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Abstract

Vision-language models (VLMs) often rely on chain-of-thought (CoT) reasoning,
resulting in verbose and suboptimal outputs on complex tasks. We introduce
STELAR-Vision, a topology-aware training framework using TopoAug to generate
diverse reasoning structures (Chain, Tree, Graph). Combined with supervised fine-
tuning, reinforcement learning, and Frugal Learning, it improves both accuracy
and efficiency—boosting Qwen2VL by 9.7%, surpassing Qwen2VL-72B by 7.3%,
and outperforming Phi-4 and LLaMA-3.2 on five OOD benchmarks by up to 28.4%
and 13.2%. We’ve released datasets, and code will be available.

1 Introduction

Recent advances in large language models (LLMs) have significantly improved reasoning capabilities,
with models like GPT-o3 achieving strong performance on complex mathematical and scientific tasks.
This progress has extended into the multimodal domain through vision-language models (VLMs)
such as GPT-4o [OpenAI et al., 2024], GPT-4o-mini [OpenAI, 2024], and Qwen2.5-VL [Bai et al.,
2025]. Despite the recent advances, there is still room for improvement in open-sourced VLMs when
tackling complex vision-based reasoning tasks (e.g., math and science questions), and the path to
enhance their abilities under an affordable training budget remains under-explored.

To address this, we begin by analyzing VLMs’ reasoning behaviors and find that the popular models,
both open-source and closed-source, tend to default to the chain-of-thought (CoT) [Wei et al., 2023]
generation. However, our empirical analysis reveals that different questions benefit from different
reasoning topologies, such as Chain, Tree, or Graph structures (Figure 4). The benefits of diverse
reasoning topologies have yet to be well studied or effectively incorporated into existing training
pipelines. Moreover, CoT often leads to verbose “overthinking”, which increases the computational
cost and makes real-time applications less viable. We find that there is a correlation between the
topological reasoning structures and the output sequence length, thus providing insight into the
overthinking problem created by the CoT reasoning.
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We propose Self-Topology-Aware-Efficient-Learning for Aligned Reasoning in Vision, STELAR-
Vision, a topology-aware training framework using TopoAug, which generates and labels diverse
reasoning structures. Models are post-trained via supervised fine-tuning (SFT) and reinforcement
learning (RL) [Meng et al., 2024], and Frugal Learning is introduced to encourage concise, accurate
outputs.

Our key contributions are: (1) We propose STELAR-Vision, a training framework that aligns diverse
reasoning topologies such as chains, trees, and graphs with question characteristics. (2) We propose
TopoAug, a synthetic pipeline that generates and labels structured reasoning paths for SFT and
RL. (3) STELAR-Vision improves accuracy by 9.7% over its base model and its larger variant
Qwen2VL-72B-Instruct by 7.3%. Frugal Learning reduces output length by 18.1%.

2 Related Work

2.1 Topological Reasoning in Language and Vision Models

Chain-of-Thought (CoT) prompting [Wei et al., 2023] is a widely used reasoning strategy in LLMs
and VLMs, guiding models to generate step-by-step solutions. However, its linear structure may not
suit all tasks. To address this, Tree-of-Thought (ToT) [Yao et al., 2023] enables branching exploration,
while Graph-of-Thought (GoT) [Besta et al., 2024] supports iterative and global reasoning. Both
improve performance on complex tasks like TSP, algorithmic problem-solving, and multi-stage
decision-making.

These methods, however, often rely on rule-based topology generations through sampling and
are limited to language-only settings. In contrast, our framework automatically generates diverse
topological structures and trains a VLM to adaptively select the optimal one per instance during
decoding, enabling more flexible and generalizable reasoning.

2.2 Reinforcement Learning for LLM and VLM Reasoning

Reinforcement learning (RL) is a key technique for aligning LLMs and VLMs with desired behaviors
in reasoning and preference modeling. Approaches like RLHF [Stiennon et al., 2022, Ouyang
et al., 2022] and Constitutional AI [Bai et al., 2022] optimize models toward desired behaviors
through preference feedback. Reward-based algorithms like PPO [Schulman et al., 2017], RPO [Yin
et al., 2024], and GRPO [Shao et al., 2024] leverage explicit reward functions, while reward-free
methods such as DPO [Rafailov et al., 2024], SimPO [Meng et al., 2024], and ORPO [Hong et al.,
2024] achieve comparable results without reward modeling. These methods are widely applied to
mathematical reasoning, long-horizon tasks, and instruction tuning.

