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ABSTRACT

This paper centers around a novel concept proposed recently by researchers from
the control community where the training process of a deep neural network can
be considered a nonlinear dynamical system acting upon the high-dimensional
weight space. Koopman operator theory, a data-driven dynamical system analysis
framework, can then be deployed to discover the otherwise non-intuitive training
dynamics. Taking advantage of the predictive power of the Koopman operator
theory, the time-consuming Stochastic Gradient Descent (SGD) iterations can be
bypassed by directly predicting network weights a few epochs later. This novel
predictive training framework, however, often suffers from gradient explosion
especially for more extensive and complex models. In this paper, we incorporate
the idea of differential learning, where different parts of the network can undergo
different learning rates during training, into the predictive training framework and
propose the so-called “predictive differential training” (PDT) to sustain robust
performance for accelerated learning even for complex network structures. The
key contribution is the design of an effective masking strategy based on Koopman
analysis of training dynamics of each parameter in order to select the subset
of parameters that exhibits “good” prediction performance. PDT also includes
the design of an acceleration scheduler to keep track of the prediction error so
that the training process can roll back to the traditional GD-based approaches
to “correct” deviations from off-predictions. We demonstrate that PDT can be
seamlessly integrated as a plug-in with existing optimizers, including, for example,
SGD, momentum, and Adam. The experimental results have shown consistent
performance improvement in terms of faster convergence, lower training/testing
loss, and fewer number of epochs to achieve the best loss of Baseline.

1 INTRODUCTION

The advent of cutting-edge hardware (Li et al.,|2014) and the development of parallel processing
techniques (Li et al.| [2020) have greatly accelerated the training process of the Deep Neural Network
(DNN). However, enhancing the fundamental techniques of DNN training continues to be a significant
challenge. From the inception of SGD (Robbins & Monro} [1951)), which has since become a mainstay
in DNN training, numerous techniques have been proposed to increase the efficiency of the underlying
optimization task, including, for example, learning rate annealing and momentum (Sutskever et al.,
2013), RMSprop (Tieleman & Hinton, 2012), and Adam (Kingma & Ba,|2014)). In addition to these
first-order optimizers, second-order alternatives (Martens},[2010) utilizing curvature information or
second-order derivatives of the loss function have been explored to potentially enable more efficient
convergence.

Notably, the Adam optimizer (Kingma & Ba, |2014) has been a significant advancement and belongs
to the family of differential learning, where different parts of the network can exhibit different
learning rates during training. The different parts can be, for example, layer-specific (Devlin et al.,
2019} He et al.,[2019a)) or parameter-specific (Tieleman & Hinton, [2012} |[Kingma & Bal|2014; Duchi
et al.,[2011a). This is particularly useful in large-scale models where different layers or parameters
might require different levels of adjustment during training.

Very recently, a novel interpretation of the DNN training process has been proposed, mainly by
researchers from the control community (Redman et al.,|2022} |Dogra & Redman, 2020; Manojlovic
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et al. |2020; Tano et al) 2020) — If it is intuitive to consider a pre-trained DNN as an inherently
nonlinear static system acting upon the high-dimensional inputs, then the DNN “training process”
itself is a “nonlinear” dynamical system acting upon the high-dimensional “weight space”! It
is a discrete dynamical system since the weights of a DNN evolve over each iteration (or epoch)
according to the optimization process adopted. This drastically different interpretation has led
to the establishment of a novel mathematical framework for learning. Koopman operator theory
(Mezic| [2005)), a powerful data-driven dynamical system analysis tool, is often adopted to exploit the
underlying dynamics in the seemingly non-intuitive training process of a DNN. Taking advantage of
the predictive power of the Koopman operator theory, the time-consuming SGD iterations can be
bypassed by directly predicting network weights a few epochs later (Dogral [2020; |Dogra & Redman,
2020; Tano et al., 2020). We refer to these approaches as predictive training.

However, practical challenges quickly emerge. The absence of actual gradient descent means that
convergence cannot be guaranteed, and the framework is sensitive to disturbances in the weight
space, leading to error accumulation across iterations. As the network scales, the Koopman-based
prediction training framework becomes increasingly ineffective. This issue is mostly due to the lack
of adaptive mechanisms when applying prediction-based acceleration. That is, existing predictive
training approaches tend to apply the predicted weights to all parameters without considering the
different dynamics they might exhibit during the training process. This often leads to gradient
explosion, especially for more extensive and complex models.

Projection of High-Dimensional Loss Landscape onto 2D Space
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Figure 1: Comparison of training trajectories and loss landscapes between Adam and the proposed
PDT. (AlexNet is trained on CIFAR-10)

In this paper, we propose predictive differential training (PDT) where acceleration by prediction is
applied to only the parameters where we have the high confidence on prediction performance. This
selective acceleration is conceptually similar to various adaptive learning rate methods. For instance,
Adagrad (Duchi et al., 201 1b)) targets acceleration at rare features, momentum (Rumelhart et al.,
1980) prioritizes weights with the largest recent velocity, and the popular Adam optimizer (Kingma &
Bal 2014) employs a combined strategy. Figure[T]illustrates the compelling effectiveness of PDT over
Adam through a visual comparison of the training trajectory and loss landscape. The contribution of
the proposed PDT is three-fold:

* We design an effective masking strategy based on Koopman analysis of training dynamics
of each parameter and select the subset of parameters that exhibits “good” prediction
performance.

* We design a scheduler to keep track of the prediction error so that the training process can
roll back to the traditional GD-based approaches to “correct” deviations from off-predictions.

* We demonstrate that PDT can be seamlessly integrated as a plug-in with existing optimizers,
including, for example, SGD, momentum, and Adam.

