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ABSTRACT

In recent years, generative models have emerged as a groundbreaking develop-
ment in the field of artificial intelligence, transforming various domains such as
image synthesis, natural language processing, and data generation. While re-
cent studies have integrated generative models into multi-agent scenarios, their
game-theoretical implications have remained largely unexplored. Specifically, the
relationship between solutions derived from generative models and game theoreti-
cal equilibrium concepts lacks rigorous investigation. This paper aims to bridge
the gap between generative models and game theory by introducing a novel prob-
abilistic framework for modelling multi-agent decision-making problems. This
innovative framework reinterprets these problems as generative processes. Fur-
thermore, we introduce a training objective known as ”flow equilibrium” and
establish a theoretical connection between flow equilibrium and Nash equilibrium.
To analyse the theoretical properties of our framework, we present a tabular version
algorithm along with a convergence proof. Additionally, we propose an extended
algorithm incorporating neural networks to handle more complex environments.
Notably, our framework naturally incorporates opponent modelling. Harnessing the
capabilities of generative models, our framework excels in capturing the dynamics
of strategic interactions among agents. We validate our approach through testing
on various multi-agent tasks, including cooperative and general-sum games. The
empirical results consistently support our theoretical findings, demonstrating that
our framework consistently outperforms existing methods in terms of solution
quality.

1 INTRODUCTION

In recent years, the field of artificial intelligence has witnessed remarkable advancements, primarily
driven by the emergence of generative models. These models have brought about transformative
changes across various domains, ranging from the generation of highly realistic images to the
enhancement of natural language understanding (OpenAI, 2023) and the generation of diverse data
(Ramesh et al., 2022). Their exceptional capacity to capture complex data distributions has made
them a cornerstone of contemporary AI research. Recent studies have been inspired to harness the
potent capabilities of generative models for addressing decision-making problems (Janner et al.,
2022; Ajay et al., 2023; Lu et al., 2023; Liang et al., 2023). These methods solve the decision
making problem by casting it as a generative process. They achieve this by recasting decision-
making as a generative process, where the policy is represented by a generative model. These efforts
have underscored the effectiveness of generative modelling in tackling sequential decision-making
challenges, as evidenced by empirical results. While some researchers have extended the application
of generative models to multi-agent decision-making problems (Zhu et al., 2023; Li et al., 2023),
their focus has predominantly been on offline settings. Moreover, the game-theoretical analysis of
policies derived from generative models has largely remained unexplored. Control as Inference (CAI)
(Levine, 2018), rooted in probabilistic inference and the maximisation of likelihood, faces inherent
challenges when applied directly to multi-agent decision-making. In such scenarios, agents often
pursue multi-dimensional objectives that may not align with each other. Self-interest can lead to
conflicts within the objective functions, complicating the optimisation of these probabilistic models.

This paper endeavours to bridge the theoretical gap between generative modelling and game theory
by proposing a novel generative framework. Within this framework, we introduce a specialised prob-
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abilistic process to model agent interactions, effectively transforming multi-agent decision-making
problems into generative processes amenable to online interaction with generative models. We
introduce a training objective named ”flow equilibrium” for the generative model and establish a the-
oretical connection between flow equilibrium and Nash equilibrium. Building upon this framework,
we present a tabular version algorithm along with a convergence proof. Furthermore, we propose
a parameterised algorithm that incorporates neural networks, extending its applicability to com-
plex environments. Additionally, we seamlessly integrate opponent modelling into our framework.
Leveraging the capabilities of generative models, our framework excels in capturing the dynamics
of strategic interactions among agents, with an analysis of error bounds for opponent modelling.
We evaluate the performance of our framework in differential games and non-atomic routing games
against strong baseline methods, demonstrating its superior overall performance.

2 RELATED WORKS

Generative Model A generative model is a type of statistical model that is designed to generate or
produce new data samples. Generative models learn the underlying structure or patterns in the training
data and then generate new data points by sampling from the learned distribution. Autoregressive
models (Larochelle & Murray, 2011; Germain et al., 2015), normalising flow models (Dinh et al.,
2015), and variational auto-encoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) directly
learn the distribution’s probability function via maximum likelihood while generative adversarial
networks (GANs) (Goodfellow et al., 2014) represent the probability distribution implicitly by a
model of its sampling process. Recent Large Language Models (LLMs) such as GPT-4 (OpenAI,
2023) have demonstrated their remarkable language prowess. In the field of image synthesis, diffusion
models have displayed their outperforming abilities (Song et al., 2021). In this paper, we propose a
new generative model for solving game theory, extending the application of generative model.

