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Abstract
To leverage LLMs for visual synthesis, traditional
methods convert raster image information into
discrete grid tokens through specialized visual
modules, while disrupting the model’s ability to
capture the true semantic representation of visual
scenes. This paper posits that an alternative rep-
resentation of images, vector graphics, can ef-
fectively surmount this limitation by enabling a
more natural and semantically coherent segmen-
tation of the image information. Thus, we intro-
duce StrokeNUWA, a pioneering work exploring
a better visual representation — “stroke tokens”
on vector graphics, which is inherently visual se-
mantics rich, naturally compatible with LLMs,
and highly compressed. Equipped with stroke to-
kens, StrokeNUWA can significantly surpass tra-
ditional LLM-based and optimization-based meth-
ods across various metrics in the vector graphic
generation task. Besides, StrokeNUWA achieves
up to a 94× speedup in inference over the speed
of prior methods with an exceptional SVG code
compression ratio of 6.9%. Our code is available
at https://github.com/ProjectNUWA/
StrokeNUWA.

1. Introduction
In recent years, Large transformer-based Language Models,
commonly referred as LLMs, have made significant strides,
particularly in the domain of Natural Language Process-
ing (NLP) (Brown et al., 2020; Chowdhery et al., 2022;
Touvron et al., 2023; Anil et al., 2023). Concurrently, LLMs
are gradually expanding their capabilities to other modali-
ties, such as audio (Ghosal et al., 2023), medical (Singhal
et al., 2023) and robotics (Brohan et al., 2023).

Current methodologies (Reddy et al., 2021; Wu et al., 2022;
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Figure 1. Comparison between the visual representation of “grid”
token and our proposed “stroke” token. Instead of tokenizing
pixels from raster images, we explore a novel visual representation
by tokenizing codes, from another image format—Scalable Vector
Graphic (SVG). “Stroke” tokens have the following advantages:
(1) inherently contain visual semantics, (2) naturally compatible
with LLMs, and (3) highly compressed.

Chang et al., 2022; Kondratyuk et al., 2023) enable LLMs to
generate visual information by transforming the continuous
visual pixels into to discrete grid tokens via specialized vi-
sual modules such as VQ-VAE (Van Den Oord et al., 2017)
and VQ-GAN (Esser et al., 2021). Subsequently, these trans-
formed grid tokens are processed by the LLM in a manner
akin to textual word handling, which facilitates LLMs’ gen-
erative modeling process. However, when compared with
diffusion models (Rombach et al., 2022), LLMs still fall be-
hind (Lee et al., 2022; Sun et al., 2023). The shortcomings
of LLMs in visual tasks primarily arise from two reasons:
First, the transformation process relies on specific visual
modules, which inherently possess limitations. For instance,
advanced visual modules like VQ-GAN (Esser et al., 2021)
can lead to the generation of images with artifact (Yu et al.,
2023); Second, the use of grid tokens can disrupt the vi-
sual semantics, as the grids are artificially designed and
not inherently semantic-aware. This artificial discretization
imposes constraints on the model’s ability to capture the
true semantic representation of visual scenes.
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Short Hair Woman           Pizza              Rain, Weather        Frozen, Snow          Quick bread              Volleyball 

Fireworks             Seashell                Sneakers           Owl, Wildlife     Furniture, Chair    Clock, Night

Microchip           Strawberry            Dollar, Coin            Horse Knight    Safety, Productivity          Bird, Fly   

Robot                 Light Bulb                 Diamond               Emotion, Joy         Cycling, Sport           Car, Vehicle

Figure 2. SVG generated by StrokeNUWA. For each image, we provide partial keywords for clarity.

Is there a visual representation that preserves the semantic
integrity of visual information while being conducive to pro-
cessing by LLMs? Finding such a representation within the
framework of grid tokens is non-trivial, as the arrangement
of grid tokens is typically regular and uniform, whereas the
semantic structure within images is often irregular and com-
plex. As illustrated in Fig. 1, the dolphin’s body is arbitrarily
segmented into different grid tokens. Although there have
been efforts to improve the VQ-VAE method (Esser et al.,
2021; Yu et al., 2023), enhancing the visual representation
quality, they are fundamentally constrained by the limita-
tions inherent to raster image formats, leading to bottlenecks
in semantic preservation. In light of these challenges, we
propose a novel approach that fundamentally retains the se-
mantic concepts of images by utilizing an alternative image
format: vector graphics. Different from pixel-based formats,
vector graphics intrinsically reveal the construction of ob-
jects, naturally encapsulating the semantic concepts of the
image. For example, our proposed “stroke” tokens segment
the dolphin into sequentially connected strokes, where each
stroke unit contains complete semantic information, such as
the dolphin’s fin (stroke ①) and back (stroke ②).

It is worth mentioning that our intention is not to claim that
vector graphics are superior to raster images, but rather to
introduce a fresh perspective on visual representation. The
advantages of our “stroke” token concept include: (1) In-
herently contains visual semantics: each stroke token intrin-
sically contains visual semantics, offering a more intuitive
semantic segmentation of the image content; (2) Naturally
compatible with LLMs: the creation process of vector graph-
ics is naturally sequential and interconnected, which mirrors
the way LLMs process information. In other words, Each
stroke is created in relation to the ones before and after it,
establishing a contiguous and coherent sequence that LLMs
can process more naturally; (3) Highly compressed: strokes
in vector graphics can be highly compressed, allowing each
stroke token to encapsulate a rich, compressed representa-
tion of the visual information, significantly reducing the
data size while maintaining quality and semantic integrity.

