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Abstract

We propose a statistical inference method for de-
tecting change points in time-series of large panel
data. The change points can have a general impact
on different subsets of the panel. Our novel sta-
tistical perspective for high-dimensional change
point detection combines selective inference and
multiple testing. Our easy-to-use and computa-
tionally efficient procedure has two stages: First,
LASSO regressions for each time-series screen
a candidate set of change points. Second, we
apply post-selection inference with a novel multi-
ple testing adjustment to select the change points.
Our method controls for the panel family-wise er-
ror rate with theoretical guarantees; hence guard-
ing against p-hacking without the need for tun-
ing parameters. In extensive simulations, our
method outperforms leading benchmarks in terms
of correct selections and false discovery. We
have higher detection and make fewer Type I er-
rors, leading to over 20% higher F1 classification
scores.

1 Introduction
Time series change point detection (CPD) is increasingly
confronted with high dimensions, owing to the growing
availability of repeated observations from numerous series.
In a variety of domains such as industrial automation sys-
tems, personal health trackers, and financial markets, we
consistently monitor a vast array of metrics over time to pin-
point unusual events that could potentially induce structural
breaks in the outcome variables of interest. To effectively
detect an unknown number of change points across many

1Department of Management Science and Engineering, Stan-
ford University, Stanford CA, USA 2Institute for Computa-
tional and Mathematical Engineering, Stanford University, Stan-
ford CA, USA. Correspondence to: Jiacheng Zou <jiacheng-
zou@stanford.edu>.

Accepted to ICML workshop on Structured Probabilistic Inference
Generative Modeling, Honolulu, Hawaii, USA. 2023. Copyright
2023 by the author(s).

time series, CPD algorithms must avoid spurious detections
and “p-hacking” documented in (Brodeur et al., 2020), while
trying to identify as many change points as possible. In this
paper, we present a theoretical framework that balances this
trade-off.

Our approach introduces theoretical novelty by integrating
multiple testing with post-selection inference, creating a
two-stage method that, to the best of our knowledge, repre-
sents a new approach to CPD problem. In the first stage, we
employ LASSO screening to reduce the set of change points
under consideration. In the second stage, we design Panel
Multiple Testing to provide a theoretical control on the
Family-Wise Error Rate (FWER), which acts as a stopping
criterion and avoids false discovery. This attribute also lends
full interpretability to our stopping criterion. The Panel Mul-
tiple Testing yields different thresholds for different poten-
tial change points by combining evidence cross-sectionally
in a data-driven fashion.

Our approach outperforms leading benchmarks by accu-
rately identifying a larger number of change points while
making fewer false discoveries in simulations. In terms
of performance, our method achieves a higher F1 score,
demonstrating its superior balance between Type I and Type
II errors. This advantage is evident even in scenarios with
low Signal-to-Noise Ratio (SNR) and when structural breaks

Table 1: Performance comparison

Method # Selected # Correct F1

Panel Multiple Testing 11.4 10.0 0.94

Union rDP 50.5 9.9 0.33
Majority Voting rDP 4.9 4.8 0.64
Panel rDP 1.5 1.4 0.24

SBS 3.8 3.4 0.49
DCBS 6.3 5.6 0.69

This table compares the accuracy of our method with leading benchmarks. Row 1:
our method, Panel Multiple Testing. Rows 2 to 6: leading benchmark methods in
the multiple CPD literature. The setting involves 10 true shocks dispersed among
300 time steps. The metrics are averaged over 100 simulations with the FWER
set to 0.05. Breaks are drawn from a piece-wise constant jump process of similar
magnitude, with an expected SNR of approximately 0.5 and all units might observe
breaks (q0 = 1). More comprehensive details about the methods can be found in
Section 3 and Table 3. Further specifics of the simulation are available in Section 4.
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affect random subsets of the cross-section. Table 1 provides
a preview of these results.

The outline of the paper is as follows. Section 2 describes
the first stage of our procedure that uses LASSO to propose
a heterogeneous set of change points across the panel. Sec-
tion 3 completes our procedure by introducing the second
stage test that takes LASSO screened periods as input, and
selects a subset of change points to jointly explain the en-
tire panel as output. In section 4, we examine our method’s
performance through an extensive series of simulations. Sec-
tion 5 concludes. Proof of the multiple testing procedure
is included in Appendix. The complete two-stage proce-
dure is described in Procedure 1. In addition, Appendix B.5
discusses the computing efficiency of our method.