2 BACKGROUND AND RELATED WORK

The key notion of Koopman analysis is the representation of a (possibly nonlinear) dynamical system
as a linear operator on a typically infinite-dimensional space of functions (Mezi¢,[2021;2005; Mezi¢ &
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Banaszukl, |2004). Koopman-based approaches directly contrast with standard linearization techniques
that consider the dynamics in a close neighborhood of some nominal solution. Indeed, Koopman
analysis can yield linear operators that accurately capture fundamentally nonlinear dynamics.

Koopman Operator Theory. As a brief description, consider a discrete-time dynamical system
Xi+1 = T(x;), where x; € R™ is the current state and x;1 is the next state after application of
the potentially nonlinear mapping 7'. Consider also a vector-valued observable g(x) € R™. The
evolution of observables under this mapping can be described according to

g(xit1) = 8(T'(x:)) = Kg(xi). M

where /C operates on the vector space of observables and maps g(x;) to g(x;41). K is referred to as
the “Koopman operator” that is associated with the fully nonlinear dynamical system.

The Koopman operator is linear, following from linearity of the composition operator, but also infinite-
dimensional. As such, for dynamical systems with a pure point spectrum for observables (Mezic,
2020), its action can be decomposed according to

g(xit1) = Kg(xi) = Y A (o) ek, 2
K=1

where )\, is an eigenvalue associated with the eigenfunction ¢ (x) evaluated at the initial condition
¢r(X0) and cy, is the reconstruction coefficient (also referred to as the “Koopman mode™) associated
with projecting g onto the eigenspace. It immediately follows that

g(xitr) = Y Npok(xi)ck 3
k=1

for any 7 € N. Eq. [3| provides a convenient and general framework to “predict and control” a
given dynamical system. Each Koopman mode evolves over time with its frequency and decay rate
governed by the imaginary and real components, respectively.

Koopman-based techniques are particularly useful in a data-driven setting because they only require
measurements of observables. As such, they can be implemented even when the underlying model
dynamics are unknown.

Dynamic Mode Decomposition (DMD). When using Koopman-based approaches, it is critical to
identify a suitable finite basis for representing the infinite-dimensional Koopman operator. Dynamic
Mode Decomposition (DMD) (Schmid, |2010) is one standard approach for inferring Koopman-based
models. It uses least-squares fitting techniques to approximate a finite-dimensional linear matrix
operator, A, that advances high-dimensional measurements of a system forward in time:

g(xi+1) ~ Ag(Xi,) @

where A is an approximation of the Koopman operator, K in Eq. [T| restricted to a measurement
subspace spanned by direct measurements of the state x. Since the weight space of a neural network
is a fully observable system, we define g(x) to be the identity function in this work. That is,
w; = g(x;). In practice, we often use “snapshots” of the system arranged into two data matrices, W;
and W;,, where columns of these two matrices indicate measurements (i.e., network weights) taken
at a certain time, and W;; is W; shifted by one time step. Hence,

Wit = AW, (5)

and A can be solved by
A=W, W =W, v tuT (6)

where W; = USV 7T is the Singular Value Decomposition (SVD), and VVZ-T denotes the pseudo-inverse
of W;. A comprehensive discussion of DMD and its related variants has been provided in (Kutz et al.|
2016)).

DNN Training as a Dynamical System. There have been a few works in recent years that adopt
Koopman-based approaches to accelerate the training process of a general-purpose DNN model
(Dogra & Redman), 2020; Tano et al., 20205 [Manojlovic et al., [2020). (Dietrich et al., [2020) is
generally considered the first work that establishes the connection between Koopman operator theory
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and acceleration of numerical computation. (Dogra, |2020) is also one of the pioneer works but with a
focus specifically on neural networks for solving differential equations. Generally speaking, these
works take advantage of the prediction capability of the Koopman operator theory framework, as
shown in Eq. 3] to directly predict network weights a few epochs later, thus bypassing the time-
consuming SGD iterations. However, we show in Fig. [2] that these methods tend to fail for larger
network structures as the prediction horizon for Koopman-based approaches decreases and as network
size increases.
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Figure 2: Performance comparison on CIFAR-10 using fully connected (FC) networks with varying
depths, between SGD, PDT, and Koopman-based predictive training where the predicted weights are
applied to all parameters without checking the prediction quality (Tano et al., 2020). Batch size=256,
Ir=0.01. (a) 2-layer FC network. (b) 4-layer FC network. (c) 6-layer FC network. In our setup, for
every three epochs of SGD, predictions are performed for the next five steps. Subsequently, training
reverts to SGD to potentially rectify minor errors introduced by the predictions.

The proposed PDT, largely due to its adaptive attention to different training dynamics from different
parameters, is able sustain network growth. The efficiency of PDT has been validated on several
benchmark models (e.g., AlexNet, ResNet, and ViT) and datasets (e.g., CIFAR-10 and ImageNet).

3 METHODS

In this section, we elaborate on the proposed Koopman-based predictive differential training (PDT)
framework. We first describe the rationale of the proposed masking strategy that identifies the subset
of weights with “good” predictions. This is followed by a discussion of the acceleration schedule.

3.1 CONSTRUCTING THE MASK

We can apply Eq. [7]to predict future measurements of w over 7 epochs.
Witr = ATWZ' (7)

where A can be calculated from Eq.[6] The challenge, however, is how to determine if this prediction
is “good” or “bad”.

In fact, the correlation between quality of prediction and training dynamics has been heavily studied.
From neuroscience perspective, the quality of predictions made by neurons is intricately linked to
their learning dynamics (Schultz et al., [1997; [Friston), 2010). Accurate predictions lead to more stable
and efficient learning, while poor predictions drive stronger synaptic adjustments to improve future
performance.

We design a masking strategy that is based on the following two principles.

* The quantity criterion: The absolute weight change between the predicted weight and
the current weight should be larger than the absolute weight change from the one-step
optimization (e.g., using SGD) to enable accelerated learning.

