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Figure 1: Overview of the Localization Framework. Our localization framework takes in posed-RGBD images and forms an object-based
map consisting of instances and their descriptors. Given a query RGB-D image, we identify the objects within it and identify correspondences
within our map using the ReID module (DATOR). The correspondences with the best fitness score are used to calculate the pose.

Abstract
Re-identification (ReID) is a critical challenge in computer vision,

predominantly studied in the context of pedestrians and vehicles.

However, robust object-instance ReID, which has significant im-

plications for tasks such as autonomous exploration, long-term

perception, and scene understanding, remains underexplored. In

this work, we address this gap by proposing a novel dual-path

object-instance re-identification transformer architecture that inte-

grates multimodal RGB and depth information. By leveraging depth

data, we demonstrate improvements in ReID across scenes that are

cluttered or have varying illumination conditions. Additionally, we

develop a ReID-based localization framework that enables accurate
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camera localization and pose identification across different view-

points. We validate our methods using two custom-built RGB-D

datasets, as well as multiple sequences from the open-source TUM

RGB-D datasets. Our approach demonstrates significant improve-

ments in both object instance ReID (mAP of 75.18) and localization

accuracy (success rate of 83% on TUM-RGBD), highlighting the

essential role of object ReID in advancing robotic perception. Our

models, frameworks, and datasets have been made publicly avail-

able.
a
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Figure 2: Overview. We propose a novel dual path transformer
architecture, DATOR, combining cues from both RGB and depth
modalities for effective object-instance ReID. Our localization frame-
work generates an instance based map and uses our ReID model in
conjunction with it to localize unseen views.
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1 Introduction
Objects in an environment can serve as important landmarks and

offer significant cues for spatial awareness and orientation. They

provide valuable information for understanding both an agent’s

general location and its precise orientation. However, the reliable

re-identification of objects — formally known as the object-instance

re-identification task — remains underexplored, particularly in the

context of robotics.

Object-instance re-identification (ReID), often referred to simply

as object ReID, is the task of reliably recognizing and matching

identical instances of an object across different perspectives and en-

vironmental conditions. For example, in a warehouse setting, object

ReID could be used to track the same piece of equipment across mul-

tiple camera views, even if the lighting or the equipment’s position

changes. While extensive research has been conducted on ReID for

specific categories such as people [43, 56, 58] and vehicles [3, 23, 63],

which often leverage domain-specific features like gait patterns or

vehicle parameters, the broader domain of object ReID presents

unique challenges. Objects vary widely in structure, appearance,

and type, lacking a common unifying feature. Foundational models

such as DINOv2 [30] and vision-language models like CLIP [36]

provide general classification into broad categories but fall short

in re-identifying specific instances within these categories. Their

ability to generalize to new scenes does not offer the fine-grained

recognition needed for precise object-based applications.

In robotics, the ability to accurately re-identify objects can be

widely utilized for various tasks. Global relocalization, in particular,

is a critical application where accurate object ReID can significantly

enhance performance. This task is especially challenging in envi-

ronments with repetitive scenes or numerous objects and rooms,

where both local and global registration difficulties are common.

Traditional global relocalization approaches often rely on aligning

entire point clouds [5, 9] or extensive collections of images [2, 59] to

maximize available information. However, a significant portion of

this information may be redundant or not informative for effective

localization.

To tackle these challenges, we introduce a Dual Path Attention

Transformer for Object Re-identification (DATOR), a deep object-

ReID model that leverages RGB and depth sensors commonly used

with mobile robots. DATOR employs a dual-path transformer archi-

tecture to significantly enhance its ReID capabilities across multiple

views. This architecture extracts and refines features from both

modalities, integrating them to produce a robust final embedding.

By effectively combining these modalities, DATOR ensures high

accuracy in object-ReID, maintaining performance across varying

illumination conditions and diverse environmental settings.

Building on the fine-grained ReID capabilities of DATOR, we

introduce an object-instance based global localization framework.

(Fig. 1, 2) This framework operates effectively in diverse indoor en-

vironments without requiring manual object annotation. Drawing

inspiration from human navigation in familiar environments, our

method constructs an instance-based map by mapping visible ob-

jects, aligning with principles similar to those discussed in [28, 57].

We catalog and encode objects using our ReID model, preserving

visual and structural information, while maintaining positional

data through point clouds of individual objects. For localization,

we process query RGB-D views to detect and match visible objects

with those in our object map, optimizing alignment for accurate

localization.

