
Reinforcement Learning for the Beginning of
Starcraft II Game

Yukang Chen
1155154501

Department of Computer Science
The Chinese University of Hong Kong
yukangchen@cse.cuhk.edu.hk

Chu Ruihang
1155156766

Department of Computer Science
The Chinese University of Hong Kong

rhchu@cse.cuhk.edu.hk

Abstract

Starcraft II is a popular real-time strategy game that is welcomed by many young
people. This game is really complicated to play due to the long game timeline,
various society/buildings/units, a large number of actions or selections, different
constraints (e.g., population limit), and the partially observed environments. In this
project, we plan to develop a reinforcement learning model for the beginning of
Starcraft II game, instead of the full-length game. The beginning of the game is
essential for the further economy, population increase, and technology development.
Our project is based on the SC2LE (StarCraft II Learning Environment) platform.
We build a feasible pipeline for training reinforcement learning models and design
random, scripted, and our actor-critic based agents. Experiments show that our
actor-critic based agents can learn valuable knowledge in this task. The video has
been publicly available. 1

1 Introduction

In recent years, reinforcement learning (RL) has been widely used in computer vision, natural
language processing, robotics (8), and so on. In terms of games, RL achieves remarkable success
in Atari games (11) and the Go game (17). Based on these achievements, researchers gradually pay
attention to the more complicated games, e.g. the real-time strategy (RTS) video games Starcraft II.
In RTS games, players make their actions simultaneously, instead of acting in turns. This kind of
games are more difficult to play well. It costs common teenagers several years to become a master in
Starcraft II. Therefore, it is also uneasy to train an agent to play this game. We list the difficulties of
this problem as the following:

- Large action space: If the agent uses the point-and-click interface just like human players,
there would be hundreds of millions of possible actions (22) in each frame, for the high
game resolution. In addition, with the game time going, players will possess different units,
buildings, and technologies, which involves additional unique actions.

- Indistinct reward: The clearest reward is the results of the game (wining or losing).
However, as each game time involves thousands of frames and actions in the sequence, it is
too sparse to use the final reward as instruction. What’s more, apart from the micro-level
actions, macro-level plannings are important for the results of the game. It is a hard job to
design an approximate reward function that is neither too sparse nor shortsighted.

- Partially observation: The environment is partially observed for two reasons. First, the
map camera is locally posed. Players need to move the view to get more information.
Second, there is a "fog-of-war" to cover an unexplored area on the map. Players need to
assign units to find out the positions and activities of their enemies.

1https://drive.google.com/file/d/11S6t3rNKjM1CJEkFSN1lkZiyLTdqHhzQ/view?usp=sharing



Figure 1: Illustration of units and buildings involved in the begining of this game.

In this project, we focus on the game beginning, which is essential for the full game and is also
a complicated task. The beginning of the game is to set up the necessary units and buildings in
a reasonable order and do their right jobs. It has less difficulty compared to the full game but is
an essential task. Figure 1 1 shows an example layout of the beginning of the games with units
and buildings noted. We design actor-critic agents to learn how to collect the economy and build
marines and compare them to random and scripted agents. Our experiments are based on SC2LE, a
StarScraft II Learning Environment platform, which is developed by the collaboration of DeepMind
and Blizzard. It provides rich environments and interfaces for our agents to interact with StarCraft II.
In Section 2, we introduce related works. In Section 3, we introduce our baseline agents and our RL
based agents. We show the experiments in details in Section 4.2 and make a conclusion in Section 5.

2 Related Work

Reinforcement learning (RL) is studied to be suitable for playing real-time strategy games, achieving
great advancements in classic board games (1; 17) and video games (10; 14; 5). Containing much
theoretic and domain complexities, RL’s playing Starcraft II gains increasing research attention. To
facilitate it, DeepMind developed SC2LE (22), an RL environment for StarCraft II. It standardizes
critical RL components such as the observation, action, and reward for Starcraft II domain, based on
which various approaches could be fairly verified.

With a long-term measurable goal of beating human players, recent works (19; 16; 1) explores RL
algorithms and architectures to improve win rates, with hand-crafted sub-systems (2), high-level
actions(18), rule-based systems (3) and so on. Many works (18; 7; 13) also described the hierarchical
reinforcement learning paradigm (6; 20; 12). Specifically, they generally operate on multi-level
abstraction, each handled by learned strategies and controllers. Owing to its hierarchical architecture,
the long-horizon task is decomposed into a series of sub-policies, along with it the huge action could
be substantially reduced. As a milestone, AlphaStar (21) exploited a model-free learning method that
uses data from human and agent game, as well as avoiding the imperfect models, which is typical of
search-based methods. Finally, it reached the grandmaster level in this game.