Related literature CPD is a very rich body of literature
that is also fast growing. For a comprehensive review,
(Aminikhanghahi & Cook, 2017) surveys the literature, and
(Truong et al., 2020)’s survey focuses on the offline setting.
Here we provide a limited review of works that are either
closest to our setting, or provide a contrast that clarifies our
scope. We consider that in many practical use cases, CPD is
to select mean change points as argued by (Carlstein et al.,
1994). Our work is most closely related to (Levy-Leduc
& Harchaoui, 2007) and (Harchaoui & Lévy-Leduc, 2010),
as we both use LASSO to propose a sparse candidate set
of change points, but our work is optimized for multiple
series. Moreover, our method as an inference procedure
with a stopping rule tied to Type I error budget focuses
on interpretation, while (Levy-Leduc & Harchaoui, 2007)
follows a long line of literature going back to (Bellman,
1961) that uses Dynamic Programming (DP) on reduced
error rate to stop admission and focuses on goodness-of-fit.
(Xie et al., 2012) and (Cho & Fryzlewicz, 2015) propose
multiple sparse CPD in high-dimensional time series with
consistency, while we focus on structural breaks in the mean.
We focus on offline CPD, as opposed to online streaming
setting (Chen et al., 2022). In our simulation studies, we
consider three distinct heuristics that adapt (Levy-Leduc &
Harchaoui, 2007) to the panel setting to draw performance
comparison, as well as directly comparing our method with
(Cho & Fryzlewicz, 2015) and (Cho, 2016).

2 Regression model and LASSO screening

2.1 Outcome dynamics

Fundamentally, CPD is challenging because there are as
many candidates for the change points as there are num-
ber of time periods. We consider it an even more chal-
lenging setup where structural breaks can occur for many
units in a general pattern. We begin by describing the high-
dimensional data-generating process (DGP).

Outcome Yit is observed by ith unit at t time. We denote

a change point at time t as βit. In other words, if βit ̸= 0,
there is a break in the mean at time t. There are N units
and T periods in total. When written as a vector, βi ∈ RT

has many entries that are zero and only structural breaks are
non-zero. Similar to (Levy-Leduc & Harchaoui, 2007), we
construct the accumulator matrix X:

X =


1 0 · · · 0
1 1 · · · 0
...

...
...

1 1 · · · 1

 ∈ RT×T ,

with Xt = [1, · · · , 1︸ ︷︷ ︸
t

, 0, · · · , 0︸ ︷︷ ︸
T−t

]⊤.

(1)

With the notations above, we assume a DGP that admits an
intuitive decomposition of a parametric dynamic and a jump
dynamic:

ASSUMPTION 1 (Data generating process). (a) Decom-
position: The observed outcomes Yit is composed of a mean-
shifting process driven by Zt, mean structural breaks βi,
and a noise process εit:

Yit = Z⊤
t γi +X⊤

t βi + εit (2)

(b) Normal noise: The noise εit ∼ N(0, σ2).
(c) Independence: Exogenous Zt, breaks βi and noise εit
are independent.

In other words, the parametric mean-shifting process can be
modeled by observed variables {Zt}t, and different units
are driven by different weights {γi}i. The mean structural
breaks explain all other changes of the first moment, and the
residuals are white noise. It is worth noting that Assumption
1(b) does not require independence across i or t. The sample
paths are visualized in Figure 1.

Figure 1: Example of multiple time series
with multiple change points

As an illustration, we show 2 series. Red vertical lines: actual
change points.

We focus on the case where shocks are rare. Other than
a sparsity assumption, the change points can be extremely
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general. For example, any shock could randomly impact
q0 · N units – when q0 = 1, all units are shocked; when
q0 = 0.5, only 50% of the units are shocked. We also allow
the shock magnitude to differ across the units, i,e. βit ̸= βjt

when i ̸= j and βit ̸= 0, βjt ̸= 0. The condition of rare
change points is formalized in the following assumption:

ASSUMPTION 2 (Sparse CPD). Let s = {t : βit ̸=
0,∀i}. Then |s| = O(1) and |s| ≪ min{T,N}.

We have no knowledge of the number of change points s a
priori, and aim at optimally recovering s-multiple change
points. This concludes the introduction of our setting, and
we next discuss how to use LASSO first to reduce the di-
mensionality of the problem.

2.2 LASSO screening

Naively, there are T possible change points, so naturally we
are interested in reducing the number of candidate change
points in our consideration set. First, by Assumption 1, we
run OLS for ith unit on Z to project out the mean-shifting
process explained by auxiliary variables. Then to reduce the
dimensionality of change points under consideration, we
fit unit-level LASSO on the residual for each time-series.
Specifically, we apply ℓ1 penalty to estimate breaks β:

β̂i = argmin
β

1

2T
∥Yi −Zγ̂i −Xβ∥22 + λ∥β∥1,

where γ̂i = argmin
γ

∥Yi −Zγ∥22.
(3)

LASSO is instrumental in reducing the number of candi-
dates by leveraging sparsity. After the LASSO fit, the active
variables of β̂i correspond to time periods with atypical
means, serving as a lower-dimensional set of time periods
for consideration in CPD. This screening process is also
utilized in (Levy-Leduc & Harchaoui, 2007) for a single
series, but to manage the problem across all series, we need
to introduce a new formalism for cross-sectional analysis.

