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ABSTRACT

In response to data protection regulations and the “right to be forgotten”, in this
work, we introduce an unlearning algorithm for diffusion models. Our algorithm
equips a diffusion model with a mechanism to mitigate the concerns related to
data memorization. To achieve this, we formulate the unlearning problem as a bi-
level optimization problem, wherein the outer objective is to preserve the utility
of the diffusion model on the remaining data. The inner objective aims to scrub
the information associated with forgetting data by deviating the learnable gener-
ative process from the ground-truth denoising procedure. To solve the resulting
bi-level problem, we adopt a first-order method, having superior practical per-
formance while being vigilant about the diffusion process and solving a bi-level
problem therein. Empirically, we demonstrate that our algorithm can preserve the
model utility, effectiveness, and efficiency while removing across two widely-used
diffusion models and in both conditional and unconditional image generation sce-
narios. In our experiments, we demonstrate the unlearning of classes, attributes,
and even a race from face and object datasets such as UTKFace, CelebA, CelebA-
HQ, and CIFAR10. The source code of our algorithm is available at https:
//github.com/AnonymousUser-hello/DiffusionUnlearning.

1 INTRODUCTION

Diffusion Models (Ho et al., 2020; Song et al., 2020; Rombach et al., 2022) are now the method
of choice in deep generative models, owing to their high-quality output, stability, and ease of train-
ing procedure. This has facilitated their successful integration into commercial applications such as
midjourney1. Unfortunately, the ease of use associated with diffusion models brings forth significant
privacy risks. Studies have shown that these models can memorize and regenerate individual images
from their training datasets (Somepalli et al., 2023a;b; Carlini et al., 2023). Beyond privacy, diffu-
sion models are susceptible to misuse, capable of generating inappropriate digital content (Rando
et al., 2022; Salman et al., 2023; Schramowski et al., 2023). They are also vulnerable to poison
attacks (Chen et al., 2023b), allowing the generation of target images with specific triggers. These
factors collectively pose substantial security threats. Moreover, the ability of diffusion models to
emulate distinct artistic styles (Shan et al., 2023; Gandikota et al., 2023a) raises questions about
data ownership and compliance with intellectual property and copyright laws.

In this context, individuals whose images are used for training might request the removal of their
private data. In particular, data protection regulations like the European Union General Data Pro-
tection Regulation (GDPR) (Voigt & Von dem Bussche, 2017) and the California Consumer Privacy
Act (CCPA) (Goldman, 2020) grant users the right to be forgotten, obligating companies to expunge
data pertaining to a user upon receiving a request for deletion. These legal provisions grant data
owners the right to remove their data from trained models and eliminate its influence on said mod-
els (Bourtoule et al., 2021; Guo et al., 2020; Golatkar et al., 2020; Mehta et al., 2022; Sekhari et al.,
2021; Ye et al., 2022; Tarun et al., 2023b;a; Chen et al., 2023a).

A straightforward solution for unlearning is to retrain the model from scratch after excluding the
data that needs to be forgotten. However, the removal of pertinent data followed by retraining diffu-
sion models from scratch demands substantial resources and is often deemed impractical. Existing

1https://docs.midjourney.com/

1

https://github.com/AnonymousUser-hello/DiffusionUnlearning
https://github.com/AnonymousUser-hello/DiffusionUnlearning


Under review as a conference paper at ICLR 2024

research on efficient unlearning have primarily focused on classification problems Romero et al.
(2007); Karasuyama & Takeuchi (2010); Cao & Yang (2015); Ginart et al. (2019); Bourtoule et al.
(2021); Wu et al. (2020); Guo et al. (2020); Golatkar et al. (2020); Mehta et al. (2022); Sekhari et al.
(2021); Chen et al. (2023a), and cannot be directly applied to diffusion models. Consequently, there
is an urgent need for the development of methods capable of scrubbing data from diffusion models
without necessitating complete retraining.

In this work, we propose a method to scrub the data information from the diffusion models with-
out requiring training the whole system from scratch. Specifically, the proposed method EraseDiff
formulates diffusion unlearning as a bi-level optimization problem, where the outer objective is to
finetune the models with the remaining data for preserving the model utility and the inner objective
aims to erase the influence of the forgetting data on the models by deviating the learnable reverse
process from the ground-truth denoising procedure. Then, a first-order solution is adopted to solve
the resulting problem. We benchmark EraseDiff on various scenarios, encompassing unlearning of
classes on CIFAR10 (Krizhevsky et al., 2009) and races on UTKFace (Zhang et al., 2017) with con-
ditional diffusion models, attributes on CelebA (Liu et al., 2015) as well as CelebA-HQ (Lee et al.,
2020) with unconditional diffusion models. The results demonstrate that EraseDiff surpasses the
baseline methods for diffusion unlearning across a range of evaluation metrics.

2 BACKGROUND

In the following section, we outline the components of the models we evaluate, including Denois-
ing Diffusion Probabilistic Models (DDPM) (Ho et al., 2020), denoising diffusion implicit models
(DDIM) (Song et al., 2020), and classifier-free guidance diffusion models (Ho & Salimans, 2022).
Throughout the paper, we denote scalars, and vectors/matrices by lowercase and bold symbols, re-
spectively (e.g., a, a, and A).

DDPM. (1) Diffusion: DDPM gradually diffuses the data distribution Rd ∋ x0 ∼ q(x) into
the standard Gaussian distribution Rd ∋ ϵ ∼ N (0, Id) with T time steps, ie., q(xt|xt−1) =
N (xt;

√
αtxt−1, (1 − αt)Id), where αt = 1 − βt and {βt}Tt=1 are the pre-defined variance

schedule. Then we can express xt as xt =
√
ᾱtx0 +

√
1− ᾱtϵ, where ᾱt =

∏t
i=1 αi. (2)

Training: A model with parameters θ ∈ Rn, ie., ϵθ(·) is applied to learn the reverse process
pθ(xt−1|xt) ≈ q(xt−1|xt). Given x0 ∼ q(x) and time step t ∈ [1, T ], the simplified train-
ing objective is to minimize the distance between ϵ and the predicted ϵt given x0 at time t, ie.,
∥ϵ − ϵθ(xt, t)∥. (3) Sampling: after training the model, we could obtain the learnable backward
distribution pθ∗(xt−1|xt) = N (xt−1;µθ∗(xt, t),Σθ∗(xt, t)), where µθ∗(xt, t) =

√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt and Σθ∗(xt, t) = (1−ᾱt−1)βt

1−ᾱt
. Then, given xT ∼ N (0, Id), x0 could be obtained

via sampling from pθ∗(xt−1|xt) from t = T to t = 1 step by step.

DDIM. DDIM could be viewed as using a different reverse process, ie., pθ∗(xt−1|xt) =

N (xt−1;µθ∗(xt, t), σ
2
t Id), where µθ∗(xt, t) =

√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t
xt−

√
ᾱt√

1−ᾱt
and σ2

t =

η (1−ᾱt−1)βt

1−ᾱt
, η ∈ [0, 1]. A stride sampling schedule is adopted to accelerate the sampling process.

