate. The last three stages
are clinical trials: study of dose-toxicity, short-lived side effects,
and kinetic relationships (Phase I); determination of drug perfor-
mance (Phase II); and comparison of the molecule to the
standard-of-care (Phase III). An optional Phase IV can be post-
drug marketing to monitor long-lasting side effects and drug com-
bination with other therapies. See Fig. 1 for the whole drug devel-
opment timeline. This pipeline takes at least 5 years to be
completed [1], and can last up to 15 years [2]. The minimal amount
of time covers the setup of preclinical and clinical tests (Phases 0
up to III), that is, the time to ponder upon and write down the
study design, to recruit and select patients, to analyze the results,
and so on, let alone to perform the actual wet-lab experiments.

Clinical development time (that is, from Phase I) has steadily
increased. For drugs approved in 2005–2006, the average clinical
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Fig. 1. Representation of the four stages of drug development, along with Phase IV, which occurs after the start of drug marketing.

Fig. 2. Evolution of average development cost in a cohort of 12 major phamaceu-
tical labs, in millions of dollars, between 2010 and 2018 [10].
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development time was 6.4 years, whereas it increased up to
9.1 years for 2008–2012 drug candidates [3]. This might denote
an issue in assessing drug effects and benefits. Conversely, the high
failure rate of drug development pipelines, often at late stages of
clinical testing, has always been a critical issue [4]. In clinical trials
occurred between 1998 and 2008 (in Phases II and III), [5] have
reported a failure rate of 54%. Main reasons for failure were the
lack of efficacy (57% of the failing drug candidates), and safety con-
cerns (17%). Among safety concerns were increased risk of death or
of serious side effects, which were still the main reasons of failure
in Phases II and III in 2012 [3], and in 2019 [7]. For drug pipelines
starting in 2007–2009, the gap in estimated success rates in 2012
was particularly steep between Phase II (first patient-dose) and
Phase III (first clinical trial-dose). This means that Phase II, which
is related to drug performance assessment, is particularly discrim-
inatory: only 14% of the drug candidates that reached Phase II,
compared to 64% of the drug pipelines reaching Phase III, were
eventually marketed [7]. This can still be observed for drug pipeli-
nes starting in 2015–2017 [6]. 25% of the drug candidates that
reached Phase II, compared to 62% of the drug pipelines reaching
Phase III, were approved (estimation made in 2019).

Meanwhile, total capitalized expected cost of drug development
was estimated at $868 million for approved drugs in 2006, with an
average clinical development cost of $487 million, according to the
public Pharma projects database [9]. There are large variations due
to drug type ($479 million for a HIV drug, compared to $936 mil-
lion for a rheumatoid arthritis drug) [8]. The recent study of a
cohort of 12 large pharmaceutical labs led by [10] shows that total
development cost per approved drug has skyrocketed from 2016 to
2018 (from $1,477 to $2,168 million), and almost increased two-
fold in eight years (from 2010 to 2018) (see Fig. 2). It is worth
noticing that, in the meantime, the number of discovered mole-
cules that have reached the late clinical test stage for this cohort
dropped by 22% [10]. Moreover, clinical trials pose a barrier to
rapid drug development. The cost and time involved in patient
recruitment has been increasing. There is a high failure rate and
consequent financial loss in product development. Drug efficiency
assessment might not be carried to term because of prematurely-
stopped clinical testing, due to the lack of funding [11]. These fac-
tors contribute to the decrease in approved drugs.

In a nutshell, all these figures show an expensive, time-
consuming, and frustrating R&D context. Although efforts have
been made in order to tackle these issues (as shown by the 2019
figures of success rates between Phases II and III), there is still
room for improvement in terms of study planning, as suggested
in [11], or designing more insightful preclinical testing [1].
1.2. The future of drug development

This context has indeed transformed the pharmaceutical indus-
try in the span of ten years. Even the biggest pharmaceutical com-
panies encounter productivity issues, in terms of number of
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approved molecules with regard to the number of drug candidates
[4]. Although a few political efforts have been made to promote
orphan disease research [12], this situation has led the pharmaceu-
tical industry to focus on the most profitable diseases. Between
2017 and 2018, the number of active drug pipelines for cancer
therapy has increased by 7.6%, whereas the number of anti-
infective drugs has dropped by 9.3% [9]. The most studied diseases
in 2018, in terms of number of active drug pipelines, are cancer
subtypes (breast, lung), diabetes, and Alzheimer’s disease [9]. This
observation raises the issue of finding therapies for rarer, complex
diseases, where the limited number of patients might hinder
meaningful studies to be carried on; or for tropical diseases, where
the drug development cost might be too prohibitive with respect to
the estimated selling profits [13].

