
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PREDICTIVE DIFFERENTIAL TRAINING GUIDED BY
TRAINING DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper centers around a novel concept proposed recently by researchers from
the control community where the training process of a deep neural network can
be considered a nonlinear dynamical system acting upon the high-dimensional
weight space. Koopman operator theory, a data-driven dynamical system analysis
framework, can then be deployed to discover the otherwise non-intuitive training
dynamics. Taking advantage of the predictive power of the Koopman operator
theory, the time-consuming Stochastic Gradient Descent (SGD) iterations can be
bypassed by directly predicting network weights a few epochs later. This novel
predictive training framework, however, often suffers from gradient explosion
especially for more extensive and complex models. In this paper, we incorporate
the idea of differential learning, where different parts of the network can undergo
different learning rates during training, into the predictive training framework and
propose the so-called “predictive differential training” (PDT) to sustain robust
performance for accelerated learning even for complex network structures. The
key contribution is the design of an effective masking strategy based on Koopman
analysis of training dynamics of each parameter in order to select the subset
of parameters that exhibits “good” prediction performance. PDT also includes
the design of an acceleration scheduler to keep track of the prediction error so
that the training process can roll back to the traditional GD-based approaches
to “correct” deviations from off-predictions. We demonstrate that PDT can be
seamlessly integrated as a plug-in with existing optimizers, including, for example,
SGD, momentum, and Adam. The experimental results have shown consistent
performance improvement in terms of faster convergence, lower training/testing
loss, and fewer number of epochs to achieve the best loss of Baseline.

1 INTRODUCTION

The advent of cutting-edge hardware (Li et al., 2014) and the development of parallel processing
techniques (Li et al., 2020) have greatly accelerated the training process of the Deep Neural Network
(DNN). However, enhancing the fundamental techniques of DNN training continues to be a significant
challenge. From the inception of SGD (Robbins & Monro, 1951), which has since become a mainstay
in DNN training, numerous techniques have been proposed to increase the efficiency of the underlying
optimization task, including, for example, learning rate annealing and momentum (Sutskever et al.,
2013), RMSprop (Tieleman & Hinton, 2012), and Adam (Kingma & Ba, 2014). In addition to these
first-order optimizers, second-order alternatives (Martens, 2010) utilizing curvature information or
second-order derivatives of the loss function have been explored to potentially enable more efficient
convergence.

Notably, the Adam optimizer (Kingma & Ba, 2014) has been a significant advancement and belongs
to the family of differential learning, where different parts of the network can exhibit different
learning rates during training. The different parts can be, for example, layer-specific (Devlin et al.,
2019; He et al., 2019a) or parameter-specific (Tieleman & Hinton, 2012; Kingma & Ba, 2014; Duchi
et al., 2011a). This is particularly useful in large-scale models where different layers or parameters
might require different levels of adjustment during training.

Very recently, a novel interpretation of the DNN training process has been proposed, mainly by
researchers from the control community (Redman et al., 2022; Dogra & Redman, 2020; Manojlovic

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2020; Tano et al., 2020) – If it is intuitive to consider a pre-trained DNN as an inherently
nonlinear static system acting upon the high-dimensional inputs, then the DNN “training process”
itself is a “nonlinear” dynamical system acting upon the high-dimensional “weight space”! It
is a discrete dynamical system since the weights of a DNN evolve over each iteration (or epoch)
according to the optimization process adopted. This drastically different interpretation has led
to the establishment of a novel mathematical framework for learning. Koopman operator theory
(Mezić, 2005), a powerful data-driven dynamical system analysis tool, is often adopted to exploit the
underlying dynamics in the seemingly non-intuitive training process of a DNN. Taking advantage of
the predictive power of the Koopman operator theory, the time-consuming SGD iterations can be
bypassed by directly predicting network weights a few epochs later (Dogra, 2020; Dogra & Redman,
2020; Tano et al., 2020). We refer to these approaches as predictive training.

However, practical challenges quickly emerge. The absence of actual gradient descent means that
convergence cannot be guaranteed, and the framework is sensitive to disturbances in the weight
space, leading to error accumulation across iterations. As the network scales, the Koopman-based
prediction training framework becomes increasingly ineffective. This issue is mostly due to the lack
of adaptive mechanisms when applying prediction-based acceleration. That is, existing predictive
training approaches tend to apply the predicted weights to all parameters without considering the
different dynamics they might exhibit during the training process. This often leads to gradient
explosion, especially for more extensive and complex models.

Figure 1: Comparison of training trajectories and loss landscapes between Adam and the proposed
PDT. (AlexNet is trained on CIFAR-10)

In this paper, we propose predictive differential training (PDT) where acceleration by prediction is
applied to only the parameters where we have the high confidence on prediction performance. This
selective acceleration is conceptually similar to various adaptive learning rate methods. For instance,
Adagrad (Duchi et al., 2011b) targets acceleration at rare features, momentum (Rumelhart et al.,
1986) prioritizes weights with the largest recent velocity, and the popular Adam optimizer (Kingma &
Ba, 2014) employs a combined strategy. Figure 1 illustrates the compelling effectiveness of PDT over
Adam through a visual comparison of the training trajectory and loss landscape. The contribution of
the proposed PDT is three-fold:

• We design an effective masking strategy based on Koopman analysis of training dynamics
of each parameter and select the subset of parameters that exhibits “good” prediction
performance.

• We design a scheduler to keep track of the prediction error so that the training process can
roll back to the traditional GD-based approaches to “correct” deviations from off-predictions.

• We demonstrate that PDT can be seamlessly integrated as a plug-in with existing optimizers,
including, for example, SGD, momentum, and Adam.

2 BACKGROUND AND RELATED WORK

The key notion of Koopman analysis is the representation of a (possibly nonlinear) dynamical system
as a linear operator on a typically infinite-dimensional space of functions (Mezić, 2021; 2005; Mezić &

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Banaszuk, 2004). Koopman-based approaches directly contrast with standard linearization techniques
that consider the dynamics in a close neighborhood of some nominal solution. Indeed, Koopman
analysis can yield linear operators that accurately capture fundamentally nonlinear dynamics.