Classifier-free guidance. Classifier-free guidance is a conditioning method to guide diffusion-
based generative models without an external pre-trained classifier. Model prediction would be
ϵθ(xt, t, c), where c is the input’s corresponding label. The unconditional and conditional models
are jointly trained by randomly setting c to the unconditional class ∅ identifier with the probability
puncond. Then, the sampling procedure would use the linear combination of the conditional and
unconditional score estimates as ϵt = (1 + w) · ϵθ(xt, t, c) − w · ϵθ(xt, t), and w is the guidance
scale that controls the strength of the classifier guidance.

3 DIFFUSION UNLEARNING

Let D = {xi, ci}Ni be a dataset of images xi associated with label ci representing the class. C =
{1, · · · , C} denotes the label space where C is the total number of classes and ci ∈ [1, C]. We
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split the training dataset D into the forgetting data Df ⊂ D and its complement, the remaining data
Dr := D∁

f . The forgetting data has label space Cf ⊂ C, and the remaining label space is denoted as
Cr := C∁

f .

3.1 TRAINING OBJECTIVE

Our goal is to scrub the information about the forgetting data Df carried by the diffusion models
while maintaining the model utility over the remaining data Dr. To achieve this, we adopt different
training objectives for Dr and Df as follows.

Remaining data Dr. For the remaining data Dr, we finetune the diffusion models with the original
objective by minimizing the variational bound on negative log-likelihood:

min
θ

Ex0∼Dr
[− log pθ(x0)] ∝ min

θ
Ex0∼Dr

[ T∑
t=2

KL(q(xt−1|xt,x0)∥pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1(θ,Dr)

]
, (1)

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ with ϵ ∈ N (0, Id). Given a large T and if αT is sufficiently

close to 0, xT would converge to a standard Gaussian distribution, so pθ(xT ) := N (0, Id).
Eq. (1) aims to minimize the KL divergence between the ground-truth backward distribution
q(xt−1|xt,x0) = N (xt−1; µ̃t, β̃

2
t Id) and the learnable backward distribution pθ(xt−1|xt). With

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t Id), then we define

F(θ) := Lt−1(θ,Dr) = Ex0∼Dr,ϵ∼N (0,Id)

[
a ·

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2], (2)

where the coefficient a =
β2
t

2σ2
tαt(1−ᾱt)

for DDPM and a =
(
√

αt(1−ᾱt−1−σ2
t )−

√
1−ᾱt)

2

2σ2
tαt

for DDIM.
Eq. (2) constraints the model ϵθ to predict ϵ from xt, with the goal of aligning the learnable backward
distribution pθ(xt−1|xt) closely with the ground-truth backward distribution q(xt−1|xt,x0).

Forgetting data Df . For the forgetting data Df , we update the approximator ϵθ̂ aiming to let the
models fail to generate meaningful images corresponding to Cf :

max
θ̂

Ex0∼Df
[− log pθ̂(x0)] ∝ max

θ̂
Ex0∼Df

[ T∑
t=2

KL(q(xt−1|xt,x0)∥pθ̂(xt−1|xt))︸ ︷︷ ︸
Lt−1(θ̂,Df )

]
. (3)

Given x0 ∼ Df , the ground-truth backward distribution q(xt−1|xt,x0) = N (xt−1; µ̃t, β̃
2
t Id)

guides xT ∼ N (0, Id) or xt =
√
ᾱtx0 +

√
1− ᾱtϵ with ϵ ∼ N (0, Id) to get back the forget-

ting data example x0 for obtaining meaningful examples. Additionally, the learnable backward
distribution pθ(xt−1|xt) aims to mimic the ground-truth backward distribution q(xt−1|xt,x0) =

N (xt−1; µ̃t, β̃
2
t Id) by minimizing the KL divergence KL(q(xt−1|xt,x0)∥pθ̂(xt−1|xt)) for earn-

ing good trajectories that can reach the forgetting data example x0 proximally. To deviate xT ∼
N (0, Id) or xt =

√
ᾱtx0 +

√
1− ᾱtϵ with ϵ ∼ N (0, Id) from these trajectories, take DDPM as

an example, we replace q(xt−1|xt,x0) = N (xt−1; µ̃t, β̃
2
t Id) where µ̃t = 1√

αt
(xt − βt√

1−ᾱt
ϵt)

with ϵ ∼ N (0, Id) by q̂(xt−1|xt,x0) = N (xt−1; µ̂t, β̃
2
t Id) where µ̂t =

1√
αt
(xt − βt√

1−ᾱt
ϵ̂t) with

ϵ̂t ∼ U(0, I).
Remark. ϵ̂t could be any distribution different from ϵt, we choose uniform distribution ϵ̂t ∼
U(0, I) for experiments due to no extra hyper-parameters being needed. Appendix A.2 also show
results for ϵ̂t ∼ N (µ, Id) where µ ̸= 0.

Then, we define the following objective function

f(θ̂,Df ) := Ex0∼Df ,ϵ∼N (0,I),ϵ̂∼U(0,1)

[
a ·

∥∥ϵ̂− ϵθ̂(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2] . (4)

With this, the scrubbed model ϵθ̂ would tend to predict ϵ̂ given xt. As such, for the forgetting data,
the approximator ϵθ̂ cannot learn the correct denoising distribution and thus cannot help to generate
corresponding images when sampling.
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Algorithm 1 EraseDiff .
Input: Well-trained model ϵθ0 , forgetting data Df and subset of remaining data Drs ⊂ Dr, outer

iteration number S and inner iteration number K, learning rate ζ and hyparameter λ.
Output: Parameters θ∗ for the scrubbed model.

1: for iteration s in S do
2: ϕ0

s = θs.
3: Get ϕK

s by K steps of gradient descent on f(ϕs,Df ) start from ϕ0
s using Eq. (8).

4: Set f̂(ϕs,Df ) = f(ϕs,Df )− f(ϕK
s ,Df ).

5: Update the model: θs+1 = θs − ζ(∇θsF(θs,Drs) + λ∇ϕs
f̂(ϕs,Df )).

6: end for

Final objective. We strive to learn a model ϵθ, such that when we apply the unlearning algorithm
Alg(θ,Df ) to erase the influence of the forgetting data Df in the model, the resulting model with
parameters θ∗ should still be adept at generating samples having the same distribution as Dr. To
achieve this, given a well-trained diffusion model with parameters θ0 over the data D, for t =
2, · · · , T , refer to Rajeswaran et al. (2019), we update the model with the following objective

θ∗ := argmin
θ

F(θ), where F(θ) = L(Alg(θ,Df ),Dr), (5)

where Rd ∋ ϕ∗(θ) := Alg(θ,Df ) = argminϕ f(ϕ,Df ), ϕ is initialized with θ and θ starts
from θ0. Starting from the parameters θ0, for incoming forgetting data Df , Eq. (5) updates the
approximator ϵθ0 to scrub the information about Df , and the updated weights θ∗ can also preserve
the model utility over the remaining data Dr. To encompass the unconditional and conditional image
generation scenarios, Eq. (5) can be further rewritten as

min
θ

Ex0∼Dr,c∼Cr

[
a ·

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t, c)

∥∥2],
s.t. θ ∈ argmin

θ̂

Ex0∼Df ,ϵ̂∼U(0,1),c∼Cf

[
a ·

∥∥ϵ̂− ϵθ̂(
√
ᾱtx0 +

√
1− ᾱtϵ, t, c)

∥∥2], (6)

where c would be ∅ for unconditional diffusion models and labels for conditional diffusion models.
Eqs. (5) and (6) aim to keep the model utility over the remaining data Dr, but misguide it Df by
deviating the learnable reverse process from the ground-truth denoising procedure.