Based on the above analysis, we introduce StrokeNUWA,
a model that crafts vector graphics without the reliance on
the visual module. StrokeNUWA consists of a VQ-Stroke
module and an Encoder-Decoder model. The VQ-Stroke,
based on the residual quantizer model architecture (Mar-
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tinez et al., 2014), can compress serialized vector graphic
information into several SVG tokens. The Encoder-Decoder
model primarily utilizes the capabilities of a pre-trained
LLM to generate SVG tokens guided by text prompts.

We compare StrokeNUWA with optimization-based meth-
ods in the text-guided Scalable Vector Graphic (SVG) gener-
ation task. Our approach achieves higher CLIPScore (Hessel
et al., 2021) metrics, suggesting that utilizing stroke tokens
can yield content with richer visual semantics. When bench-
marked against LLM-based baselines, our method surpasses
them across all metrics, indicating that stroke tokens can
integrate effectively with LLMs. Finally, due to the com-
pression capabilities inherent in vector graphics, our model
demonstrates signi�cant ef�ciency in generation, achieving
speed improvements of up to 94 times.

In a nutshell, our contributions can be outlined as follows:

• We introduce StrokeNUWA, the pioneering study ex-
ploring a better visual representation—stroke token,
to synthesize vector graphics solely through LLMs
without relying on specialized visual modules.

• We propose VQ-Stroke, a specialized Vector Quantized
Variational Autoencoder (VQ-VAE) designed to com-
press vector graphics into stroke tokens, providing an
exceptional compression ratio of 6.9%.

• We conduct detailed experiments that demonstrate the
signi�cant potential of stroke tokens in the text-guided
vector graphic synthesis task.

2. Related Work

2.1. Visual Representation

In the realm of computer graphics, two predominant
image formats prevail: raster images, characterized by
pixel matrices; and vector images, a.k.a, Scalable Vector
Graphic (SVG), characterized by a series of code language
commands (Zhang et al., 2023). Recent developments in
visual synthesis have predominantly centered on generating
raster images. The basic idea is to transform the continuous
image pixels into discrete grid tokens via specialized visual
modules such as VQ-VAE (Van Den Oord et al., 2017) and
VQ-GAN (Esser et al., 2021), and then leverage LLMs to
generate these tokens (Wu et al., 2022; Kondratyuk et al.,
2023). Most recently, some works have tried to improve
“grid” tokens by designing advanced architectures such as
Lookup-Free Quantization (Yu et al., 2023) and Ef�cient
VQ-GAN (Cao et al., 2023). However, these “grid” token
representations can disrupt visual semantics as the grids are
arti�cially designed, which lacks inherent semantic aware-
ness, and are easily subject to the visual module's intrinsic
limitations like disturbances and tampering (Hu et al., 2023).
Our study is a pioneering effort to explore a better visual rep-
resentation by proposing the concept of the “stroke” token.

Table 1.Overview of basic SVG commands, includingM, L, andC,
where each command contains one beginning point(x0 ; y0) and
one end point(x1 ; y1). For Cubic B́ezier command, it contains
two extra control points(cx

0 ; cy
0 ) and(cx

1 ; cy
1 ).

Name Symbol Argument Example

Move
To M

(x0 , y0)
(x1 , y1)

Line
To L

(x0 , y0)
(x1 , y1)

Cubic
Bézier C

(x0 , y0)
(x1 , y1)
(cx

0 , cy
0 )

(cx
1 , cy

1 )

Different from the `grid” tokens, the “stroke” token is in-
herently de�ned by contextually associated coded language
commands that offer strong semantic integrity, potentially
mitigating the aforementioned issues.

2.2. SVG Generation

SVG generation employs a method of structured code gen-
eration for producing graphics, which offers better inter-
pretability, �exibility, and scalability in image representa-
tion. The current mainstream approach of SVG generation
is optimization-based methods (Su et al., 2023; Jain et al.,
2023; Xing et al., 2023), which share a similarity with tradi-
tional raster image generation, involving iteratively re�ning
randomly initialized SVG paths to �t a target raster image
with a differentiable rasterizer (Li et al., 2020). However, the
optimization process is both time-consuming and computa-
tionally intensive, e.g., creating an SVG graphic comprised
of 24 SVG paths can exceed 20 minutes1. Alternatively,
some recent approaches have begun to adopt auto-regressive
models to directly generate code for SVG synthesis (Wang
et al., 2022; Wu et al., 2023a). However, due to the inherent
extensive length nature of SVGs and a lack of effective SVG
representation, these methods constrain LLMs to generate
complex SVGs. To address these challenges, we introduce
VQ-Stroke and present the concept of “stroke” tokens. By
transforming SVGs into stroke tokens, our approach en-
ables LLMs to produce intricate SVGs with signi�cantly
improved inference speed.