Opponent Modelling In multi-agent reinforcement learning (MARL), learning a robust policy
against the uncertainty caused by the unknown opponent policy is crucial. To mitigate this uncertainty,
opponent modelling aims to model the opponent’s behaviours, goals, or beliefs, thereby reducing
the uncertainty. One line of the work is to predict the opponent behaviour using imitation learning
(Grover et al., 2018). ToMnet leverages Theory of Mind to infer the agent’s actions and goals from
past and current observations (Rabinowitz et al., 2018). SOM explicitly model opponent using an
agent’s own policy to predict an opponent’s action based on the opponent’s state. The agent then use
gradient descent to optimise its belief about the opponent’s goal. PR2 (Wen et al., 2019b) and GR2
(Wen et al., 2019a) employ the recursive reasoning based on the joint Q function which requires extra
information. We solve the opponent model leveraging the powerful generative model.

Control as Inference Variational inference (VI) is a powerful tool to learn and inference probabilis-
tic models (Jordan et al., 1999; Zhang et al., 2018). VI works by approximating the target distribution
through the minimisation of a divergence objective. Casting a control problem into a probability
inference problem enables the application of advanced inference tools to the control, and extends the
model of control. Applying probabilistic inference to control has a long history (Toussaint, 2009a;b;
Rawlik et al., 2010; 2013; Toussaint & Storkey, 2006), (Dvijotham & Todorov, 2012). Casting a
control problem into a probability inference problem enables the application of advanced inference
tools to the control, and extends the model of control (Levine, 2018; Kappen et al., 2009). However,
most of the existing works focus on the single-agent case. There are a few works that try to extend
the inference framework to the multi-agent setting, due to interest conflicts among agents. And most
of them focus on cooperative games (Tian et al., 2019; Wen et al., 2020), which limits the application
of the framework.

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESS

We consider a Markov decision process (MDP) with N agents. An MDP is characterised by a tuple
M = (S,N , {Ai, ri}i∈N , P, μ0, γ). S is a finite state space. N = {1, 2, . . . , N} is the set of agents.
Ai is the action space of agent i. A = ×iAi is the space of joint action space. ri : S ×A → R is the
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reward function of agent i. P : S ×A → P(S) is transition kernel for the state dynamic. μ0 is the
initial distribution of initial state s0. γ ∈ (0, 1) is the discount factor for future rewards. The MDPs
consider only one self-interested players, which limits the its flexibility in modelling the uncertainty
in the external environment.

3.2 STOCHASTIC GAME

The stochastic game (SG) extends MDPs to accommodate scenarios involving multiple self-interested
players. We consider a SG (Shapley, 1953; Shoham & Leyton-Brown, 2008) with N players. The
horizon of SG is T = {0, 1, . . . , T}. At each time index t ∈ T , agent i ∈ N (N = {1, 2, . . . , N})
at state st ∈ S will select an action ait from the action space Ai. All the agents take action
simultaneously. Let aaat = (a1t , a

2
t , . . . , a

N
t ) ∈ A denote the joint action. Each agent i will re-

ceive a reward ri(st, aaat) and the joint state will change to st+1 according to the transition kernel
P (st+1|st, aaat). Agents i take actions according to policy πi : S → Δ(Ai). Given the joint policy
πππ = (π1, π2, . . . , πN ), the cumulative reward of agent i is

V i(s;πππ) =

∞∑
t=0

E
[
γtrit(st, aaat)|s0 = s,πππ

]
, (1)

where the expectation is taken with respect to st+1 ∼ P (·|st, aaat), aaat ∼ πππ(·|ssst). The Nash equilibrium
is a joint policy πππ∗ = (π1,∗, π2,∗, . . . , πN,∗) such that for all agent i, V i(s;πππ∗) ≥ V i(s;πi,πππ∗

−i),

where πππ−i,∗ = (π1,∗, . . . , πi−1,∗, πi+1,∗, . . . , πN,∗), i.e. πi,∗ is the best response of πππ−i,∗. Accord-
ingly, πi,∗ ∈ Πi := Δ(Ai), πππ

∗ ∈ Π := Δ(×i∈NAi) and πππ−i,∗ ∈ Π := Δ(×i �=j∈NAj). Similarly,
a joint policy πππ∗ is the ε-Nash equilibrium if there exists an ε > 0 so that for all agent i ∈ N ,
V i(s;πππ∗) ≥ maxπi∈Πi V i(s;πi,πππ−i,∗)− ε.