In the vision-language domain, RL further enhances structured reasoning and safety-critical perfor-
mance. Systems like VLM-RL [Huang et al., 2024], MedVLM-R1 [Pan et al., 2025], and RLVR [Chen
et al., 2025] improve decision quality, medical safety, and out-of-distribution generalization.

Building on these insights, we show that combining topology-aware data generation with RL (e.g.,
SimPO) improves both accuracy and efficiency. Topological diversity expands the exploration space,
increasing the likelihood of discovering stronger reasoning strategies during RL.

3 Method

In this section, we first construct topology-aware responses on two mathematical datasets. We then
investigate the relationship between the topological reasoning and response accuracy. Finally, we
present the topology-aware training framework shown in Figure 1.

TopoAug

SFT  &  RL

Frugal Learning
Questions

Topo-aware 
responses

Reward Model
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Figure 1: STELAR-Vision Framework.
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3.1 Constructing Topology-Aware Responses

Data We use two math datasets: MATH-V Wang et al. [2024a] (3,040 visual problems) and
VLM_S2H Park et al. [2025a] (7,000 logic puzzles), each pairing images with questions.

TopoAug: Generating Topology-Aware Responses We generate responses using topologies
T = {Chain, Tree,Graph}, prompted via Qwen2-VL-7B-Instruct Wang et al. [2024b] and GPT-
4o-Mini OpenAI [2024b] with extensive degrees of freedom in maximum depth, number of children,
and number of neighbors. Please see the Figure 5 for detailed prompts.

Topology and Outcome Labels Each response r has an Outcome Label Hr ∈ {0, 1}, and is
assigned label 1 if correct and 0 otherwise. Each question-topology pair gets a Topology Label
Fq,t =

Ncorrect(q,t)
Ntotal(q,t)

based on accuracy, where Ncorrect(q, t) is the number of correct responses using
topology t for question q, and Ntotal(q, t) is the total number of responses generated using t.

Problem Difficulty Segmentation Problems are labeled Easy (>85th percentile), Hard (<15th), or
Medium based on topology score distributions.

3.2 Analysis: Topological Reasoning Structures

Chain Tree Graph

Win Rate 49% 28% 23%

Table 1: Win Rates of reasoning topolo-
gies. Combined Tree and Graph win rates
exceed that of Chain.

We evaluate how reasoning topologies (Chain, Tree,
Graph) affect performance by prompting VLMs under
both default and guided settings. We compute a topology-
wise Win Rate to assess the performance of each topolog-
ical reasoning structure, which is defined below.

Win Rate We measure across the entire dataset and
calculate the percentage of occurrence where a topol-
ogy t is the best performing reasoning structure among
the three topology types, computed as Win Rate(t) =∑

q∈Q 1t(argmaxt′∈T Fq,t′)/NQ. Table 1 reports which
topology wins most often.
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Figure 2: Topology accuracy by subject: Accuracy of
Chain, Tree, and Graph reasoning on MATH-V subjects.
While Chain is best overall, Tree and Graph excel in areas
like graph theory and statistics.
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Figure 3: Token length distribution of Chain,
Tree, and Graph reasoning in TopoAug.
Violin plots show median and interquartile
range.

Table 1 shows Chain performs best overall, but Tree and Graph win over half the time, signifying
the great potential of dynamically choosing different topologies across different questions. Figure 2
shows subject-wise preferences, highlighting the benefit of matching topology to question type.

Topology-Wise Generation Length Figure 3 shows Chain produces the longest responses with a
right-skewed distribution that favors extended reasoning, while Tree and Graph are more concise.