As highlighted by many articles [14–16], one rather inexpensive
way to improve these numbers might be to automate some impor-
tant but repetitive data processing and analysis tasks, more espe-
cially, through robotics [17] and Machine Learning (ML) methods
[18]. Indeed, a lot of blossoming collaborations between Artificial
Intelligence (AI) and Machine Learning (ML) companies and phar-
maceutical labs, as well as universities and research centres [18–
20], slowly bridge the gap in bioinformatics between applied
mathematics, computer sciences and biology. This would allow
to accelerate drug development pipelines as they might be compu-
tationally, thus automatically, performed and less prone to human-
related technical mistakes. Authors of [21] estimate their use
would shrink the drug candidate identification phase from a few
months to one year. Still, one should remain cautious, and not
expect computational methods to solve completely the failure rate
problem [22]. Nonetheless, integrating ML methods into drug
development pipelines might also decrease drug development cost
and time [23], and make therapies more patient-oriented, as the
easier integration of multiview data might allow implementation
or enhancement of precision medicine techniques [24,25]. Con-
versely, systematic methods allow study replication and reusabil-
ity, and enable standardized, transparent data quality control and
sharing [26], and in silico identification of promising targets. These
methods could also provide quantitative values to assess and com-
pare the efficiency of candidate molecules, before any wet-lab
experiment or preclinical test.

1.3. Towards an automated search for therapies

In order to recontextualize research in drug development, we
suggest reading the introductory part of the following referenced
papers [13,23,27,28]. Even though a fully-automated drug develop-
ment pipeline seems out of reach for now [13], the combined
efforts from biology, medicine, bioinformatics, computer science
and mathematics communities have been spent on improving each
part of the drug development pipeline – for example, drug discov-
ery through high-throughput screening (HTS) of drugs via genomic
and transcriptomic data [29], genome-wide association studies
(GWAS) to uncover new relevant drug targets [30], and increasing
application of generic algorithms from machine learning. The use
of these methods makes sense in a context where a large quantity
and diversity of curated information is available about drugs and
their therapeutic indications, disease/aggravating factor targets,
disease pathways, and gene/protein regulatory interactions.

2. Sequential learning and recommender systems in machine
learning

Machine learning (ML) is a subfield of artificial intelligence (AI)
in computer science. Here, a ML algorithm designates any compu-
tational method where results from past actions or decisions, or
past observations, are used to improve predictions or future
decision-making. ML techniques are now extremely popular in
drug development (see [13,27,31] for recent surveys) as they
allow automation of highly-dimensional, noisy biological data
analysis.

Many different machine learning tasks have been studied,
which fall broadly into three categories. The first one is supervised
learning, in which the goal is to predict the label of new observa-
tions given a large database of labelled examples. Several super-
vised learning algorithms have been applied in a biological
context, such as Support Vector Machines [32] or (Deep) Neural
Networks [33]. The second task is unsupervised learning, and it
aims at detecting underlying relationships or patterns in unlabeled
data. Dimension reduction methods, like Principal Component
Analysis (PCA), fall in this class. But other unsupervised problems
are also studied in the context of drug development, such as den-
sity estimation, clustering (grouping data) or even collaborative fil-
tering. We shall elaborate on some examples below. The third type
of task is sequential learning, where algorithms rely on trial-and-
error, and iteratively use external observations in order to find
the best decision with respect to the environment they interact
with.

A large literature has dwelled on the use of sequential learning
algorithms, where an agent, that is, a goal-oriented entity interact-
ing with its environment, must make one choice at a time accord-
ing to previous observations of the environment (from which the
input data originate) they are interacting with. While offline –or
batch– methods use batches of data in order to learn, online –or
sequential learning– algorithms process one data point at a time
(receiving a stream of data), and update their prediction or deci-
sion accordingly.

Multi-Armed Bandit (MAB) algorithms [34] constitute a popular
and versatile family of sequential decision-making algorithms, and
were actually motivated by clinical trials, as we shall see. In MABs,
a fixed set of actions, called arms, is available. An agent sequen-
tially interacts with the environment by selecting arms, as illus-
trated in Fig. 3 below. Each arm selection produces some noisy
observation, often interpreted as a reward. However, the average
reward associated with each arm is initially unknown to the agent,
and has to be learnt in the process while achieving a certain objec-
tive. Typically, this objective could be to discover the most efficient
arm(s), that is, the arm(s) with highest average reward, or to max-
imize the total reward accumulated across iterated arm selections
[35]. See the following referenced paper [36] for a comparison
between bandit problems.

Recommender systems are closely linked to MABs, as MABs can
be used to design sequential recommender systems, see for
instance the following referenced examples [37,38]. Recommender
systems actually belong to different families of ML methods, since
a recommender system broadly designates an algorithm which
aims at predicting rating of a given user which tests a given object.
Refer to [39] for a review of the topic. A large part of the literature
about recommender systems is motivated by commercial pur-
poses, see for instance [40–42]. However, we will show that this
flexible class of algorithms can actually be applied to solve drug
development-related problems.