* The direction criterion: The direction of weight change from prediction should be consistent
with that from optimization. That is, if the optimization procedure would result in a
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weight decay or weight increase, then the predicted weight should correspondingly decay or
increase.

Based on these two principles, a mask, m can be constructed with its element equals to 1 if both
Eqs.[8]and [9] are satisfied; otherwise the corresponding element is zero,

pred pred

Wiy, — | > [wih, — wiP||, the quantity criterion 8)
(wffi — ngzil) (Wit —w™) >0,k ={1,---,7}, the direction criterion )

Note that Eq. [)is a rigid criterion to enforce not only the final predicted weight changes along the
same direction as the one-step optimization outcome, but that each intermediate predicted weight all
change in the same direction.
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Figure 3: Comparison of the standard SGD-based optimization and the proposed PDT framework in
accelerating training.

3.2 ACCELERATION SCHEDULE

The acceleration schedule concerns the problem of “when” to enable prediction. As illustrated in
Fig. 3] the “prediction” block is strategically placed among the regular SGD optimization blocks,
acting as a plug-in enhancement within the existing optimization framework. The placement of
the “prediction” block is solely determined by the masking strategy designed in Sec. If no
element in the mask is qualified as “good” prediction, then standard SGD-based optimization takes
place; otherwise, qualified predicted weights will be incorporated to accelerate learning. This
approach is analogous to the “one-step-ahead” strategy employed by NAG (Nesterov, |1983)), where
the subsequent step of standard optimization acts to correct any small errors that may arise from the
Koopman prediction.

Let us use a toy example to demonstrate the effect of accelerating the learning of a subset of variables
to further motivate the concept of differential learning. Consider the function,

f(z,y, z,u,v,w) = 2% + y* + sin(z) + u? — cos(v) + w? + xy + ysin(z) + wvw,

which involves six variables: x, vy, z, u, v, w. To find the minimum of this function, we employ a sim-
ple gradient descent optimization process. Starting from the initial point [2.0, 2.0, 1.0, 0.5, —0.5, 1.5]
with a learning rate of 0.01, it takes 67 steps to converge to a minimum.

We then explore an alternative optimization strategy where the variables x, y, z undergo an opti-
mization process that is three times faster than the standard process, while u, v, w are optimized at
the normal rate but employing the updated values of x, ¥, z. See Fig.[T10]in Appendix for the
acceleration trajectory, where the trajectory maintains the same direction for z and y but achieves
convergence in just 27 steps.

This example shows that by strategically identifying a subset of variables and simply increasing their
learning rate, the training can be accelerated by about 60%.

Figure [] further illustrates how qualified predicted weights and standard SGD-derived weights are
mixed together to achieve accelerated learning as showcased in the toy example.



Under review as a conference paper at ICLR 2025

° Optimization

Combined Updates

MASK >——|~
Next 7 Step Prediction

——)

Figure 4: Ilustration of one PDT-based optimization step.

3.3 COMPUTATIONAL COMPLEXITY ANALYSIS

To facilitate our discussion, we consider a DNN with N parameters. The computational load for
processing each batch is directly proportional to both the batch size (B) and the number of parameters
(IV), resulting in a complexity of O(B x N) per batch. When extended to the entire dataset with .S
samples across one epoch, the complexity scales to O(S x N).

Integrating Koopman operator predictions into the DNN training process entails constructing a data
matrix from h past epochs of the parameter trajectories, with the matrix dimensions being N x h.
The primary computational burden arises from performing SVD on this matrix with a complexity
of O(N x h?). Given that N significantly exceeds h — with h usually being a small number like 5
to 10, and N potentially reaching the millions or even billions—the quadratic impact of h remains
manageable relative to V.

Since Koopman predictions are integrated at much less frequent intervals than standard batch process-
ing—potentially at epoch-level intervals—this approach can lead to significant computational savings
and efficiency enhancements in the training of large-scale neural networks. A detailed analysis of
computational efficiency with experimental results is provided in Sec.[A.4]

4 EXPERIMENTS

We conduct four sets of experiments to evaluate the effectiveness of the proposed PDT framework in
accelerating learning. The first set of experiments implements PDT across a variety of popular neural
network architectures using a range of popular optimizers and evaluate the savings in run-time. The
second set investigates the effectiveness of the proposed masking strategy. The third set evaluates the
proposed masking strategy against other potential metrics for prediction quality, like validation loss.
The final set of experiments studies the effect of some important hyperparameters.

4.1 GENERALIZATION STUDY OF PDT

We implement the proposed Koopman-based PDT process across a variety of popular neural network
architectures, including Fully-Convolutional-Network (FCN), AlexNet, ResNet, and ViT-Base. We
also use a range of optimizers, including the SGD, SGD with momentum, and Adam.

In all experiments, we use the past five epochs to form the snapshot with a one-epoch interval to
predict weights in the next five steps. Prediction is initiated starting from the 5th epoch. As elaborated
in Sec. 3] the computational load of the Koopman-related calculations is comparable to that of
batch-level updates. However, since we apply these calculations at the epoch level, the overhead
introduced by the DMD is effectively compensated by the acceleration in loss reduction. We observe
from both Table [I|and Fig. [5that the proposed PDT consistently achieves the best training loss of the
Baseline in fewer number of epochs without sacrificing performance. All experiments were repeated
with five random seeds (0, 100, 200, 300, 400) to ensure reliability.