Koopman Operator Theory. As a brief description, consider a discrete-time dynamical system
xi+1 = T (xi), where xi ∈ Rn is the current state and xi+1 is the next state after application of
the potentially nonlinear mapping T . Consider also a vector-valued observable g(x) ∈ Rm. The
evolution of observables under this mapping can be described according to

g(xi+1) = g(T (xi)) = Kg(xi). (1)

where K operates on the vector space of observables and maps g(xi) to g(xi+1). K is referred to as
the “Koopman operator” that is associated with the fully nonlinear dynamical system.

The Koopman operator is linear, following from linearity of the composition operator, but also infinite-
dimensional. As such, for dynamical systems with a pure point spectrum for observables (Mezić,
2020), its action can be decomposed according to

g(xi+1) = Kg(xi) =

∞∑
k=1

λi+1
k ϕk(x0)ck, (2)

where λk is an eigenvalue associated with the eigenfunction ϕk(x) evaluated at the initial condition
ϕk(x0) and ck is the reconstruction coefficient (also referred to as the “Koopman mode”) associated
with projecting g onto the eigenspace. It immediately follows that

g(xi+τ) =

∞∑
k=1

λτ
kϕk(xi)ck (3)

for any τ ∈ N. Eq. 3 provides a convenient and general framework to “predict and control” a
given dynamical system. Each Koopman mode evolves over time with its frequency and decay rate
governed by the imaginary and real components, respectively.

Koopman-based techniques are particularly useful in a data-driven setting because they only require
measurements of observables. As such, they can be implemented even when the underlying model
dynamics are unknown.

Dynamic Mode Decomposition (DMD). When using Koopman-based approaches, it is critical to
identify a suitable finite basis for representing the infinite-dimensional Koopman operator. Dynamic
Mode Decomposition (DMD) (Schmid, 2010) is one standard approach for inferring Koopman-based
models. It uses least-squares fitting techniques to approximate a finite-dimensional linear matrix
operator, A, that advances high-dimensional measurements of a system forward in time:

g(xi+1) ≈ Ag(xi) (4)

where A is an approximation of the Koopman operator, K in Eq. 1 restricted to a measurement
subspace spanned by direct measurements of the state x. Since the weight space of a neural network
is a fully observable system, we define g(x) to be the identity function in this work. That is,
wi = g(xi). In practice, we often use “snapshots” of the system arranged into two data matrices, Wi

and Wi+1, where columns of these two matrices indicate measurements (i.e., network weights) taken
at a certain time, and Wi+1 is Wi shifted by one time step. Hence,

Wi+1 ≈ AWi, (5)

and A can be solved by
A = Wi+1W

†
i = Wi+1V Σ−1UT (6)

where Wi = UΣV T is the Singular Value Decomposition (SVD), and W †
i denotes the pseudo-inverse

of Wi. A comprehensive discussion of DMD and its related variants has been provided in (Kutz et al.,
2016).

DNN Training as a Dynamical System. There have been a few works in recent years that adopt
Koopman-based approaches to accelerate the training process of a general-purpose DNN model
(Dogra & Redman, 2020; Tano et al., 2020; Manojlovic et al., 2020). (Dietrich et al., 2020) is
generally considered the first work that establishes the connection between Koopman operator theory

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

and acceleration of numerical computation. (Dogra, 2020) is also one of the pioneer works but with a
focus specifically on neural networks for solving differential equations. Generally speaking, these
works take advantage of the prediction capability of the Koopman operator theory framework, as
shown in Eq. 3, to directly predict network weights a few epochs later, thus bypassing the time-
consuming SGD iterations. However, we show in Fig. 2 that these methods tend to fail for larger
network structures as the prediction horizon for Koopman-based approaches decreases and as network
size increases.

(a) (b) (c)

Figure 2: Performance comparison on CIFAR-10 using fully connected (FC) networks with varying
depths, between SGD, PDT, and Koopman-based predictive training where the predicted weights are
applied to all parameters without checking the prediction quality (Tano et al., 2020). Batch size=256,
lr=0.01. (a) 2-layer FC network. (b) 4-layer FC network. (c) 6-layer FC network. In our setup, for
every three epochs of SGD, predictions are performed for the next five steps. Subsequently, training
reverts to SGD to potentially rectify minor errors introduced by the predictions.

The proposed PDT, largely due to its adaptive attention to different training dynamics from different
parameters, is able sustain network growth. The efficiency of PDT has been validated on several
benchmark models (e.g., AlexNet, ResNet, and ViT) and datasets (e.g., CIFAR-10 and ImageNet).

3 METHODS

In this section, we elaborate on the proposed Koopman-based predictive differential training (PDT)
framework. We first describe the rationale of the proposed masking strategy that identifies the subset
of weights with “good” predictions. This is followed by a discussion of the acceleration schedule.

3.1 CONSTRUCTING THE MASK

We can apply Eq. 7 to predict future measurements of w over τ epochs.

wi+τ = Aτwi (7)

where A can be calculated from Eq. 6. The challenge, however, is how to determine if this prediction
is “good” or “bad”.

In fact, the correlation between quality of prediction and training dynamics has been heavily studied.
From neuroscience perspective, the quality of predictions made by neurons is intricately linked to
their learning dynamics (Schultz et al., 1997; Friston, 2010). Accurate predictions lead to more stable
and efficient learning, while poor predictions drive stronger synaptic adjustments to improve future
performance.

We design a masking strategy that is based on the following two principles.

• The quantity criterion: The absolute weight change between the predicted weight and
the current weight should be larger than the absolute weight change from the one-step
optimization (e.g., using SGD) to enable accelerated learning.

• The direction criterion: The direction of weight change from prediction should be consistent
with that from optimization. That is, if the optimization procedure would result in a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

weight decay or weight increase, then the predicted weight should correspondingly decay or
increase.