4 GRAPHICAL MODEL FOR GAME (GMG)

In this section, we first establish the an abstract graphical model for game from the probabilistic
perspective and propose an equilibrium concept named flow equilibrium. Then we connect it with
the game theory. We focus on a directed acyclic graph (DAG), represented by G = (X , E), where X
denotes a finite set of vertices, and E ⊂ X × X refers to a set of directed edges.

We define a parent-child relationship between two vertices xi and xi+1 when the directed edge
xi → xi+1 represents an action. Specifically, xi is the parent vertex of xi+1, and xi+1 is the child
vertex of xi. Furthermore, we define the initial vertex x1 as the unique state with no incoming edges,
and we refer to vertices that have no outgoing edges as terminating vertices.

Given the current vertex xt, agent i ∈ N = {1, 2, · · · , N} will sample action ait from the
policy πi

t. The joint action and the joint policy are denote as aaat = {a1t , a2t , · · · , aNt } and
πππt = {π1

t , π
2
t , · · · , πN

t }, respectively. Then the next vertex xt+1 will be sampled from a fixed
transition probability function P (xt+1|xt, aaat). A trajectory can be obtained by sampling states from
policy πππ and transition probability P successively. The probability to generate the trajectory τ is
denote as P (τ ;πππ). The marginal probability of sampling trajectories that ended at xT is given by
PT (xT ;πππ) =

∑
τ→xT

P (τ ;πππ), where τ → xT is defined as the set of trajectories that reach the
terminating vertex xT . When the terminating vertex xT is sampled, agent i ∈ N will receive a
non-negative return function Ri(xT ;πππ).

4.1 FLOW EQUILIBRIUM

We denote πππ−i as the joint policy of all agents except i. Given the πππ−i, agent i aims to update πi such
that PT (xT ;π

i,πππ−i) ∝ Ri(xT ;πππ). The goal to optimise the policies is to reaching an equilibrium
named flow equilibrium (FE), which is defined as follows.

Definition 4.1. The flow equilibrium is a profile πππ� that satisfies the condition PT (xT ;π
i,�,πππ−i,�) ∝

Ri(xT ;πππ) for all i ∈ N and any policy πi, where πππ−i,� denotes the policy profile of all agents except
i.

We prove that the FE exists as shown in the Theorem 4.2.
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Theorem 4.2. Given a non-negative function R(x) = {Ri(xT ;πππ)}i∈N are continuous with respect
to πππ and transition probability P , there exists an FE.

4.2 SOLVING MARKOV GAME

In this section, we will introduce how to use GMG to solve Markov game.

In the GMG, the return function R(x) depends solely on the current vertex x, while in a Markov
game, the objective is to maximise the long-term return as a function of a trajectory. Consequently, it
should be able to determine the long-term return of a trajectory in a GMG using the terminal vertex
xT . A nature way to solve the problem is to choose the full trajectory in the Markov game as the
vertex in GMG, but it will make the space complexity grows exponentially.

By utilising state augmentation, we establish a relationship between the vertex in GMG and a trajectory
in the Markov game. For a given trajectory τ = (s0, aaa0, s1, aaa1, · · · , sT , aaaT ), the accumulated reward

up to time step t is denoted as zt(τ) =
∑t−1

k=0 γkri(sk,aaak)

γt−1 . As this equation is true for each agent i, we

omit the i for brevity. We select the vertex in the GMG as xt = (st, zt, pt). The transition functions
can be expressed as follows:

st+1 ∼ P (·|st, aaat)
zt+1 = ri(st, aaat) +

zt
γ

pt+1 = ptπππ
−i(aaa−i

t |st)P (st+1|st, aaat).

This vertex choice enable us to compute the long-term return from the terminating vertex, which re-
duces space complexity in comparison to choosing the entire trajectory as the vertex. The return func-

tion of GMG is non-negative, so we choose Ri(xT ) = exp(pT
∑∞

t=0 γ
tri(st, at)) = exp(Reti(τ)).