In the next section, we will review interesting applications of
ML in a pseudo-chronological order of appearance in a drug devel-
opment pipeline –namely, drug discovery, drug repurposing and
drug testing– in which established ML algorithms of the three
described classes are involved. We will focus on a subset of ML
methods, which comprises sequential learning algorithms and rec-
ommender systems. Although they are rarely reviewed in a
biomedical setting, they have been investigated for tackling drug
development-related problems.



Fig. 3. A K-armed bandit, where the learning agent interacts with its environment by sequentially selecting arms, and updating its strategy using the observations it obtains.
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3. Examples of machine learning applied to drug development

3.1. Drug discovery

Drug discovery is usually considered the first stage of a drug
development pipeline [43], and is an exploratory step which aims
at uncovering putative drug candidates or gene targets, or causal
factors, of a given disease or a given chemical compound. A variety
of supervised learning methods (for instance, Support Vector
Machines and Deep Learning [44–46], regression methods
[47,48]) and unsupervised learning methods [13] applied to
biomedical problems have been thoroughly reviewed in the last
decade, with a growing interest in Deep Learning (DL). For further
review for DL methods applied to drug discovery, please refer to
[33,49]. Applications may tackle interesting problems in drug dis-
covery: for example, drug candidate identification via molecule
docking, in order to predict and preselect interesting drug-target
interactions for further research [43]; and protein engineering, that
is, de novo molecular design of proteins with specific expected
binding or motif functions [44].

A fairly recent breakthrough in protein design uses generative
DL, more precisely, Generative Adversarial Networks (GANs [50]).
A GAN is made of two simultaneously trained neural networks
(NN) with distinct roles: a Generator, which is trained to sample
instances (‘‘generated instances”), and a Discriminator. The goal
of the latter is to recognize training instances from generated ones,
by assigning them a probability value of the considered instance
being sampled from the training set. The objective is to train the
Generator to create fake instances that are able to ‘‘fool” the Dis-
criminator, that is, which are convincing enough with respect to
the underlying ‘‘goodness” function represented by the Discrimi-
nator. See Fig. 4 which illustrates a GAN. For instance, [51] have
applied GANs to generate DNA sequences matching specific DNA
motifs, that is, short DNA sequence variants which are associated
with a specific function. As a proof-of-concept, highly-rated sam-
ples obtained via this procedure, exhibiting one or several copies
of the desired motif, were shown. Another paper [52] uses, as ‘‘pre-
dictor‘‘ network, a NN which predicts the probability of the (gener-
ated) DNA sequence of coding for an antimicrobial peptide (AMP),
and have succeeded in training a GAN which returns 77.08% of the
time AMP-coding sequences.

Drug discovery problems have also motivated research in black-
box optimization, mostly using Bayesian Optimization (BO), see for
instance the following referenced examples [53,54]. Bayesian Opti-
mization is a field of research for finding global optimum (i.e.,
either maximizers or minimizers) of a black-box function by
sequentially selecting where to evaluate this function. Indeed,
the so-called black-box objective function is accessible only
through its values at selected points, and might be costly to evalu-
ate. The interest in a sequential strategy is to adaptively choose
where to collect information next (which defines a so-called acqui-
sition function). The motivation for viewing some drug discovery
tasks as a black-box optimization problem comes from the fact that
they usually rely on expensive simulations (at chemical-level), for
instance, protein-folding [55], making automatic drug screening
and assessment via these operations time-consuming.

The specificity of BO is to choose a prior probability distribution
(embedding a priori knowledge, simply called prior) on the objec-
tive function: e.g., one assumes that the objective function is a
sample of a given probability distribution over functions. This prior
is then updated after each new function evaluation into a posterior
distribution, which in turns guides the selecting of the new point to
evaluate. For instance, in [56], the authors apply BO to design gene
sequences which maximize transcription and translation rates,
from initial sequences. The optimization is performed on feature
vectors of fixed length associated with the gene sequences, and
the objective function f is the function which, given a gene
sequence feature vector, returns the associated transcription and
translation rate functions. The prior upon the objective function
is a Gaussian Process, classically used in BO [57]. The authors then
use as acquisition function the average objective, which will max-
imize the average of the transcription and translation rates. The
feature vector maximizing this acquisition function will then
define an optimal gene design rule (for instance, frequencies of
amino acid codons) for the maximization of both transcription
and translation rates. Since several codons can code for the same
amino acid, given a set of sequences coding for a protein of interest,
these sequences can be ranked according to the similarity of their
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(e.g., DNA sequences, …)
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Fig. 4. Generative Adversarial Networks for Drug Discovery. A Generative Adversarial Network is a set of two neural networks, the Generator and the Discriminator. These
two networks are trained at the same time.
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corresponding feature vector with the optimal gene design rules
that have been derived. The idea is to produce then the protein
of interest with lower costs, since the protein production rate is
maximized.

Another example of applications of BO to drug discovery is to
stimulate the discovery of new chemical compounds [58], that is,
finding small molecules that might optimize for a property of
interest, while being chemically different from known compounds.
This approach might cope with the caveats of previous methods
[59].