3.2 SOLUTION.

Eq. (5) could be viewed as a bilevel optimization (BO) problem, where the goal is to minimize
an outer objective F(θ,Dr) whose variables include the solution of another minimization problem
w.r.t. an inner objective f(ϕ,Df ). BO problem is challenging, and most existing methods for BO
require expensive manipulation of the Hessian matrix (Liu et al., 2022b). We adopt a practical
and efficient algorithm that depends only on first-order gradient information proposed by Liu et al.
(2022a) to solve Eq. (5). Our method is shown in Algorithm 1 (Detailed version can be found in
Algorithm 2 in Appendix A.1). The objective shown in Eq. (5) will be reformulated as a single-level
constrained optimization problem

min
θ

F(θ,Dr), s.t. f̂(ϕ,Df ) := f(ϕ,Df )− f(ϕ∗(θ),Df ) ≤ 0, (7)

where ϕ∗(θ) := Alg(θ,Df ) = argminϕ f(ϕ,Df ) and Eq. (7) yields first-order algorithms for
non-convex functions. Specifically, ϕ∗(θ) is approximated by running K steps of gradient descent
of f(ϕ,Df ) over Df , we set ϕ0 = θ, so

ϕk ≡ Alg(θ,Df ) = ϕk−1 − ζf∇ϕk−1f(ϕk−1,Df ), k = 1, . . . ,K, (8)

where ζf = ζ is the learning rate. We could obtain the approximation f̂(ϕ,Df ) = f(ϕ,Df ) −
f(ϕK ,Df ). Then, with ϕ = θ and the subset Drs ⊂ Dr, the model will be updated via

θ∗ = θ − ζ(∇θF(θ,Drs) + λ∇ϕf̂(ϕ,Df )). (9)

Remark. We use λ = 0.1 by default. λ could also be automatically computed for different iterations
as shown in the study (Liu et al., 2022a) and results can be found in Appendix A.2.
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4 RELATED WORK

Memorization in generative models. Privacy of generative models has been studied a lot for
GANs (Feng et al., 2021; Meehan et al., 2020; Webster et al., 2021) and generative language mod-
els (Carlini et al., 2022; 2021; Jagielski et al., 2022; Tirumala et al., 2022; Lee et al., 2023). These
generative models often risk replication from their training data. Recently, several studies (Carlini
et al., 2023; Somepalli et al., 2023b;a; Vyas et al., 2023) investigated these data replication behav-
iors in diffusion models, raising concerns about the privacy and copyright issues. Possible mitigation
strategies are deduplicating training data and randomizing conditional information (Somepalli et al.,
2023b;a), or training models with differential privacy (DP) (Abadi et al., 2016; Dwork et al., 2006;
Dwork, 2008; Dockhorn et al., 2022). However, Carlini et al. (2023) show that deduplication is not
a perfect solution, and leveraging DP-SGD (Abadi et al., 2016) may cause the training to diverge.

Malicious misuse. Diffusion models usually use training data from varied open sources and when
such unfiltered data is employed, there is a risk of it being tainted(Chen et al., 2023b) or manipu-
lated (Rando et al., 2022), resulting in inappropriate generation (Schramowski et al., 2023). They
also risk the imitation of copyrighted content, such as mimicking the artistic style (Gandikota et al.,
2023a; Shan et al., 2023). To counter inappropriate generation, data censoring (Gandhi et al., 2020;
Birhane & Prabhu, 2021; Nichol et al., 2021; Schramowski et al., 2022) where excluding black-listed
images before training, and safety guidance where diffusion models will be updated away from the
inappropriate/undesired concept (Gandikota et al., 2023a; Schramowski et al., 2023) are proposed.
Shan et al. (2023) propose protecting artistic style by adding barely perceptible perturbations into
the artworks before public release. Yet, Rando et al. (2022) argue that filtering can still generate dis-
turbing content that bypasses the filter. Chen et al. (2023b) highlight the susceptibility of diffusion
models to poison attacks, where target images will be generated with specific triggers.

Machine unlearning. Removing data directly involves retraining the model from scratch, which is
inefficient and impractical. Thus, to reduce the computational overhead, efficient machines unlearn-
ing methods Romero et al. (2007); Karasuyama & Takeuchi (2010); Cao & Yang (2015); Ginart et al.
(2019); Bourtoule et al. (2021); Wu et al. (2020); Guo et al. (2020); Golatkar et al. (2020); Mehta
et al. (2022); Sekhari et al. (2021); Chen et al. (2023a); Tarun et al. (2023b) have been proposed.
Gandikota et al. (2023a); Heng & Soh (2023); Gandikota et al. (2023b) recently introduce unlearning
in diffusion models. Gandikota et al. (2023a;b) mainly focuses on text-to-image models and high-
level visual concept erasure. Heng & Soh (2023) adopt Elastic Weight Consolidation (EWC) and
Generative Replay (GR) from continual learning to perform unlearning effectively without access to
the training data. In this work, we present an unlearning algorithm for diffusion-based generative
models. Specifically, we update the model parameters where the outer objective is to maintain utility
for the remaining data Dr, and the inner objective is to erase information about the forgetting data
Df . Note that both the inner and outer objectives in our formulation and MAML (Rajeswaran et al.,
2019) are directed at optimizing the model parameters. Our formulation distinction from MAML
lies in its focus: we are not seeking a model adaptable to unlearning but one that effectively erases
the influence of data points on the model. Our method allows for easily equipping any plug-and-play
loss function(e.g., (Ruiz et al., 2023; Song et al., 2023)) into the unlearning procedure. This is as
easy as changing the outer loop to incorporate plug-and-play loss functions if they are deemed to
improve the quality of generation.

5 EXPERIMENT

We evaluate the proposed unlearning method EraseDiff in various scenarios, including removing
images with specific classes/races/attributes, to answer the following research questions (RQs):

RQ1: Is the proposed method able to remove the influence of the forgetting data in the diffusion models?

RQ2: Is the proposed method able to preserve the model utility while removing the forgetting data?

RQ3: Is the proposed method efficient in removing the data?

RQ4: Can typical machine unlearning methods be applied to diffusion models, and how does the pro-
posed method compare with these unlearning methods?

RQ5: How does the proposed method perform on the public well-trained models from Hugging Face2?
2https://huggingface.co/models
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Table 1: FID score over forgetting classes on conditional DDIM. FID score is evaluated on 50K
generated images (5K per class for CIFAR10, 12.5K per class for UTKFace). ‘Accuracy’: the
classification accuracy on the corresponding generated images. The pre-trained classifiers have a
classification accuracy of 0.81 on CIFAR10 and 0.84 on UTKFace. The generated images condi-
tioned on the forgetting classes significantly deviate from the corresponding real counterparts.