The next question to apply GMG to solving Markov game is the connection between FE and NE.

Theorem 4.3. If πππ is an FE, it is an ε-NE with ε = 2|X |Retmaxe
−δ, where |X | = maxi |X i|,

Retmax = maxτ,i Reti(τ), and δ = mini Retmax −maxReti(τ)<Retmax
Reti(τ).

The proof is deferred to Appendix A.2.

4.3 TRAINING CRITERION

In this section, we employ variational inference to solve Markov game under the frame-
work of GMG. To achieve flow equilibrium, we want to minimise the KL divergence
KL(PT (xT ;π

i,πππ−i)‖Ri(xT )/Z). From the convexity, we can optimise the upper bound of
KL(PT (xT ;π

i,πππ−i)‖Ri(xT )/Z).

KL(PT (xT ;π
i,πππ−i)‖Eπi,πππ−i [Ri(xT )]/Z) ≤ KL(P (τ ;πππ)‖Ri(xT )/Z)

=Eπππ,P

[
log

∏∞
t=1 π

i(at|st, aaa−i)ρ(aaa−i|st)∏∞
t=1 πππ

−i(aaa−i
t |st)

−
∞∑
t=0

γtri(st, aaat) + logZ

]

=Eπππ,P

[
−

∞∑
t=0

γtri(st, aaat)−
∞∑
t=0

γtH(πi(ait|st, aaa−i
t ))

]

+ Eπππ,P

[ ∞∑
t=0

γtKL(ρ(aaa−i|st)‖πππ−i(aaa−i
t |st)) + logZ

]
, (2)

where πi(ait|st, aaa−i
t ) is the policy of the agent i and ρ(aaa−i

t |st) is the opponent model of agent i.
It is worth emphasising that the minimisation of Equation 2 necessitates that updates to both the
policy and the opponent model can only be performed upon the completion of the entire trajectory.
To enhance sample efficiency, we define the action-value function and value function allowing to
optimise the policy and opponent model through partial trajectories.
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Definition 4.4. Given a joint policy πππ, the action-value function is defined as follows.

Qi(st, a
i
t, a

−i
t ;πππ) = rit(st, aaat) + log π̂ππ−i(aaa−i

t |st)

+ E

[ ∞∑
k=t+1

γk−t(rik(sk, aaak) +H(πi(aik|sk, aaa−i
k ))−KL(ρ(a−i

k |sk)||π̂ππ−i(aaa−i
k |sk)))

]
,

(3)

where the expectation is taken with respect to aik ∼ πi(·|sk, aaa−i
k ), aaa−i

k ∼ ρ(·|sk), sk+1 ∼
P (·|sk, aik, aaa−i

k ). And the value function is

V i(s;πππ) = E[Qi(s, ai, aaa−i;πππ)− log πi(ai|s,aaa−i)ρ(aaa−i
t |st)],

where the expectation is taken with respect to ai ∼ πi(·|s,aaa−i), aaa−i ∼ ρ(·|s).

Leveraging the notation of action-value function and value function, we derive an equivalent form to
minimise the upper bound in the Equation (2).

J i(πi, s0;πππ
−i) = Es0∼P (s0)

[
V i(s0;πππ)

]
=Es0∼P (s0)

[
E[Qi(s0, a

i, aaa−i;πππ)− log πi(ai|s0, aaa−i)]− log ρ(aaa−i|s0)
]

=Es0∼P (s0)

[
logZ +H(ρ(·|s0))− E

[
KL

(
πi(ai|s0, aaa−i)

∥∥∥exp(Qi(s0, a
i, aaa−i;πππ))

Z

)]]
,

where Z =
∑

ai∈Ai
exp(Qi(s0, a

i, aaa−i;πππ)). Since the KL divergence is non-negative, we have the
following proposition.

Proposition 4.5. The best response policy is in the form of

πi,∗(ai|s,aaa−i) =
exp(Qi(s, ai, aaa−i;πππ))∑

ai∈Ai
exp(Qi(s, ai, aaa−i;πππ))

. (4)

Note that action-value function defined here differs from the Q function in the context of reinforcement
learning. The expectation of action-value function is taken with respect to the opponent model while
the expectation of Q function in the context of reinforcement learning is taken with respect to the
opponent policy πππ−i. Therefore, the action value function is not the expected cumulative reward. The
following proposition provides the upper bound for this difference.