3.3 STELAR-Vision Post-Training

Our findings motivate two assumptions: (1) training with diverse topologies helps models select
optimal structures; (2) it encourage concise yet accurate outputs, enhancing inference efficiency.
We implement this via a two-phase post-training pipeline: Supervised Fine-Tuning (SFT) and
Reinforcement Learning (RL).
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Model In-Distribution Accuracy (%) Out-of-Distribution Accuracy (%)
VLM_S2H MATH-V Overall Geometry3K We-Math PolyMath SciBench LogicVista

GPT-4o OpenAI [2024a] 32.0 28.0 30.7 57.0 66.4 25.0 31.1 34.6
LLaVA-v1.6-Mistral-7B Liu et al. [2024] 26.0 8.0 18.0 20.6 26.0 9.2 3.4 18.5
Llama-3.2-11B-Vision-Instruct Grattafiori et al. [2024], Meta [2024] 22.0 10.0 18.0 35.0 37.8 22.2 10.7 24.8
MiniCPMv2.6-8B Yao et al. [2024] 1.5 13.0 18.7 45.0 50.2 14.4 8.5 20.7
Phi-4-multimodal-5.6B-instruct Abouelenin et al. [2025] 23.0 11.0 22.0 8.4 35.8 10.2 10.2 6.7
InternVL3-9B Zhu et al. [2025] 25.0 21.0 27.3 41.2 51.4 21.6 20.3 32.6
Qwen2VL-72B-Instruct Yang et al. [2024] 21.0 20.0 20.7 50.2 60.6 13.0 25.4 28.8
Qwen2VL-7B-Instruct Yang et al. [2024] 21.0 13.0 18.3 35.2 46.6 16.0 10.7 17.0

Chain-Only 25.0 21.0 23.7 31.4 42.2 17.2 10.7 25.4
STELAR-Vision-SFT 28.0 24.0 26.7 44.4 47.4 24.8 9.0 33.3
STELAR-Vision-RL-ONLY 24.0 23.0 23.7 32.8 39.0 26.0 17.5 23.9
STELAR-Vision 31.0 22.0 28.0 36.8 51.0 23.8 12.4 29.0

Table 2: Quantitative Evaluation. STELAR-Vision achieves strong gains on both ID and OOD tasks, out-
performing its base by 9.7%, Qwen2VL-72B by 7.3%, and beating Phi-4 and LLaMA-3.2 by up to 36% and
13.2%, respectively. It also surpasses Chain-Only training by up to 13%.

Phase 1: Supervised Fine-Tuning We fine-tune on TopoAug data mixed with OKVQA Marino
et al. [2019], A-OKVQA Schwenk et al. [2022], and LLaVA150k Liu et al. [2023] (unaugmented for
generalization). Data is filtered via: (1) balanced difficulty sampling, (2) correct responses only, and
(3) rejection sampling with a 7B Outcome Reward Model. Training uses LoRA [Hu et al., 2021] with
next-token prediction loss: LNTP = −

∑T
t=1 logPθ(yt | y<t, x).

Phase 2: Reinforcement Learning We initialize RL from the SFT checkpoint and apply
SimPO [Meng et al., 2024] to prefer high-quality responses: LSimPO = −E[log σ( β

|yw| log π(yw)−
β
|yl| log π(yl)− γ)]. We compare RL on TopoAug vs. Chain-only preferences (equal size), treating
correct responses as preferred and removing topology prompts to enforce implicit structure learning.

Frugal Learning To improve efficiency, we introduce STELAR-Vision-Short, trained for concise yet
accurate outputs. Variant 1 (†) prefers “short and correct” responses in both SFT and RL. Variant 2
(‡) further penalizes incorrect and overly long correct responses during RL to promote brevity.

Dataset Subject Is OOD? Question Type Sample Size

VLM_S2H Math ✗ multiple-choice 200
MATH-V Math ✗ free-form, multiple-choice 100

Geometry3K Math ✓ multiple-choice 500
We-Math Math ✓ multiple-choice 500
PolyMath Math ✓ multiple-choice 500
SciBench STEM ✓ free-form 177

LogicVista Generic ✓ multiple-choice 448

Total 2425

Table 3: Summary of Evaluation Datasets

Dataset Sample
MATH-V 85K
VLM_S2H 160K
OKVQA 18K
A-OKVQA 20K
LLava150k-inst 17K

Table 4: Total sample sizes of
datasets used for training.

4 Experiments

4.1 Experimental Setup

Datasets We use 50K–60K samples from topology-augmented data (Section 3), plus 18k OKVQA,
36k A-OKVQA, and 17k LLaVA-150k for general multimodal tuning (Table 4).