CIFAR10 UTKFace

c = 2 ↑ c = 8 ↑ Accuracy↓ c = 3 ↑ Accuracy↓
Unscrubbed 19.62 12.05 0.8622 8.87 0.7614
EraseDiff (Ours) 256.27 (+236.65) 294.08 (+282.03) 0.0026 330.33 (+321.46) 0.0000

cond_DDIM

Figure 1: Distribution of loss value on the forgetting data Df and unseen data Dt. Models scrubbed
by our unlearning algorithm have lower MIA accuracy than unscrubbed models, indicating that our
methodology successfully scrubbed the data influence.

5.1 SETUP

Experiments are reported on CIFAR10 (Krizhevsky et al., 2009), UTKFace (Zhang et al., 2017),
CelebA (Liu et al., 2015), and CelebA-HQ (Lee et al., 2020) datasets. By default, our scrubbed
models use ∼ 8K images from Dr during the unlearning process. Implementation details and more
results (e.g., concept/attribute unlearning on CelebA and CelebA-HQ, class unlearning on CIFAR-
10 and UTKFace), including the ablation study (ie., the hyper-parameter λ that control the balance
between Dr and Df , the number of images from Dr), can be found in the Appendix.

Baselines. We primarily benchmark against the following baselines commonly used in machine
unlearning: (i) Unscrubbed: models trained on data D. Unlearning algorithms should scrub in-
formation from its parameters. (ii) Retrain: models obtained by retraining from scratch on the
remaining data Dr. (iii) Finetune (Golatkar et al., 2020): finetuning models on the remaining data
Dr, ie., catastrophic forgetting. (iv) NegGrad (Golatkar et al., 2020): gradient ascent on the for-
getting data Df . (v) BlindSpot (Tarun et al., 2023b): the state-of-the-art unlearning algorithm for
regression. It derives a partially-trained model by training a randomly initialized model with Dr,
then refines the unscrubbed model by mimicking the behavior of this partially-trained model.

Metrics. Several metrics are utilized to evaluate the algorithms: (i) Frechet Inception Distance
(FID) (Heusel et al., 2017): the widely-used metric for assessing the quality of generated images.
(ii) Accuracy: the classification rate of a pre-trained classifier, with a ResNet architecture (He et al.,
2016) used to classify generated images conditioned on the forgetting classes. A lower classifica-
tion value indicates superior unlearning performance. (iii) Membership inference attack (MIA):
a standard metric for verifying unlearning effect in classification tasks. However, due to the high-
quality image generation of diffusion models, which closely resemble real images, MIA might not
distinctly differentiate between training and unseen images. (iv) Kullback–Leibler (KL) diver-
gence: distance between the approximator’s output ϵT distribution and the standard Gaussian noise
ϵ distribution. (v) Weight Distance (WD) (Tarun et al., 2023a): distance between the Retrain mod-
els’ weights and other scrubbed models’ weights. WD gives additional insights about the amount of
information remaining in the models about the forgetting data.

5.2 EFFECTIVENESS OF DATA REMOVAL

We aim to unlearn images conditioned on classes of birds and ships (represented by c = 2 and
c = 8) on CIFAR10, faces with the last ethnicity labeled as Indian (c = 3) on UTKFace, and images
with attribute blond hair (unconditional case) on CelebA and CelebA-HQ, respectively. Results
in different scenarios can be found in Appendix A.2. For an effective unlearning algorithm, the
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(a) CIFAR10 (b) UTKFace

Unscrubbed

Ours

Figure 2: Images generated by conditional DDIM. Images in the green dashed box are generated by
conditioning on the remaining labels Cr and those in the red solid box are generated by conditioning
on the forgetting classes Cf . Our unlearning algorithm could successfully scrub the information of
Cf carried by the models while maintaining the model utility over Cr.

cond_DDIM

Figure 3: KL distance between the approximator output ϵT and standard Gaussian noise ϵ. Our
unlearning algorithm maintains the model utility on Dr while ensuring that the predicted distribution
significantly diverges from the predefined standard Gaussian noise distribution for Df .

scrubbed models are expected to contain little information about the forgetting data. In this section,
we first show the effectiveness of our proposed unlearning algorithm on diffusion models.

FID score. Tab. 1 presents the results of FID on the generated images conditioned on the forgetting
classes Cf . FID scores are computed between the generated images and the corresponding images
with the same labels from the training data Df . As shown in Tab. 1, generated images conditioned
on Cf from the models scrubbed by our proposed unlearning algorithm have larger FID scores than
those from the unscrubbed models, indicating that our algorithm successfully erases the information
of the forgetting data carried by the models. For example, on CIFAR10, the FID score of generated
images conditioned on the label birds increased from 19.62 to 256.27, indicating that these generated
bird images are notably dissimilar from the bird images present in the training data.

Accuracy. The classification accuracy of the generated images conditioned on Df decreased from
around 0.86 to 0.002 on CIFAR10, and from 0.76 to 0 on UTKFace, respectively. This demonstrates
that, among the generated 10K images on CIFAR10 and 25K images on UTKFace, only 26 images
are classified into the categories of birds or ships on CIFAR10 and no faces are classified as Indian
celebrities, further verifying the effectiveness of our unlearning algorithm.

Loss distribution. To further measure the effectiveness of data removal, we report the results of
MIA accuracy to indicate whether the data is used to train the models. The attack model is a binary
classifier and is trained using the loss value w.r.t. the forgetting data, and data from the test set. As
shown in Fig. 1, after scrubbing the models using our proposed unlearning algorithm EraseDiff , the
distribution of loss values on Df is similar to that on the test data, indicating that our methodology
successfully erased the information of the forgetting data carried by the model.

Ideally, the loss values w.r.t. the training data would be lower than those w.r.t. the data from the
test set. However, diffusion models have impressive capacities to generate diverse and high-quality
images, leading to difficulty in distinguishing between the generated images and the real images in
the training data. For example, on CIFAR10 shown in Fig. 1, the distribution of loss values on Df is
quite similar to that on the unseen data for the unscrubbed model, resulting in the instability of MIA
performance. Advanced methods to measure MIA could be leveraged, we leave it for future studies.

KL divergence. Here, we propose computing the KL divergence distance between the model out-
put distribution and the pre-defined Gaussian noise distribution. The diffusion process would add
noise to the clean input x, consequently, the model output ϵT distribution given these noisy images
xt tends to converge towards the Gaussian noise distribution ϵ. As depicted in Fig. 3, the y-axis
represents the number of occurrences of the specific distance value. We can see that the distance be-
tween the output distribution w.r.t. Cr and the Gaussian distribution for our scrubbed model is close
to that of the unscrubbed model, while the distance between the output distribution w.r.t. the Cf is
further away from the Gaussian distribution for our scrubbed model than the unscrubbed model.
This means for Dr, our scrubbed models exhibit behavior akin to the unscrubbed models, while for
Df , our scrubbed models would generate images significantly deviate from ϵ. These results under-
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Table 2: FID score over the remaining classes on conditional DDIM. FID score is evaluated on 50K
generated images (5K per class for CIFAR10, 12.5K per class for UTKFace). The quality of the
generated image conditioned on the remaining classes drops a little after scrubbing (examples in
Fig. 2) but it is acceptable given the significant unlearning impact of the forgetting classes.