We provide the formalism by writing down a joint hypothe-
sis. The most intuitive hypothesis would be to consider all
LASSO active times for any unit, which is exactly the “data-
driven hypothesis” HD that is the combination of LASSO
active sets, as in HD =

⋂
i,t:β̂it ̸=0{βit = 0}. We provide

more details and examples on HD in Appendix B.1.

We conceptualize the joint hypothesis HD as follows: if
we can reject any βit = 0 within HD, we then regard t as
a chosen change point. This strategy readily accounts for
scenarios where some of the N units may not record the
shocks. If we can convincingly reject any of these βit = 0
instances while they form part of HD, we have effectively
selected t as change point.

3 Panel joint selection
We now discuss the key multiple testing steps of our method.
First, let us review the formalism of data-driven tests and
the appropriate metric of false discovery that we are control-
ling for under the data-driven hypothesis. Specifically, we
are only discussing test procedures that test on HD, which
is a data-driven hypothesis. Since we are only conducting
data-driven tests, we also require definitions 1 and 2, which
deviate from the classical concepts that date back to (Bonfer-
roni, 1935). Suppose a data-driven testing procedure rejects
the hypothesis Ĥ , and the true non-null hypotheses within
HD are H̄ , then the number of false selections under HD is
defined below.
DEFINITION 1 (False selections). Number of false selec-
tions of a data-driven test is V (Ĥ, H̄,HD), which is the
cardinality of the set of falsely-selected nulls {Hij : Hij ∈
Ĥ,Hij /∈ H̄,Hij ∈ HD}.

Note that by their respective definitions, we must have Ĥ ⊆
HD since we never test hypotheses that are not in HD. This
formalizes the screening procedure carried out by (Levy-
Leduc & Harchaoui, 2007). We write V (Ĥ, H̄,HD) as V
for brevity when there is no ambiguity. We also define the
classical false-discovery metric of FWER, but in the context
of data-driven hypotheses:
DEFINITION 2 (FWER). Family-wise Error Rate
(FWER) under the HD is PHD

(V ≥ 1).

For instance, when we state the selection procedure stops at
FWER control rate α, which is commonly set to 5%, we are
referring to the probability of making any false discovery
within HD as less than 5%.

In our methodology, we utilize p-values derived from
LASSO. We establish an assumption of p-value validity,
a concept broadly used in multiple testing literature, such
as in (Ramdas et al., 2019) and (Vovk et al., 2022). Only
p-values that meet this validity criterion should be given
as input for our procedure. For our CPD purpose, it is
sufficient to use valid post-LASSO p-values, calculated us-
ing methods illustrated in (Tian & Taylor, 2018). We will
delve into more detail after introducing Assumption 3. Our
primary interest lies in selecting change points via panel
multiple testing, hence we encapsulate the detailed discus-
sions on post-LASSO inference by outlining the assumed
characteristics of valid p-values below.
ASSUMPTION 3 (Valid p-values). Individual p-value pit
satisfies PHD

(pit ≤ x) ≤ x, for x ∈ [0, 1].

In the most straightforward case of a single outcome and
low-dimensional Ordinary Least Square regression, the tra-
ditional p-value derived from t-statistic would adhere to
Assumption 3 and be a valid p-value. This represents the
exact satisfaction of the inequality in the assumption, as it
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means PH0
(p ≤ x) = x because p follows a Uniform[0,1]

under the point null hypothesis, H0. In the realm of high-
dimensional statistics, if there is finite-sample bound on
the convergence of point-wise pivotal statistic, such as the
post-selection p-value for LASSO as demonstrated in The-
orem 9 in (Tian & Taylor, 2018), it would likewise fulfill
Assumption 3. We directly employ (Tian & Taylor, 2018)
to generate post-LASSO p-values after executing Equation
(3), hence our pit values comply with Assumption 3.

We propose using the following two-stage procedure to
select change points in Y controlling for Z:

PROCEDURE 1. Change point selection with FWER

1: Input: Series Y , auxiliary variables Z,
FWER target α.

2: for i = 1 to N do
3: Run LASSO regression (3) with Yi and Z to acquire

β̂i.
4: For β̂it ̸= 0, use (Tian & Taylor, 2018) to retrieve

p-values: pit.
5: end for
6: for t = 1 to T do
7: if β̂it ̸= 0 for any i then
8: Set pt := smallest pit for ∀i.
9: Calculate simultaneity count Nt.

10: else
11: Move onto next t.
12: end if
13: end for
14: Calculate panel cohesion coefficient ρ.
15: Sort ρ−1 pt

Nt
and select Ĥ = {t : ρ−1 pt

Nt
≤ α} as

change points.
16: Output: Selected times Ĥ as change points.