The last column in Fig. |§] illustrates a so-called “masked ratio curve” unique to PDT, where it tracks
the percentage of predictions accepted according to the masking strategy described in Sec.[3.1] We



Under review as a conference paper at ICLR 2025

observe that the masked ratio always starts with higher values in the early stage of the training
process, then generally decreases as training progresses. More interestingly, we observe that smaller
networks on simpler tasks (FCN/AlexNet on CIFAR-10) show a relatively more gradual reduction in
the masked ratio, while larger networks on more complex tasks (ResNet-50/ViT on ImageNet) exhibit
a much sharper reduction of masked ratio, especially at the early stage of the training process. This
pattern implies that for larger networks on larger datasets, the training dynamics is more complex and
challenging to predict at the initial training stage, resulting in a rapid reduction of the percentage of
weights that can be convincingly predicted (according to the proposed masking strategy). The training
process of a deep network with millions to billions of parameters indeed presents an intriguing
dynamical system that the control community has not faced before. This would stimulate further
investigation into the development of better data-driven dynamical system analysis algorithms in
addition to DMD.

6
16 — SGD — SGD 0.8 — SGD 0.35 PDT
14 PDT PDT PDT PDT
- 5 0.7 0.30 POT
12
206 Qo025
210 04 3 I =
S 35 30514 = 0.20
=08 =3 S | 3
£ z < o4 % 0.15
=06 5] 7 ]
04 2 o3 =010
0.2 0.05
0.2 1
0.0 i 0.1 0.00
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Epoch

Epoch

Epoch

Epoch

(a) Trained on CIFAR-10 using FCN, batch size=256, Ir=0.01, with CosineAnnealingL.R scheduler.

\ — s6p — sGp 0.8 PDT
20 \ PDT 25 PDT 07 A 020
>06 =]
a1s{ \ 0 20 \n 8 b
S s 505 2
10 B s A= | L4 Lo10
e Q@ L a2 12 v
= = ] [ ©
A 203 | =
05 10 ﬁ'/\] 02 0.05
— sGD
J
0.0 05 01 PDT 0.00
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

Epoch

Epoch

Epoch

Epoch

(b) Trained on CIFAR-10 using AlexNet, batch size=256, 1r=0.05, with CosineAnnealingLLR scheduler.

7 8
—— SGD with Momentum —— SGD with Momentum 0.7 P 035 PDT
6 PDT 7 PDT — 030
0.6 oy :
6 airs V'V'ﬂ
> " o
05 9 So2s
93 05 8 " 3
S S 204 <020
ca o4 g 4 °
® ] 0.3 % 0.15
= s 7 o
3 ., [P = 010
2 f
2 1 T 0.1 —— SGD with Momentum 0.05
o 0.0 L 0.00
0 100 200 300 [ 100 200 300 0 100 200 300 0 100 200 300
Epoch Epoch Epoch Epoch

(c) Trained on ImageNet-1K using ResNet-50, batch size=600, 1r=0.1, momentum=0.9, with CosineAn-
nealingL.R scheduler.

Train Loss
N oW s o»

-

—— Adamw
PDT

Test Loss
N oW s u oo
—

—— AdamW
PDT

T .

Masked Ratio

0 200 400 60!

0
Epoch

Epoch

Epoch

200
Epoch

400

(d) Trained on ImageNet-1K using ViT-Base, batch size=600, Ir=0.003, momentum=0.9, with CosineAn-

nealingl.R scheduler.

Figure 5: Performance comparison between baseline optimization and PDT. Note that all the experi-
ments are repeated with 5 different random seeds.
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Table 1: Runtime comparison. FCN and AlexNet are trained on a single Nvidia RTX A6000 GPU,
while ResNet-50 and ViT-Base are trained on three Nvidia H100 (80 GB) GPUs. Using the same
experimental setup and hyperparameter configurations as in Fig.

M Time to Baseline Best Loss (s) Runtime per Epoch (s) Runtime
odel Reducti %
Baseline PDT Baseline PDT eduction (%)
FCN 2145.36 1294.74 21.45 27.86 39.65
AlexNet 675.04 424.39 11.17 12.14 37.13
ResNet-50 110063.72 88752.33 379.53 422.63 19.36
ViT-Base  259241.21 232810.62 432.79 541.42 10.20

4.2 MASKING STRATEGY

In this experiment, we study the effectiveness of the proposed masking strategy by comparing it with
two other strategies, 1) randomly selecting a subset of weights and increase its learning rates, and 2)
randomly selecting a subset of predicted weights.

Comparison with Randomly Selected Acceleration Subsetw. We conduct an experiment to
compare PDT against the strategy of randomly selecting subsets of weights and increasing their
learning rates. Figure|6illustrates each trial’s outcomes, with regions highlighted in green showing
results from different runs where subsets of weights had their learning rates increased to match the
step number used in the predictions. The selection ratio used here matches the average masking ratio
applied during PDT. The results clearly indicate that randomly accelerating weights cannot match the
performance improvements seen with PDT. Moreover, random selection often leads to significant
instability during training.
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Figure 6: Comparison between PDT and randomly selected subsets with higher learning rates (with
the same mask ratio). Trained on CIFAR-10 using AlexNet, batch size=256, Ir = 0.05.

Comparison with Randomly Selecting Predicted Weights. We perform a series of runs where
subsets of Koopman predicted weights are randomly selected and applied to a large network. The
regions highlighted in green in Fig. [/| show the outcomes of these trials. Quite frequently, these
runs result in gradient explosions, leading to non-recoverable errors (NaN values) in subsequent
epochs. This experiment underscores the importance of a thoughtful masking strategy in Koopman
Training. Random masking, without considering the training dynamics can lead to severe divergence
and training failure. Our findings highlight that strategic selection based on “good” predictions is
crucial to the success of PDT.