To validate our framework, we provide a real-world dataset from

a large, object-rich laboratory environment with multiple instances

per object class (e.g., tables, chairs), presenting a challenging ReID

scenario. Additionally, we provide a real as well a synthetic indoor

dataset with multiple objects of myriad classes for benchmarking

global localization. We also benchmark our approach against se-

quences from the TUM [42] RGB-D datasets.

In conclusion, we make the following contributions:

• A multimodal RGB-D object-instance ReID model (DATOR)

achieving an mAP of 75.18, higher than other SoTA models.

• An object-instance ReID-based global localization frame-

work, without manual annotation, for high accuracy in in-

door environments, successfully localising 83.01% of the time

on dense, publicly available datasets.

• A comprehensive object-instance ReID dataset with multiple

indoor object instances under varying lighting conditions.

• A real as well as a synthetic dataset for benchmarking global

localization in complex indoor environments.

2 Background
Re-Identification (ReID). ReID is a computer vision task that

focuses on the recognition and matching of specific objects or

https://doi.org/XXXXXXX.XXXXXXX
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individuals across varying contexts and multiple camera views,

distinguishing it from general recognition and classification tasks that
typically involve identifying or categorizing objects [55]. Extensive

research has been done in person [8, 21, 24, 38, 43, 56, 58] and

vehicle ReID [3, 23, 35, 61, 63] to achieve near human performance

on multiple datasets. Further, existing ReID methods also dive into

the RGB-D and crossmodal domains [21, 25, 27, 46] as well as ReID

for animals and buildings [1, 16, 53].

To the best of our knowledge, existing works that attempt to

tackle object-instance ReID either use only onemodality [28, 45, 57],

benchmark against person/vehicle ReID datasets rather than in-

door objects [20, 37, 62], focus on identifying evolving descriptions

dependent on nearby objects [17] or operate on LiDAR scans [34].

Foundational image models. Foundational models refer to a cat-

egory of models consisting of a very large number of parameters

trained on a large and diverse variety of datasets for a particular

task. Our framework uses three particular foundational models,

Recognise Anything (RAM) [60], Segment Anything (SAM) [19]

and Grounding DINO [26]. RAM is a captioning model that outputs

a list of captions describing objects present in an input image. SAM

is a general purpose segmentation model that can generate pre-

cise segmentation masks in challenging conditions given an image.

DINOv2 [30] is all-purpose vision model trained at scale, and its

variant Grounding DINO generates tight bounding boxes around

an object.

Localization. Localization is a well-studied problem in robotics

with diverse solutions, including one-step methods [7, 31] and

multi-step approaches [49]. Methods typically depend on scene

as well as object recognition [7, 12, 22, 32, 51]. There are also ap-

proaches tailored for outdoor environments, which often deal with

large-scale and diverse settings [15, 34], while indoor environments

require more precise methods [31, 54]. More novel approaches to

localization have begun using neural fields [4, 44].

In contrast to the above methods, ReID-based localization fo-

cuses on matching individual object instances, disregarding the

broader scene or surrounding objects. For example, [28] effectively

demonstrates the capabilities of vision-language models (VLMs)

like CLIP for object ReID, but struggles with scalability due to the

use of generalized embeddings and the need for manual dataset

annotation. On the other hand, [57] is better suited for large-scale

datasets but treats its environment as a collection of prior scans

rather than a unified map, and relies solely on depth data, limiting

its robustness in more complex scenarios.

3 Approach
3.1 Dual Path Transformer Architecture
Network Architecture:We propose a novel architecture for uti-

lizing information from both the RGB and depth modalities (Fig.

3). The network has an RGB pathway and a depth pathway, tak-

ing an RGB and a depth image as input respectively. Within the

network, information is exchanged between both the pathways,

and finally features from both the pathways are combined to give a

final embedding.

Specifically, the RGB and depth images are first input to their

respective backbone networks to extract features 𝑓 enc
depth

, 𝑓 enc
RGB

of

size (𝐻 ×𝑊 × 𝐸), where 𝐻,𝑊 represent the spatial dimensions

and 𝐸 is the hidden dimension of the model. We use a ViT pre-

trained on ImageNET [39] as the backbone for both the modalities.

Additionally, we augment the last 2 encoder layers of both backbone

ViTs with LoRA adapters [14].