Datasets and Models Evaluation spans MATH-V Wang et al. [2024a], VLM_S2H Park et al.
[2025b], and five OOD benchmarks (Geometry3K Lu et al. [2021], We-Math Qiao et al. [2024],
PolyMath Gupta et al. [2024], SciBench Wang et al. [2024c], LogicVista Xiao et al. [2024]), totaling
2,425 samples (Table 3). We use Qwen2VL-7B-Instruct Wang et al. [2024b] as our base model and
compare with open/proprietary VLMs. Qwen2.5VL-7B Team [2024] is excluded due to instability.

Evaluation Metrics We report Accuracy and Token Length for performance and efficiency. Experi-
ments run on 8×A100/H100(80GB) GPUs. Training takes ∼6 hours (SFT) and ∼9 hours (RL).

4.2 Overall Evaluation Results

We use STELAR-Vision to denote models trained with both phases of post-training, the -SFT suffix
indicates models trained with supervised fine-tuning only, and -RL-ONLY indicates reinforcement
learning directly from the base model without SFT. Table 2 shows results on the in-distribution
datasets MATH-V and VLM_S2H as well as OOD datasets. STELAR-Vision achieves the highest
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in-distribution accuracy, significantly outperforming its base model Qwen2VL-7B-Instruct by 9.7%,
and surpassing larger model LLaMA-3.2-11B by 10.0% and Qwen2VL-72B-Instruct by 7.3%.
While Chu et al. [2025] empirically finds SFT crucial before RL, our TopoAug-trained models
outperform baselines with or without it, depending on the task. A deeper study is left for future work.

4.3 Ablation Studies

We perform ablation studies comparing our models to counterparts trained solely on chain-based
reasoning data. Table 5 shows STELAR-Vision outperforms Chain-Only models by 4.3% on in-
distribution (ID) tasks and up to 8.8% on out-of-distribution (OOD) datasets. This suggests our
model learns to adaptively select reasoning topologies rather than relying on memorization.

Model w/ SFT w/ RL VLM_S2H MATH-V Overall
Qwen2VL-7B-Instruct 21.0 13.0 18.3

Chain-Only-SFT ✓ 18.5 19.0 18.7
Chain-Only-RL-ONLY ✓ 23.5 15.0 20.7
Chain-Only ✓ ✓ 25.0 21.0 23.7
STELAR-Vision-SFT ✓ 28.0 24.0 26.7
STELAR-Vision-RL-ONLY ✓ 24.0 23.0 23.7
STELAR-Vision ✓ ✓ 31.0 22.0 28.0

Table 5: Impact of TopoAug and Training. On ID datasets, STELAR-Vision improves the best Chain-Only
model from 25% to 31%, with a 4.3% overall gain—demonstrating the value of topological augmentation.

4.4 Efficiency Gains from Frugal Learning

STELAR-Vision-Short† reduces token length by 101 (ID) and 24.5 (OOD) with minimal accuracy
loss, while still outperforming Qwen2VL-7B-Instruct by 2.5%. Other variants like Chain-Only-Short†
are less effective, showing the benefit of topology-aware Frugal Learning.

Model Accuracy (%) Gen. Token Length
ID OOD

Qwen2VL-7B-Instruct 26.2 613.5 543.3

Chain-Only 28.7 878.4 742.6
Chain-Only-Short† 23.9 843.1 713.0
STELAR-Vision-SFT 26.7 604.4 483.3
STELAR-Vision 31.6 556.7 523.4

STELAR-Vision-Short† 28.7 455.7 498.6
STELAR-Vision-Short‡ 21.9 538.9 555.9

Table 6: Accuracy vs. token length: STELAR-Vision
improves accuracy with fewer tokens; Frugal Learning
further enhances efficiency.

Model Dataset Tree Graph Chain

w/o STELAR-Vision Overall - - 100.00

w/ STELAR-Vision

ID 14.3 9.7 76.0
We-Math 63.0 7.4 29.6

Geometry3K 96.4 3.0 0.6
LogicVista 22.7 15.6 61.7
PolyMATH 54.0 14.8 31.2
SciBench 54.2 23.2 22.6

Table 7: Test-time Topology Selection: Distribution
of reasoning topologies selected without prompting.
ID denotes the in-distribution test split.