3.2. Drug testing

Once one or several drug candidates are selected, preclinical
(Phase 0) and clinical development (Phases I up to III) start. Drug
properties, related to body processing of the candidate molecule,
should be assessed in early phases: e.g., the ADME properties:
absorption, distribution, metabolism and excretion, along with
the toxicity levels. Evaluation of their efficacy is performed later
during Phases II and III. Automation and development of in silico
prediction models might save time and money on later testing
stages, and subsequent in vitro and in vivo experiments. Moreover,
these methods might come to sometimes replace experiments on
animal models, since some agencies start banning animal testing
[60]. Such instances of potential in silico guiding of wet-lab exper-
iments can be found in [61–63]; in particular, [62,63] describe the
application of Bayesian multi-armed bandit methods to Phase I
studies.

For instance, in [61], a graph-based framework is developed in
order to build a prediction model for perturbation experiments,
provided time-series expression data and putative gene regulatory
interactions between genes of interest. The resulting model can
then predict expression levels for the selected set of genes after
Knock Out and Over Expression perturbations. This method might
help assessing the drug effects on pathways after perturbation of
the drug targets. The authors have validated their method on a
mouse pluripotency model, with in vitro experiments, and report
that 60.7% of the predicted phenotypes could be reproduced
in vitro.

Moreover, given the intrinsic sequential nature of a clinical trial,
in which patients are given treatments, one (group of) patient(s)
after the other, MAB algorithms would be natural candidates to
be used in further phases of drug testing. However, nowadays,
the motivation for developing new bandit algorithms has entirely
shifted to applications to online content optimization, such as
sequential recommender systems [42]. Bandit designs appear to
have been seldomly used in human clinical trials. Traditional ran-
domized clinical trial (RCT) (where, at the beginning of the trial,
each patient from the pool of subjects is randomly assigned to
and treated with a random treatment until the end of the clinical
trial) have been the gold standard since the 1960’s. Notwithstand-
ing, the past years have witnessed an increased interest in all kind
of Adaptive Clinical Trials (ACT), in which the next allocated treat-
ment could be dependent of the outcome of previously allocated
treatments. We will now elaborate on the latter. See Fig. 5 for a
comparison between RCTs and ACTs.

Seen as a MAB, a Phase III clinical trial proceeds as follows:
given K treatments (arms), where each of them has an unknown
probability of success p1, p2, . . ., pK, one of the treatments It is cho-
sen for the tth patient, and its efficiency (the associated reward
value) is subsequently measured. Under the simplest MAB model
for a clinical trial, a reward Xt = 1 is obtained if the treatment is
successful, and Xt = 0 if the treatment fails. The allocation is adap-
tive in that the selection of It may depend on I1, X1, I2, X2, . . ., It-1, Xt-

1, that is, on the previously given treatments and their observed
outcomes. This adaptivity could lead to a smaller sample size to
attain a given power, or early stopping for toxicity or futility of a
treatment [64], by automatically performing interim analyses
[65]. The problem of maximizing rewards in such a bandit model
was extensively studied from the 1950’s, either from a frequentist
view [66,67] (where the success probabilities are treated as
unknown parameters to be inferred); or from a Bayesian view
[68,69] (where success probabilities are assumed to come from
some prior distribution, similarly to Bayesian optimization). Max-
imizing rewards amounts to maximizing the number of cured
patients, which is (arguably) not the purpose of a clinical trial.
Yet, the statistical community has also looked at the different prob-
lem of finding, as quickly and accurately as possible, the treatment
with the largest probability of success. This was studied for exam-
ple under the name ‘‘ranking and selection” [70,71] and later best
arm identification [72,73]. An interesting take-out from the bandit
literature is that the two objectives of treatment identification and
curing patients cannot be achieved (optimally) by the same alloca-
tion strategy [74].

However, as attractive as the idea of determining the best treat-
ment while treating properly as many patients as possible [75] is,
the use of ACTs remains quite rare. This might be due to intrinsic
differences between traditional clinical trial methodology and



Fig. 5. Randomized Clinical Trial (RCT) versus Adaptive Clinical Trial (ACT) for Phase III. A Randomized Clinical Trial (RCT) ‘‘randomly” assign patients to treatment arms
(ensuring balance of covariates of interest) before testing, whereas an Adapted Clinical Trial sequentially assigns patients to treatment arms according to previous testing
results.
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data-dependent allocation, as suggested by [124]. For example,
balance between prognostic covariates in each treated group of
patients is required for statistical relevance [76]. The use of ACTs
might also be hindered by practical reasons in the clinical trial set-
ting, for instance, when one must deal with considerably delayed
feedback, as reported by [77]. Nonetheless, these drawbacks might
be mitigated by the benefit-risk ratio of the treatment. For life-
threatening diseases, an adaptive clinical trial might be a hope
for the patients to improve their condition [78], for best empirical
treatments, using previous observations, can be assigned to
patients.