In Figure 2, we provide a visualization of the second stage.
In addition, we provide a line-by-line explanation of our

Figure 2: Second Stage Multiple Testing

Red vertical lines: actual change points. Top subplot – Black
stars: change points selected by our Panel Multiple Testing
method. Bottom subplot – LASSO screened change point candi-
dates; different colors correspond to different units.

procedure: lines 2∼5 outline the first stage of the process,
where the LASSO screening is applied to each of the N se-
ries. Lines 6∼15 constitute the second stage and implement
our selection method by scanning across time periods. Sev-
eral quantities come into play within our selection method:
Nt acts as a local parameter and a simultaneity count that
captures how active tth time period is active across all LAS-
SOs, subject to a novel panel localization procedure to re-
duce over-counting and enhance power (see more in Ap-
pendix B.2). ρ is a panel parameter and is interpreted as the
panel cohesion coefficient, which is a scalar normalization
term between [0,1] that reflects the potential disparity in the
active and non-active sections of the panel. More detailed
discussions and interpretations of these relevant quantities
are deferred to Appendix B.2.

Our selection step, as described in line 15, is a panel-
modified Bonferroni argument with its proof also an al-
gebraic union bound, paralleling the original Bonferroni
idea. Thanks to the union bound argument, we allow the
pit’s to be arbitrarily dependent, i.e. we allow complex
cross-unit dependency.

The rejection procedure picks as many change points as it
can, while FWER is controlled, as formalized in the follow-
ing theorem. Proof is detailed in Appendix A.

THEOREM 1. With Assumptions 1, 2 and 3, Procedure 1
selects the most likely change points with FWER≤ α under
null hypothesis HD.

4 Simulation
In this section, we perform extensive simulations in chal-
lenging settings of many units and weak signals as measured
by partial impact rate q0 and signal-to-noise ratio (SNR).
We then compare our method against leading benchmarks.

4.1 Setup

Basics Throughout the experiments, we fix T = 300 time
periods, N = 200 series, and s = 10 true structural breaks.
Simulations are repeated 100 times to produce averaged
metrics. We adopt an approach similar to the one outlined
in (Cho & Fryzlewicz, 2015)’s M4 to generate breaks via
a piece-wise constant mean jump process. This method is
described in detail in Appendix B.4.

Settings We consider both q0 = 1 and q0 = 0.5. The latter
case is that for each change point, only 50% of the N series
were impacted, as reported in Table 1. Note q0 = 0.5 means
βit ̸= 0 only appears in half of the cross-section. We also
consider expected SNR varying from 0.3 to 1.5, as later
reported in Figure 3.

Reported Metrics We report the number of selections, the
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Figure 3: False vs Correct Selections

This figure compares the correct and falce rejection of our method with the bench-
marks. Dots represent our method (Panel Multiple Tetsting). Other shapes represent
benchmarks (Union RDP and DCBS). Colors indicate SNR. As greater FWER
is allowed, our model has more correct selections and a small increase of false
selections. Breaks generated from Equation (15), where SNR 0.3, 0.7 and 1.1
correspond to a = 2, 5, 10, with q0 = 1.

Table 2: Performance comparison: Half units impacted
(q0 = 0.5)

Method # Selected # Correct F1

Panel Multiple Testing 12.0 10.0 0.91

Union rDP 78.7 10.0 0.23
Majority Voting rDP 4.9 4.7 0.63
Panel rDP 2.4 2.3 0.36

SBS 3.8 3.0 0.43
DCBS 7.3 6.0 0.69

This table compares the accuracy of our method with leading benchmarks. Row 1:
our method, Panel Multiple Testing. Rows 2 to 6: leading benchmark methods in
the multiple CPD literature. The setting involves 10 true shocks dispersed among
300 time steps. The metrics are averaged over 100 simulations with the FWER
set to 0.05. Breaks are drawn from a piece-wise constant jump process of similar
magnitude, with an expected SNR of approximately 0.7.

number of correct selections and F1 score1 on selections of
change points, averaged over 100 simulations.

4.2 Results

We highlight that our method has the best results measured
in F1 scores, and selects most change points while making
fewer Type I errors, as can be seen in both Table 1 where
q0 = 1 and Table 2 for q0 = 0.5.

Our method provides better trade-offs in various SNR
regimes, as presented in Figure 3. That is, our method
has fewer False Selections when compared to methods that

1The F1 score is F1 = 2
Precision−1+Recall−1 where Precision =

TP
TP+FP ; Recall = TP

TP+FN .

make a similarly high number of Correct Selections such
as Union RDP, and at the same time our method has more
Correct Selections when compared to methods that make a
similarly small number of False Selections such as DCBS.
Each SNR setting is represented as a different color in Figure
3, and our method maintains the performance advantages
across SNRs.