Due to the severe difficulty of the full task of Starcraft II, i.e., win the game, Blizzard and DeepMind
designed seven minigames (22; 4) as well. Each can be regarded as a sub-task and focuses on different
perspectives of the game, such as building a base and collecting resources. BuildMarines, as one of
mini-games, encourages the agent to build as many Marines as possible within a fixed amount of time.
Some earlier works (15; 22) searched low-level actions brutally with many meaningless attempts,

2



Actions: select_rect(P1, P2) build_supply(P3)

P1

P2

P3

Observations: game info, feature maps

SC2LE Agent

Reward

Figure 2: The interaction of the Starcraft II learning environment (SC2LE) platform and the agent.

Figure 3: Processed input feature map in SC2LE platform.

thereby causing unsatisfactory results. By contrast, Liu. et.al (9) tackled this problem by splitting it
several into basic skills. Then the DQN reinforcement learning algorithm and a ruled-based method
were proposed to schedule and execute these skills, respectively. In this proposal, we aim to improve
the performance from the different aspects, i.e., model-free agent construction.

3 Method

3.1 Problem Formulation

In Figure. 2, we illustrate the interaction process of the SC2LE platform and the agent. In the
following, we introduce the details of each parts in this system and the approach we adopt.

- Environment: The environment is the Starcraft II API in SC2LE. It receives the actions
from the player or agent, interacts with the game, and returns the corresponding observations.

- Action: The agent actions in this platform directly follow the form of human actions. For
example, to control a unit, it first selects the action ’select_rect’, and then picks two points
(P1, P2) of a rectangle, which should cover the unit. To further order the unit to do something,
e.g., to build a supply, it first selects this action ’build_supply’ and then chooses the point
P3.

- Observations The observations involve two aspects, the game information, and feature
maps. The game information includes resources, available actions, building queues, and

3



Algorithm 1: Random Agent
Initialise s;
for each step do

Randomly sample a from As, available action set in s;
Get transition s′, a, s, r;
s← s′;

end

Algorithm 2: Scripted Agent
BUILD-SUPPLY← False;
BUILD-BARRACK← False;
Initialise s;
for each step do

Command all available workers to mine;
Do the following judgements based on s;
if not BUILD-SUPPLY then

Choose a worker to build a supply;
BUILD-SUPPLY← True;

end
else if not BUILD-BARRACK then

Choose a worker to build a barracks;
BUILD-BARRACK← True;

end
else

Command the barrack to build marines
end
if Population meet the limit then

BUILD-SUPPLY← False;
end
Summary the current observation as s′;
s← s′;

end

other visible information. Feature maps are the processed segmentation maps of screen
maps. This kind of feature map is easier for the agent to learn than the original screen. We
have many different kinds of feature maps for use as shown in Figure 3.

3.2 Baseline Models

Before conducting our training process, we set up two baseline models, random agent and scripted
agent. We introduce them in detail in this section.

Random Agent Random agent is a trivial naive model, which randomly samples action from the
available action choices in each frame. Its outputs are meaningless. Thus, it gets unsatisfied results.
We mark the random agent as a brief algorithm in Algorithm 1.

Scripted Agent Actually, we have enough experience and know the rules about this RTS game.
Thus, in addition to the scripted agent, we also include a well-designed scripted agent as a baseline. It
totally follows a series of if-else rules and case judgment. It checks the current situation and responds
to an appropriate action from the current valid action set. Specially, because the purpose of this game
is to build marines, which is trained from the barrack, this agent checks if the barrack has been built.
If not, a worker will be selected and build a barrack. At the same time, other workers are mining
(collecting money). After that, it builds marines continuously until it counters the population limit.
Otherwise, a worker will be selected to build a supply, which can enhance the population limit. This

4



Algorithm 3: actor-critic Algorithm
Initialise s, θ;
Sample a ∼ πθ;
for each step do

Perform at according to policy π(at|st; θ);
Receive reward r = Ras ; sample transition s′ ∼ P as ;
Sample action a′ ∼ πθ(s′, a′);
δ = r + γQw(s

′, a′)−Qw(s, a);
θ = θ + α∇θlogπθ(s, a)Qw(s, a);
w ← w + βδφ(s, a);
a← a′, s← s′;

end

process is repeated until the end. We formulate this process in Algorithm 2. Noted that we do not
include very detailed actions in the algorithm, like how to select a worker, for a clear illustration.