Despite this initial hostility to ACTs, there has been a recent
surge of interest in promoting their actual use. As a notable sign
of this evolution, the FDA has updated a draft of guidelines concern-
ing adaptive clinical trials [79], listing in particular several concrete
examples of successful adaptive trials. Similarly, [124] presents
some examples and promotes some good practice for using ACTs.
In the meantime, the authors in [77] have performed multiple sim-
ulations illustrating the characteristics of usual bandit algorithms
(mostly aimed at maximizing rewards) in terms of allocation and
final selection (statistical power), in order to popularize their use.

Among existing bandit algorithms, Bayesian algorithms have
achieved a certain popularity. Interestingly, the very first bandit
algorithm can be traced back to the work of Thompson in 1933
[35], who suggests randomizing the treatments according to their
posterior probability of being optimal. This principle (now some-
times called Thompson Sampling or posterior sampling) was redis-
covered around ten years ago in the ML community for its
excellent empirical performance in complex models [80]. Interest-
ingly, the use of (variants of) this principle appears to have been
proposed as well in different context of drug testing. For example,
for phase II trials [81] present a compromise between RCT and
Thompson Sampling, while [64] present a proof-of-concept of a
phase II trial for the Alzheimer disease that rely on such posterior
sampling ideas. More broadly, several examples of successful Baye-
sian adaptive designs have emerged over the last 20 years, and we
refer the reader to [63,82] for a survey.

Furthermore, research is ongoing in order to tackle for instance
the issue of delayed feedback, see for instance [83]. ACTs might
allow clinical trials to take explicitly into account inter-patient
variability [84], or additional information about the patient [85].

3.3. Drug repurposing

The challenges of designing new molecular entities, and testing
them through all clinical phases, has generated research interest in
a more profitable and efficient technique, called drug repurposing,
or drug repositioning. This approach aims at studying already
available drugs and chemical compounds to find them new thera-
peutic indications. This strategy is useful when repurposed drugs
have well-documented safety-profiles (that is, side effects and
treatments are known), and known mechanism of action.

Different approaches have been used to tackle the drug repur-
posing problem. For example, some rely on automatic processing
of Electronic Health Records (EHR), clinical trial data, and text min-
ing methods to identify correlations between drug molecules and
gene or protein targets in literature [86–88]. However, this
approach might be sensitive, but not really specific, since text
interpretation is still a hard problem, and the relationship between
disease factors and drugs might not be clear. The current state-of-
the-art methods seem to have turned to different paradigms of
repurposing, see for instance the following reviews for a classifica-
tion of these different methods [27,89,90].

However, most of these methods rely on a rather strong
hypothesis, which is that similarity between elements – for
instance, chemical composition of drug molecules – implies corre-
lation at therapeutic effect level, or at drug target level. Nonethe-
less, counter-examples to this hypothesis have been shown to
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lead to disastrous events: for instance, thalidomide exists as two
chiral forms (same chemical composition but having mirrored
structures). One of these forms can treat morning sickness; the
other form can have teratogen effects [91].

An attempt to quantify more accurately drug effects is signature
reversion, also called connectivity mapping, which focuses on
expression measurements: given a pathological phenotype (‘‘query
signature”) associated with the disease at study, the objective is to
identify which treatments are most able to revert this signature.
This operation is performed via comparisons of the query signature
with so-called drug signatures, that is, vectorized summaries of
genewise expression changes due to the considered drugs. This
approach has recorded some successes in drug repurposing; see
for instance [29] for a comprehensive review of this type of
method. However, note that relying only on transcriptomic mea-
surements to understand the mechanism behind a disease might
lead to wrong directions when these cannot account for its causal
factors. Moreover, drug repurposing procedures that directly use
drug signatures extracted from LINCS database [92], either to com-
pute a similarity measure, or to predict treatment effects at tran-
scriptome level, are biased: indeed, the drug signatures that have
been computed in LINCS are measured in cancerous or immortal-
ized or pluripotent cells – which (post) transcriptomic regulation
might differ from healthy cells.

Furthermore, especially in matrix factorization and some deep
learning methods that perform a dimension reduction or, more
generally, feature learning on the drug signatures, the learned fea-
tures often hardly make sense biologically speaking, which pre-
vents easy interpretation of the results and sanity checks.

Another way of solving the drug repurposing problem, as
emphasized by [27], is to see it as a recommender system problem,
where an agent should ‘‘recommend” best available options. Here,
the agent should select the most promising drug candidates with
respect to the disease or the target at study. Some recent papers
have adopted this approach: for instance, in both [89,93], the
authors have designed a graph-based method to predict drug-
target or drug-disease interactions. Given a drug, the model pre-
dicts a list of fixed length, that contains disease-related targets
most likely affected by the chemical compound.
Table 1
List of datasets that are relevant for drug development, ordered according to their type. *

Data Type Description

Genomic data (1) Compilation of disease-gene associations; different spec
represented in CTD, while the other two databases refer to
human. In CTD, some interactions are manually curated inst
being computationally inferred. OpenTargets and DisGeNET
gather data from several curated sources. All of these datab
provide a coefficient for each disease-gene association quant
its corresponding level of evidence.