These features (𝑓 enc
depth

, 𝑓 enc
RGB

) are further refined through specially

designed attention modules. We use deformable attention [52, 64]

for our attention modules, an attention scheme that has been shown

to address several limitations of using standard attention [47]. Un-

like in standard attention, where the final attention outputs are

produced by a weighted sum of the entire value feature map, in

deformable attention, each query feature selects a fixed number of

positions (𝐾 ) on the value feature map, and only those elements are

used to calculate attention scores. For further details on deformable

attention, we refer the reader to [64].

We linearly project RGB features 𝑓 enc
RGB

to compute queries 𝑞𝑅 ,

and values 𝑣𝑅 . Similarly, depth features 𝑓 enc
depth

are projected to obtain

queries 𝑞𝐷 and values 𝑣𝐷 . These query and value vectors are used

for all subsequent attention calculations.

The RGB and the depth pathways undergo the following trans-

formations:

𝑓R = 𝑓 enc
RGB
+ AttnR2R (𝑞𝑅, 𝑣𝑅) + AttnD2R (𝑞𝐷 , 𝑣𝑅)

𝑓D = 𝑓 enc
depth

+ AttnD2D (𝑞𝐷 , 𝑣𝐷 ) + AttnR2D (𝑞𝑅, 𝑣𝐷 )

where 𝑓R, 𝑓D are of size (𝐻×𝑊 ×𝐸). Finally, we perform a learned

weighted sum of features as

𝑓
combined

= 𝛼 ∗ 𝑓R + (1 − 𝛼) ∗ 𝑓D
with matrix 𝛼 of size (𝐻 ×𝑊 ) effectively encoding the importance

of each modality at each position on the feature map when making

the final prediction. 𝛼 is learnt by a CNN directly from the encoder

feature representations 𝑓 enc
RGB

and 𝑓 enc
depth

(see Fig. 3 – Weighing Net-

work). Finally, global average pooling is performed on this feature

map to obtain the final embedding, a vector of dimension 𝐸.

Loss Function: Similar to earlier works [13, 29], we use a cross

entropy loss and a triplet loss, and the final loss function is given

as L = LCE + Ltriplet
.

Modality Dropout: When training both the modalities, it is possi-

ble that one of the modality dominates the other. This may result in

collapse for one of the two pathways. To prevent this, we employ

modality dropout [41] during training, where for each training sam-

ple, we randomly zero-out features from one of the two modalities.

The dropout is represented as:

𝑓 enc
RGB

, 𝑓 enc
depth

=


𝑓 enc
RGB

, 0 with 𝑝RGB

0, 𝑓 enc
depth

with 𝑝
depth

𝑓 enc
RGB

, 𝑓 enc
depth

with 1 − 𝑝RGB − 𝑝depth

3.2 Localization Framework
Our localization framework (Fig. 1) aims to first build an object-

instance based map of the environment, encoding information from

each object it sees into separate reidentifiable units of information

using embeddings from our ReID model. Then, when given an RGB-

D image, it consults this map to find correspondences between

visible objects and objects in it’s memory. These correspondences

are used to determine the RGB-D image’s pose.
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Figure 3: Proposed model DATOR: The model can take paired RGB and depth images of an object, and utilize cues from both the modalities
to give an embedding which can be used for object ReID.

Memory formation. Given a sequence of 𝑛 posed RGB-D im-

ages, {(𝐼𝑖 , 𝐷𝑖 , 𝑡𝑖 )}𝑛𝑖=1, with 𝐼𝑖 , 𝐷𝑖 , and 𝑡𝑖 representing the RGB im-

age, depth image, and pose respectively, we build an object map

M = {O𝑖 }
𝑛objects

𝑖=1
, where each object O𝑖 is stored as a tuple of its

point cloud and embeddings (object info tuple). RAM [60] outputs

captions 𝑐𝑖 , Grounding DINO [26] generates bounding boxes𝑏𝑖 , and

SAM [19] produces segmentation masks𝑚𝑖 . Filtering removes cap-

tions that do not represent objects directly, like adjectives (“dark”,

“industrial”, “wooden”) or descriptions of the whole scene itself

(“living room”, “workspace”).