3.3 Training Strategy

We design our training strategies based on actor-critic () and Asynchronous Advantage actor-
critic (A3C) () algorithms. We first introduce the reward function. Then, we introduce the detailed
design as follows.

Reward: For the game beginning task with regard to building Marines, here we directly correspond
the reward value with the marine number, i.e., +1 if increasing a marine. It is different from the full
game where the reward function is just the winning or losing (+1/-1).

actor-critic To deal with the indistinct reward mentioned in Section 1, we adopt actor-critic
architecture that directly parameterizes the policy πθ(a|s) and updates the parameters θ by performing
gradient ascent on E[Rt]. In this approach, the critic plays a role as evaluating the reward of actions,
guiding the policy function used to generate actions, denoted as

Qw(s, a) ≈ Qπθ (s, a) (1)

where Q(s, a) is the state-action value function, the critic and actor are responsible for updating the
actor parameter w and policy parameter θ. In our project, the state s is the real-time game status
as well as segmented screen map, action can be represented by vectors where each dimension is an
action category. The pseudo-code is shown in Algorithm 3.

Under this strategy, the w and θ are updated by steps until convergence.

Asynchronous Advantage actor-critic Asynchronous Advantage actor-critic (A3C) () is an up-
dated version of actor-critic algorithm. It accumulates the training process of the traditional actor-critic
algorithm in an asynchronous way. In other words, the algorithm is running on multi threads in
parallel. At the end of each epoch, the gradient is accumulated from multi-threads and used to update
the global parameter. Then the thread-specific parameters are synchronized with the global one. We
illustrate this algorithm in Algorithm 4.

4 Experiments

4.1 Implmentation Details

We train our models and compare them with two agents: RandomAgent and ScriptAgent. Ran-
domAgent randomly chooses an action at every time step during the game, while ScriptAgent is
well-designed with hand-craft playing strategies. Specifically, We control ScriptAgent to focus on
quickly mining resources and building Marines, without many irrelevant procedures. When the
Marines number goes up to an upper limit, ScriptAgent turns to build another Supply Station so as
to accommodate more Marines. As for our agent, we train it on a MacBook Pro equipped with a
4GB Radeon Pro 555X GPU. For implementation details, we set the feature map resolution of both

5



Algorithm 4: Asynchronous Advantage actor-critic Algorithm
Initialize global shared parameter θ; Assume thread-specific parameter θ′;
Reset dθ ← 0;
Initialize s, θ;
Sample a ∼ πθ;
for each step do

Perform at according to policy π(at|st; θ);
Receive reward r = Ras ; sample transition s′ ∼ P as ;
Sample action a′ ∼ πθ(s′, a′);
Accumulate gradients wrt θ′ dθ;
δ = r + γQw(s

′, a′)−Qw(s, a);
Perform asynchronous update of θ usirng dθ.;
θ = θ + α∇θlogπθ(s, a)Qw(s, a);
w ← w + βδφ(s, a);
a← a′, s← s′;

end

(a) (b)

(c)

Figure 4: Comparison of (a) RandomAgent, (b) ScriptAgent, (c) Our Agent. (a) RandomAgent
randomly sample actions at each frame and fail to build any marine to the end; (b) ScriptAgent builds
marines in a normal way; (c) Our trained actor-critic agent has learned to build marines but is stuck
by the population limit.

screen and minimap as 64×64. The feature extracting neural network is composed of 4 convolution
layers and 6 fully connected layers. The maximum steps in one iteration is set as 2000 and the total
iterations is 340. The learning rate is 5e-4, which is a carefully tuned value. The discount ratio 0.99.

4.2 Experimental Results

We evaluate the agent performance by the curriculum score, i.e., the Marine number within a certain
time. We show the experimental results by screenshots as shown in Fig 4. It can be observed that

6



Agent Curriculum score
RandomAgent 0

ScriptAgent 27
actor-critic Agent 11

A3C Agent 11
Table 1: Curriculum score comparison between different agents.

(a) Policy loss v.s. training iterations (b) Value loss v.s. training iterations

Figure 5: (a) Policy loss and (b) Value loss over training iterations.

RandomAgent is unable to obtain any score, while ScriptAgent benefits from the clear target and
therefore wins the highest score 27. Our Agent learns the game strategy from random actions but
wastes time on many meaningless steps. It has learned how to build marines to get positive rewards.
However, it is stuck by the population limit. It does not know that building the Supply Station can
enhance the population limit. So it underperforms compared to ScriptAgent and achieves a score 11.