5 Conclusion
We have introduced a novel statistical perspective to the
field of high-dimensional CDP problems, which combines
post-selection inference and multiple testing, as opposed
to existing algorithmic methods. In addition, we provide a
formal theory for controlling panel family-wise error rate
(FWER) with a theoretical guarantee, guarding against p-
hacking. Our method shows superior performance in com-
prehensive simulations, in terms of higher detection and
fewer Type I errors.

Reproducibility statement
Our code for the method and simulations are available on
GitHub.

https://github.com/yfan7/panel_CPD
https://github.com/yfan7/panel_CPD
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Appendix

A Proof for Theorem 1
Proof: We show how to count false discoveries under the data-driven null hypothesis conditional on the selection and
then evaluate the probability of at least one false discovery under HD.2 By design of HD, we only need to consider false
selections for the covariates that are active for some units. For Kt ̸= ∅, we denote by t ∈ HM that the tth time period
is tested in HM . We also use M(i) to denote the LASSO selection event for nth unit and M to denote the joint LASSO
selection event of all N units.

First, we separate the data-driven hypothesis into individual components. Within HD, we consider all the hypotheses
associated with the tth covariate denoted as HD,t. The hypothesis HD,t represents an intermediate level of hypotheses
between the panel-level HD and unit-covariate individual null H(i)

0,t |M(i). When written as a set intersection, HD,t equals⋂
n∈Kt

H
(i)
0,t |
⋂

n∈Kt
M(i), that is, HD,t is joint over all the units where the tth covariate is active.

Second, we count the number of false discoveries. Under the null hypothesis HD, we denote the number of false discoveries
in HD,t as Vt. Hence, the total number of false discoveries is the sum of the false discoveries of all covariates given by

PHD
(V ≥ 1|M) = PHD

( ∑
t∈HM

Vt ≥ 1|
⋂

n∈Kt

M(i)

)
. (4)

Each Vt can be further broken down into the false discovery against the unit-covariate null hypotheses. Each individual
potential false discovery is a random event, and the sum of false discoveries greater or equal to 1 corresponds to the union of
these random events. The union of these random events has the conditional distribution

PHD

( ∑
t∈HM

Vt ≥ 1|
⋂

n∈Kt

M(i)

)
=PHD

( ⋃
t∈HM

{ ⋃
n∈Ki

{
Rejection made based on pit|

⋂
n∈Kt

M(i)

}})

=PHD

( ⋃
t∈HM

{ ⋃
n∈Ki

{
pit ≤ ρ

γ

Nt
|
⋂

n∈Kt

M(i)

}})
. (5)

The second line simply follows from the design of our rejection procedure. Boole’s inequality implies the following union
bound:

PHD

( ⋃
t∈HM

{ ⋃
n∈Ki

{
pit ≤ ρ

γ

Nt
|
⋂

n∈Kt

M(i)

}})
≤
∑

t∈HM

∑
n∈Kt

P

(
pit ≤ ρ

γ

Nt
|
⋂

n∈Kt

M(i)

)
. (6)

Third, we take advantage of Assumption 3. Under Assumption 3, it holds that PHD
(pit ≤ ρ γ

Nt
) ≤ ρ γ

Nt
, which appears in

the right-hand side of (6). Thus, combining equations (4)∼(6) yields:

PHD
(V ≥ 1|M) ≤

∑
t∈HM

∑
n∈Kt

ρ
γ

Nt
= γ · ρ ·

∑
t∈HM

1

Nt

∑
n∈Kt

1 = γ · ρ ·
∑

t∈HM

|Kt|
Nt

= γ. (7)

The second-to-last equation uses and also explains the definition of ρ. This completes the proof for FWER control.

In addition, let the time periods be sorted ascendingly by ρ−1 pt

Nt
into K = [T ′

1, T
′
2, ..., T ] such that pKl

NKl
≤

pK′
l

NK′
l

if l ≤ l′.

Observe that for every α, our Procedure 1 selects all t up to ρ−1 pt

Nt
≤ α. Thus, for each FWER threshold α, we uniquely

select the top subset of K as change points. [QED]
2This proof is closely related to the arguments in proof of Theorem 2 and Corollary 1 of (Pelger & Zou, 2022) for unordered panel

variable selection.
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B Technical details

B.1 Data-driven hypotheses HD

We illustrate the concept of a data-driven hypothesis with a simple example, which we will use throughout this section. For
simplicity, we assume that we have T = 4 periods and want to explain N = 6 cross-sectional units. In the first stage, we
have estimated a sparse model and have obtained the post-selection valid p-values for each of the N units. We collect the
fitted sparse estimator β̂i for the nth unit in the matrix β̂. Note, that this matrix has “holes” due to the sparsity for each β̂i.
Figure 4(a) illustrates β̂ for this example.