3. Methodology

3.1. Problem Formulation

SVG code provides a suite of command and syntax
rules, e.g., the “<rect> ” command de�nes a rectangle
shape with its position, width, and height, which can

1We test with LIVE (Ma et al., 2022) and VectorFusion (Jain
et al., 2023) on one NVIDIA V100 GPU.
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be written as<rect x="10" y="20" width="50"
height="80"/> . However, considering the multitude
of SVG command types, creating such a system not only
requires a complex data structure, but without a massive
dataset, LLMs would struggle to model the diverse range of
commands effectively. Therefore, as shown in Tab. 1, we
can simplify each SVG using just three basic commands:
“Move To”, “Line To”, and “Cubic B́ezier” by following
Iconshop (Wu et al., 2023a) and DeepSVG (Carlier et al.,
2020). For instance, intricate commands like “<rect> ”
can be constructed by those three basic commands. Af-
ter simpli�cation, an SVGG = fP i gN

i =1 can be described
with N SVG paths, with each SVG pathPi consists ofM i

basic commands:Pi = fC j
i gM i

j =1 , whereCj
i is thej -th com-

mand in thei -th path. Eventually, each basic command
C = ( T; V) is consist of command typeT 2 f M; L; Cg, and
the corresponding position argumentV.

3.2. StrokeNUWA

StrokeNUWA contains three core components: a Vector
Quantized-Stroke (VQ-Stroke) for SVG compression, an
Encoder-Decoder-based LLM (EDM) for SVG generation,
and an SVG Fixer (SF) for post-processing. Firstly, VQ-
Stroke compresses the SVG into stroke tokens, which en-
ables a transformation between the SVG code and the dis-
crete stroke tokens. Then, EDM utilizes the stroke tokens
produced from VQ-Stroke to generate SVG code. Finally,
SF is a post-processing module designed to re�ne the qual-
ity of the generated SVGs, given that the output generated
from the EDM or VQ-Stroke may not always conform to
the stringent syntactical rules of SVG code. Below, we will
introduce the details of each component.

3.2.1. VECTORQUANTIZED-STROKE

VQ-Stroke encompasses two main stages: “Code to Ma-
trix” stage that transforms SVG code into the matrix format
suitable for model input, and “Matrix to Token” stage that
transforms the matrix data into stroke tokens.

Code to Matrix As depicted in Fig. 3, we �rst transform
the simpli�ed SVG code (Sec. 3.1) into SVG matrix format
by converting each basic commandCj

i to the individual
vectorK j

i 2 R9 with rulesf :

K j
i = f (Cj

i ) = ( T; x0; y0; cx
0 ; cy

0 ; cx
1 ; cy

1 ; x1; y1) j
i ; (1)

whereT denotes the basic command type,(x0; y0) and
(x1; y1) represent the beginning and the end points, with
(cx

0 ; cy
0) and(cx

1 ; cy
1) as the control points of each basic com-

mand. Then, to establish interconnections among the ad-
jacent commands, we set the end point ofj -th command
(x1; y1) j

i equal to the beginning point(x0; y0) j +1
i of the

subsequent(j + 1) -th command in each individual path.

Figure 3.Overview of VQ-Stroke.

We then decompose all the paths within the SVGG into
distinct basic commands and combine their corresponding
vectors into a matrix form:

f (G) = ( f (Pi ))
N
i =1 =

� �
f (Cj

i )
� M i

j =1

� N

i =1

=

0

B
@

(K1
1; K2

1; � � � ; KM 1
1 )

...
...

...
...

(K1
N ; K2

N ; � � � ; KM N
N )

1

C
A ;

(2)

where “;” denotes the stack operation, and each matrix row
represents an individual command. Thus, we can obtain a
structured SVG matrixf (G) 2 R(

P N
i =1 M i ) � 9 to represent

an SVG that contains
P N

i =1 M i individual basic commands.

Matrix to Stroke After obtaining the SVG matrixf (G),
we aim to compress the matrix into discrete stroke tokens
via latent representation, with which one can reconstruct
the f (G). As shown in Fig. 3, the VQ-Stroke model is
composed of Down-Sample blocks, a Stroke CodebookB,
and Up-Sample blocks. The SVG matrixf (G) is �rst en-
coded by the Down-Sample blocks to obtain the compressed
representations, which entails increasing the number of rep-
resentation channels (column off (G)) while concurrently
compressing the spatial dimensions (row off (G)) to yield
a more compact representation, i.e. compressing the num-
ber of commands intoT s.t. T <

P N
i =1 M i . Then, the

CodebookB simultaneously conductsd levels of compres-
sion with residual vector quantization (Barnes et al., 1996;
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Figure 4.Architecture of Down-Sample and Up-Sample Blocks.

Wang et al., 2023), enabling VQ-Stroke to better model the
compressed representations. We depict the detailed archi-
tecture of Down-Sample blocks and Up-Sample blocks in
Fig 4, wherein both blocks �rst utilize a Conv1d or Con-
vTranspose1d model to compress or expand the features,
succeeded by a ResNet1d module and an additional Conv1d
module for feature extraction. It is worth mentioning that
a low compression rate allows the VQ-Stroke to learn the
�ne details of SVGs (the �rst and second columns), while
more aggressive compression (the third column) enables
the VQ-Stroke to capture the overall contours of the SVGs,
As illustrated in Fig.5, a low compression rate allows the
VQ-Stroke to learn the �ne details of SVGs (the �rst and
second columns), while more aggressive compression (the
third column) enables the VQ-Stroke to capture the overall
contours of the SVGs. We have more discussion in Sec. 4.2.
Finally, the Down-Sample blocks reconstruct the SVG latent
representation output from the CodebookB.