Based on these two principles, a mask, m can be constructed with its element equals to 1 if both
Eqs. 8 and 9 are satisfied; otherwise the corresponding element is zero,

∥wpred
i+τ −wpred

i ∥ > ∥w
opt
i+1 −wopt

i ∥, the quantity criterion (8)

(wpred
i+k −wpred

i+k−1) · (w
opt
i+1 −wopt

i) > 0, k = {1, · · · , τ}, the direction criterion (9)

Note that Eq. 9 is a rigid criterion to enforce not only the final predicted weight changes along the
same direction as the one-step optimization outcome, but that each intermediate predicted weight all
change in the same direction.

Figure 3: Comparison of the standard SGD-based optimization and the proposed PDT framework in
accelerating training.

3.2 ACCELERATION SCHEDULE

The acceleration schedule concerns the problem of “when” to enable prediction. As illustrated in
Fig. 3, the “prediction” block is strategically placed among the regular SGD optimization blocks,
acting as a plug-in enhancement within the existing optimization framework. The placement of
the “prediction” block is solely determined by the masking strategy designed in Sec. 3.1. If no
element in the mask is qualified as “good” prediction, then standard SGD-based optimization takes
place; otherwise, qualified predicted weights will be incorporated to accelerate learning. This
approach is analogous to the “one-step-ahead” strategy employed by NAG (Nesterov, 1983), where
the subsequent step of standard optimization acts to correct any small errors that may arise from the
Koopman prediction.

Let us use a toy example to demonstrate the effect of accelerating the learning of a subset of variables
to further motivate the concept of differential learning. Consider the function,

f(x, y, z, u, v, w) = x2 + y2 + sin(z) + u2 − cos(v) + w2 + xy + y sin(z) + uvw,

which involves six variables: x, y, z, u, v, w. To find the minimum of this function, we employ a sim-
ple gradient descent optimization process. Starting from the initial point [2.0, 2.0, 1.0, 0.5,−0.5, 1.5]
with a learning rate of 0.01, it takes 67 steps to converge to a minimum.

We then explore an alternative optimization strategy where the variables x, y, z undergo an opti-
mization process that is three times faster than the standard process, while u, v, w are optimized at
the normal rate but employing the updated values of x, y, z. See Fig. 10 in Appendix A.1 for the
acceleration trajectory, where the trajectory maintains the same direction for x and y but achieves
convergence in just 27 steps.

This example shows that by strategically identifying a subset of variables and simply increasing their
learning rate, the training can be accelerated by about 60%.

Figure 4 further illustrates how qualified predicted weights and standard SGD-derived weights are
mixed together to achieve accelerated learning as showcased in the toy example.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Illustration of one PDT-based optimization step.

3.3 COMPUTATIONAL COMPLEXITY ANALYSIS

To facilitate our discussion, we consider a DNN with N parameters. The computational load for
processing each batch is directly proportional to both the batch size (B) and the number of parameters
(N), resulting in a complexity of O(B ×N) per batch. When extended to the entire dataset with S
samples across one epoch, the complexity scales to O(S ×N).

Integrating Koopman operator predictions into the DNN training process entails constructing a data
matrix from h past epochs of the parameter trajectories, with the matrix dimensions being N × h.
The primary computational burden arises from performing SVD on this matrix with a complexity
of O(N × h2). Given that N significantly exceeds h — with h usually being a small number like 5
to 10, and N potentially reaching the millions or even billions—the quadratic impact of h remains
manageable relative to N .

Since Koopman predictions are integrated at much less frequent intervals than standard batch process-
ing—potentially at epoch-level intervals—this approach can lead to significant computational savings
and efficiency enhancements in the training of large-scale neural networks. A detailed analysis of
computational efficiency with experimental results is provided in Sec. A.4.

4 EXPERIMENTS

We conduct four sets of experiments to evaluate the effectiveness of the proposed PDT framework in
accelerating learning. The first set of experiments implements PDT across a variety of popular neural
network architectures using a range of popular optimizers and evaluate the savings in run-time. The
second set investigates the effectiveness of the proposed masking strategy. The third set evaluates the
proposed masking strategy against other potential metrics for prediction quality, like validation loss.
The final set of experiments studies the effect of some important hyperparameters.

4.1 GENERALIZATION STUDY OF PDT

We implement the proposed Koopman-based PDT process across a variety of popular neural network
architectures, including Fully-Convolutional-Network (FCN), AlexNet, ResNet, and ViT-Base. We
also use a range of optimizers, including the SGD, SGD with momentum, and Adam.

In all experiments, we use the past five epochs to form the snapshot with a one-epoch interval to
predict weights in the next five steps. Prediction is initiated starting from the 5th epoch. As elaborated
in Sec. 3, the computational load of the Koopman-related calculations is comparable to that of
batch-level updates. However, since we apply these calculations at the epoch level, the overhead
introduced by the DMD is effectively compensated by the acceleration in loss reduction. We observe
from both Table 1 and Fig. 5 that the proposed PDT consistently achieves the best training loss of the
Baseline in fewer number of epochs without sacrificing performance. All experiments were repeated
with five random seeds (0, 100, 200, 300, 400) to ensure reliability.

The last column in Fig. 5 illustrates a so-called “masked ratio curve” unique to PDT, where it tracks
the percentage of predictions accepted according to the masking strategy described in Sec. 3.1. We

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

observe that the masked ratio always starts with higher values in the early stage of the training
process, then generally decreases as training progresses. More interestingly, we observe that smaller
networks on simpler tasks (FCN/AlexNet on CIFAR-10) show a relatively more gradual reduction in
the masked ratio, while larger networks on more complex tasks (ResNet-50/ViT on ImageNet) exhibit
a much sharper reduction of masked ratio, especially at the early stage of the training process. This
pattern implies that for larger networks on larger datasets, the training dynamics is more complex and
challenging to predict at the initial training stage, resulting in a rapid reduction of the percentage of
weights that can be convincingly predicted (according to the proposed masking strategy). The training
process of a deep network with millions to billions of parameters indeed presents an intriguing
dynamical system that the control community has not faced before. This would stimulate further
investigation into the development of better data-driven dynamical system analysis algorithms in
addition to DMD.