Proposition 4.6. Suppose that KL(ρ(·|s)||πππ−i(·|s)) < ερ for all s ∈ S. Without loss of generality,
the reward function |ri(s,aaa)| ≤ 1, ∀s ∈ S , aaa ∈ A, i ∈ N . Denote the action-value function derived
using the opponent model as Q̂i(s,aaa;πππ). Then we have that

max
s∈S,aaa∈A,i∈N

|Qi(s,aaa;πππ)− Q̂i(s,aaa;πππ)| ≤ δ, (5)

where δ := 2(1+log |Ai|)
(1−γ)2

√
1
2ερ +

ερ
1−γ .

The proof is deferred to Appendix A.4. Note that the definition of the action-value function requires

that we approximate the policy of opponents πππ−i(aaa−i
t |st) with agent i’s opponent model ρ(aaa−i

t |st).
Here we don’t specify the method to update ρ(aaa−i

t |st). The above conclusion applies to any opponent
model method.

In order to capture dynamics among agents, we propose an opponent modelling method under our
framework. Here we consider the case |N | = 2 for the brevity of notation, but this method can be
extended to the cases with more agents. To approximate the behaviour of agent −i, we factorise the
auxiliary distribution over states and actions q(aaa0:∞, s0:∞) in the following way.

q(aaa0:∞, s0:∞) = P (s0)

∞∏
t=0

q(aaa−i
t |st)q(ait|st, aaa−i

t )P (st+1|st, aaa−i
t , ait)

= P (s0)

∞∏
t=0

ρ(aaa−i
t |st)πi(da−i

t |st, aaa−i
t )P (st+1|st, aaa−i

t , ait)
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We denote the solution to this problem as the joint policy πππ∗. Denote Q−i
ρ (st, aaat; ρ) as the soft

action-value function of agent −i.

Q−i
ρ (st, aaat; ρ) =r−i(st, aaat)−KL(π̂ππ−i(·|st)‖ρ(·|st))

+ E[
∞∑

h=t+1

γh−t(r−i
h (sh, aaah)−KL(π̂ππ−i(·|sh)‖ρ(·|sh)))],

where the expectation is taken with respect to aaah ∼ q(·|sh), sh ∼ P (·|sh−1, aaah−1). π̂ππ−i
is the

empirical distribution of opponent policy. Then we can derive the optimal opponent model for agent
−i.

Proposition 4.7. The optimal opponent model for agent i is

ρ(aaa−i|s) =
π̂ππ−i(aaa−i|s) exp(Eai∼πi [Q−i

ρ (s,aaa; ρ)])

Eaaa−i∼π̂ππ−i(·|s)
[
exp(Eai∼πi [Q−i

ρ (s,aaa; ρ)])
] (6)

where π̂ππ−i(aaa−i|s) is the prior of opponent policy πππ−i(aaa−i|s).

The proof is deferred to Appendix A.8. Proposition 4.7 provides a closed-form of opponent modelling.
Note that the result resembles a logit quantal response equilibrium (LQRE) policy when the prior of
the opponent’s policy is a uniform distribution. This finding suggests that our opponent modelling
framework is well-suited for handling uncertainty from the external environment.

5 GENERAL VARIATIONAL BAYESIAN OPPONENT MODELLING

In this section, we aim to propose an algorithm to solve the Markov game based on our framework
and training criterion. Then we prove that this algorithm converges on the Markov Potential Game
(MPG). Further, we propose GPI, an actor critic algorithm powered by neural networks to solve
complex and continuous problem.

5.1 VARIATIONAL POLICY GRADIENT

Proposition 4.5 shows that the best response policy is in the form of πi,θ(a|s,aaa−i) =
softmax(θi,s,a,aaa−i), i.e. the best response policy is softmax policy parameterised (Agarwal et al.,
2021). We use the natural policy gradient (NPG) method (Kakade, 2001) to derive the best response
policy.

Proposition 5.1. Denote θ(t) the t-th iterate and π(t) = softmax(θs,aaa). For each agent i, state s, and
action a, the NPG update rule can be written as

πi,(t+1)(a | s,aaa−i) =
1

Z(t)(s)

(
πi,(t)(a | s,aaa−i)

)1− η
1−γ

exp

(
ηQi,(t)(s, a,aaa−i;πππ(t))

1− γ

)
. (7)

where η is the learning rate.