CIFAR10 UTKFace

c = 0 ↓ c = 1 ↓ c = 3 ↓ c = 4 ↓ c = 5 ↓ c = 6 ↓ c = 7 ↓ c = 9 ↓ c = 0 ↓ c = 1 ↓ c = 2 ↓
Unscrubbed 17.04 9.67 19.88 14.78 20.56 17.16 11.53 11.44 7.37 11.28 9.72
EraseDiff (Ours) 29.61 22.10 28.65 27.68 35.59 23.93 21.24 24.85 8.08 13.52 12.37

Table 3: Results on CIFAR10 trained with conditional DDIM. Although NegGrad and BlindSpot
could scrub the information of the forgetting classes, they cannot maintain the model utility. Other
methods fail to scrub the relevant information completely. Examples are shown in Fig. 4.

Method FID over forgetting classes Accuracy↓ FID over remaining classes WD↓
c = 2 ↑ c = 8 ↑ c = 0 ↓ c = 1 ↓ c = 3 ↓ c = 4 ↓ c = 5 ↓ c = 6 ↓ c = 7 ↓ c = 9 ↓

Unscrubbed 19.62 12.05 - 17.04 9.67 19.88 14.78 20.56 17.16 11.53 11.44 -
Retrain 152.39 139.62 0.0135 17.39 9.57 20.05 14.65 20.19 17.85 11.63 10.85 0.0000
Finetune 31.64 21.22 0.7001 20.49 12.38 23.47 17.80 25.51 18.23 14.43 16.09 1.3616
NegGrad 322.67 229.08 0.4358 285.25 290.57 338.49 290.23 312.44 339.43 320.63 278.03 1.3533
BlindSpot 349.60 335.69 0.1167 228.92 181.88 288.88 252.42 242.16 278.62 192.67 195.27 1.3670
EraseDiff (Ours) 256.27 294.08 0.0026 29.61 22.10 28.65 27.68 35.59 23.93 21.24 24.85 1.3534

score the efficacy of our unlearning algorithm in scrubbing the unscrubbed model concerning the
information of Df , all the while preserving the model utility for Dr.

Visualizations. To provide a more tangible assessment of unlearning effectiveness, we visualize
some generated images. Fig. 2 showcases samples generated by the conditional DDIM models
from Tab. 1. When conditioned on Df , the scrubbed models predominantly produce unrecognizable
images. More examples and examples of the unconditional case can be found in Appendix A.2.

5.3 EFFICACY OF PRESERVING MODEL UTILITY.

For an effective unlearning algorithm, the scrubbed models are also expected to maintain utility over
the remaining classes. So we present the FID scores over the generated images conditioned on Cr
from the scrubbed models in Tab. 2. The FID scores increase compared with the generated images
from the original models. As shown in Fig. 2, it’s evident that the quality of generated images
experiences a slight decrease. However, given the substantial unlearning impact of the forgetting
classes, this drop in quality is acceptable. Furthermore, as shown in Figs. 1 and 3, our scrubbed
models could obtain similar results as the unscrubbed models over the remaining classes.

5.4 EFFICIENCY OF THE ALGORITHM

Assuming that the computational complexity for a single epoch over the data D is represented as
O(h(N)), similarly, a single epoch of training over the remaining data Dr is denoted as O(h(Nr)),
and a single epoch of training over the forgetting data Df is denoted as O(h(N−Nr)) = O(h(Nf )).
Then, the computational complexity for training the unscrubbed models would be O(E1 ·h(N)) for
E1 epochs, and the computational complexity for training the retrained models would be O(E2 ·
h(Nr)) for E2(E2 < E1) epochs. Our unlearning algorithm exhibits computational complexity
as O(E · S(K · h(Nf ) + 2h(Nrs))) for E epochs, where (ES(K + 2)) ≪ E2, Nrs ≪ Nr and
Nf ≪ Nr. Consider the experiments on CIFAR10, as detailed in Tab. 3. On A100, it takes over
32 hours for unscrubbed models and roughly 27 hours for the retrained models to complete their
training. In contrast, our algorithm efficiently scrubs models in just around 10 minutes.

5.5 COMPARISON WITH OTHER ALGORITHMS

We now evaluate the proposed unlearning algorithm EraseDiff in comparison with other machine
unlearning methods. As illustrated in Tab. 3, the NegGrad model and BlindSpot model can erase the
information related to forgetting classes Cf , but struggles to retain the model utility. For example,
images generated conditioned on Cf (birds and ships) yield the FID score exceeding 200, and ∼2000
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Unscrubbed

Retrain

Finetune

NegGrad

Ours

BlindSpot

CIFAR10_cond_DDIM

Figure 4: Images generated by conditional DDIM. Images in the green dashed box are generated
by conditioning on the remaining labels Cr and those in the red solid box are generated by condi-
tioning on the forgetting classes Cf . ‘Retrain’ generates images randomly for Cf , ‘NegGrad’ and
‘BlindSpot’ successfully scrub the information regarding Cf as well but cannot withhold the model
utility. Ours can sufficiently erase relevant information and maintain the model utility.

uncond_pretrained_ddpm

Unscrubbed Ours Unscrubbed Ours

(a) CIFAR10 (b) CelebAHQ

Figure 5: Images generated by the well-trained unconditional DDPM from Hugging Face and our
corresponding scrubbed models. Images in the red solid box have the label belonging to the forget-
ting class/attribute, those in the red dashed box are the corresponding images generated by ours.

of these generated images are classified into the birds or ships categories. However, for the generated
images conditioned on the remaining classes Cr, the FID scores also surpass 200, as visualized in
Fig. 4, these generated images appear corrupted. As shown in Tab. 3 and Fig. 4, other baseline
models can preserve the model utility over Cr but fall short in sufficiently erasing the information
regarding Cf . Our proposed unlearning algorithm, instead, adeptly scrubs pertinent information
while upholding model utility. Furthermore, we can observe that our scrubbed model has a WD of
1.3534, while the minimal WD is 1.3533, indicating that our scrubbed models are in close alignment
with the retrained model where the forgetting data Df never attends in the training process.

5.6 USER STUDY

Subsequently, we assess the proposed unlearning method EraseDiff on the proficiently trained un-
conditional DDPM models on CIFAR10 and CelebA-HQ from Hugging Face. Fig. 5 presents exam-
ples of generated images from the original models and our corresponding scrubbed models. We can
observe that when the unscrubbed models generate images whose categories can be the forgetting
classes, the scrubbed models consistently generate images that either belong exclusively to Cr or are
unrecognizable, further indicating the effectiveness of the proposed unlearning algorithm.