(a) Trained on CIFAR-10 using FCN, batch size=256, lr=0.01, with CosineAnnealingLR scheduler.

(b) Trained on CIFAR-10 using AlexNet, batch size=256, lr=0.05, with CosineAnnealingLR scheduler.

(c) Trained on ImageNet-1K using ResNet-50, batch size=600, lr=0.1, momentum=0.9, with CosineAn-
nealingLR scheduler.

(d) Trained on ImageNet-1K using ViT-Base, batch size=600, lr=0.003, momentum=0.9, with CosineAn-
nealingLR scheduler.

Figure 5: Performance comparison between baseline optimization and PDT. Note that all the experi-
ments are repeated with 5 different random seeds.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Runtime comparison. FCN and AlexNet are trained on a single Nvidia RTX A6000 GPU,
while ResNet-50 and ViT-Base are trained on three Nvidia H100 (80 GB) GPUs. Using the same
experimental setup and hyperparameter configurations as in Fig. 5.

Model Time to Baseline Best Loss (s) Runtime per Epoch (s) Runtime
Reduction (%)Baseline PDT Baseline PDT

FCN 2145.36 1294.74 21.45 27.86 39.65
AlexNet 675.04 424.39 11.17 12.14 37.13

ResNet-50 110063.72 88752.33 379.53 422.63 19.36
ViT-Base 259241.21 232810.62 432.79 541.42 10.20

4.2 MASKING STRATEGY

In this experiment, we study the effectiveness of the proposed masking strategy by comparing it with
two other strategies, 1) randomly selecting a subset of weights and increase its learning rates, and 2)
randomly selecting a subset of predicted weights.

Comparison with Randomly Selected Acceleration Subsetw. We conduct an experiment to
compare PDT against the strategy of randomly selecting subsets of weights and increasing their
learning rates. Figure 6 illustrates each trial’s outcomes, with regions highlighted in green showing
results from different runs where subsets of weights had their learning rates increased to match the
step number used in the predictions. The selection ratio used here matches the average masking ratio
applied during PDT. The results clearly indicate that randomly accelerating weights cannot match the
performance improvements seen with PDT. Moreover, random selection often leads to significant
instability during training.

Figure 6: Comparison between PDT and randomly selected subsets with higher learning rates (with
the same mask ratio). Trained on CIFAR-10 using AlexNet, batch size=256, lr = 0.05.

Comparison with Randomly Selecting Predicted Weights. We perform a series of runs where
subsets of Koopman predicted weights are randomly selected and applied to a large network. The
regions highlighted in green in Fig. 7 show the outcomes of these trials. Quite frequently, these
runs result in gradient explosions, leading to non-recoverable errors (NaN values) in subsequent
epochs. This experiment underscores the importance of a thoughtful masking strategy in Koopman
Training. Random masking, without considering the training dynamics can lead to severe divergence
and training failure. Our findings highlight that strategic selection based on “good” predictions is
crucial to the success of PDT.

4.3 ACCELERATION SCHEDULE BASE ON VALIDATION LOSS?

Although DMD can make long-term predictions, mismatches with the true evolutionary path of the
network weights can occur at any future step, potentially leading to suboptimal training outcomes.
According to (Tano et al., 2020), validation loss can be utilized as a criterion to determine optimal
points for switching between DMD and SGD during training. Inspired by this strategy, we implement
a reference scheduling scheme that switches between prediction and SGD based on the validation
loss trend: apply prediction when validation loss decreases and switch back to SGD updates when

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: PDT vs. random mask prediction (with the same mask ratio). Trained on CIFAR-10 using
AlexNet, batch size=256, lr = 0.01.

validation loss starts to increase. Figure 8 illustrates the training dynamics under this strategy.
Initially, DMD is engaged due to its slight advantage in reducing validation loss. However, as
training progresses, a significant surge in loss is observed, suggesting a misalignment between the
DMD-predicted weights and the optimal trajectory for the network. Even after reverting to SGD, the
model failed to recover its performance, indicating that relying solely on validation loss as a trigger
for switching between PDT and SGD might be inadequate.

This experiment highlights the complexity of training dynamics and the challenges in using PDT
effectively within a traditional training framework. It suggests that while validation loss can serve as
an initial indicator for employing advanced predictive methods like DMD, it may not be sufficient on
its own to guarantee stable and effective training convergence.

(a) (b)

Figure 8: Performance comparison on CIFAR-10 using AlexNet: SGD vs. Koopman-based prediction
(switching between prediction and SGD based on validation loss). (a) Train loss. (b) Validation loss.

4.4 EFFECT OF HYPERPARAMETERS

Several primary hyperparameters require careful consideration in our model:

Prediction Steps (τ): Derived from DMD, the number of prediction steps significantly influences
the training speed. As shown in Fig. 9(a), training accelerates within a certain range of prediction
steps. However, extending beyond a critical threshold, such as nine steps in our study, can introduce
large errors and potentially cause gradient explosion.

Prediction Interval (Ti): The interval between Prediction blocks impacts the effectiveness of
acceleration, as depicted in Fig. 9(b). A shorter interval can enhance training speed if the predictions
are accurate. Nevertheless, the quality of predictions may decline as the training progresses, rendering
the network more sensitive to errors, particularly as it nears convergence.

Starting Epoch (T0): The starting epoch for acceleration must be greater than or equal to the number
of epochs used to build the snapshot, as illustrated in Figure 9(c). The initiation of acceleration is
influenced by factors such as initialization, learning rate, and model architecture.

Past Snapshot Counts (h): Figure 9(d) indicates that the number of epochs needed to construct
the snapshot matrix for prediction also influences the train loss. This value cannot be too small or

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

too large. If it is too small, the snapshot will not have sufficient measurements to precisely estimate
the dynamics of the training process. On the other hand, if the number of epochs is too large for
constructing the snapshot, then DMD would have missed the local dynamics with only a coarser
grasp of the general training dynamics.