(2) SNP reporting; COSMIC reports expert manually-curated

(3) Regulatory system (e.g., cis-regulatory modules) data: i
CisView, the focus is on the mouse (Mus musculus), and da
collected using a TF binding motif analysis on ChiP-seq
experiments. It reports several measures of interest, such a
conservation scores and quality assessment of the inferred
bindings. UK BioBank collects various types of information
(genomics, imaging) in a huge anonymous human cohort (a
500,000 people).
In [89], the algorithm tackles the problem of predicting drug-
target interactions (DTI). It relies on a given input bipartite graph
of drugs on the one side, and disease-associated gene targets on
the other side, which adjacency matrix is denoted A, of size
n �m (n is the number of targets, and m the number of considered
drugs). An edge connects a drug and a target if and only if the drug
targets this gene (meaning, for a pair of nodes (i,j), A(i,j) = 1 if and
only if j is a drug targeting gene i, else A(i,j) = 0). In a recommender
system point of view, the goal of the algorithm is to determine how
probable (high) the considered drug (user) will target (rate) a given
gene (object). The authors of [89] compute a weight matrix W, of
size n � n, which depends on A and on drug-drug and target-
target similarities (importance of each type of similarity might
be parametrized): Wij is the coefficient corresponding to the prob-
ability that a drug will also target j knowing that it targets gene i. In
order to make the inference about the missing edges between
drugs and targets, one then computes matrix R = WA.
4. Use of data relevant for drug development

In the next section, we give a summary of the fairly new data
types that are openly available as of 2019, and that might be useful
in regard to drug development challenges, as many datasets can be
integrated to training, validation and feature data for the related
algorithms. Indeed, what allows ML techniques to really be effi-
cient is publicly available, curated, annotated data. Multiple types
of datasets might be relevant with respect to drug development
and drug repositioning questions: information about drug candi-
dates, that are, for instance, the chemical structure of the active
molecule, disease gene/protein targets, mechanism of action of
drugs, but also their documented side effects. One might also be
interested in deducing interesting drug candidates by comparing
pairs of diseases, of drugs, of protein targets, and applying the prin-
ciple of ‘‘guilt-by-association”. Integrating multi-view data in a
drug development method has been shown to increase its accuracy
[94–96]. In this section and in Table 1, we will review currently a
few publicly available datasets according to their type which are
of interest in a drug development pipeline.
When provided by the contributors to the database.

Databases (name, reference, date of last data update*, URL, size*) API

ies are
the
ead of

ases
ifying

OpenTargets [97], (2019–11)
https://www.opentargets.org/
27,069 targets � 13,579 diseases

Yes

Comparative Toxicogenomics Database (CTD) [98], (2019–11)
https://ctdbase.org/
Curated: 8,637 � 5816
Inferred: 48,634 � 3168

Yes

DisGeNET [99], (2019–07)
http://www.disgenet.org/
17,549 targets � 24,166 diseases/traits

Yes

data. COSMIC [100], (2019–09)
https://cancer.sanger.ac.uk/cosmic
1,207,190 copy number variants
9,197,630 gene expression variants
7,929,832 differentially methylated CpGs
13,099,101 non coding variants

Yes

n
ta is

s

round

CisView [101], (2016–12)
https://lgsun.irp.nia.nih.gov/geneindex/cisview.html

No

UK BioBank [102], (2019–09)
https://www.ukbiobank.ac.uk/

Yes

(continued on next page)
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Table 1 (continued)

Data Type Description Databases (name, reference, date of last data update*, URL, size*) API

Interaction data (1) Protein-protein or pathway information; STRING reports PPIs
(protein-protein interactions) for thousands of organisms,
classified according to their level of evidence: computationally
inferred (via functional enrichment analysis), experimentally-
proven or extracted from curated databases. A score combining all
this information is associated to each PPI. KEGG gathers manually
assembled biological (signaling and metabolic) pathways.

STRING database [103], (2019–01)
https://string-db.org/
24,584,628 proteins and 3,123,056,667 interactions

Yes

KEGG Pathway database [104] (2019–11)
https://www.genome.jp/kegg/pathway.html

Yes

(2) Biological models of gene and pathway interactions;
CausalBioNet collects manually curated rat, mouse and human
models which are machine readable (encoded into BEL language,
convertible into SBML). BioModels lists literature-based (some of
them being manually curated) models, and computationally
inferred ones, mostly in SBML format.