Figure 4: Illustrative example of data-driven selection

Matrix β̂ Matrix P of p-values

This figure illustrates in a simple example the data-driven selection of a linear sparse model. In the first stage, we have estimated a
regularized sparse linear model for each of the N = 6 units with T = 4 time periods. Each row represents the selected time periods
with their estimated coefficients and p-values. The columns represent the T = 4 time periods. The grey shaded boxes represent the
LASSO screened set, while the white boxes indicate the inactive time periods. The numbers are purely for demonstrative purposes.

Similarly, we collect the corresponding p-values in the matrix P . For the nth unit, we only have p-values for those periods
that are active in the nth linear sparse model. Thus, Figure 4(b) also has white boxes showing the same pattern of unavailable
p-values due to the conditioning on the output of the linear sparse model. These holes can appear at different positions for
each unit, which makes this problem non-trivial. This non-trivial shape of either subplot (a) or (b) is completely data-driven
and a consequence of linear sparse model selection. We show that the hypothesis should be formed around these non-trivial
shapes as well, which is why we name it the data-driven hypothesis family.

We want to test which potential change points are jointly insignificant in the full panel. The data-driven hypothesis only
tests the significance of the potential change points that were included in the selection, and hence can drastically reduce
the number of hypotheses. However, given the non-trivial shape of the active set, the multiple testing adjustment for the
data-driven hypothesis is more challenging.

Before formally defining the families of the hypothesis, we illustrate them in our running example. The data-agnostic
hypothesis HA for explaining the full panel takes the following form:

HA = {HA0,1 , HA0,2 , HA0,3 , HA0,4}
= {β11 =β12 = β13 = β14 = β15 = β16 = 0,

β21 =β22 = β23 = β24 = β25 = β26 = 0,

β31 =β32 = β33 = β34 = β35 = β36 = 0,

β41 =β42 = β43 = β44 = β45 = β46 = 0}

(8)
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The data-driven hypothesis HD only includes the active set and hence equals

HD = {β12 =0,

β21 =β23 = β25 = β26 = 0,

β31 =β32 = β33 = β34 = β35 = β36 = 0,

β42 =β44 = β45}

(9)

Clearly, HA has a larger cardinality of |HA| = 24 > |HD| = 14. This holds in general, unless the first stage selects all
periods for each unit, in which case the two hypotheses coincide.

Formally, the data-agnostic family of hypotheses is defined as follows:

DEFINITION 3. Data-agnostic family
The data-agnostic family of hypotheses is

HA = {HA0,t
|t ∈ [T ]}, where HA0,t

=
⋂

i∈[N ]

{βit = 0}. (10)

It is evident that HA does not need any model output or exploratory analysis, so it is indeed data-agnostic.

As soon as we use a sparsity-constrained model that has censoring capabilities, we no longer observe (Y ,X) from its
data-generating process. Consequently, unless our hypotheses depend on how we built the model, or equivalently on how
the data was censored, the data-agnostic hypotheses forgo power without any benefit in false discovery control. Therefore,
we formulate the hypothesis on the t time period if it is in the active set of the nth unit. Conditional on observing the model
output, there is no inference statement to be made about LASSO inactive time periods, because its estimator is censored by
the model.

We denote as Kt the set of units for which the t time period is active. We define the cross-sectional hypothesis for the t time
period as:

H0,t =
⋂
i∈Kt

{βit = 0}
∣∣∣∣M, ∀t : Kt ̸= ∅. (11)

By combining all periods {t : Kt ̸= ∅} that show up at least once in one of the active sets of our sparse linear estimators, we
arrive at a data-driven hypothesis associated with our panel. This is defined as follows:

DEFINITION 4. Data-driven family
The data-driven family of hypotheses conditional on M is

HD = {H0,t|t : Kt ̸= ∅}. (12)

This demonstrates the non-trivial nature of writing down a hypothesis in the high-dimensional panel: we can only collect Kt

- the set of units for which the t time period is active - after seeing the sparse selection estimation result.

B.2 The panel localization count and other quantities in Algorithm 1

Similar to the conventional definition, we simply count the number of Type I false rejections V , and define FWER as the
probability of making at least one false rejection. Importantly, the FWER accounts for the fact that we might repeatedly test
a specific covariate for multiple cross-sectional units rather than just for one unit. Our contribution to FWER control in the
panel setting is thus to take into consideration both the multiplicities in units and periods when we deal with the “matrix” of
p-values P . To achieve this goal, we propose a new simultaneity account for the t time period, calculated as

Nt =
∑
i∈Kt

|Mi| (13)

Figures 5∼5 illustrate the simultaneity counting for our running example with N = 6 units and T = 4 periods. The blue
boxes represent the active set for a specific covariate. The yellow boxes indicate the “co-active” periods, which have to
be accounted for in a multiple testing adjustment. In the case of the first time period as potential change point t = 1, only
the second unit has selected this time period. This second unit has also selected time periods t = 3 and t = 4 as potential
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change points, which are jointly tested with the first period. Hence, they are “co-active”, and the simultaneity count equals
N1 = 3. Intuitively, Nt represents all relevant comparisons for the t time period because it counts how many periods are
active with the t time period in the regressions. Hence, Nt quantifies the number of “multiple tests” for each covariate.