4.5 Why Our Method Works

STELAR-Vision improves ID and OOD tasks by enabling models to learn or select diverse reasoning
topologies. As shown in Table 2, it outperforms Chain-only baselines, while Table 7 shows increased
use of tree/graph structures, confirming the model adapts topology to problem type. Different datasets
show distinct reasoning topology distributions; models adapt reasoning topologies to task complexity,
using chains for simpler tasks and trees or graphs for harder ones. For models lacking this ability, our
framework instills it via SFT and RL, though isolating effects is left for future work.

5 Conclusion and Limitation

We introduced STELAR-Vision, a topology-aware training framework that improves VLM reasoning
by leveraging diverse structures. It outperforms its base by 9.7%, Qwen2VL-72B by 7.3%, and
reduces output length by 18.1% with Frugal Learning—all while generalizing well across five OOD
benchmarks. Despite strong results, STELAR-Vision relies on predefined topologies, and the link
between problem structure and optimal reasoning remains underexplored. Future work will explore
end-to-end topology induction and broader multimodal reasoning.
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A Technical Appendices and Supplementary Material

A.1 Limitations of Chain-of-Thoughts

While Chain-of-Thoughts (CoT) has been a popular reasoning method, we identify its pain points
and leverage dynamic reasoning topology to resolve the problem. We demonstrate examples of such
limitations and our solution in Figure 4

A.2 Example Prompts for TopoAug

We show example questions and prompts used to generate TopoAug answers in Figure 5.
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Q:

How many plums (see the 
picture) weigh as much as 
an apple?

To determine how many plums weigh 
as much as one apple based on the 
image, we can analyze the balance.
1. **Count the apples on one 
side:** 
- The left side has 5 apples.
2. **Count the plums on the other 
side:**
- The right side has 10 plums.
3. **Implying weight balance:** - 
The weight of 5 apples is equal to 
the weight of 10 plums.
4. **Weight of one apple in terms 
of plums:**
- If 5 apples = 10 plums, then 1 
apple = 10 plums / 5 = 2 plums.
Thus, the number of plums that 
weigh as much as one apple is 2.
Final answer: Answer: 2

To solve the problem using tree topology 
reasoning, let's consider the scenario as a tree 
structure where:
- **Root**: Represents the balance point where 
the weights of apples and plums are compared.
- **Nodes**: Each type of fruit (apples and 
plums) can be seen as nodes, where each node has 
a value representing the weight of each fruit.
- **Branches**: The relationship between the 
weights of apples and plums forms branches 
leading from the root to their respective nodes.
- **Depth**: The depth reflects the comparative 
weights, where we assess how many plums 
correspond to the weight of one apple.
In the image, we can observe that a certain 
number of apples balance against a certain number 
of plums. By determining the weights:
1. Let\u2019s denote the weight of one apple as 
'A' and the weight of one plum as 'P'.
2. The left side (apples) has a certain quantity 
balancing against the right side (plums).
The balance indicates a direct relationship: if 
'x' apples weigh the same as 'y' plums, the 
equation can be expressed as:
\\[ x \\times A = y \\times P \\]
From the visual balance, it appears that a few 
apples balance against a greater number of plums. 
By estimating the number of apples and plums 
visually, we can derive a numerical relationship.
For example, if 3 apples balance against 9 plums, 
we find:
\\[ 3A = 9P \\]
This simplifies to:
\\[ A = 3P \\]
Thus, one apple weighs as much as three plums.
In conclusion, through this tree topology 
reasoning, we understand that the weight 
relationship can be mapped effectively, leading 
us to determine that:
Answer: 3

Q:

The sums of the all the three numbers on each 
side of the triangle are equal. Two numbers 
happened to be stained with ink. How much is the 
sum of these two numbers?