{𝑐1, . . . , 𝑐𝑝 } = Filtering(RAM(𝐼𝑖 ))
{𝑏1, . . . , 𝑏 𝑗 } = unique(GDINO(𝐼𝑖 , {𝑐1, . . . , 𝑐𝑝 }))

𝑚𝑘 = SAM(𝐼𝑖 , 𝑏𝑘 ) for 1 ≤ 𝑘 ≤ 𝑗

Using the RGB-D pair (𝐼𝑖 , 𝐷𝑖 ), camera matrices 𝐾 , world-frame

transformation𝑇𝑖 , and segmentation mask𝑚𝑘 , we backproject each

object and form its object info tuple:

Pglobal

𝑘
= 𝑓 (𝐼𝑖 , 𝐷𝑖 ,𝑚𝑘 , 𝐾,𝑇𝑖 ) for 1 ≤ 𝑘 ≤ 𝑗

𝑒𝑘 = ReID(𝐼𝑖 , 𝐷𝑖 , 𝑏𝑘 ) for 1 ≤ 𝑘 ≤ 𝑗

O𝑘 = (Pglobal

𝑘
, [𝑒𝑘 ]) for 1 ≤ 𝑘 ≤ 𝑗

We repeat this for all RGB-D pairs in the sequence, generating

the object memory from the object info tuples of detected objects

in each image.

Memory consolidation and post-processing. In many cases, ob-

jects in a scene may be represented by multiple object information

tuples after processing a sequence We can improve registration

accuracy during localization by grouping together object tuples

that belong to the same object to form more complete pointclouds

and more representative sets of embeddings. To address this, we

perform a postprocessing step that clusters object info tuples based

on semantic similarity and spatial proximity. When combining 𝑛

tuples, their point clouds are combined, and all associated sets

of embeddings are combined. We refer to this as grouping tuples

henceforth.

O𝑖 + O𝑗 := {P𝑖 ⊕ P𝑗 , [𝑒𝑖1 , . . . , 𝑒𝑖𝑚 , 𝑒 𝑗1 , . . . , 𝑒 𝑗𝑛 ]}

Algorithm 1 Object info tuple clustering

M ← {O1, . . . ,O𝑛}
𝜖IoU ← 0.25

𝜖𝐿2 ← 0.5

Let IoU ∈ R𝑛×𝑛

for all (O𝑖 ,O𝑗 ) inM ×M do
IoU[𝑖] [ 𝑗] = GetIoU(O𝑖 ,O𝑗 )

end for
{L1, . . . ,L𝑛} ← AggClustering(M, IoU, 𝜖IoU)
for 𝑘 in unique values in {L1, . . . ,L𝑛} do
O′
𝑘
← ∑𝑛

𝑖=1 O𝑖 if L𝑖 = 𝑘
end for
M ← {O′

1
, . . . ,O′𝑚}

Let PairwiseDist ∈ R𝑚×𝑚
for all (O′

𝑖
,O′

𝑗
) inM ×M do

PairwiseDist[𝑖] [ 𝑗] = GetL2Distance(O′
𝑖
,O′

𝑗
)

end for
{L′

1
, . . . ,L′𝑚} ← AggClustering(M, PairwiseDist, 𝜖𝐿2 )

for 𝑘 in unique values in {L′
1
, . . . ,L′𝑚} do

{𝑑1, . . . , 𝑑𝑎} ← DBSCAN({O′
𝑖
| L𝑖 = 𝑘})

for 𝑙 in unique values in {𝑑1, . . . , 𝑑𝑝 } do
O′′
𝑘,𝑙
← ∑𝑚

𝑖=0 O′𝑖 if L𝑖 = 𝑘,𝑑𝑖 = 𝑙
end for

end for
M ← {O′′

1,1
, . . . ,O′′

𝑚,𝑙
}

returnM

Clustering occurs in stages (Described in Algorithm 1) to prevent

errors from single-step grouping. Using just mean embedding-based



Towards Global Localization Using Multi-Modal Object-Instance Re-Identification AIR ’25, July 02–05, 2025, Jodhpur, India

clustering ignores positional data, potentially grouping distant ob-

jects together. To fix this, we apply DBSCAN [10] within each

semantic cluster, ensuring object-instances are grouped based on

both proximity in 3D space and embedding similarity. By perform-

ing clustering, each object has a more complete set of structural

information, leading to more accurate point-feature generation and

improved localization.

Localization.We begin by applying the RAM-Grounding DINO-

SAM pipeline used during memory formation. By doing so, we

obtain an object info tuple for each object.

Since all partial point clouds are backprojected from the same

RGB-D image, their relative positions remain unchanged after any

rigid transformation. Therefore, the rigid transform aligning de-

tected point clouds with those in object memory also localizes the

RGB-D image in the global frame. We then seek the most accu-

rate assignment between detected objects and those in memory

using ReID embeddings, comparing assignments based on the 𝐿2

norm between ReID embeddings of detected objects from those in

memory.