Causal BioNet [105]
http://causalbionet.com/

No

BioModels [106], (2017–06)
https://www.ebi.ac.uk/biomodels/
Manually curated: 831 models
Literature-based: 1640 models

Yes

(3) Drug signatures (genewise expression changes due to
treatment) in human immortalized cell lines, from standardized
experiments. CMap is a preliminary version of LINCS L1000, and is
not supported anymore.

Connectivity Map (CMap) [107]
https://portals.broadinstitute.org/cmap/
1309 compounds � 4 cell lines � 154 concentrations

Yes

LINCS [92]
https://clue.io/lincs
51,423 perturbation types
2570 cell lines
4 doses

Yes

Drug-Disease
associations

These databases provide information about disease potential
therapeutic targets, along with interacting chemical compounds.
PROMISCUOUS reports text-mining (from literature) based
associations, however some of the texts are manually curated.

Therapeutic Target Database (TTD) [108], (2019–07)
http://bidd.nus.edu.sg/group/cjttd/
3419 targets � 37316 drugs

No

PROMISCUOUS [109]
http://bioinformatics.charite.de/promiscuous/
10,208,308 proteins � 25,170 compounds

No

Clinical trials Repositories of clinical trial settings, status, and results.
ClinicalTrials.gov is a large database which mostly collects
information about US-located trials (formatted in XML), whereas
RepoDB provides visualization and data querying. Clinical trial
data is a good source of information for Machine Learning
methods, because it lists negative results as well (that is, drugs
that failed to prove to be of use in treatment), and potentially the
reasons for failure.

RepoDB [110], (2017–07)
http://apps.chiragjpgroup.org/repoDB/
1571 approved drugs � 2051 diseases

No

ClinicalTrials.gov
https://clinicaltrials.gov
323,890 studies

Yes

Chemical & Drug data (1) Protein-related; automatic annotations. UniProt [111], (2019–11)
https://www.uniprot.org/561,356 proteins
(Swiss-Prot dataset)181,787,788 proteins
(TrEMBL)

Yes

(2) Drug-related; comprises approved, withdrawn drugs, as well
as tool chemical compounds, and reports their potential
indications.

Drug Bank [112], (2019-07)
https://www.drugbank.ca/
13,450 drugs

Yes

(3) ADMET drug properties (among other types of relevant drug
information).

ChEMBL [113], (2018-12)
https://www.ebi.ac.uk/chembl/
1,879,206 compounds � 12,482 targets

Yes
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4.1. Data types

We mainly focused on datasets which are publicly available
online, where the associated data is either easy to download and
automatically read, or easy to get access to via an API (Application
Programming Interface). This criterion is crucial as it allows data to
be easily integrated into a computational method. We required as
well that they contain high-quality data – meaning, expert-curated
or processed in a relevant way that discards purely correlative
assumptions and provides a confidence score – in large quantities,
so to avoid having to gather data from different sources which are
preprocessed in different, non comparable, ways. Moreover, when-
ever possible, we also focused on databases which benefited from
recent updates (less than one year), in order to ensure that they are
still maintained and relevant.

4.2. Feature selection

In ML and statistics, feature selection aims at trimming or trans-
forming (raw) input data in order to only feed valuable information
to the prediction model. This step should not be considered
optional when designing ML algorithms. If not applied to the input
data, the algorithm might actually learn artifacts, be biased, or
even only learn rubbish. As such, feature selection is of paramount
importance in order to ensure study replication and to guarantee
that the developed prediction model will be useful [114]. Feature
selection allows data denoising and thus reducing the batch effect.

This step can either be manually performed, by carefully select-
ing biologically-relevant features, and then proceed to test them
sequentially and assessing their usefulness; or either automati-
cally, by designing an algorithm which will learn these useful fea-
tures by itself.

The advantage of the manual way is that good model inter-
pretability usually follows, provided one can quantify from the
trained model the strength of the influence of each feature (for
instance, it is ensured when using linear regression models). Mul-
tiple ML methods exist in order to select a subset of preselected
features that satisfies interesting properties, such as being predic-
tive of the expected outcome, and being non redundant. For
instance, in a drug development setting, statistical methods, ran-
dom forests, and gradient boosting algorithms helped to success-
fully predict therapeutic targets from selected features linking
genes and diseases of the Open Targets platform [97], or based
on gene expression profiles of the LINCS database [92]. The algo-

https://string-db.org/
https://www.genome.jp/kegg/pathway.html
http://causalbionet.com/
https://www.ebi.ac.uk/biomodels/
https://portals.broadinstitute.org/cmap/
https://clue.io/lincs
http://bidd.nus.edu.sg/group/cjttd/
http://bioinformatics.charite.de/promiscuous/
http://apps.chiragjpgroup.org/repoDB/
https://clinicaltrials.gov
https://www.uniprot.org/
https://www.drugbank.ca/
https://www.ebi.ac.uk/chembl/
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rithms used for feature selection are usually classified into three
major categories: filter, wrapper and embedded methods, where
the latter is a hybrid of the former two. See [115] for a comprehen-
sive introduction to feature selection.