The proof is deferred to Appendix A.3. Then we propose the variational policy gradient (VPG)
algorithm. The pseudo-code of VPG is listed in the Algorithm 1.

Then we will prove that VPG converges to Nash equilibrium in the Markov potential game.

Definition 5.2. MPG is a Markov decision process that there exists a function Φ(s;πi,πππ−i) : Π → R,
with s ∈ S , so that

Ṽ i
(
s;πi,πππ−i

)
− Ṽ i

(
s;πi,′,πππ−i

)
= Φ

(
s;πi,πππ−i

)
− Φ

(
s;πi,′,πππ−i

)
,

for all agents i ∈ N , states s ∈ S and policies πi, πi,′ ∈ Πi,πππ−i ∈ Π−i. Here Ṽ i
(
s;πi,πππ−i

)
is

value function with accurate opponent modelling.

The first step is to prove that the estimation error of the opponent is bounded. The proposition 4.6 has
provided the upper bound of the estimation error of the opponent.
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Algorithm 1 Variational Policy Gradient (VPG)

input Learning rate η
Initialise opponent model ρ.

Initialise policy πi,(0) for all agent i ∈ N .
Initialise the replay buffer M .
for k = 1, 2, . . . do

for Each agent i ∈ N do
For the current state st, a

i
t ∼ πi(·|st) =

∑
aaa−i
t

ρ(aaa−i
t |st)πi(·|st, ait, aaa−i

t ).

Observe next state st+1, opponent action a−i
t and reward rit and save the experience in the

reply buffer.
Update opponent model.

end for
for Each agent i ∈ N do

Compute the best response policy using Equation (7).
end for

end for

The second step is to derive the convergence of VPG with exact opponent modelling. We first show
the equivalence between VPG and the global NPG on the potential function. Then we will prove the
convergence of VPG using the smoothness of the potential function.

Note that the gradient of the value functions equals the potential function and agents update their
policy independently. Hence VPG is equivalent to running Natural Policy Gradient (NPG) on the
potential function, which is shown in the following proposition.

Proposition 5.3. Consider the global NPG dynamic on the potential function: θ
(t+1)
s = θ

(t)
s +

ηF†(θ(t)s )∇θsΦ ∀s ∈ S, where F†(θs) = E[∇θs logπππ
θs(aaa|s)∇θs logπππ

θs(aaa|s)T ]† is the pseudo-
inverse of the Fischer information matrix. πππθs(aaa|s) = ∏

i∈N Ea−i∼ρ(·|s)[πi(ai|s, a−i)]. VPG has
the same dynamics as global NPG.

The proof is deferred to Appendix A.5. After showing the connection of VPG and the NPG on the
potential function, we next show the smoothness of the potential function in the following lemma.

Lemma 5.4. The potential function Φ is L-smooth with the constant L = 2(n+1)2

(1−γ)3 + 2(n2 + n +

1) 1+logmaxi∈N |Ai|
(1−γ)2 + 3n+2

1−γ .

The proof is deferred to Appendix A.6. Using Lemma 5.4, the potential function Φ(s;πππ(t)) is
non-decreasing if the learning rate is 1

L (Bubeck et al., 2015). We finally give the convergence of
VPG.

Theorem 5.5. VPG converges to a fixed point, which is ε-Nash equilibrium of MPG, where ε =

δ + log |A|
1−γ .

Theorem 5.5 ensures the applicability of VPG for solving MPG.

VPG does not involve a certain opponent modelling method. The next question is how to model the
opponent using variational inference.

5.2 OPPONENT MODELLING IN GENERAL-SUM GAME

Since the agent i does not know the reward of the agent −i, we have to find a function r̂−i to
estimate r−i. The objective of optimising r̂−i is to minimise the KL divergence between the optimal
opponent model derived by estimated reward function r̂−i and the history data of agent −i. Let

τ−i = {s0, aaa−i
0 , ai0, s1, aaa

−i
1 , ai1, . . .} be the historical interaction data. The probability of generating

τ−i by the opponent model is

ρ(τ−i) =P (s0)

∞∏
t=1

P (st|st−1, aaa
−i
t−1, a

i
t−1)ρ(aaa

−i
t−1|st−1)π

i(ait−1|st−1).