We score an assignment by the product of embedding distances

between correspondences and select the 𝑘 lowest scores to avoid

ICP failure from poor initialization. Using subsets of detected ob-

jects (containing at least 3 detections), we compute assignments

to efficiently determine localization. Each assignment provides a

transform that aligns detected objects with those in object memory.

We combine point clouds from detected and memory objects into

single detected and memory point clouds, respectively, and register

them using RANSAC [11] followed by colored ICP. We enhance this

process with custom features, including FPFH [40] and one-hot en-

coded object indices, to prioritize matching between corresponding

points. The quality of each pose is evaluated by the overlap between

transformed detected point clouds and memory point clouds, with

the best assignment being the one with the highest overlap.

Dataset Sequence
Count

Mean
seq.

length

No. of
classes

Mean in-
stances
per class

DATOR-lab 1 1703 19 10

DATOR-
synth

6 3766 9 5

TUM 5 1331 29 2-3

Table 1: Localization Dataset Metrics

3.3 Dataset Generation
We present DATOR-ReID, a new, real-world, object re-identification
dataset of RGB-D images designed to benchmark our object ReID

model. Captured with an Intel RealSense [18] camera, it includes

8 types of objects, such as chairs and tables, with upto 5 distinct

instances of each object type. We use approximately 60 images per

instance under varying environmental conditions.

We also present two of our datasets, DATOR-lab and DATOR-
synth, designed to evaluate our localization system. DATOR-lab
is a real-life localization dataset consisting collected on a P3DX

robot in a large indoor laboratory. The RGB-D images were col-

lected using an Intel RealSense camera and P3DX’s wheel odometry.

DATOR-synth, is a set of sequences generated using the ProcTHOR

[6] API in a multi-room environment with various items of furni-

ture. Both datasets feature a large variety of objects and multiple

instances of visually similar structures, resulting in a challenging

localization benchmark. We note that DATOR-lab and DATOR-ReID
were recorded in different locations. All of our data has been made

publicly available
b
.

Table 1 collates metrics about the variety and number of objects

in the each of the datasets we use in our localization experiments.

4 Experimental Setup
Our ReID module training as well as the localization pipeline re-

quires only 12 GB VRAM, allowing it to run on commercially avail-

able GPUs. Localization tests were conducted on an NVIDIA RTX

A4000 GPU and an AMD Ryzen 9 7950X 16-Core Processor.

Object ReID: DATOR was trained for 240 epochs, using SGD opti-

mizer and cosine LR scheduler, with an initial learning rate of 0.008.

A batch size of 64 was used for all the experiments.

Localization:We evaluate our localization pipeline on DATOR-lab,
6 DATOR-synth sequences, as well as 5 TUM RGB-D sequences,

(namely fr{_desk,_desk2,_room}, freiburg2_desk and

freiburg3 _long_office_household).
ForDATOR-synth, we create an object memory for each sequence

by sampling RGB-D pairs every 30 frames. Additional unseen RGB-

D pairs are sampled every 30 frames with a 15-frame offset. The only

information available during localization is the generated object

memory. Each frame is individually localized using the sequence’s

object memory. Sampling strategies for other datasets are detailed

in our released implementation.

We compare each RGB-D pair’s estimated pose with its corre-

sponding ground truth pose, measuring 3D translation error (TE) in

meters and rotation error (RE) in radians. An RGB-D pair is said to

be correctly localized, if the TE and RE are below certain thresholds

(see caption under table 2). We report the success rates for various

baselines along with our method for comparison.

The implementations and annotation tools used for [57] and [28]

are not available.We release a re-implementation of [28] but observe

suboptimal results using this approach (elaborated in section 5).

5 Results
Object ReID Results
We benchmark DATOR against some popular vehicle-ReID and

person-ReID baselines, the results are presented in table 3. We train

all the RGB-only baselines on the RGB images in the DATOR-ReID
dataset. To evaluate the effectiveness of each individual pathway

in DATOR, we also show RGB-only inference results, in which

the depth features are zeroed (similar to modality dropout) and

depth-only inference results, wherein the RGB features are zeroed.

Note that DATOR achieves competitive results even when using

only one of the modalities, while at the same time achieving much

better performance (last row in table 3) when both the modalities

are used. This shows that there is effective exchange of information

between both the pathways in the network.