4.3 ACCELERATION SCHEDULE BASE ON VALIDATION LOSS?

Although DMD can make long-term predictions, mismatches with the true evolutionary path of the
network weights can occur at any future step, potentially leading to suboptimal training outcomes.
According to (Tano et al.,|2020), validation loss can be utilized as a criterion to determine optimal
points for switching between DMD and SGD during training. Inspired by this strategy, we implement
a reference scheduling scheme that switches between prediction and SGD based on the validation
loss trend: apply prediction when validation loss decreases and switch back to SGD updates when



Under review as a conference paper at ICLR 2025

0.6

— SGD

\/\V\

\\\“\f\\/\/ i /ﬂJVf,
— SGD . - //

Prediction
Random Mask Prediction

o
IS

Prediction
Random Mask Prediction \/\ﬁ

Accuracy
°
&

Test Loss
o
o

Train Loss

=3
-

— SGD
Prediction
Random Mask Prediction

o
=)

20 30 0 10 20

Epoch

0 10 20 30

Epoch

30 0 10

Epoch

Figure 7: PDT vs. random mask prediction (with the same mask ratio). Trained on CIFAR-10 using
AlexNet, batch size=256, Ir = 0.01.

validation loss starts to increase. Figure [§]illustrates the training dynamics under this strategy.
Initially, DMD is engaged due to its slight advantage in reducing validation loss. However, as
training progresses, a significant surge in loss is observed, suggesting a misalignment between the
DMD-predicted weights and the optimal trajectory for the network. Even after reverting to SGD, the
model failed to recover its performance, indicating that relying solely on validation loss as a trigger
for switching between PDT and SGD might be inadequate.

This experiment highlights the complexity of training dynamics and the challenges in using PDT
effectively within a traditional training framework. It suggests that while validation loss can serve as
an initial indicator for employing advanced predictive methods like DMD, it may not be sufficient on
its own to guarantee stable and effective training convergence.
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Figure 8: Performance comparison on CIFAR-10 using AlexNet: SGD vs. Koopman-based prediction
(switching between prediction and SGD based on validation loss). (a) Train loss. (b) Validation loss.

4.4 EFFECT OF HYPERPARAMETERS

Several primary hyperparameters require careful consideration in our model:

Prediction Steps (7): Derived from DMD, the number of prediction steps significantly influences
the training speed. As shown in Fig.[9(a), training accelerates within a certain range of prediction
steps. However, extending beyond a critical threshold, such as nine steps in our study, can introduce
large errors and potentially cause gradient explosion.

Prediction Interval (Ti): The interval between Prediction blocks impacts the effectiveness of
acceleration, as depicted in Fig.[0[(b). A shorter interval can enhance training speed if the predictions
are accurate. Nevertheless, the quality of predictions may decline as the training progresses, rendering
the network more sensitive to errors, particularly as it nears convergence.

Starting Epoch (T0): The starting epoch for acceleration must be greater than or equal to the number
of epochs used to build the snapshot, as illustrated in Figure [9(c). The initiation of acceleration is
influenced by factors such as initialization, learning rate, and model architecture.

Past Snapshot Counts (h): Figure [9(d) indicates that the number of epochs needed to construct
the snapshot matrix for prediction also influences the train loss. This value cannot be too small or
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too large. If it is too small, the snapshot will not have sufficient measurements to precisely estimate
the dynamics of the training process. On the other hand, if the number of epochs is too large for
constructing the snapshot, then DMD would have missed the local dynamics with only a coarser
grasp of the general training dynamics.

In addition, a comprehensive study of PDT’s performance under different training configurations can
be found in Sec.[A.3] demonstrating robust performance across various training hyperparameters.
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Figure 9: The influence of different parameters. (a) prediction steps, (b) prediction interval, (c)
starting epoch, (d) past snapshot counts. Trained on CIFAR-10 using AlexNet, batch size=256.

5 DISCUSSION AND CONCLUSION

This paper proposed a novel predictive differential training (PDT) framework based on the study of
training dynamics, where we consider the training process as a dynamical system acting upon the
weight space. PDT presents stable performance in accelerating training even for complex network
structures due to its selective incorporation of predicted weights.

Future Work and Challenges. Despite these advancements, considerable work remains. First,
further studies into different predictive methods beyond DMD is necessary. Innovative approaches,
such as streaming DMD (Hemati et al., 2014; |[Liew et al., [2022), can not only reduce the memory
footprint of constructing trajectory matrices, but also improve computational efficiency.

Second, investigating the impact of PDT on the properties of the learned function, such as loss surface
sharpness or smoothness, is highly valuable (Humayun et al., [2024; [Foret et al., 2020). These metrics
provide a deeper understanding of the model’s robustness and generalization capabilities. Based on
the current experimental results, we hypothesize that the selective application of predictions may
help avoid sharp local minima by allowing more exploration in the weight space. In future work, we
intend to incorporate these measures into our analysis to provide a more comprehensive evaluation of
PDT, and further explore how these properties influence the efficacy of PDT.

Third, we observe from the masked ratio vs. epoch curves in Fig. 5] that as training prolongs and as
training loss converges to a stable value, we should expect the training dynamics to be less complex or
easier to predict, which should have resulted in a higher masked ratio. However, in reality, except for
the ResNet-50 on ImageNet-1K curve where a small bouncing back on the masked ratio is observed
toward the end of the training process, all the rest scenarios exhibit a stable masked ratio, much lower
as compared to that at the beginning of the training process. In addition, we would have expected the
epoch number, where the masked ratio starts turning flat, to be consistent with that when the training
loss enters a plateau, but this is only observed in the complex network scenarios Fig.[5|c) and (d), but
not the simple network cases Fig.[5(a) and (b). This seems to indicate that the masked ratio curves
can have the potential of indicating when the network overfits, that when the marked ratio starts to
drastically decrease again after the initial reduction. This would serve as a potential indicator for
early stopping conditions. Although this is out of the scope of the current paper, the potential impact
warrants further investigation.
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A APPENDIX

A.1 CONVERGENCE PATH OF THE TOY EXAMPLE

Trajectory of (x, y) on Function Heatmap

3
—e— Normal Trajectory 306
—e— Accelerated Trajectory

27.0

234

Accelerated converged at step 27 1983

A 16.2 -2

ction Valu

Y
Normal converged at step 67 H

12.6

9.0

Figure 10: The differential learning trajectory of the toy example provided in Sec. Only the x
and y dimensions are shown.