7
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Then the objective to optimise r̂−i is

KL(P (τ−i)||ρ(τ−i)) = E

[ ∞∑
t=0

−γtr̂−i(st, aaa
−i
t , ait)

]
+ logEaaa−i∼ρ

[
Eai∼ρi

[exp(Q−i
ρ (s,aaa; ρ))]

]
, (8)

where the first expectation is taken with respect to st ∼ P (st|st−1, aaa
−i
t−1, a

i
t−1). It is difficult to

calculate the optimal opponent model because Eaaa−i∼ρ

[
exp(Q−i

ρ (s,aaa; ρ))
]

is difficult to estimate.

We use a sample-based method for estimating Eaaa−i∼ρ

[
exp(Q−i

ρ (s,aaa; ρ))
]
.

KL(P (τ−i)||ρ(τ−i)) =E

[ ∞∑
t=0

−γtr̂−i(st, aaa
−i
t , ait)

]
+ logEτ−i∼ρ(τ−i)

[
exp(

∑∞
t=0 γ

tr̂−i(st, aaat))

ρ(τ−i)

]
(9)

If r̂−i
ψ is parameterised by ψ, the gradient of KL(P (τ−i)||ρ(τ−i)) with respect to ψ is

dKL(P (τ−i)||ρ(τ−i))

dψ
= E

[ ∞∑
t=0

−γt
dr̂−i

ψ (st, aaa
−i
t , ait)

dψ

]
+

1

Z
Eτ−i∼ρ(τ−i)

[
w−i

d
∑∞

t=0 γ
tr̂−i

ψ (st, aaat)

dψ

]
, (10)

where w−i =
exp(

∑∞
t=0 γtr̂−i

ψ (st,aaat))

ρ(τ−i)
and Z = Eτ−i∼ρ(τ−i)[w−i].

VPG is for tabular cases and is impractical in problems with high dimensions or continuous action.
To handle the problems, we propose the variational actor-critic method, which can be implemented in
a complex continuous environment. We use neural-network to parameterise the policy πθ, opponent
model ρφ, the action-value function Qω , and the reward function rψ .

The objective to optimise the policy πθ is to minimise the KL divergence

Jπ(θ; s) = Ea−i∼ρ(·|s)
[
KL

(
πθ
i (·|s)|| exp(Qi

ω(s, ·, aaa−i)− V i(s)
)]

. (11)

The objective to optimise the action-value function Qω is to minimise:

JQ(ω) = E(st,ai
t,aaa

−i
t )∼D

[
1

2

(
Qi

ω

(
st, a

i
t, aaa

−i
t

)
−ri

(
st, a

i
t, aaa

−i
t

)
− γEst+1∼ps

[
V̄ (st+1)

])2]
, (12)

with V̄ i (st+1) = Qi
ω̄

(
st+1, a

i
t+1, âaa

−i
t+1

)
− log ρφ

(
âaa−i
t+1 | st+1

)
− log πθ

(
ait+1 | st+1, âaa

−i
t+1

)
+

log π̂ππ
(
âaa−i
t+1 | st+1

)
, where Qi

ω̄ is target action-value function.

The gradient of (11) with respect to θ is

∇θJπ(θ; s) = Eaaa−i∼ρ(·|s)[∇θ log π
θ
i (a|s) + (∇aπ

θ
i (a|ai, s)−∇aQ

i(s, a,aaa−i))∇θfθ(ε; s,aaa
−i)] (13)

where a is evaluated at fθ(ε; s,aaa
−i). The gradient of (12) with respect to ω is

∇ωJQ(ω) =∇ωQ
i
ω

(
st, a

i
t, aaa

−i
t

) (
Qi

ω

(
st, a

i
t, aaa

−i
t

)
−ri

(
st, a

i
t, aaa

−i
t

)
− γEst+1∼ps

[
V̄ (st+1)

])
(14)

Then the pseudo-code of the variational inference actor-critic method named Generative Policy
Inference (GPI) is listed in the Algorithm 2.