In addition, a comprehensive study of PDT’s performance under different training configurations can
be found in Sec. A.3, demonstrating robust performance across various training hyperparameters.

(a) lr=0.01, int=1,
start=10, snap=10.

(b) lr=0.05, step=9,
start=10, snap=10.

(c) lr-=0.01, int=1,
step=5, snap=5.

(d) lr=0.01, step=5,
int=1, start=10.

Figure 9: The influence of different parameters. (a) prediction steps, (b) prediction interval, (c)
starting epoch, (d) past snapshot counts. Trained on CIFAR-10 using AlexNet, batch size=256.

5 DISCUSSION AND CONCLUSION

This paper proposed a novel predictive differential training (PDT) framework based on the study of
training dynamics, where we consider the training process as a dynamical system acting upon the
weight space. PDT presents stable performance in accelerating training even for complex network
structures due to its selective incorporation of predicted weights.

Future Work and Challenges. Despite these advancements, considerable work remains. First,
further studies into different predictive methods beyond DMD is necessary. Innovative approaches,
such as streaming DMD (Hemati et al., 2014; Liew et al., 2022), can not only reduce the memory
footprint of constructing trajectory matrices, but also improve computational efficiency.

Second, investigating the impact of PDT on the properties of the learned function, such as loss surface
sharpness or smoothness, is highly valuable (Humayun et al., 2024; Foret et al., 2020). These metrics
provide a deeper understanding of the model’s robustness and generalization capabilities. Based on
the current experimental results, we hypothesize that the selective application of predictions may
help avoid sharp local minima by allowing more exploration in the weight space. In future work, we
intend to incorporate these measures into our analysis to provide a more comprehensive evaluation of
PDT, and further explore how these properties influence the efficacy of PDT.

Third, we observe from the masked ratio vs. epoch curves in Fig. 5 that as training prolongs and as
training loss converges to a stable value, we should expect the training dynamics to be less complex or
easier to predict, which should have resulted in a higher masked ratio. However, in reality, except for
the ResNet-50 on ImageNet-1K curve where a small bouncing back on the masked ratio is observed
toward the end of the training process, all the rest scenarios exhibit a stable masked ratio, much lower
as compared to that at the beginning of the training process. In addition, we would have expected the
epoch number, where the masked ratio starts turning flat, to be consistent with that when the training
loss enters a plateau, but this is only observed in the complex network scenarios Fig. 5(c) and (d), but
not the simple network cases Fig. 5(a) and (b). This seems to indicate that the masked ratio curves
can have the potential of indicating when the network overfits, that when the marked ratio starts to
drastically decrease again after the initial reduction. This would serve as a potential indicator for
early stopping conditions. Although this is out of the scope of the current paper, the potential impact
warrants further investigation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805, 2019.

F. Dietrich, T. N. Thiem, and I. G. Kevrekidis. On the koopman operator of algorithms. SIAM Journal
on Applied Dynamical Systems, 19(2):860–885, 2020.

Akshunna S Dogra. Dynamical systems and neural networks. arXiv preprint arXiv:2004.11826,
2020.

Akshunna S Dogra and William Redman. Optimizing neural networks via koopman operator theory.
Advances in Neural Information Processing Systems, 33:2087–2097, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adagrad: Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159,
2011a.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011b.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

K. Friston. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2):
127–138, 2010.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for
image classification with convolutional neural networks. arXiv:1812.01187, 2019a.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for image
classification with convolutional neural networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 558–567, 2019b.

Maziar S Hemati, Matthew O Williams, and Clarence W Rowley. Dynamic mode decomposition for
large and streaming datasets. Physics of Fluids, 26(11), 2014.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always grok
and here is why. arXiv preprint arXiv:2402.15555, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor. Dynamic Mode
Decomposition: Data-Driven Modeling of Complex Systems. SIAM-Society for Industrial and
Applied Mathematics, 2016. ISBN 978-1-61197-449-2.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James
Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter
server. In 11th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
14), pp. 583–598, 2014.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704, 2020.

Jaime Liew, Tuhfe Göçmen, Wai Hou Lio, and Gunner Chr Larsen. Streaming dynamic mode
decomposition for short-term forecasting in wind farms. Wind Energy, 25(4):719–734, 2022.

Iva Manojlovic, Maria Fonoberova, Ryan Mohr, Aleksandr Andrejcuk, Zlatko Drmac, Yannis
Kevrekidis, and Igor Mezić. Applications of koopman mode analysis to neural networks. arXiv
preprint arXiv:2006.11765, 2020.

James Martens. Deep learning via hessian-free optimization. In ICML, pp. 735–742, 08 2010.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

I. Mezić. Spectrum of the Koopman operator, spectral expansions in functional spaces, and state-space
geometry. Journal of Nonlinear Science, 30(5):2091–2145, 2020.

I. Mezić and A. Banaszuk. Comparison of systems with complex behavior. Physica D: Nonlinear
Phenomena, 197(1-2):101–133, 2004.

Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Nonlin-
ear Dynamics, 41:309–325, 2005.

Igor Mezić. Koopman operator, geometry, and learning of dynamical systems. Notices of the
American Mathematical Society, 68(7):1087–1105, 2021.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k**
2). Doklady Akademii Nauk SSSR, 269(3):543, 1983.

William Redman, Maria Fonoberova, Ryan Mohr, Ioannis G Kevrekidis, and Igor Mezić. An
operator theoretic view on pruning deep neural networks. International Conference on Learning
Representations (ICLR), 2022.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586. URL https://doi.org/
10.1214/aoms/1177729586.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid
Mechanics, 656:5–28, 2010. doi: 10.1017/S0022112010001217.

W. Schultz, P. Dayan, and P.R. Montague. A neural substrate of prediction and reward. Science, 275
(5306):1593–1599, 1997.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International Conference on Machine Learning (ICML), pp.
1139–1147. PMLR, 2013.

Mauricio E Tano, Gavin D Portwood, and Jean C Ragusa. Accelerating training in artificial neural
networks with dynamic mode decomposition. arXiv preprint arXiv:2006.14371, 2020.