To solve this problem through graph topology, we 
can represent the triangle of numbers as a graph 
where each number is a node and the edges represent 
the sums of the numbers on each side of the 
triangle. 
### Graph Structure:
- **Nodes**: The numbers (1, 3, 6, 7, and the two 
unknowns).
- **Edges**: The connections between these nodes 
show the sums on each side of the triangle.
### Key Attributes:
- Each side of the triangle has an equal sum: 
  - Side 1: \\(1 + 6 + ? = S\\)
  - Side 2: \\(3 + 6 + ? = S\\)
  - Side 3: \\(7 + ? + ? = S\\)
From this, we can define relationships among the 
nodes (numbers). The two unknown numbers (let's 
denote them as \\(x\\) and \\(y\\)) are neighbors 
of node 6 and are also involved in sums with nodes 
1, 3, and 7.
### Depth Calculation:
We can analyze the depth of the graph by focusing 
on the known values and how they connect to the 
unknowns. The relationships indicate that \\(S\\) 
must equal \\(1 + 6 + x\\) and \\(3 + 6 + y\\). 
1. From Side 1:
   \\[ S = 1 + 6 + x = 7 + x \\]   
2. From Side 2:
   \\[ S = 3 + 6 + y = 9 + y \\]
Since both expressions equal \\(S\\), we can set 
them equal to each other:
\\[ 7 + x = 9 + y \\]
This rearranges to:
\\[ x - y = 2 \\quad (1) \\]
3. From Side 3:
   \\[ S = 7 + x + y \\]
Since we know \\(S\\) is also equal to \\(9 + y\\) 
(from Side 2), we can set:
\\[ 9 + y = 7 + x + y \\]
This simplifies to:
\\[ 9 = 7 + x \\]
Thus,
\\[ x = 2 \\quad (2) \\]
### Conclusion:
Using equation (2) in equation (1):
\\[ 2 - y = 2 \\]
This gives:
\\[ y = 0 \\]
### Final Answer:
The sum of the two unknowns \\(x\\) and \\(y\\) is:
\\[ x + y = 2 + 0 = 2 \\]
Therefore, the answer is:
**Answer: 2**

The same amount of kangaroos should be in both parks. How many 
kangaroos have to be moved from the left park to the right park 
for that to happen?

Q:

To analyze the problem of how many drops of glue Hansi needs to stick 12 cubes 
together, we can model this situation using Graph topology concepts.

Hansi sticks 12 cubes together to make this figure. He always puts one drop of glue between two cubes. How many drops of glue does he need?Question:

Nodes and Edges:
- Each cube can be represented as a node in the graph. Each drop of glue can be seen as an edge between two nodes.
Connections:
- To determine the number of edges (glue drops), we need to account for how many pairs of cubes are directly connected……
Applying Graph Properties:
- In a linear arrangement of cubes, like a straight line, each additional cube would connect to the previous one…….
Counting Connections:

 - The first cube does not require glue.
 -  Every subsequent cube requires one drop of glue to attach to an existing cube.
 -  Given that there are 12 cubes, the general formula (drops of glue = n - 1) applies here:
   - (12 - 1 = 11)
Thus ……

To analyze the problem of how many drops of glue Hansi needs to stick 12 
cubes together, we can model this situation using graph topology concepts.

1. Understanding: When sticks two cubes, he uses one drop. Each time a new cube is added, it needs one additional drop
2. Calculating the Glue Drops:
   - The first cube does not require any glue.
   - Each of the subsequent cubes (from the second to the twelfth) needs one drop of glue each to connect to the existing structure.
3. Total Glue Drops Calculation:
     - 1st cube: no glue needed
     - 2nd cube: 1 drop
     - 3rd cube: 1 drop
     - … 
     - [REPEATED FOR ALL CUBES]
     - 12th cube: 1 drop
Therefore ……

To determine how many drops of glue Hansi needs to stick 12 cubes together, we 
need to consider how the cubes are connected via chain-of-thought.

The image shows a puzzle in a 3 by 3 grid followed by 4 options. Analyze the changes in the following attributes for each example: line type, line color, shape type, 
shape color, shape size, shape quantity, shape position, and consider the relations: Progression, XOR, OR, and AND. Provide the final answer as 'Answer: [correct 
option]'.

Root: Overall Structure
- The grid is structured in a 3x3 format with two examples and one query row, followed by four options.
Nodes: Attributes
1. Line Type Solid or broken lines.
2. Line Color Black, gray, or variations.
…
Branches: Relations
- Progression Strict increase/decrease in a specific attribute across the examples.
- XOR: Exclusive attributes that differ between examples.
…
Depth: Analysis of Each Example
- Example 1 (Row 1):
  - Line Type: Variation from straight to intersecting lines.
   …
- Example 2 (Row 2):
  …
- Query (Row 3):
  …
Options Evaluation
1. Option 1: Complexity in lines with a triangle; color gradient is maintained.
…

To analyze the puzzle presented, we can structure in a tree topology, 
identifying key attributes and their relationships for each example, and then 
applying our findings to deduce the correct option for the query.