Automatic feature selection algorithms can take advantage of
the great flexibility and learning power of Deep Neural Networks,
that, provided the raw input data and the expected outcome, create
the most discriminant features [116,117]. For instance, the deepDR
approach developed in [116] uses an Auto-Encoder (AE) to gener-
ate informative features from heterogenous drug-related data, in
order to predict new drug-disease pairs. An AE comprises of two
neural networks, one Encoder, and one Decoder. The Encoder will
project the raw data onto a latent space of features, such that the
Decoder is able to reproduce the expected outcomes given the fea-
ture vectors associated with the raw input. However, as in any
application of Deep Learning, careful training and regularization
of these networks should be performed in order to ensure the rel-
evance of the learned features.
5. Perspectives

5.1. Seeing the organism as a whole system: integration of system
biology-related methods to drug development

The power of systems biology and network-based approaches
comes from the analysis of multiple genes in functionally enriched
pathway, as opposed to traditional single gene and single target
approaches. Integration of system biology-related methods to drug
development has been implemented for epilepsy in [118], and has
allowed the identification of drug target candidates in a systematic
way [29], and of a gene module which global expression is highly
anti-correlated to epileptic phenotypes [118]. A whole set of genes
(a gene module) can be targeted for treatment instead of screening
drugs against a single relevant target. Indeed, papers have empha-
sized on the importance of small-effect gene in a system biology
model, as their belonging to highly interconnected gene regulatory
networks (GRNs) implies that any slight perturbation on these
genes might impact significantly ‘‘core” disease genes [24]. A large
and active literature [119] has emerged about the formalization,
the building and the validation of such GRNs, along with the iden-
tification of gene modules highly correlated with pathological phe-
notype. As GRNs are assumed to mirror gene activity with regard to
other genes’ expression, building them usually require (time-
series) expression data. These data can be extracted from data-
bases recording measurements of expression after genewise per-
turbations – for instance, in [120], which relies on Knock Down
gene expression measurements collected in LINCS. Even if not yet
described today, it can be expected that future methods will take
advantage of the use of a restricted part of a GRN to predict in silico
the effect of a chemical compound on a set of genes of interest.
5.2. Precision, or personalized, medicine

Papers have underlined the variability between patients in
terms of disease outcome, drug side effect or even drug action
[121] due to genomic variation. Precision medicine aims at tailor-
ing a therapy for a specific patient, by taking into account their
transcriptomic profiles, genotype, somatic mutations, etc. [25]. If
the integration of multi-view data often allows the prediction
model to be more accurate [94,95], it raises the issue of processing,
denoising high-dimensional and heterogeneous data (and how to
perform feature selection in this case). Practical issues must also
be faced, as the data needed to run the model might not be rou-
tinely obtained at any hospital, as noticed in [114].
6. Summary and outlook

A few takeaway messages can be highlighted from the vast lit-
erature about drug development-related methods.

Firstly, since the 2010’s, there is a widely acknowledged
decrease in productivity of the drug development industry (the
extent of which may vary according to the disease at study), that
is likely due to the increasing complexity of diseases to tackle,
and to the high average drug development cost. This observation
has led several pharmaceutical groups and labs to be interested
in ML techniques, along with robotics, in order to decrease drug
development time, and also to share observational data and clinical
trial results [26,122]. Even if these efforts only result in a small
decrease in drug failure rate during clinical development, this
would be a both financially and scientifically profitable improve-
ment for drug development.

Secondly, data availability and quality are key ingredients for
the success of ML methods. There are hundreds of online publicly,
curated databases which, provided some scripting efforts, can be
integrated modularly to drug development pipelines. The feature
selection step, which selects and transforms raw data to generate
useful model inputs, has been shown to be of paramount impor-
tance in order to understand, and to obtain relevant results from
ML applications. A variety of methods is now available in order
to tackle this problem, and select valid, discriminatory features
for prediction or decision model inputs.

Finally, the use of statistical learning algorithms is not short of
challenges and should be handled with care. Nonetheless, the field
of research seems ripe enough to be applied in at least semi-
automated drug development pipelines; there is a growing number
of papers published on both relevant data processing, and on algo-
rithms applied for biomedical purposes. Subtle and powerful ML
generic algorithms, such as refined DL architectures and sequential
algorithms (that have been proven to be useful in a number of non-
biology related fields of research), are becoming more and more
prominent in biomedical research. They have been applied, with
some success, to inherently complex problems, for instance, for
adapted clinical trials, in vitro experiment prediction or guiding,
or de novo protein design. Standardization, systematic validation
and comparison of drug development methods on independent
datasets are anticipated in the future [123].

In the light of new challenging problems, such as designing
algorithms generating targeted recommendations for precision
medicine, and modelling drug responses as outputs of a much lar-
ger system than a handful of genes, modern ML methods might be
a useful tool to further enhance drug development.
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