Following Dhariwal et al., the training objective of VQ-
Stroke consists of commitment loss, codebook loss, and
reconstruction loss, which can be written as:

`V Q� Stroke = � (`codebook + `commit ) + ` recon

= �
�

jj Z � sg[~Z ] jj2
2 + jj sg[Z ] � ~Z jj 2

2

�

+ MSE( ]f (G); f (G)) ;

(3)

where� is the hyper-parameter,Z is the compressed latent
output from down-sample blocks,~Z is the latent looked
up from codebookB, andsg[�] is the gradient clipping op-
eration. Besides, we pre-normalize the input data into the
[� 1; 1] range to stabilize the training process.

3.2.2. ENCODER-DECODER-BASED LLM

We employ an Encoder-Decoder LLM (EDM) to predict
the stroke tokens obtained from the codebookB. Con-
sidering LLM's inherent textual instruction capability, we
freeze the EDM encoder to leverage its inherited textual
knowledge. Subsequently, we �ne-tune the EDM decoder

Figure 5.Analysis of SVG reconstruction, whereC is a constant
representing the number of inserted<M>command in PI setting.
To facilitate clear observation of the SVG composition, we repre-
sent each basic command with a distinct color.

to learn the stroke token prediction task. Due to the dis-
crepancy between the vocabulary of stroke tokens and the
original LLM's vocabulary, we extend EDM with an ad-
ditional stroke embedding layer and a stroke predictor.
Consequently, given the trainable model parameters� and
the textual promptK , we maximize the log probability
argmax�

Q T
i =1 P(t i j t<i ; K ) with the cross-entropy loss.

3.2.3. SVG FIXER

A critical issue arises in the generation results from both
SDM and EDM, as they fail to guarantee Equ. 1 due to the
discrepancies of the interconnection points among adjacent
commands in each individual SVG path, i.e.,(x1; y1) j

i 6=
(x0; y0) j +1

i in i -th path. To address this issue, we intro-
duce the SVG Fixer (SF) as a post-processing module for
the generated results. It encompasses two strategies: Path
Clipping (PC) and Path Interpolation (PI). Speci�cally, PC
involves the direct substitution of each SVG command's be-
ginning point with the endpoint of adjacent SVG commands:
(x0; y0) j +1

i := ( x1; y1) j
i . On the other hand, PI entails the

addition ofMcommands between each pair of adjacent, yet
non-interconnected SVG commands to bridge the discrep-
ancy, i.e., if(x1; y1) j

i 6= ( x0; y0) j +1
i =) adding an extra

command
�

M; (x1; y1) j
i ; 0; 0; 0; 0; (x0; y0) j +1

i

�
to force the

previous command's end point to move to the beginning
point of the next adjacent command. As shown in Fig. 5,
PC can streamline the overall paths of SVGs, making them
more succinct, but may lead to some inaccuracies in the
details. On the other hand, PI tends to reveal more gener-
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ated stokes' details, but it may introduce more curves. Each
strategy has its own applicable scenarios.

4. Experiment

4.1. Experimental Settings

Dataset We construct the training and evaluation data
with FIGR-8-SVG dataset (Clouâtre & Demers, 2019),
which consists of massive monochromatic (black-and-white)
SVG icons. We pre-process the SVG data by transform-
ing each SVG sample into standardized representations,
eliminating the redundant SVG paths, dropping the outer
black box, and �ltering the data by applying a thresh-
old of 1,024 basic commands in length. We �lter the in-
stance with less than two annotated discrete keywords and
apply a template “Generating SVG according to
keywords: f� � � g ” to build the text prompt. After pre-
processing, we sample 2,000 instances with varying SVG
code lengths as the testing set, 8,000 samples for validation,
and apply the remaining 740K samples for training.

Evaluation Metrics For VQ-Stroke, we primarily con-
sider the reconstruction quality and the compression ef-
fectiveness. We evaluate the reconstruction quality with
the Fŕechet Inception Distance (FID)2 (Heusel et al., 2017)
and the CLIPScore (Hessel et al., 2021). Given that
the generated SVG graphics consist solely of lines, we
set the background color to white to mitigate the poten-
tial biases for FID and CLIPScore brought by the back-
ground (Wu et al., 2023a). Additionally, we calculate the
Edit Score (EDIT) between the reconstructed SVG code and
the Golden SVG (ground truth) code to re�ect the �delity
of the reconstructed SVG graphics in replicating �ne de-
tails. To re�ect the practical compression effectiveness of
VQ-Stroke, we calculate the Compression Ratio (CR) score
between the tokenized SVG code and the stroke tokens, i.e.,
CR = Len(tokenized SVG code)=Len(stroke tokens).
For StokeNUWA, apart from utilizing the metrics mentioned
above, we supplement evaluation with Human Preference
Score (HPS) (Wu et al., 2023b) and Recall Score to re�ect
the quality of the generated SVG graphics and their degree
of overlap with the Golden SVG code. Additionally, we also
report the time required to generate each SVG and conduct
the qualitative evaluation. More details about evaluation are
illustrated in Appendix A.