Further, we show a qualitative result in Fig. 4 where DATOR

re-identifies the correct instance in a low-illumination setting while

b
https://github.com/instance-based-loc/instance-based-loc

https://github.com/instance-based-loc/instance-based-loc
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Dataset ReID Backbone Avg Errors (m, rad) Median Errors (m, rad) Success Rate (%)

TUM RGB-D

CLIP 1.83/0.9479 1.60/1.121 12.02

DINOv2 1.11/0.629 0.85/0.637 41.69

ViT-b 1.32/0.720 1.18/0.788 24.70

DATOR 0.50/0.252 0.29/0.028 83.01

DATOR-lab

CLIP 4.99/1.002 4.74/1.211 0.00

DINOv2 4.96/0.912 4.69/1.01 3.38

ViT-b 5.28/0.602 4.74/0.322 0.00

DATOR 2.25/0.373 1.43/0.024 41.18

DATOR-synth

CLIP 4.03/0.327 2.26/0.00176 33.33

DINOv2 3.66/0.192 3.09/0.00099 15.38

ViT-b 5.11/0.341 4.270.0017 12.82

DATOR 2.98 / 0.4552 0.93 / 0.0976 47.05
Table 2: Localization results across ReID techniques. Avg. and Median Errors have been represented as (Translation Error/Rotation Error)
in (m/rad) units. We consider a success as a pose prediction within 0.6m of translation error and 0.3 radians of rotation error. Our results show
that DATOR outperforms other models by a significant margin across multiple datasets. Best results are in bold and second-best in underlined
text.

Method mAP Score
CLIP-ReiD (CNN) [25] 54.1

TransReID [13] 55.7

LoGoViT [33] 60.2

CLIP-ReID (ViT) [25] 61.2

NFormer [48] 63.2

PADE [50] 66.0

DATOR (RGB Inference) 61.41

DATOR (Depth Inference) 64.11

DATOR (Full) 75.18
Table 3:ReIDmAPMetrics.WebenchmarkDATOR against several
ReIDmethods trained our DATOR-ReID dataset. We demonstrate the
effectiveness of using both modalities for object ReID. Best result is
in bold and second-best is underlined.

the existing best performing method, PADE [50], retrieves a similar

but incorrect instance.

Localization Results
Table 2 summarizes the effectiveness of each model in our local-

ization architecture. We include both mean and median errors to

illustrate the effect of high error misalignments as compared to

successful alignments, that are near perfect predictions of pose.

The large jump in success rate from other baselines to DATOR

points to more successful instance ReID leading to more accurate

registration. Our results demonstrate the challenging nature of our

datasets and the potential improvements left to future works. A

common trend observed across all models is the negative effect of

large, flat, texture-less walls that interfere with ICP matching. For

example, unlike the other TUM sequences, fr1_room dataset from

TUM has large, textureless, flat objects that result in low success

rates for all benchmarked methods.

In comparison, results shown in [28] are only for two TUM

sequences (fr2_desk, fr3_lo__household.) achieving close to only

80% while we achieve success rates of 88.5% and 100% respectively.

This is despite of us employing stricter margins and also considering

rotation error (See Fig. 4 in [28]).

Figure 4: Qualitative Analysis of DATOR. Given a query in a
low-illumination scene, DATOR reidentifies the robot instance suc-
cessfully, while PADE, identifies it as a different robot that is missing
an overhead attachment. This gain can be attributed to DATOR’s use
of depth information.

6 Conclusion
We introduce an object-based localization framework that general-

izes across diverse indoor environments without the need for man-

ual annotations, marking a significant step forward in autonomous

indoor navigation. Our approach demonstrates accurate and ro-

bust localization in both real-world and synthetic environments.

Additionally, our ReID architecture achieves a high mean Average

Precision (mAP) of 75.18 on a challenging dataset with varying

illumination, demonstrating its adaptability to real-world scenarios.

The embeddings generated by our model allow for more accurate

object-instance re-identification localization success rate of other

large-scale image encodingmodels, localizing successfully in 83.01%

of the cases averaged across multiple sequences of TUM-RGBD.

Moreover, we release a challenging, object-rich pair of real and

synthetic relocalization datasets, as well as an object ReID dataset

featuring varying illumination conditions.

Future work includes exploring expanding our framework to

effectively recognise significant non-object landmarks, function in

outdoor environments, enhancing its robustness to more extreme

variations in lighting and occlusions and integrating it into mobile

robotics pipelines.
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