A.2 ALGORITHM DESCRIPTIONS

Algorithm 1 PDT algorithm

Require: baseline optimizer Oy, e, past snapshots counts A, start epoch for prediction T, predicted
steps 7, prediction interval T}
Ensure: Trained model parameters w
1: Initialize weight history matrix Wy «, counter ¢, = 0
2: for epocht = 0to T do
3. ift > Tyand c. > T; then

4: Obtain W, (t — 1) from Wy,
5: Train model for one epoch using Oy, save weights after training as wop (t)
6: Calculate DMD from W p«p,
7: Predict future weights from w,cq(t) t0 Wppeq(t + 7 — 1)
8: Create mask M based on Wy (t — 1), Wopt (1), Wpred(t) ... Wppea(t +7 —1) (Eq.and
9: Assemble new weights w(t) using mask M to combine W, (t) and wy,.eq(t)
10: Update model parameters with updated w(t)
11: ce +— 0
12:  else
13: Train model M normally for one epoch using Opgse
14: Ce —Ce+ 1
15:  end if
16:  Update weight history matrix W nxp,
17: end for

A.3 EFFECT OF TRAINING HYPERPARAMETERS

To thoroughly evaluate the effectiveness and robustness of PDT under different training configurations,
we conduct comprehensive experiments across different learning rates from 0.001 to 0.1 (0.001, 0.01,
0.05, 0.1) and batch sizes from 32 to 512 (32, 64, 128, 256, 512). All experiments were repeated
with five random seeds (0, 100, 200, 300, 400) to ensure statistical significance. All experiments are
performed on AlexNet with the CIFAR-10 dataset, using SGD as the baseline optimizer and trained
for 60 epochs. The PDT-related hyperparameters mentioned in Sec. 4.4 were set to prediction step=5,
prediction interval=1, start epoch=>5, and past snapshot counts=5.
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Table 2: Impact of learning rates and batch sizes on PDT performance. Trained on CIFAR-10 using
AlexNet. Note: bold numbers indicate the best performance and underlined numbers indicate the
second best performance for each column.

Batch | Method Final Accuracy Best Train Loss ~ Time to Baseline Best Runtime
Size T ctho (mean = std) (mean =+ std) Loss (s) (mean + std)  Reduction (%)
0.001 SGD 0.6981 £ 0.0458 0.6376 + 0.0127 1232.29 £ 4.45 40.64
’ PDT 0.6903 £ 0.0885 0.2724 4+ 0.0166 731.52 £ 12.84 ’
001 SGD 0.8118 £ 0.0041  0.0046 £ 0.0008 1194.89 £ 21.09 2425
32 ) PDT 0.8146 + 0.0048 0.0021 + 0.0012 905.07 £ 120.51 )
0.05 SGD 0.8049 £ 0.0053  0.0156 £ 0.0029 1180.72 £ 12.31 64.57
) PDT 0.8020 £ 0.0052  0.0149 + 0.0073 418.38 £ 0.00 :
01 SGD 0.1000 £ 0.0000  0.3346 £ 0.0098 1172.49 £ 39.08 )
' PDT 0.1000 £ 0.0000  0.3364 + 0.0132 -
0.001 SGD 0.5384 £ 0.0173  1.2295 + 0.0261 902.16 £ 19.68 3582
’ PDT 0.5329 £ 0.1152  0.8798 + 0.0257 578.99 £ 55.74 ’
0.01 SGD 0.7850 £ 0.0226  0.0087 £ 0.0030 800.35 + 5.39 2332
64 ' PDT 0.8140 + 0.0021  0.0015 4+ 0.0010 613.70 + 8.80 ’
0.05 SGD 0.8067 £ 0.0035 0.0051 £+ 0.0016 798.20 £ 3.50 27 54
' PDT 0.8029 £ 0.0029  0.0045 % 0.0006 578.36 £+ 16.48 ’
0.1 SGD 0.6442 £ 0.2733  0.0484 £+ 0.0522 910.37 £ 18.03 5623
’ PDT 0.7976 £ 0.0033  0.0218 4 0.0011 398.48 + 21.34 D
0.001 SGD 0.2882 £ 0.0212  1.8456 + 0.0300 812.42 +21.20 17.48
’ PDT 0.2951 £ 0.0440  1.6972 £+ 0.0272 670.37 £23.93 ’
0.01 SGD 0.7825 £ 0.0065  0.0675 % 0.0052 661.09 £ 6.35 14.68
128 ' PDT 0.8009 £ 0.0062  0.0058 % 0.0008 564.02 £+ 16.35 ’
0.05 SGD 0.7969 £ 0.0093  0.0039 £ 0.0017 662.48 £ 7.73 915
' PDT 0.8011 £ 0.0067  0.0016 £ 0.0017 601.86 £ 17.78 ’
0.1 SGD 0.7916 £ 0.0027  0.0083 + 0.0014 803.93 &+ 3.07 8.20
’ PDT 0.7863 £ 0.0087  0.0096 £+ 0.0016 737.97 £ 0.00 ’
0.001 SGD 0.1171 £0.0092  2.2991 + 0.0011 747.83 £ 20.30 708
’ PDT 0.1453 £ 0.0213  2.2979 £ 0.0026 694.91 + 14.63 ’
0.01 SGD 0.6989 £ 0.0301  0.5814 + 0.0147 660.37 £ 0.71 19.98
256 ' PDT 0.7450 £ 0.0236  0.1855 £ 0.0172 528.41 £ 7.26 ’
0.05 SGD 0.7931 £ 0.0034  0.0004 + 0.0003 648.39 + 8.57 2171
) PDT 0.7916 £ 0.0016  0.0015 £ 0.0014 507.62 £ 11.36 ’
0.1 SGD 0.3742 £ 0.3359  0.0508 + 0.0576 771.77 £ 3.06 )
’ PDT 0.3796 £ 0.3425 0.0012 + 0.0011 -
0.001 SGD 0.1170 £ 0.0251  2.3017 % 0.0005 748.44 + 42.46 6.23
’ PDT 0.1377 £ 0.0288  2.3020 + 0.0001 701.82 £ 23.31 ’
0.01 SGD 0.5710 £ 0.0203  1.1920 % 0.0238 671.28 +9.03 18.89
512 ' PDT 0.5985 £ 0.0078  0.8311 £ 0.0252 544.46 + 12.10 ’
0.05 SGD 0.7717 £ 0.0038  0.0311 4+ 0.0174 668.59 + 7.30 10.11
) PDT 0.7669 £ 0.0237  0.0034 + 0.0014 601.01 £ 44.11 ’
0.1 SGD 0.3721 £ 0.3332  0.0648 + 0.0735 768.97 £3.12 )
’ PDT 0.4420 £ 0.3420  0.0373 £ 0.0155 -