Tasks and Baselines We evaluate VQ-Stroke and Stro-
keNUWA with the SVG reconstruction and the text-guided
SVG generation tasks, respectively. For VQ-Stroke, con-
sidering the absence of works in the �eld of SVG repre-
sentation, we focus on comparing the performance of two

2Speci�cally, we obtain the image features of rendered SVG
graphics with the CLIP image encoder (Radford et al., 2021)

Figure 6.Reconstruction cases generated by VQ-Stroke, dif�-
culty (re�ected by path numbers) increases from left to right.

SF methods, i.e., PI and PC. Additionally, we evaluate
the reconstruction performance of two different compres-
sion rates, i.e., compression rates of 2 and 4. For Stro-
keNUWA, we compare with the optimization-based meth-
ods, including Vector Fusion (Jain et al., 2023) and the Sta-
ble Diffusion (Rombach et al., 2022) combined with LIVE
method (Li et al., 2020). Given that optimization-based
methods are notably time-intensive, i.e., requiring more
than 20 minutes to generate a single SVG on one NVIDIA
V100 GPU, we randomly sample 500 instances from the
testing set for evaluation to ensure a feasible timeframe.
Additionally, we also compare with the LLM-based method
Iconshop (Wu et al., 2023a). We re-implement Iconshop
with the same Flan-T5 backbone as in StrokeNUWA and use
T5 tokenizer to encode the numerical values built in Icon-
shop. Notably, the primary distinction between Iconshop
and StrokeNUWA lies in their approaches to handling visual
representation. While Iconshop directly treats SVG code
as visual tokens, StrokeNUWA converts SVGs into stroke
tokens with VQ-Stroke. We set the maximum model length
to 1,500 for IconShop to ensure the SVG completeness.

Implementation Details For VQ-Stroke, we set the depth
of the residual vector quantizationd to 2, corresponding to
compression rates of 2 and 4. Then, we set the codebook
sizej B j as 4096, with each code corresponding to a latent
representation of 512 dimensions. We set� = 1 in Equ. 3
during the training process. For EDM, we utilize the 3B
Flan-T5 model (Chung et al., 2022) as the backbone. We
utilize DeepSpeed Library (Rajbhandari et al., 2020) to
implement models on 64 NVIDIA V100 GPUs and set the
maximum model length as 512.
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Table 2.Performance of StrokeNUWA, where “Optim/Pred Length” denotes the actual predicted or optimized number of paths.

Methods Visual Performance SVG Code Quality Generation
Speed (#)
(per SVG)FID (#) CLIPScore (" ) HPS (" )

Recall (" )
(Stoke Token) EDIT (#)

Optim / Pred
Length (Avg)

SD & LIVE 14.236 12.908 11.210 0.028 - 160 (32 Path) � 28:0 min
VectorFusion 7.754 17.539 15.901 0.079 - 2,048 (128 Path) � 30:0 min
Iconshop 17.828 8.402 8.234 0.114 24,792.476 993.244 � 63.743sec

StrokeNUWA (PC) 6.607 17.852 16.134 0.239 9,092.476 271.420 � 19.128sec
StrokeNUWA (PI) 6.513 17.994 16.801 0.207 12,249.091 271.420 � 19.128sec

Table 3.Performance of VQ-Stroke on SVG reconstruction task,
where C-2 and C-4 denote the Compression Rate 2 and 4.

Methods FID (#) CLIPScore (" ) EDIT (#) CR (#)

SQM (C-2) - - 1,114.791 8.549%
SQM (C-2) + SF (PC) 3.751 19.861 1,096.313 8.786%
SQM (C-2) + SF (PI) 3.518 20.290 1,315.137 13.780%
SQM (C-4) + SF (PI) 4.943 15.192 2,100.671 6.890%

Golden SVG - - - 100%

4.2. Quantitative Evaluation

VQ-Stroke We report the reconstruction quality of VQ-
Stroke in Tab. 3. without SF, VQ-Stroke fails to generate
results that conform to SVG syntax. After equipping VQ-
Stroke with SF, PI facilitates a more faithful approxima-
tion of the original SVG graphics by achieving the lowest
FID score and demonstrating a higher concordance with
the given text prompts, as evidenced by the lowest CLIP
score. In contrast, the PC method yields better alignment
results with the original SVG code as it achieves the lowest
EDIT score. Utilizing compression level 2 (C-4), VQ-Stroke
attains a notable Compression Ratio (CR) of 6.9%, main-
taining performance on par with that of C-2 as evidenced
by comparable CLIPScore and FID. This suggests that VQ-
Stroke preserves the semantic integrity of the original SVG
graphics despite the substantial path compression.