6 CONCLUSION AND DISCUSSION

In this work, we first explored the unlearning problem in diffusion models and proposed an effective
unlearning method. Comprehensive experiments on unconditional and conditional diffusion models
demonstrate the proposed algorithm’s effectiveness in data removal, its efficacy in preserving the
model utility, and its efficiency in unlearning. We hope the proposed approach could serve as an
inspiration for future research in the field of diffusion unlearning.

However, our present evaluations focus on categories or subsets with significant common charac-
teristics, potentially overlooking a broader range of problem scenarios. Future directions for diffu-
sion unlearning could include assessing fairness post-unlearning, implementing weight unlearning
to prioritize different samples, using advanced privacy-preserving training techniques, developing
effective multi-task frameworks, and developing distinct optimization strategies.
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A APPENDIX

A.1 SOCIAL IMPACT

Diffusion models have experienced rapid advancements and have shown the merits of generating
high-quality data. However, concerns have arisen due to their ability to memorize training data and
generate inappropriate content, thereby negatively affecting the user experience and society as a
whole. Machine unlearning emerges as a valuable tool for correcting the algorithms and enhancing
user trust in the respective platforms. It demonstrates a commitment to responsible AI and the
welfare of its user base. However, while unlearning protects privacy, it may also hinder the ability
of relevant systems and potentially lead to biased outcomes.

A.2 IMPLEMENTATION DETAILS

Four and five feature map resolutions are adopted for CIFAR10 where image resolution is 32× 32,
UTKFace and CelebA where image resolution is scaled to 64×64, respectively. Our 32×32 model,
and 64×64 model have around 36 million, and 79 million parameters, respectively. The well-trained
unconditional DDPM models on CIFAR103 and CelebA-HQ4 are downloaded from Hugging Face.
We used A40 and A100 for all experiments. All models apply the linear schedule for the diffusion
process. We set the batch size B = 512, B = 128, B = 64, B = 16 for CIFAR10, UTKFace
and CelebA, CelebA-HQ respectively. The linear schedule is set from β1 = 10−4 to βT = 0.02,
the inference time step for DDIM is set to be 100, the guidance scale w = 0.1, and the probability
puncond = 0.1 for all models. For the Unscrubbed and Retrain models, the learning rate is 3× 10−4

for CIFAR10 and 2 × 10−4 for other datasets. We train the CIFAR10 model for 2000 epochs, the
UTKFace and CelebA models for 500 epochs. For Finetune models, the learning rate is 3×10−4 for
CIFAR10 and 2× 10−4 for other datasets, all the models are finetuned on the remaining data Dr for
100 epochs. For NegGrad models, the learning rate is 1×10−6 and all the models are trained on the
forgetting data Df for 5 epochs. For BlindSpot models, the learning rate is 2× 10−4. The partially-
trained model is trained for 100 epochs on the remaining data Dr and then the scrubbed model is
trained for 100 epochs on the data D. For our scrubbed models, Nrs = |Drs| ≈ 8K, the learning
rate is 1× 10−6 CelebA-HQ and 2× 10−4 for other datasets. Note that the components (Dhariwal
& Nichol, 2021; Nichol & Dhariwal, 2021) for improving the model performance are not applied in
this work.

Algorithm 2 EraseDiff .
Input: Well-trained model ϵθ0 , forgetting data Df and subset of remaining data Drs ⊂ Dr, outer

iteration number S and inner iteration number K, learning rate ζ and hyparameter λ.
Output: Parameters θ∗ for the scrubbed model.

1: for iteration s in S do
2: ϕ0

s = θs.
3: Get ϕK

s by K steps of gradient descent on f(ϕs,Df ) start from ϕ0
s using Eq. (8):

Sample {x0, c} ⊂ Df , t ∼ Uniform(1, · · · , T ), ϵ ∼ N (0, Id),
Compute ∇ϕk

s
∥ϵ̂− ϵϕk

s
(
√
ᾱtx0 +

√
1− ᾱtϵ, t, c)∥.

Get the constant loss Lcs = ∥ϵ̂− ϵϕK
s
(
√
ᾱtx0 +

√
1− ᾱtϵ, t, c)∥ if k = K.

4: Set the approximation:
Sample {x0, c} ⊂ Df , t ∼ Uniform(1, · · · , T ), ϵ ∼ N (0, Id),
Compute the loss Lf = ∥ϵ̂− ϵθs(

√
ᾱtx0 +

√
1− ᾱtϵ, t, c)∥ − Lcs.

5: Update the model:
Sample {x0, c} ⊂ Drs, t ∼ Uniform(1, · · · , T ), ϵ ∼ N (0, Id),
Compute the loss Ls = ∥ϵ− ϵθs(

√
ᾱtx0 +

√
1− ᾱtϵ, t, c)∥+ λLf ,

Update θs+1 = θs − ζ∇θsLs.
6: end for

3https://huggingface.co/google/ddpm-cifar10-32
4https://huggingface.co/google/ddpm-ema-celebahq-256
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Algorithm 3 BlindSpot Unlearning (Tarun et al., 2023b).
Input: A well-trained model ϵ with parameters θ0, a randomly initialized blind model ϵψ(·), for-

getting data Df , remaining data Dr and all training data D = Df ∪Dr. The learning rate ζ, the
number of epochs Er and Eu, hyper-parameter λ.

Output: Parameters θ∗ for the scrubbed model.
1: Initialization θ = θ0.
2: for 1, 2, . . . , Er do
3: train the blind model ϵψ(·) with the remaining data Dr.
4: end for
5: for 1, 2, . . . , Eu do
6: for (xi, ci) ∈ D do
7: lif = 1 if (xi, ci) ∈ Df else lif = 0.
8: ϵt = ϵθ(xi, t, ci), where t is the timestep and t ∈ [1, T ].
9: Lr = L(ϵt, ϵ) and Lf = L(ϵt, ϵψ(xi, t, ci)).

10: La = λ
∑k

j=1 ∥actθj − actψj ∥, where actj is the output of each block in the UNet.
11: L = (1− lif )Lr + lif (Lf + La).
12: θ = θ − ζ ∂L

∂θ .
13: end for
14: end for

A.3 MORE RESULTS

In the following, we present the results of Ablation studies, results when replacing ϵ ∼ N (0, Id)
with ϵ̂t ∼ N (0.5, Id) for Eq. (4), results when sampling from the uniform distribution ϵ̂t ∼ U(0,1),
and results when trying to erase different classes/races/attributes under the conditional and uncondi-
tional scenarios. We include new comparisons (e.g., without access to Dr, subjected to adversarial
attacks, two alternative formulations to perform unlearning) in Tabs. 4 to 8 and Figs. 17 to 24. In
general, with more remaining data during the unlearning process, the generated image quality over
the remaining classes Cr would be better while those over the forgetting classes Cf would be worse.
With generated images for unlearning, the image quality after scrubbing the model would be worse,
but still surpasses other methods. When subjected to adversarial attacks, the quality of generated im-
ages of all models would decrease along with the step size of the attack increases, but the scrubbed
model still would not contain information about Cf . Simultaneously updating the model parameters
can destroy the information about Cf , but would also result in a significant drop in image quality Cr.
Disjoint optimization does not work as the second phase could bring back information about Cf .