In Figure 5, we see that K1 = {2} for the 1st covariate, indicated by the blue box, because it is only active in the second
unit’s regression. The multiple testing adjustment needs to consider all yellow boxes, and N1 = 3 is thus the total count
of 1 blue and 2 yellow boxes. Similarly, for the second covariate, K2 = {1, 3, 5, 6}, so we shade boxes yellow for the
2nd, 3rd and 5th units and obtain N2 = 9. We can already see that our design of simultaneity counts takes all relevant
pairwise comparisons into consideration, but avoids counting the white boxes - which would cause overcounting and result
in over-conservatism.

Our multiplicity counting is a generalization of the classical Bonferroni adjustment for multiple testing. A conventional
Bonferroni method for the data-agnostic hypothesis HA has a simultaneity count of |HA| = N · T = 24 for testing each
covariate. A direct application of a vanilla Bonferroni method to the panel of all selected units and the data-driven hypothesis
HD, would use a simultaneity count of |HD| = 14 for testing each covariate. Our proposed multiplicity counting is a
refinement that leverages the structure of the problem, and takes the heterogeneity of the active sets for each covariate into
account. Our count has only N1 = 3, N2 = 9 and N4 = 8 for the periods t = 1, 2 and 4. Only for time period as potential
change point t = 3 is the simultaneity count the same as a vanilla Bonferroni count applied to HD, i.e. N3 = 14.

Figure 5: Simultaneity counts Nt in the illustrative example

N1 = 3 N2 = 9 N3 = 14 N4 = 8

This figure shows the simultaneity counts Nt as an illustrative example. The subplots represent the simultaneity counts for the T = 4
time periods. The blue boxes indicate the active set, while the yellow boxes indicate the “co-active” time periods. The simultaneity
counts are the sum of yellow and blue boxes.

In addition to the simultaneity count of each covariate, we need an additional “global” metric for our testing procedure. We
define a panel cohesion coefficient ρ as a scalar that measures how sparse or de-centralized the proposed hypotheses family
is:

ρ =

 ∑
1≤t≤T :Kt ̸=∅

|Kt|
Nt

−1

(14)

The panel cohesion coefficient ρ is conditional on the data-driven selection of the overall panel. It is straightforward to
compute once we observe the sparse selection of the panel. This coefficient takes values between T−1 and 1, where larger
values of ρ imply that the active set is more dependent on the cross-section. This can be interpreted as the panel Y having a
stronger dependency due to the covariates X . Intuitively, in the extreme case when ρ = T−1, the panel can be separated into
T smaller problems, each containing a subset of response units explained by only one period. Thus the panel would be very
incohesive, and could be studied with T separate tests. In the other extreme, if ρ approaches 1, the first-stage models include
the same active covariates for all units. We consider this a very cohesive panel. If ρ is between these bounds, the panel is
cohesive in a non-trivial way such that some units can be explained by some covariates, and there is no clear separation of
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the panel into independent subproblems.

Figure 6 illustrates the panel cohesion coefficient with examples. The subplots show four active sets that are different from
our running example. The left subplot shows the extreme case of ρ = T−1, where the panel is the least cohesive. The right
subplot illustrates the other extreme for ρ = 1, where the panel is the most cohesive. The middle subplots correspond to the
complex cases of a medium cohesion coefficient.

Figure 6: Illustration of the cohesion coefficient

ρ = T−1 = 0.25 ρ = 0.44 ρ = 0.76 ρ = 1

This figure illustrate the cohesion coefficient ρ in four examples. It shows the smallest, largest, and in-between cases of ρ. The columns
represent the T = 4 time periods.The blue boxes indicate the active sets for each panel.

B.3 Benchmarks methods

We evaluate our method in comparison to 5 established benchmark techniques widely employed for CPD. These benchmarks
encapsulate two principal categories of CPD algorithms: Dynamic Programming (DP) and sparse binary segmentation/split-
ting. For a tabulated summary of all the benchmark methods assessed in our study, please refer to Table 3.

Table 3: Summary of selection methods

Name Abbreviation Selection Multiple Testing Stopping rule

Panel Multiple Testing PMT MT FWER control pPoSI < ργ
Ni

Panel RDP P-RDP RDP None Depends on hyper-param. Ji’s
Majority Voting RDP MV-RDP RDP None Depends on maxi |Mi|
Union RDP U-RDP RDP None Depends on hyper-param. Ji’s
DCBS DCBS Tree None Depends on hyper-param.
SBS SBS Tree None Depends on hyper-param.