StrokeNUWA As illustrated in Table 2, StrokeNUWA
outperforms other methods by achieving superior results.
Speci�cally, in terms of visual performance, StrokeNUWA
is capable of generating graphics that more closely re-
semble the Golden SVG—evidenced by the lowest FID
score (6.513) and the highest HPS (16.801). This indicates
that our Stroke Tokens offer great compatibility with the
LLMs. Moreover, StrokeNUWA has attained the highest
CLIPScore (17.994), surpassing optimization-based meth-
ods. This suggests that stroke tokens encapsulate visual se-
mantics effectively. In terms of the quality of the SVG code
and the ef�ciency of generation, the Stroke Token not only
aligns closely with the Golden standard but also markedly
enhances the generation speed, i.e., around 19 seconds of
StrokeNUWA V.S. around 30 minutes of optimization-based
method LIVE, which underscores the outstanding compres-
sive capability of the stroke token on the original SVG code.

(a) Comparison between StrokeNUWA and other baselines.

(b) Cases generated by GPT-4-Turbo with same keywords. As
GPT-4 is not open-source, we cannot get the generation time.

Figure 7.Sampled cases from different models in SVG generation
task, where the CLIPScore is the average score calculated across
four generated cases for each method.

4.3. Qualitative Evaluation

Case Study We show the reconstruction results of VQ-
Stroke with varying complexity levels in Fig. 8 and present
a qualitative comparison between StrokeNUWA and other
baselines in Fig. 7(a). It is impressive that VQ-Stroke can
reconstruct complex SVGs with a limit of only 4,096 code-
book size. Then, at the Compression Rate of 2 (CR-2),
VQ-Stroke successfully outlines the edge of objects within
the graphics, demonstrating that stroke tokens can be highly
compressed with a dense representation and inherently in-
corporate semantic segmentation, which is essential for
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Figure 8.Reconstruction performance of difference VQ-Strokes.

Figure 9.Human evaluation between StrokeNUWA and LLM-
based method—Iconshop.

retaining visual semantics. Regarding the comparison of
StrokeNUWA, we note that employing LLM-based gener-
ation methods can result in incomplete SVGs (Iconshop).
This is attributed to the excessive SVG code lengths and
LLMs struggling to capture the key information embedded
within SVG graphics. However, the use of stroke tokens
can mitigate these issues by compressing the paths and be-
ing compatible with LLMs. Furthermore, we �nd that the
performance of the optimization-based method heavily re-
lies on the outputs generated by the stable diffusion model,
which is subject to the limitations of grid tokens mentioned
in Sec. 1, e.g., it is hard to capture the visual semantics and
tends to generate extra visual information that is not aligned
with the text prompt. Besides, the optimization process is
extremely slow. In contrast, StrokeNUWA, which utilizes
stroke tokens, inherently contains visual semantic segmen-
tation. As a result, the content generated is more aligned
with the textual semantics, providing a more coherent and
semantically accurate graphic.

Human Evaluation Furthermore, we conduct a human
evaluation to compare the generated SVG outputs from Stro-
keNUWA with those produced by the LLM-based method,
Iconshop. We select 50 different textual prompts and guide
the model to generate corresponding SVGs for evaluation.
As depicted in Figure 9, our comparison is founded on three
criteria: Prompt Alignment (consistency between the gener-
ated result and the text prompt), Overall Quality (the gen-
eral caliber of SVGs), and Graphic Details (intricacies such
as curves). We observe that StrokeNUWA, compared to
Iconshop, which regards code as visual representation, not
only yields more complete content (better Overall Quality)
but produces results more closely aligned with the textual
prompts (better Prompt Alignment)3. Given that stroke

3The main reason for low Prompt Alignment in Iconshop is
also due to the incompleteness of the generated SVGs.

Table 4.Comparison among different VQ-Stroke Settings.

Settings
FID (#) CLIPScore (" ) EDIT (#)

j B j Dim

2048 512 5.702 19.365 2,323.810
4096 512 3.518 20.290 1,315.137
4096 1024 3.901 20.159 1,793.008
8192 512 2.639 21.014 907.106

tokens compress the details of SVG, it is natural that Stro-
keNUWA excels in generating Graphic Details.

5. Ablation Study
5.1. Analysis of VQ-Stroke Model Architecture

To investigate the impact of VQ-Stroke architecture con�g-
urations on the stroke token performance, we experiment
with different codebook sizesj B j and codebook dimension
Dim. As shown in Tab. 4, we can observe that by increas-
ing the codebook size while simultaneously reducing the
dimension of each stroke token, the VQ-Stroke achieves
superior performance across multiple metrics. We sample a
set of reconstruction cases to showcase the trend of changes
in Fig. 8, which indicates that, with a larger codebook size
and smaller dimension, the VQ-Stroke can delineate details
with greater accuracy, e.g., straighter lines.

5.2. Comparison with GPT-4

We compare the generation results with GPT-4 (Achiam
et al., 2023) by employing the following template to
guide GPT-4 in producing the corresponding SVG code:
Generate SVG codes in icon style based
on keywords: f KEYWORDSg. We show the rendered
SVGs in Fig. 7(b), where we can observe that GPT-4
can only generate simple SVGs, which is consistent with
LLM-based methods. Moreover, GPT-4 often yields SVGs
that are incongruent with the associated text. On the
contrary, StrokeNUWA can generate complex SVGs that
are consistent with textual prompts.