We try to solve this problem with the improved version, Asynchronous Advantage actor-critic (A3C).
We run 8 asynchronous threads at the same time in parallel. Other settings like learning rate and
discount ratio are the same to the original actor-critic agent. However, we did not find any obvious
advantage of A3C model over the actor-critic agent. It also achieves the most 11 reward and fails to
learn building supply to enhance the population limit. In addition, the training process sometimes
becomes more unstable. Thus, the A3C agent requires further tuning.

We also record the loss curve of the training process for actor-critic agent as in Figure 5. Specially,
policy loss Lpolicy and value loss Lvalue are computed with the following equations.

A = vtarget − v (2)
Lpolicy = ReduceMean(log(Pa) ∗A) (3)

Lvalue = ReduceMean(v ∗A) (4)
where A means the difference between the target value and the predict value and Pa means the
probability of taking actions. Figure 5 shows that the loss of our model converges to a low level but
the stability needs improvements.

5 Conclusion

In this paper, we study the beginning of Starcraft II game. The pipeline for the scripted agent and
reinforcement learning-based agents is built on the SC2LE platform. We design both random and
scripted agents as a baseline. Our agents are trained with actor-critic and A3C algorithms with
detailed analysis. Although their current performance is still inferior to the well-designed scripted
agent, it learns much knowledge in this task and is much better than the random agent. This project
presents a promising hope for further research in this challenging task.

References
[1] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu. Deep blue. Artificial intelligence, 134(1-2):57–83,

2002.

7



[2] D. Churchill, Z. Lin, and G. Synnaeve. An analysis of model-based heuristic search techniques
for starcraft combat scenarios. In AIIDE Workshops, 2017.

[3] J. Gehring, D. Ju, V. Mella, D. Gant, N. Usunier, and G. Synnaeve. High-level strategy selection
under partial observability in starcraft: Brood war. arXiv preprint arXiv:1811.08568, 2018.

[4] Z. Hu and T. Kaneko. Enhancing sample efficiency of deep reinforcement learning to master
the mini-games of starcraft ii. 2019.

[5] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castaneda, C. Beattie,
N. C. Rabinowitz, A. S. Morcos, A. Ruderman, et al. Human-level performance in 3d multiplayer
games with population-based reinforcement learning. Science, 364(6443):859–865, 2019.

[6] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic motivation. In Advances in neural
information processing systems, pages 3675–3683, 2016.

[7] D. Lee, H. Tang, J. O. Zhang, H. Xu, T. Darrell, and P. Abbeel. Modular architecture for
starcraft ii with deep reinforcement learning. arXiv preprint arXiv:1811.03555, 2018.

[8] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. Int. J. Robotics Res.,
37(4-5):421–436, 2018.

[9] T. Liu, X. Wu, and D. Luo. A hierarchical model for starcraft ii mini-game. In 2019 18th IEEE
International Conference On Machine Learning And Applications (ICMLA), pages 222–227.
IEEE, 2019.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nat., 518(7540):529–533, 2015.

[12] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
In Advances in Neural Information Processing Systems, pages 3303–3313, 2018.

[13] Z.-J. Pang, R.-Z. Liu, Z.-Y. Meng, Y. Zhang, Y. Yu, and T. Lu. On reinforcement learning for
full-length game of starcraft. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 4691–4698, 2019.

[14] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 16–17, 2017.

[15] R. Ring et al. Replicating deepmind starcraft ii reinforcement learning benchmark with actor-
critic methods. 2018.

[16] K. Shao, Y. Zhu, and D. Zhao. Starcraft micromanagement with reinforcement learning
and curriculum transfer learning. IEEE Transactions on Emerging Topics in Computational
Intelligence, 3(1):73–84, 2018.

[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

[18] P. Sun, X. Sun, L. Han, J. Xiong, Q. Wang, B. Li, Y. Zheng, J. Liu, Y. Liu, H. Liu, et al.
Tstarbots: Defeating the cheating level builtin ai in starcraft ii in the full game. arXiv preprint
arXiv:1809.07193, 2018.

[19] N. Usunier, G. Synnaeve, Z. Lin, and S. Chintala. Episodic exploration for deep deterministic
policies: An application to starcraft micromanagement tasks. arXiv preprint arXiv:1609.02993,
2016.

[20] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K. Kavukcuoglu.
Feudal networks for hierarchical reinforcement learning. arXiv preprint arXiv:1703.01161,
2017.

[21] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575:350–354, 2019.

[22] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani,
H. Küttler, J. Agapiou, J. Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement
learning. arXiv preprint arXiv:1708.04782, 2017.

8


	Introduction
	Related Work
	Method
	Problem Formulation
	Baseline Models
	Training Strategy

	Experiments
	Implmentation Details
	Experimental Results

	Conclusion