This table compares the different methods to estimate a set of covariates from a large dimensional panel. For each method, we list the
name and abbreviation. The selection refers to the regression approach for each univariate time-series. The hypothesis is either agnostic
or data-driven given the selected subset of covariates. The multiple testing adjustment includes no adjustment, a conventional Bonferroni
adjustment and our novel simultaneity count for a data-driven hypothesis. The rejection rules combine the valid p-values and multiple
testing adjustment. pPoSI is the debiased post-selection adjusted p-value based on (Tian & Taylor, 2018).

Firstly, we use simple heuristics to adapt (Levy-Leduc & Harchaoui, 2007) to the panel setting. There are three such
heuristics that we propose, as enumerated below:

1. Panel RDP (P-RDP): We choose the change points based on panel level MSRE decrease.
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2. Majority voting RDP (MV RDP): Here we consider a heuristic that is also a two-stage procedure that has a LASSO
first stage, and adapts RDP to the panel setting by allowing an adaptive comparison of unit-level DP results in the
second stage.
Stage 1: Proposed change points are the LASSO active points from individual series. For ith series, the proposing
set Qi = {Qi1, ..., Qi,|Qi|} is potential change points ranked by rDP from most likely to least likely with decreasing
reduction of MSRE, i.e. Qi1 decreases MSRE more than Qi2 for Yi, so on and so forth.
Stage 2: On the panel, max number of change points is kmax = maxi |Qi|. For k ≤ kmax, all series use simple
majority voting to decide which t is the selected change point3. The selected change points tMVRDP are thus the
voting results of all possible k positions. In math, this is written as: tMVRDP = {tMVRDP

k : k ≤ kmax} where
tMVRDP
k = argmaxt

∑
1≤i≤N I(t = Qik).

3. Union RDP: We simply union the individual series selection results, which are acquired from running rDP as described
in (Levy-Leduc & Harchaoui, 2007).

It’s worth noting that MV RDP and Union RDP both employ LASSO screening, making their comparison to our methodology
a more direct assessment of the choice between using DP in the second stage versus our multiple testing approach for CPD.

Secondly, we include two tree-structured methods as benchmarks: Sparsified Binary Segmentation (SBS) as presented by
(Cho & Fryzlewicz, 2015), and Double CUSUM Binary Segmentation (DCBS) from (Cho, 2016). Both of these are greedy
search strategies intended for the detection of an unknown quantity of change points across multiple series.

B.4 Sampling of structural breaks in simulation

We sample the 10 structural breaks randomly from the 300 periods to be H̄Simulation, and randomly choose q0 ·N units at
each change point t ∈ H̄Simulation to simulate the breaks.

We adopt an approach similar to the one outlined in (Cho & Fryzlewicz, 2015)’s M4 to generate breaks via a piece-wise
constant mean jump process. This method is described in details in Appendix. This method creates bounded variance when
T is large, and is compatible with our DPG as delineated in 1. In particular, let the true change points sampled be denoted as
H̄Simulation = t1, ..., ts. The breaks are generated by initially constructing a piece-wise constant mean jump process:

bit =



0, 0 ≤ t < t1

ui1, t1 ≤ t < t2
...
ui,s−1, ts−1 ≤ t < ts

uis, ts ≤ t < T

(15)

Each uit is drawn from a uniform distribution Unif[−a, a], where we can adjust a to create different SNR settings. We then
define the breaks as βit = bit − bi,t−1, and the magnitude of breaks are |βit| when t is a change point. Otherwise, βit = 0

indicates no break. We define the expected SNR = E[ |βi|2
|εi|2 ].

B.5 Computational cost of the selection method

We now turn to the analysis of the computational efficiency of our selection method (lines 6∼15) as laid out in Procedure 1.
The first calculations relevant to selection are the counting processes of Nt in lines 8 and 9, which involves O(

∑
n |Mn|)

calculations in total. Suppose the true number of change points is s = O(1), then by LASSO’s selection property in large T
as discussed in (Harchaoui & Lévy-Leduc, 2010), we have O(N) for lines 8 and 9 as total for all t. Secondly, the panel
cohesion coefficient ρ calculation of line 14 is O(T ). Lastly, the sorting and rejection in line 15 is O(T log T ). In conclusion,
our selection takes O(max{T log T,N}).

However, it is worth pointing out that the above calculation treats the acquisition of p-values as outside of the selection
method since they are calculated in the first-stage of the procedure. To calculate p-value post-LASSO via methods of (Tian
& Taylor, 2018) is fundamentally about calculating the cumulative distribution function of truncated Gaussians, for which

3Uniform random tie-breaking is used. If ith series does not have Qik, it does not participate in the voting.
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there are many efficient implementations such as (Kotecha & Djuric, 1999) and (Pakman & Paninski, 2014). We consider
the discussion of its computational efficiency outside the scope of our algorithm.