6 EXPERIMENTS

As GPI incorporates entropy regularisation naturally, it enjoys stronger exploration ability. We
test its exploration ability on a challenging differential game. Differential game is adopted from
(Wei et al., 2018). The two agents in this game have continuous action space. All the agents
share the same reward function depending on the joint action (a1, a2) following the equations:

r1
(
a1, a2

)
= r2

(
a1, a2

)
= max (f1, f2), where f1 = 0.8 ×

[
−
(

a1+5
3

)2

−
(

a2+5
3

)2
]
, f2 =

1.0×
[
−
(

a1−5
1

)2

−
(

a2−5
1

)2
]
+ 10. The training process includes 200 episodes with 25 steps per

episode. We compare GPI Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016), and
two multi-agent reinforcement learning algorithm: Multi-Agent Deep Deterministic Policy Gradient

8
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Algorithm 2 Generative Policy Inference (GPI)

Initialising replay buffer D.
Initialising parameters θ, ω, ψ and φ.
for Each episode d = 1, 2, . . . do

for i ∈ N do
For current state st compute aaa−i

t ∼ ρ(·|st), ait ∼ πi(·|st, a−i
t )

Observe next state st+1, opponent action aaa−i
t and save the new experience in the reply buffer

D.
Update opponent model using Algorithm 3.
Update πi using Equation (13).

end for
end for

Output: policy πi, i ∈ N , opponent model ρ

(a) The learning curves of GPI and other baselines
in differential game.

(b) The learning curves of GPI and other baselines
in non-atomic routing game.

Figure 1: Learning curves in differential game and non-atomic routing game.

(MADDPG) (Lowe et al., 2017), Multi-Agent Soft Q Learning (MASQL) (Wei et al., 2018) in this
task. This is a challenging task for most continuous gradient-based RL algorithms because the
gradient update often leads the training agent towards a suboptimal point. The reward surface has a
local maximum of 0 at (-5, -5) and a global maximum of 10 at (5, 5), with a deep valley in between.
If the agents’ policies are initialized at (0, 0) (the red starred point), which is within the basin of the
left local maximum, gradient-based methods are likely to struggle in reaching the global maximum
equilibrium point because the valley blocks the upper right area. The learning curves are shown in
Figure 1a. Only GPI shows the capability of converging to the global optimum, while other baselines
can only reach the sub-optimal point.

To assess whether GPI can converge in a Markov potential game, we performed GPI on a task referred
to as the non-atomic routing game. This game was borrowed from the work of Mguni et al. (Mguni
et al., 2021). In this game, the agent and the virtual opponent are playing Markov potential game.
Agents in this game are self-interested and learn how to split their commodity to maximise rewards.
We compare GPI with MADDPG, MASQL and DDPG in this task. The learning curves are shown in
Figure 1b. The learning curve of GPI is smoother and other algorithms suffer from high variance.

7 CONCLUSION

This paper bridges the gap between generative modelling and game theory in the field of artificial
intelligence, recognising the transformative potential of generative models across various domains.
By introducing a novel generative framework tailored to multi-agent decision-making scenarios
and incorporating the concept of ”flow equilibrium,” we have addressed critical limitations and
established theoretical connections to Nash equilibrium. Our proposed algorithms, including tabular
and parameterised versions, combined with seamless opponent modelling, empower the field with
versatile tools. Leveraging the expressive power of generative models, our framework excels in
capturing dynamics among agents, as validated through empirical evaluations in differential and

9
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non-atomic routing games where it consistently outperforms established baselines. This research not
only fills a crucial void but also lays the groundwork for future advancements at the intersection of
generative modelling and game theory.
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Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends®
in Machine Learning, 8(3-4):231–357, 2015.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
of natural policy gradient methods with entropy regularization. Operations Research, 70(4):
2563–2578, 2022.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear independent components
estimation. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings,
2015. URL http://arxiv.org/abs/1410.8516.

Krishnamurthy Dvijotham and Emo Todorov. Linearly solvable markov games. In American Control
Conference, ACC 2012, Montreal, QC, Canada, June 27-29, 2012, pp. 1845–1850. IEEE, 2012. doi:
10.1109/ACC.2012.6315632. URL https://doi.org/10.1109/ACC.2012.6315632.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: masked autoencoder
for distribution estimation. CoRR, abs/1502.03509, 2015. URL http://arxiv.org/abs/
1502.03509.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Zoubin Ghahra-
mani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger (eds.),
Advances in Neural Information Processing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp.
2672–2680, 2014. URL https://proceedings.neurips.cc/paper/2014/hash/
5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html.

Aditya Grover, Maruan Al-Shedivat, Jayesh K. Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In Jennifer G. Dy and Andreas Krause (eds.), Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
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