Tijmen Tieleman and Geoffrey Hinton. Rmsprop: Divide the gradient by a running average of its
recent magnitude. coursera: Neural networks for machine learning. COURSERA Neural Networks
Mach. Learn, 17, 2012.

12

https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CONVERGENCE PATH OF THE TOY EXAMPLE

Figure 10: The differential learning trajectory of the toy example provided in Sec. 3.2. Only the x
and y dimensions are shown.

A.2 ALGORITHM DESCRIPTIONS

Algorithm 1 PDT algorithm

Require: baseline optimizer Obase, past snapshots counts h, start epoch for prediction T0, predicted
steps τ , prediction interval Ti

Ensure: Trained model parameters w
1: Initialize weight history matrix WN×h, counter ce = 0
2: for epoch t = 0 to T do
3: if t ≥ T0 and ce ≥ Ti then
4: Obtain wopt(t− 1) from WN×h

5: Train model for one epoch using Obase, save weights after training as wopt(t)
6: Calculate DMD from WN×h

7: Predict future weights from wpred(t) to wpred(t+ τ − 1)
8: Create mask M based on wopt(t− 1), wopt(t), wpred(t) ... wpred(t+ τ − 1) (Eq. 8 and

9)
9: Assemble new weights w(t) using mask M to combine wopt(t) and wpred(t)

10: Update model parameters with updated w(t)
11: ce ← 0
12: else
13: Train model M normally for one epoch using Obase

14: ce ← ce + 1
15: end if
16: Update weight history matrix WN×h

17: end for

A.3 EFFECT OF TRAINING HYPERPARAMETERS

To thoroughly evaluate the effectiveness and robustness of PDT under different training configurations,
we conduct comprehensive experiments across different learning rates from 0.001 to 0.1 (0.001, 0.01,
0.05, 0.1) and batch sizes from 32 to 512 (32, 64, 128, 256, 512). All experiments were repeated
with five random seeds (0, 100, 200, 300, 400) to ensure statistical significance. All experiments are
performed on AlexNet with the CIFAR-10 dataset, using SGD as the baseline optimizer and trained
for 60 epochs. The PDT-related hyperparameters mentioned in Sec. 4.4 were set to prediction step=5,
prediction interval=1, start epoch=5, and past snapshot counts=5.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 2: Impact of learning rates and batch sizes on PDT performance. Trained on CIFAR-10 using
AlexNet. Note: bold numbers indicate the best performance and underlined numbers indicate the
second best performance for each column.

Batch
Size lr Method Final Accuracy

(mean ± std)
Best Train Loss
(mean ± std)

Time to Baseline Best
Loss (s) (mean ± std)

Runtime
Reduction (%)