The results in Table [2]show the impact of different batch sizes and learning rates on the performance
of PDT. At lower learning rates (0.001, 0.01, and 0.05), PDT consistently outperforms SGD in terms
of convergence speed across different batch sizes. PDT shows a significant reduction in the runtime to
reach baseline best loss, with an average runtime reduction of 22.76% compared to SGD. For higher
learning rates (0.1), both SGD and PDT struggled to achieve stable training, and PDT’s advantage

14



Under review as a conference paper at ICLR 2025

over SGD became less pronounced. Sometimes PDT can significantly reduce the convergence time
(for example, when batch size = 64), but other times the accuracy will drop significantly after reaching
a high point, or even result in gradient explosion. This suggests that the high learning rate introduced
significant stochasticity, reducing the effectiveness of PDT’s prediction mechanism. Smaller batch
sizes (32, 64) generally achieve more significant runtime reductions.

To address the stability issues observed at higher learning rates and larger batch sizes, different from
the previous fixed learning rate, we investigated the effectiveness of the learning rate scheduler. We
tested the Cosine Annealing learning rate scheduler with a minimum learning rate of le-3. Taking
batch size 256 as an example, we observe significantly improved stability and performance. The
results are shown in Table[3] The results are particularly noteworthy at higher learning rates (Ir=0.1),
where the previous experiments in Table [2{show considerable variance. With the cosine annealing
scheduler, PDT achieves consistent accuracy improvements across all learning rates while maintaining
substantial runtime reductions.

Table 3: Impact of learning rates on PDT performance. Trained on CIFAR-10 using AlexNet, batch
size=256, with CosineAnnealinglL.R scheduler, minimum learning rate le-3. Note: bold numbers
indicate the best performance and underlined numbers indicate the second best performance for each
column.

Batch | Method Final Accuracy Best Train Loss  Time to Baseline Best Runtime
Size d etho (mean = std) (mean = std) Loss (s) (mean 4 std)  Reduction (%)
0.001 SGD 0.1217 £ 0.0126  2.2991 + 0.0011 757.66 £ 26.54 988
’ PDT 0.1461 £ 0.0213  2.2980 =+ 0.0025 682.79 £ 2.13 ’
0.01 SGD 0.6451 + 0.0102  0.9276 4+ 0.0212 745.97 £ 47.19 41.54
256 ) PDT 0.6974 £ 0.0073  0.5853 + 0.0159 436.07 £ 16.09 i
0.05 SGD 0.7852 £ 0.0016  0.0020 = 0.0001 675.04 £ 27.56 3713
) PDT 0.7936 £ 0.0030  0.0006 + 0.0001 424.39 £ 20.40 _
0.1 SGD 0.7930 £ 0.0023  0.0002 £ 0.0000 665.27 +9.08 19.67
’ PDT 0.7978 £ 0.0032  0.0002 + 0.0000 534.41 + 12.64 ’

To further investigate PDT’s compatibility with different optimization methods, we compare its
performance when integrated with different optimizers (SGD, SGD with momentum, and Adam)
while keeping the network architecture and other configurations fixed. For SGD with momentum, we
set the momentum factor to 0.9. All experiments are conducted on AlexNet with CIFAR-10 using
batch size 256, maintaining the same PDT hyperparameters as in previous experiments. The learning
rate is 0.1 for SGD, 0.001 for SGD with Momentum, 0.0005 for Adam. The results are shown in
Table

Table 4: Impact of baseline optimizers (SGD, SGD with Momentum, and Adam) on PDT performance.
Trained on CIFAR-10 using AlexNet, batch size=256, momentum=0.9, with CosineAnnealingL.R
scheduler. Note: bold numbers indicate the best performance and underlined numbers indicate the
second best performance for each column.

| Method Final Accuracy Best Train Loss ~ Time to Baseline Best Runtime
f etho (mean =+ std) (mean =+ std) Loss (s) (mean *+ std)  Reduction (%)
0.1 SGD 0.7930 £ 0.0023  0.0002 + 0.0000 665.27 £ 9.08 19.67
) PDT 0.7978 £ 0.0032  0.0002 + 0.0000 53441 £ 12.64 —
0.001 Momentum  0.6672 + 0.0068  0.8609 £ 0.0166 752.74 £9.62 41.06
’ PDT 0.7298 £ 0.0051  0.5358 + 0.0165 443.68 £+ 8.75 :
0.0005 Adam 0.7952 £ 0.0063  0.0001 + 0.0000 779.13 £ 11.81 14.87
) PDT 0.8050 £ 0.0050 0.0002 + 0.0000 663.28 £ 15.30 ’