6. Conclusion and Future Work

This paper presents StrokeNUWA, a pioneering study that
explores a superior visual representation—“stroke” tokens,
as an alternative method for expressing images through vec-
tor graphics. Stroke tokens not only preserve the semantic
integrity of the images but are also conducive to process-
ing by LLMs. Moreover, strokes in vector graphics can
be highly compressed. Experiments indicate that, equipped
with stroke tokens, LLMs can achieve superior results across
various metrics in the SVG synthesis task. Moving forward,
we aim to continue improving the quality of stroke tokens
through advanced visual tokenization methods for LLMs.
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Impact Statement

The implications of this work are manifold, potentially rev-
olutionizing the visual synthesis from another format of
image, vector graphics. As stroke tokens re�ne the inter-
play between visual representation and LLMs, future ad-
vancements in visual tokenization techniques designed for
LLMs are anticipated. Moving forward, the community
can extend stroke token application into wider tasks and
domains, including SVG comprehension and open-domain
SVG synthesis for images from the real world. As we pi-
oneer this nascent �eld, we are conscious of the profound
societal impact that such advancements in machine learn-
ing and graphical representations hold. The capabilities for
automated graphic design, scalable vector graphics produc-
tion, and enhanced digital artistry foreshadow considerable
shifts in industries reliant on visual content. By forging
new pathways for artistic expression and visual communica-
tion, our work stands to not only contribute to the scienti�c
community but also to catalyze transformations in creative,
technological, and educational sectors. We recognize the
importance of our work and our responsibility to ensure
that our contributions to the �eld are conducted ethically,
aiming to bene�t society as a whole, democratize the visual
landscape, and enrich it through responsible and judicious
innovation.
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A. Evaluation Metrics
Here we will elaborate more meticulously on the setup of the evaluation.

A.1. Automatic Evaluation Metrics

EDIT Score The EDIT Score calculates how many insertions, substitutions, and deletions are needed to make two strings
identical 4. In the field of NLP, the Edit Score measures the similarity between two strings (Kim et al., 2022; Tang et al.,
2023). In the task of SVG generation, we evaluate the quality of the generated SVG from the code perspective, i.e., the
closer the generated SVG code is to the ground truth SVG, the higher the quality of the SVG path, indicating fewer repeated
paths and missing paths. It is worth noting that we only test the direct SVG generation methods, including Iconshop and
StrokeNUWA. For optimization-based methods, e.g., SD & LIVE and VectorFusion, which continuously optimize raster
images and do not have a fixed ground truth SVG, it is not possible to evaluate with EDIT score. We convert all the SVGs
into the code format, treat the codes as strings, and calculate the corresponding EDIT scores.

Recall Rate Based on our observations, we have noticed that for the majority of SVGs, some key paths and keywords
match. For example, given the keyword “clock”, the corresponding SVG should contain key SVG paths resembling clock
hands. By identifying these key paths, one can roughly understand that the SVG represents a clock. Therefore, we design the
Recall Score to measure how many key paths in the generated SVG can match the ground truth. Specifically, we convert both
the generated SVG and the ground truth SVG into stroke tokens with VQ-Stroke and then calculate how many strokes in the
generated SVG’s corresponding stroke tokens appear in the ground truth using the following formula: Recall = jP\Gj

jGj ,
where |P ∩ G| represents the number of overlapping stroke tokens between the generated stroke tokens P and the ground
truth stroke tokens G. We convert all SVGs into the stroke token format, subsequently computing the recall rate.

A.2. Human Evaluation

Considering the potential bias and inaccuracies that automated metrics may introduce in evaluating SVGs, e.g., CLIP-
Score (Kim et al., 2023), we organize a human evaluation process. In this human evaluation, we employ 10 evaluators and
provide each with 100 evaluation samples. Each sample set included an SVG generated by StrokeNUWA and one generated
by Iconshop. Evaluators are tasked with assessing the following aspects:

• Prompt Alignment: Whether the generated SVG aligns with the given prompt.

• Overall Quality: The general quality of the generated SVG, such as balance of content and clarity.

• Graphic Details: The presence of detailed elements in the generated SVG, such as intricacies outlined by curves.

Evaluators are instructed to evaluate StrokeNUWA against Iconshop in each metric, determining whether StrokeNUWA
wins, ties, or loses against Iconshop. Before releasing the human evaluation cases, we conducted thorough checks to ensure
there were no private information or problematic biases present in the cases. Additionally, we refrained from collecting
personal information or inquiring about evaluators’ private details during the annotation process.

B. Additional Ablation Experiments
B.1. Effectiveness of Different Textual Prompts

We study the effectiveness of different textual prompts on StrokeNUWA. Specifically, as shown in Fig. 10, we embed
keywords into different textual prompt templates to guide SVG generation. These new prompts were then fed into the
StrokeNUWA model to generate SVGs. It is worth mentioning that, for the sake of conciseness in illustrating the impact of
different textual prompts, we employ the PI method as the SVG fixer and prompt the StokeNUWA with different textual
prompts. We try five different textual prompts (including the one used in the main experiment). Notably, the first four
templates place the keywords in different positions within the prompt, while the last one reconstructs the keywords into a
natural language sentence using LLM. For instance, for the keywords “cloud” and “rain”, we can rewrite them in natural
language as: “Raindrops are falling from the cloud”.