Figure 6: Ablation results with conditional DDIM on CIFAR10.
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(a)

(b)

(c)

Figure 7: Conditional DDIM on CIFAR-10. (a) Generated images by the unscrubbed model. (b)
and (c) are generated images by our scrubbed model when forgetting classes are Cf = {c2, c8},
and Cf = {c5, c6}, respectively. Images in the red solid box are generated by conditioning on the
forgetting classes Cf , others are generated by conditioning on the remaining classes Cr.

differmean_distri (mean=0.5)

Figure 8: Images generated by our scrubbed conditional DDIM on CIFAR10 when we choose nor-
mal distribution ϵ̂t ∼ N (0.5, Id). Images in the red solid box are generated by conditioning on the
forgetting classes Cf , others are generated by conditioning on the remaining classes Cr.

Sample with noise from uniform distribution

Figure 9: Images generated by our scrubbed conditional DDIM on CIFAR10. Sampling with noise
from the uniform distribution x̂T ∼ U(0,1).
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P_uncond=1e-12

Figure 10: Images generated by our scrubbed conditional DDIM on CIFAR10 when puncond ≈ 0.

Unscrubbed

Ours (E=1)

Ours (E=4)

Figure 11: Images generated by conditional DDIM on UTKFace with different hyper-parameter E.
Images in the red solid box are generated by conditioning on Cf , others are generated by conditioning
on Cr. The larger the number E, the better the quality of generated images over Cr.

Figure 12: Images generated by our scrubbed conditional DDIM when unlearning different races
(Top to Bottom: unlearning Asian, Black, and White, respectively). Images in the red solid box are
generated by conditioning on Cf , others are generated by conditioning on Cr.

17



Under review as a conference paper at ICLR 2024

𝐷!

𝐷"

Figure 13: Examples from the remaining data Dr and forgetting data (Blond hair attribute) Df on
CelebA-HQ. Note that some examples in Dr (e.g., images in the purple solid box) have hair with a
color that looks similar to the Blond hair attribute.

CelebA_uncond_DDIM

Unscrubbed Retrain Ours

Figure 14: Images generated by unconditional DDIM on CelebA. We aim to unlearn the attribute
of blond hair. Our unlearning algorithm obtains the results quite similar to those from the retrained
model which is trained with the remaining data. Note that some images from the remaining data
have hair attribute that looks like blond hair attribute as shown in Fig. 13.

Unscrubbed

uncond_pretrained_ddpm

Ours (E=2)

Figure 15: Images generated by the well-trained unconditional DDPM models from Hugging Face
and our corresponding scrubbed models on CelebA-HQ. We aim to unlearn the Eyeglasses attribute.

18



Under review as a conference paper at ICLR 2024

Unscrubbed

uncond_pretrained_ddpm

Ours (E=2)

Ours (E=4)

Figure 16: Images generated by the well-trained unconditional DDPM models from Hugging Face
and our corresponding scrubbed models on CelebA-HQ. We aim to unlearn the Blond hair attribute.
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Table 4: Results on CIFAR-10 with conditional DDIM, compared with simultaneously optimizing
L(θ;Dr) − αL(θ;Df ) (denoted as SO). Generated examples are shown in Fig. 17. SO cannot
achieve a good trade-off between erasing the influence of Df and preserving model utility over Dr.

Method FID over forgetting classes FID over remaining classes

c = 2 ↑ c = 8 ↑ c = 0 ↓ c = 1 ↓ c = 3 ↓ c = 4 ↓ c = 5 ↓ c = 6 ↓ c = 7 ↓ c = 9 ↓
Unscrubbed 19.62 12.05 17.04 9.67 19.88 14.78 20.56 17.16 11.53 11.44
Retrain 152.39 139.62 17.39 9.57 20.05 14.65 20.19 17.85 11.63 10.85
SO (α=0.1) 20.85 11.72 18.74 12.14 22.53 16.44 24.17 17.56 13.59 15.55
SO (α=0.3) 33.33 22.87 20.22 12.05 24.12 21.00 26.18 21.57 14.24 15.00
SO (α=0.5) 175.17 77.46 90.30 25.43 64.28 57.89 55.07 51.68 40.77 37.94
EraseDiff (Ours) 256.27 294.08 29.61 22.10 28.65 27.68 35.59 23.93 21.24 24.85

Ours

Unscrubbed

DDIM cond

Retrain

SO (𝛼 = 0.1)

SO (𝛼 = 0.3)

SO (𝛼 = 0.5)

Figure 17: Images generated by conditional DDIM from Tab. 4. Images in the green dashed box are
generated by conditioning on the remaining labels Cr and those in the red solid box are generated
by conditioning on the forgetting classes Cf .

Table 5: Results on CIFAR-10 trained with conditional DDIM, compared with separate optimization
(Two-steps, denoted as TS). TS will perform E1 epochs for the first step (ie., NegGrad), then perform
E3 epochs for the second step (ie., relearn using Dr). Generated examples are shown in Fig. 18. TS
cannot completely erase the influence of Df on the model.

Method FID over forgetting classes FID over remaining classes

c = 2 ↑ c = 8 ↑ c = 0 ↓ c = 1 ↓ c = 3 ↓ c = 4 ↓ c = 5 ↓ c = 6 ↓ c = 7 ↓ c = 9 ↓
Unscrubbed 19.62 12.05 17.04 9.67 19.88 14.78 20.56 17.16 11.53 11.44
Retrain 152.39 139.62 17.39 9.57 20.05 14.65 20.19 17.85 11.63 10.85
TS (step 1, E1 = 10) 292.35 297.94 276.75 296.48 313.51 317.70 310.61 326.49 311.01 296.05
TS (step 2, E2 = 50) 73.29 100.72 73.78 78.23 67.21 70.79 72.85 56.41 74.13 82.86
TS (step 2, E2 = 100) 30.88 26.56 21.64 13.96 24.19 19.14 26.32 19.44 15.49 17.38
EraseDiff (Ours) 256.27 294.08 29.61 22.10 28.65 27.68 35.59 23.93 21.24 24.85

Ours

Unscrubbed

DDIM cond

Retrain

TS (𝑠𝑡𝑒𝑝 1, 𝐸! = 10)

TS (𝑠𝑡𝑒𝑝 2, 𝐸" = 50)

TS (𝑠𝑡𝑒𝑝 2, 𝐸" = 100)

Figure 18: Images generated by conditional DDIM from Tab. 5. Images in the green dashed box are
generated by conditioning on the remaining labels Cr and those in the red solid box are generated
by conditioning on the forgetting classes Cf .
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Table 6: Results on CIFAR-10 trained with conditional DDIM. D′

r: EraseDiff apply generated
images to be the remaining data for the unlearning process.