Example Analysis
1. Example 1 (Row 1)
   - Attributes:
     - Line type: Solid
     - Line color: Progression from black to gray
     …
2. Example 2 (Row 2)
   …
3. Query (Row 3):
   - Attributes: Unknown
Options Analysis
- Option 1:  Potential relation: Matches line type and shape type.
…
- Option 4: Potential relation: Matches previous example patterns of shapes and colors
Predictions
1. Example 1: (line color, progression)
2. Example 2: (shape type, OR)
Consolidate Predictions for Options
- Option 1: (Matches type and quantity but not color progression)
…
- Option 4: (Similar progression but less consistent)

Final Decision
Answer: 1 (correct)

To analyze the puzzle, let's break down the attributes for each example in the 
grid. We will examine the changes in attributes across the examples and 
determine how they relate via chain-of-thought.

Final Decision
Option 4 offers the closest consistency and conformity 
with the established patterns of Examples 1 and 2.
Answer: 4 (wrong)

Question:

Figure 4: Limitations of the Popular Chain-of-Thought Reasoning Structures. The widely
adopted Chain-of-Thought (CoT) reasoning paradigm (in green) often results in unnecessarily
verbose reasoning processes, as demonstrated in the first example. Under CoT reasoning, the model
redundantly counts each cube, whereas with Graph topology (in blue), it quickly identifies the key
point of the question. In the bottom-row example, CoT reasoning begins with a detailed examination
of each subplot but ultimately arrives at an incorrect answer. In contrast, Tree topology (in red)
initiates reasoning with a high-level overview before delving into specific features. In both scenarios,
CoT-style reasoning proves suboptimal.
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Figure 5: Prompts used in TopoAug to generate training samples for the MathVision (MATH-V)
and VLM_S2H datasets. For each question, we prompt the generation models to produce 10 to
20 responses across three distinct reasoning topologies—Chain, Tree, and Graph—with extensive
flexibility in maximum depth, number of children, and number of neighbors.
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A.3 Experimental Details

Model Architecture We used Qwen2-VL as the base model, where we keep the architecture not
changed.

Training Hyperparameters We show detailed training hyperparameters we used in Table 8

Hyperparameter Value

Precision and Initialization
Precision bfloat16

Gradient checkpointing Enabled
FlashAttention-2 Enabled

Optimizer and Schedule

Optimizer AdamW
Learning rate η = 1.0× 10−5

Weight decay Not explicitly specified
Scheduler Cosine decay
Warmup 10%

Gradient accumulation steps 16

LoRA and PEFT
LoRA rank 16
LoRA alpha 32
use_peft True

SimPO Parameters
α 2.5
γ 1.38

Table 8: Summary of hyperparameters.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims made in the abstract and introduction are accurate. Our main
claims are further summarized in Figure 1 and Table 2, and illustrated with details in Section
2 and Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This is not a theoretical paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided our experiments’ settings in Section 2, 3 and Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While our codebase is not yet ready for public release at the time of submission,
we provide detailed implementation descriptions to support reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided our experiments’ settings in Section 2, 3 and Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our paper primarily studies Large Vision Language Models with reasoning,
therefore making it computationally costly and prohibited to run multiple times for each
experiment for error bars calculation. However, we have shown that our performances
consistently outperform the baseline method in Table 2 and 5 in multiple settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: It’s detailed in Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are convinced that we comply with NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work focuses on small-scale models and datasets using standard training
protocols. It does not pose broader societal impact beyond advancing our understanding of
specific aspects of deep learning.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not have such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We’ve credited and cited the references and codebases appropriately in the
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We don’t release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our paper uses LLMs and VLMs to generate reasoning data as part of our
main method, and we provide more details and information of this generation and usage in
Section 2 and 3. Our paper also uses the LLM for writing, editing, or formatting purposes
and does not impact the scientific rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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