4https://en.wikipedia.org/wiki/Edit_distance
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Templates for Different Textual Prompts

Template 1 (Utilize in the main experiment)
Generating SVG according to keywords: {Keywords}

Template 2 (Shuffle the Keywords order)
Generating SVG according to keywords: {Shuffled Keywords}

Template 3
Please generate an SVG that includes the following attributes: {Keywords}

Template 4
Here are some keywords: {Keywords}, generate the corresponding SVG:

Template 5 (Re-organize the keywords into natural language
{Natural language prompt including keywords}

Figure 10. Templates for different textual prompts.

Table 5. Effectiveness of Different Textual Prompts.

Prompt Visual Performance SVG Code Quality

FID (#) CLIPScore (") HPS (") Recall (")
(Stoke Token) EDIT (#) Optim / Pred

Length (Avg)

Template 1 6.513 17.994 16.801 0.207 12,249.091 271.420
Template 2 6.612 18.113 16.942 0.211 12,223.724 274.006
Template 3 8.726 16.026 14.093 0.199 13,287.631 263.196
Template 4 11.607 13.852 9.097 0.101 19,167.086 181.059
Template 5 - - - - - -

We report the StrokeNUWA performance with different textual prompts in Tab. 5. We can observe that if the textual prompt
doesn’t change much, i.e., it stays consistent with the training phase or has minor modifications (such as changing the
order of keywords), the performance of the StrokeNUWA is not greatly affected and might even generate SVGs of higher
quality (Template 2). However, if a new textual prompt is adopted, the position of the keywords becomes very important.
If the keywords are still at the end of the textual prompt (Template 3), the model’s performance shows a slight decrease
across various metrics. However, suppose the keywords are not at the end (Template 4). In that case, StrokeNUWA fails to
generate complex SVGs, resulting in failures on some complicated test samples and a significant drop in overall metrics.
For the last case (Template 5), if keyword prompts are completely unused by StrokeNUWA during the training stage, i.e.,
the prompts during inference are entirely inconsistent with the prompts used during training, then StrokeNUWA can only
generate a few simple SVGs, thus making the generated SVGs difficult to evaluate. We also provide some generated SVGs
from StrokeNUWA under different textual prompts for reference in Fig. 12.

B.2. Semantic Clusters of Strokes

We adopt the following configuration of VQ-Stroke (the depth of the residual vector quantization is 2, with compression
rates of 2 and 4, respectively, and a vocabulary size of 4096, which is the model configuration used in the main experiment),
and performed clustering on all stroke tokens in the stroke codebook.

We manually set the number of clusters to 10 categories and analyze them using the T-SNE method5. We present the results
of vocabulary clustering under the condition of a compression rate of 2 in Fig. 11, where we divide the clustering results
into two types. Specifically, the cases in the right column of the above figure indicate that the distribution of these stroke
tokens is very concentrated. These Stroke Tokens have very distinct features, such as representing Dots, Vertical Lines,
or direction-specific short lines. In contrast, the cases in the left column represent strokes with less distinct features. This
type of strokes includes various different categories of stroke types (for example, short/long strokes, direction-specific
hooks, etc.). We believe that these types of strokes (on the left) constitute complex SVGs, and are greatly influenced by the
vocabulary size set in VQ-Stroke. A larger vocabulary may learn more complex and layered strokes.

5https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
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Figure 11. Semantic Clusters of Strokes

C. SVG Generation with more Attributes
In order to incorporate more elements into the process of Stroke generation, we have expanded the Code to Matrix
method (as described in section 3.2.1 of the original paper). Specifically, we have added three placeholders to the
original matrix, so that Equation 1: Kij = f(Cij) = (T; x0; y0; c

x
0 ; c

y
0; c

x
1 ; c

y
1; x1; y1)ij becomes (Kji )0 = f 0(Cji ) =

(T; colori; widthi; opacityi; x0; y0; c
x
0 ; c

y
0; c

x
1 ; c

y
1; x1; y1)

j
i . It’s worth noting that the placeholders (colori, widthi, and

opacityi) here can be expanded to any number, which can be defined by the user and reflected to the SVG through rules.
For simplicity of demonstration and validate the feasibility of adding more attributes into “stroke tokens”, we insert three
special placeholders: 1) colori: to control the color of the SVG path; 2) widthi: to control the width of the SVG path; and
3) opacityi: to control the transparency of the SVG path. Since the SVG dataset we used does not provide these parameters,
we randomly generated some values for a toy experiment.

For clarity, we compare the predicted strokes from VQ-Stroke model under different settings in Fig. 13, where Raw predicted
SVG only uses numerical coordinates as attributes, while Random Colored SVG fills the color attribute in the SVG Path
using a rule-based method. The two sub-figures in the bottom of Fig. 13 show the results trained with **VQ-Stroke** with
different vocabulary sizes and attributes, i.e., color, path width, and opacity.

We retrain the EDM model in the paper using the aforementioned stroke tokens which fused with 3 attributes. Finally, we
show some generated cases in Fig. 14.
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Figure 12. SVG cases generated by StrokeNUWA with different textual prompts.
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