A.4 ANALYSIS OF COMPUTATIONAL EFFICIENCY

To provide a detailed analysis of PDT’s computational efficiency, we compare the computational cost
in terms of FLOPs (Floating-point operations per second) between the baseline optimizer and PDT.
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Fig.[TT]shows the training dynamics with respect to both epochs and total computation cost (measured
in TFLOPs). The experiments in Fig. [TT]are conducted on AlexNet with CIFAR-10 using batch size
of 256, learning rate of 0.05, with Cosine annealing scheduler. While the per-epoch computation of
PDT is slightly higher (69.71 TFLOPs) than that of SGD (56.74 TFLOPs) due to the additional DMD
calculations and prediction operations, it achieves faster convergence in terms of total computation.
Specifically, PDT requires 2596.30 TFLOPs to reach the baseline’s best loss, compared to SGD’s
3404.32 TFLOPs, representing a 23.74% reduction in computational cost. Moreover, PDT achieves
better final accuracy (79.70% vs 78.75%) despite using fewer FLOPs to reach convergence.
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Figure 11: Performance comparison between baseline optimization and PDT, with (a) epochs and
(b) TFLOPs as x-axis. Trained on CIFAR-10 using AlexNet, batch size=256, Ir=0.05, with Cosine
Annealing scheduler.

The results also validate our design choice of keeping the past snapshot count (k) small (set to 5 in
our experiments). Even with this small h value, which minimizes the computational cost of DMD
calculations, PDT achieves substantial acceleration in terms of FLOPs.

A.5 CONVERGENCE BEHAVIOR USING COSINEANNEALINGLR SCHEDULER IN IMAGENET
TRAINING
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Figure 12: A comparison of training ResNet-50 on ImageNet-1k for 200 and 300 epochs, with the

same hyperparameters configuration. Using SGD with Momentum as the optimizer, batch size=600,
Ir=0.1, momentum=0.9, with CosineAnnelingLR scheduler.

In our experiments, we employed the Cosine Annealing Learning Rate Scheduler, which is designed
to gradually reduce the learning rate to near zero as training progresses. This scheduling method
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ensures continuous parameter refinement, even in the later stages of training, albeit at a much slower
rate (He et al.,|2019b). The slow improvement in test loss towards the end of training reflects ongoing
refinement rather than a lack of convergence.

To illustrate this behavior, we conducted experiments comparing the training of ResNet-50 on
ImageNet-1k for 200 epochs and 300 epochs under identical configurations, SGD with Momentum
as the optimizer, batch size=600, Ir=0.1, momentum=0.9, with CosineAnneling[.R scheduler. The
results in Fig. [T2]show that the final performance between these two runs is marginal. This suggests
that the model has already achieved sufficient training.

A.6 EFFECT OF NON-I.I.D. TRAINING DATA

We further investigate the robustness of PDT under some challenging training conditions. For
example, when the batch is too small for a diverse dataset like ImageNet, the weight updates could be
chaotic since each consecutive batch is no longer an identical distribution. There are two experimental
designs that can test this: 1) test PDT on a very large dataset like ImageNet-22K and 2) design a
batching scheme to intentionally violate the i.i.d. assumption of mini-batches using a smaller dataset
such as CIFAR-10. In the second design, we maintain the normal batch size, but only put samples of
the same class in the batch. We also randomize the batch sequence instead of using any fixed order so
that there is no regular training set dynamics that DMD might pick up on.
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Figure 13: Performance comparison between SGD and PDT under i.i.d. and non-i.i.d. training data
distributions, with the same hyperparameters configuration. Trained on CIFAR-10 using AlexNet,
batch size=128, Ir=0.05, with CosineAnnelingLR scheduler. The shaded areas represent the standard
deviation across 5 runs with different random seeds (0, 100, 200, 300, 400).

Table 5: Performance and runtime comparison between SGD and PDT under i.i.d. and non-i.i.d.
training data distributions, with the same hyperparameters configuration. Trained on CIFAR-10 using

AlexNet, batch size=128, 1r=0.05, with CosineAnnelingLR scheduler.

Training Data Method Final Accuracy Best Train Loss  Time to Baseline Best Runtime
Distribution etho (mean = std) (mean = std) Loss (s) (mean + std)  Reduction (%)
id SGD 0.7969 £ 0.0093  0.0039 + 0.0017 662.48 +£7.73 915
e PDT 0.8011 £ 0.0067 0.0016 % 0.0017 601.86 £ 17.78 ’
non-iid SGD 0.7067 £ 0.0062  0.1053 £ 0.0874 806.83 £ 13.15 2790

T PDT 0.7159 £ 0.0103  0.0119 % 0.0057 581.73 £ 19.34 ’
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Figure [I3]and Table[5|show the performance and runtime comparison between SGD and PDT under
the non-i.i.d. setting using the second experimental design since non-i.i.d. is guaranteed. We preserve
the original i.i.d. sampling of the test set. All experiments are repeated with five random seeds (0,
100, 200, 300, 400) to ensure statistical significance.

We make some interesting observations. First, despite the challenging non-i.i.d. setup, PDT still
achieves better performance than SGD in terms of faster convergence without sacrificing accuracy.
However, we also observe that in the non-i.i.d. case, learning starts out much more slowly for both
SGD and PDT and both take longer to converge. Second, in the non-i.i.d. case, the variance of each
of the performance curves is generally larger than those of the i.i.d. case. This is because the model
needs to handle more abrupt transitions between different class distributions.

Figure and Table [5] further demonstrate that PDT’s advantage extends beyond standard i.i.d.
training conditions, showing its robustness to challenging data sets where traditional assumptions
about data distribution are violated.
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