32

0.001 SGD 0.6981 ± 0.0458 0.6376 ± 0.0127 1232.29 ± 4.45 40.64PDT 0.6903 ± 0.0885 0.2724 ± 0.0166 731.52 ± 12.84

0.01 SGD 0.8118 ± 0.0041 0.0046 ± 0.0008 1194.89 ± 21.09 24.25PDT 0.8146 ± 0.0048 0.0021 ± 0.0012 905.07 ± 120.51

0.05 SGD 0.8049 ± 0.0053 0.0156 ± 0.0029 1180.72 ± 12.31 64.57PDT 0.8020 ± 0.0052 0.0149 ± 0.0073 418.38 ± 0.00

0.1 SGD 0.1000 ± 0.0000 0.3346 ± 0.0098 1172.49 ± 39.08 -PDT 0.1000 ± 0.0000 0.3364 ± 0.0132 -

64

0.001 SGD 0.5384 ± 0.0173 1.2295 ± 0.0261 902.16 ± 19.68 35.82PDT 0.5329 ± 0.1152 0.8798 ± 0.0257 578.99 ± 55.74

0.01 SGD 0.7850 ± 0.0226 0.0087 ± 0.0030 800.35 ± 5.39 23.32PDT 0.8140 ± 0.0021 0.0015 ± 0.0010 613.70 ± 8.80

0.05 SGD 0.8067 ± 0.0035 0.0051 ± 0.0016 798.20 ± 3.50 27.54PDT 0.8029 ± 0.0029 0.0045 ± 0.0006 578.36 ± 16.48

0.1 SGD 0.6442 ± 0.2733 0.0484 ± 0.0522 910.37 ± 18.03 56.23PDT 0.7976 ± 0.0033 0.0218 ± 0.0011 398.48 ± 21.34

128

0.001 SGD 0.2882 ± 0.0212 1.8456 ± 0.0300 812.42 ± 21.20 17.48PDT 0.2951 ± 0.0440 1.6972 ± 0.0272 670.37 ± 23.93

0.01 SGD 0.7825 ± 0.0065 0.0675 ± 0.0052 661.09 ± 6.35 14.68PDT 0.8009 ± 0.0062 0.0058 ± 0.0008 564.02 ± 16.35

0.05 SGD 0.7969 ± 0.0093 0.0039 ± 0.0017 662.48 ± 7.73 9.15PDT 0.8011 ± 0.0067 0.0016 ± 0.0017 601.86 ± 17.78

0.1 SGD 0.7916 ± 0.0027 0.0083 ± 0.0014 803.93 ± 3.07 8.20PDT 0.7863 ± 0.0087 0.0096 ± 0.0016 737.97 ± 0.00

256

0.001 SGD 0.1171 ± 0.0092 2.2991 ± 0.0011 747.83 ± 20.30 7.08PDT 0.1453 ± 0.0213 2.2979 ± 0.0026 694.91 ± 14.63

0.01 SGD 0.6989 ± 0.0301 0.5814 ± 0.0147 660.37 ± 0.71 19.98PDT 0.7450 ± 0.0236 0.1855 ± 0.0172 528.41 ± 7.26

0.05 SGD 0.7931 ± 0.0034 0.0004 ± 0.0003 648.39 ± 8.57 21.71PDT 0.7916 ± 0.0016 0.0015 ± 0.0014 507.62 ± 11.36

0.1 SGD 0.3742 ± 0.3359 0.0508 ± 0.0576 771.77 ± 3.06 -PDT 0.3796 ± 0.3425 0.0012 ± 0.0011 -

512

0.001 SGD 0.1170 ± 0.0251 2.3017 ± 0.0005 748.44 ± 42.46 6.23PDT 0.1377 ± 0.0288 2.3020 ± 0.0001 701.82 ± 23.31

0.01 SGD 0.5710 ± 0.0203 1.1920 ± 0.0238 671.28 ± 9.03 18.89PDT 0.5985 ± 0.0078 0.8311 ± 0.0252 544.46 ± 12.10

0.05 SGD 0.7717 ± 0.0038 0.0311 ± 0.0174 668.59 ± 7.30 10.11PDT 0.7669 ± 0.0237 0.0034 ± 0.0014 601.01 ± 44.11

0.1 SGD 0.3721 ± 0.3332 0.0648 ± 0.0735 768.97 ± 3.12 -PDT 0.4420 ± 0.3420 0.0373 ± 0.0155 -

The results in Table 2 show the impact of different batch sizes and learning rates on the performance
of PDT. At lower learning rates (0.001, 0.01, and 0.05), PDT consistently outperforms SGD in terms
of convergence speed across different batch sizes. PDT shows a significant reduction in the runtime to
reach baseline best loss, with an average runtime reduction of 22.76% compared to SGD. For higher
learning rates (0.1), both SGD and PDT struggled to achieve stable training, and PDT’s advantage

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

over SGD became less pronounced. Sometimes PDT can significantly reduce the convergence time
(for example, when batch size = 64), but other times the accuracy will drop significantly after reaching
a high point, or even result in gradient explosion. This suggests that the high learning rate introduced
significant stochasticity, reducing the effectiveness of PDT’s prediction mechanism. Smaller batch
sizes (32, 64) generally achieve more significant runtime reductions.

To address the stability issues observed at higher learning rates and larger batch sizes, different from
the previous fixed learning rate, we investigated the effectiveness of the learning rate scheduler. We
tested the Cosine Annealing learning rate scheduler with a minimum learning rate of 1e-3. Taking
batch size 256 as an example, we observe significantly improved stability and performance. The
results are shown in Table 3. The results are particularly noteworthy at higher learning rates (lr=0.1),
where the previous experiments in Table 2 show considerable variance. With the cosine annealing
scheduler, PDT achieves consistent accuracy improvements across all learning rates while maintaining
substantial runtime reductions.

Table 3: Impact of learning rates on PDT performance. Trained on CIFAR-10 using AlexNet, batch
size=256, with CosineAnnealingLR scheduler, minimum learning rate 1e-3. Note: bold numbers
indicate the best performance and underlined numbers indicate the second best performance for each
column.

Batch
Size lr Method Final Accuracy

(mean ± std)
Best Train Loss
(mean ± std)

Time to Baseline Best
Loss (s) (mean ± std)

Runtime
Reduction (%)

256

0.001 SGD 0.1217 ± 0.0126 2.2991 ± 0.0011 757.66 ± 26.54 9.88PDT 0.1461 ± 0.0213 2.2980 ± 0.0025 682.79 ± 2.13

0.01 SGD 0.6451 ± 0.0102 0.9276 ± 0.0212 745.97 ± 47.19 41.54PDT 0.6974 ± 0.0073 0.5853 ± 0.0159 436.07 ± 16.09

0.05 SGD 0.7852 ± 0.0016 0.0020 ± 0.0001 675.04 ± 27.56 37.13PDT 0.7936 ± 0.0030 0.0006 ± 0.0001 424.39 ± 20.40

0.1 SGD 0.7930 ± 0.0023 0.0002 ± 0.0000 665.27 ± 9.08 19.67PDT 0.7978 ± 0.0032 0.0002 ± 0.0000 534.41 ± 12.64

To further investigate PDT’s compatibility with different optimization methods, we compare its
performance when integrated with different optimizers (SGD, SGD with momentum, and Adam)
while keeping the network architecture and other configurations fixed. For SGD with momentum, we
set the momentum factor to 0.9. All experiments are conducted on AlexNet with CIFAR-10 using
batch size 256, maintaining the same PDT hyperparameters as in previous experiments. The learning
rate is 0.1 for SGD, 0.001 for SGD with Momentum, 0.0005 for Adam. The results are shown in
Table 4.

Table 4: Impact of baseline optimizers (SGD, SGD with Momentum, and Adam) on PDT performance.
Trained on CIFAR-10 using AlexNet, batch size=256, momentum=0.9, with CosineAnnealingLR
scheduler. Note: bold numbers indicate the best performance and underlined numbers indicate the
second best performance for each column.

lr Method Final Accuracy
(mean ± std)

Best Train Loss
(mean ± std)

Time to Baseline Best
Loss (s) (mean ± std)

Runtime
Reduction (%)

0.1 SGD 0.7930 ± 0.0023 0.0002 ± 0.0000 665.27 ± 9.08 19.67PDT 0.7978 ± 0.0032 0.0002 ± 0.0000 534.41 ± 12.64

0.001 Momentum 0.6672 ± 0.0068 0.8609 ± 0.0166 752.74 ± 9.62 41.06PDT 0.7298 ± 0.0051 0.5358 ± 0.0165 443.68 ± 8.75

0.0005 Adam 0.7952 ± 0.0063 0.0001 ± 0.0000 779.13 ± 11.81 14.87PDT 0.8050 ± 0.0050 0.0002 ± 0.0000 663.28 ± 15.30

A.4 ANALYSIS OF COMPUTATIONAL EFFICIENCY

To provide a detailed analysis of PDT’s computational efficiency, we compare the computational cost
in terms of FLOPs (Floating-point operations per second) between the baseline optimizer and PDT.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Fig. 11 shows the training dynamics with respect to both epochs and total computation cost (measured
in TFLOPs). The experiments in Fig. 11 are conducted on AlexNet with CIFAR-10 using batch size
of 256, learning rate of 0.05, with Cosine annealing scheduler. While the per-epoch computation of
PDT is slightly higher (69.71 TFLOPs) than that of SGD (56.74 TFLOPs) due to the additional DMD
calculations and prediction operations, it achieves faster convergence in terms of total computation.
Specifically, PDT requires 2596.30 TFLOPs to reach the baseline’s best loss, compared to SGD’s
3404.32 TFLOPs, representing a 23.74% reduction in computational cost. Moreover, PDT achieves
better final accuracy (79.70% vs 78.75%) despite using fewer FLOPs to reach convergence.