Method FID over forgetting classes FID over remaining classes

c = 2 ↑ c = 8 ↑ c = 0 ↓ c = 1 ↓ c = 3 ↓ c = 4 ↓ c = 5 ↓ c = 6 ↓ c = 7 ↓ c = 9 ↓
Unscrubbed 19.62 12.05 17.04 9.67 19.88 14.78 20.56 17.16 11.53 11.44
Retrain 152.39 139.62 17.39 9.57 20.05 14.65 20.19 17.85 11.63 10.85
Finetune 31.64 21.22 20.49 12.38 23.47 17.80 25.51 18.23 14.43 16.09
NegGrad 322.67 229.08 285.25 290.57 338.49 290.23 312.44 339.43 320.63 278.03
BlindSpot 349.60 335.69 228.92 181.88 288.88 252.42 242.16 278.62 192.67 195.27
EraseDiff (D

′
r) 298.60 311.59 33.01 24.09 34.23 34.79 45.51 38.05 24.59 28.10

EraseDiff (Ours) 256.27 294.08 29.61 22.10 28.65 27.68 35.59 23.93 21.24 24.85

Ours

Unscrubbed

DDIM cond

Retrain

Ours (𝐷!" )

Unscrubbed

Retrain

Finetune

NegGrad

Ours

BlindSpot

Figure 19: Images generated by conditional DDIM from Tab. 6. Images in the green dashed box are
generated by conditioning on the remaining labels Cr and those in the red solid box are generated
by conditioning on the forgetting classes Cf .

SA code: DDPM

Ours (205 steps)Unscrubbed Ours (210 steps)Ours (200 steps)

Figure 20: Conditional DDPM on CIFAR-10 when forgetting samples belonging to label ‘0’. Fol-
lowing Heng & Soh (2023) and using the well-trained model from Heng & Soh (2023), our method
achieves a FID score of 8.93 at 210 steps, 8.83 at 205 steps, and 8.90 at 200 steps.

Table 7: Results of EraseDiff on CIFAR-10 with conditional DDIM. For each class, the FID score
is computed over 5K generated images. Each row’s forgetting classes are highlighted in orange.

Cf c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

c = 2 26.60 17.04 295.48 27.07 32.32 30.45 28.58 19.77 17.60 20.67
c = 2, 8 29.61 22.10 256.27 28.65 27.68 35.59 23.93 21.24 294.08 24.85
c = 5, 6 30.03 16.51 29.37 33.50 22.12 321.09 302.01 20.06 21.94 21.10
c = 2, 5, 8 24.02 15.59 288.01 26.06 19.31 296.79 21.25 15.87 206.61 21.56
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Ours (10.99)Unscrubbed (10.85)

Uncond DDPM-pretrained, sample-unlearn

Figure 21: Unconditional DDPM on CIFAR-10 when forgetting randomly selected samples. 50K
generated images by our scrubbed model have an FID score of 10.99, and the unscrubbed model has
an FID score of 10.85.

Ours

Unscrubbed

DDIM cond

Retrain

𝜀 = 0 𝜀 = 0.001 𝜀 = 0.01

Ours

Unscrubbed

Retrain

Figure 22: Generated examples when objected to FGSM Goodfellow et al. (2014) attack. Images in
the green dashed box are generated by conditioning on the remaining labels Cr and those in the red
solid box are generated by conditioning on the forgetting classes Cf . With the step size ϵ increases,
the quality of the generated images would decrease for all models. Note that our scrubbed model
still doesn’t contain information about the forgetting classes Cf in this setting.
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Table 8: Results on UTKFace with conditional DDIM. SO: simultaneously optimizing L(θ;Dr) −
αL(θ;Df ). Generated examples are shown in Fig. 23. EraseDiff achieves a better trade-off between
erasing the influence of Df and preserving model utility over Dr than SO.

Method FID over forgetting classes FID over remaining classes

c = 3 ↑ c = 0 ↓ c = 1 ↓ c = 2 ↓
Unscrubbed 8.87 7.37 11.28 9.72
SO (α=0.05) 216.35 14.09 15.73 15.62
SO (α=0.10) 417.90 22.00 24.34 22.60
EraseDiff (Ours) 330.33 8.08 13.52 12.37

Unscrubbed

SO (𝛼 = 0.05)

SO (𝛼 = 0.1)

Ours

Figure 23: Images generated with conditional DDIM when unlearning the Indian celebrities from
Tab. 8 (Top to Bottom: generated examples of the unscrubbed model, those of the model scrubbed
by SO (α = 0.05), those of the model scrubbed by SO (α = 0.10), and those by our scrubbed
model, respectively). Images in the red solid box are generated by conditioning on Cf , others are
generated by conditioning on Cr. SO (α = 0.05) cannot completely erase information about Cf and
SO (α = 0.10) has a significant drop in the quality of generated images.

CelebA_uncond_DDIM

Unscrubbed

Ours

SO (𝛼 = 0.2)

SO (𝛼 = 0.25)

Figure 24: Images generated by unconditional DDIM on CelebA, focusing on the removal of the
blond hair attribute. Images in the red solid box present the attribute of blond hair and those in the
yellow dashed box display distortions. The FID score of the unscrubbed model, that of ours, that of
SO (α = 0.2), and that of SO (α = 0.25) are 8.95, 10.70, 12.35, and 17.21 respectively.
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B DETAILED FORMULATION

Our formulation is

θ∗ := argmin
θ

F(θ), where F(θ) = L(Alg(θ,Df ),Dr) := F(θ,Dr) + λf̂(θ,Df ), (10)

We consider

h(θ, ϕ) := F (θ,Dr) + λf̂(θ, ϕ), (11)

where f̂(θ, ϕ) = f (ϕ,Df )− f (θ,Df ), then

Alg (θ, Df ) = ϕ∗(θ) = argminϕ h(θ, ϕ) = argmin
ϕ

f̂(θ, ϕ) = argmin
ϕ|θ

f (ϕ,Df ) , (12)

where ϕ | θ means ϕ is started from θ for its updates. Finally, we reach

min
θ

min
ϕ∈ϕ∗(θ)

h(θ, ϕ) = min
θ

min
ϕ∈Alg(θ,Df )

h(θ, ϕ). (13)

We can characterize the solution of our algorithm as follows:
Theorem 1 (Pareto optimality). The stationary point obtained by our algorithm is Pareto optimal.

Proof. Let θ∗ be the solution to our problem. Because given the current θs, in the inner loop, we
find ϕK

s to minimize f̂(ϕ,Df ) = f(θs,Df ) − f(ϕ,Df ). Assume that we can update in sufficient
number of steps K so that ϕK

s = ϕ∗(θs) = argminϕ|θs f̂(ϕ,Df ) = argminϕ|θs f(ϕ,Df ). Here
ϕ | θs means ϕ is started from θs for its updates.

The outer loop aims to minimize F(θ,Df )+λf̂(ϕ∗(θ),Dr) whose optimal solution is θ∗. Note that
f̂(ϕ∗(θ),Dr) ≥ 0 and it decreases to 0 for minimizing the above sum. Therefore, f̂(ϕ∗(θ∗),Dr) =

0. This further means that f̂(θ∗,Df ) = f̂(ϕ(θ∗),Df ), meaning that θ∗ is the current optimal
solution of f̂(ϕ,Df ) because we cannot update further the optimal solution. Moreover, we have θ∗

as the local minima of F (θ,Df ) because f̂ (ϕ∗ (θ∗) ,Df ) = 0 and we consider a sufficiently small
vicinity around θ∗.
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