(a)

(b)

Figure 11: Performance comparison between baseline optimization and PDT, with (a) epochs and
(b) TFLOPs as x-axis. Trained on CIFAR-10 using AlexNet, batch size=256, lr=0.05, with Cosine
Annealing scheduler.

The results also validate our design choice of keeping the past snapshot count (h) small (set to 5 in
our experiments). Even with this small h value, which minimizes the computational cost of DMD
calculations, PDT achieves substantial acceleration in terms of FLOPs.

A.5 CONVERGENCE BEHAVIOR USING COSINEANNEALINGLR SCHEDULER IN IMAGENET
TRAINING

Figure 12: A comparison of training ResNet-50 on ImageNet-1k for 200 and 300 epochs, with the
same hyperparameters configuration. Using SGD with Momentum as the optimizer, batch size=600,
lr=0.1, momentum=0.9, with CosineAnnelingLR scheduler.

In our experiments, we employed the Cosine Annealing Learning Rate Scheduler, which is designed
to gradually reduce the learning rate to near zero as training progresses. This scheduling method

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

ensures continuous parameter refinement, even in the later stages of training, albeit at a much slower
rate (He et al., 2019b). The slow improvement in test loss towards the end of training reflects ongoing
refinement rather than a lack of convergence.

To illustrate this behavior, we conducted experiments comparing the training of ResNet-50 on
ImageNet-1k for 200 epochs and 300 epochs under identical configurations, SGD with Momentum
as the optimizer, batch size=600, lr=0.1, momentum=0.9, with CosineAnnelingLR scheduler. The
results in Fig. 12 show that the final performance between these two runs is marginal. This suggests
that the model has already achieved sufficient training.

A.6 EFFECT OF NON-I.I.D. TRAINING DATA

We further investigate the robustness of PDT under some challenging training conditions. For
example, when the batch is too small for a diverse dataset like ImageNet, the weight updates could be
chaotic since each consecutive batch is no longer an identical distribution. There are two experimental
designs that can test this: 1) test PDT on a very large dataset like ImageNet-22K and 2) design a
batching scheme to intentionally violate the i.i.d. assumption of mini-batches using a smaller dataset
such as CIFAR-10. In the second design, we maintain the normal batch size, but only put samples of
the same class in the batch. We also randomize the batch sequence instead of using any fixed order so
that there is no regular training set dynamics that DMD might pick up on.

(a) Under normal i.i.d. training data distribution.

(b) Under non-i.i.d. training data distribution.

Figure 13: Performance comparison between SGD and PDT under i.i.d. and non-i.i.d. training data
distributions, with the same hyperparameters configuration. Trained on CIFAR-10 using AlexNet,
batch size=128, lr=0.05, with CosineAnnelingLR scheduler. The shaded areas represent the standard
deviation across 5 runs with different random seeds (0, 100, 200, 300, 400).

Table 5: Performance and runtime comparison between SGD and PDT under i.i.d. and non-i.i.d.
training data distributions, with the same hyperparameters configuration. Trained on CIFAR-10 using
AlexNet, batch size=128, lr=0.05, with CosineAnnelingLR scheduler.

Training Data
Distribution Method Final Accuracy

(mean ± std)
Best Train Loss
(mean ± std)

Time to Baseline Best
Loss (s) (mean ± std)

Runtime
Reduction (%)

i.i.d. SGD 0.7969 ± 0.0093 0.0039 ± 0.0017 662.48 ± 7.73 9.15PDT 0.8011 ± 0.0067 0.0016 ± 0.0017 601.86 ± 17.78

non-i.i.d. SGD 0.7067 ± 0.0062 0.1053 ± 0.0874 806.83 ± 13.15 27.90PDT 0.7159 ± 0.0103 0.0119 ± 0.0057 581.73 ± 19.34

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 13 and Table 5 show the performance and runtime comparison between SGD and PDT under
the non-i.i.d. setting using the second experimental design since non-i.i.d. is guaranteed. We preserve
the original i.i.d. sampling of the test set. All experiments are repeated with five random seeds (0,
100, 200, 300, 400) to ensure statistical significance.

We make some interesting observations. First, despite the challenging non-i.i.d. setup, PDT still
achieves better performance than SGD in terms of faster convergence without sacrificing accuracy.
However, we also observe that in the non-i.i.d. case, learning starts out much more slowly for both
SGD and PDT and both take longer to converge. Second, in the non-i.i.d. case, the variance of each
of the performance curves is generally larger than those of the i.i.d. case. This is because the model
needs to handle more abrupt transitions between different class distributions.

Figure 13 and Table 5 further demonstrate that PDT’s advantage extends beyond standard i.i.d.
training conditions, showing its robustness to challenging data sets where traditional assumptions
about data distribution are violated.

18

	Introduction
	Background and Related Work
	Methods
	Constructing the Mask
	Acceleration Schedule
	Computational Complexity Analysis

	Experiments
	Generalization Study of PDT
	Masking Strategy
	Acceleration Schedule base on Validation Loss?
	Effect of Hyperparameters

	Discussion and Conclusion
	Appendix
	Convergence Path of the Toy Example
	Algorithm Descriptions
	Effect of Training Hyperparameters
	Analysis of Computational Efficiency
	Convergence Behavior Using CosineAnnealingLR Scheduler in ImageNet Training
	Effect of Non-i.i.d. Training Data

