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Abstract001

Robust content moderation classifiers are es-002
sential for the safety of Generative AI systems.003
In this task, differences between safe and un-004
safe inputs are often extremely subtle, making005
it difficult for classifiers (and indeed, even hu-006
mans) to properly distinguish violating vs. be-007
nign samples without context or explanation.008
Scaling risk discovery and mitigation through009
continuous model fine-tuning is also slow, chal-010
lenging and costly, preventing developers from011
being able to respond quickly and effectively012
to emergent harms. We propose a Classifica-013
tion approach employing Retrieval-Augmented014
Generation (Class-RAG). Class-RAG extends015
the capability of its base LLM through access016
to a retrieval library which can be dynamically017
updated to enable semantic hotfixing for im-018
mediate, flexible risk mitigation. Compared019
to model fine-tuning, Class-RAG demonstrates020
flexibility and transparency in decision-making,021
outperforms on classification and is more ro-022
bust against adversarial attack, as evidenced023
by empirical studies. Our findings also sug-024
gest that Class-RAG performance scales with025
retrieval library size, indicating that increas-026
ing the library size is a viable and low-cost027
approach to improve content moderation.028

1 Introduction029

Recent advances in Generative AI technology030

have enabled new generations of product appli-031

cations, such as text generation (OpenAI, 2023;032

Anthropic, 2023; Dubey, 2024), text-to-image gen-033

eration (Ramesh et al., 2021; Dai et al., 2023; Rom-034

bach et al., 2022), and text-to-video generation035

(Meta, 2024). Consequently, the pace of model036

development must be matched by the development037

of safety systems which are properly equipped to038

mitigate novel harms, ensuring the system’s over-039

all integrity and preventing the use of Generative040

AI products from being exploited by bad actors to041

disseminate misinformation, glorify violence, and042

proliferate sexual content (Foundation, 2023).043

To achieve this goal, traditional model fine- 044

tuning approaches are often employed, with clas- 045

sifiers learning patterns from labeled content mod- 046

eration text data leveraged as guardrails (OpenAI, 047

2023). However, there are many challenges associ- 048

ated with automating content moderation with fine- 049

tuning. First, content moderation is a highly subjec- 050

tive task, meaning that inter-annotator agreement 051

in labeled data is low, due to different interpreta- 052

tions of policy guidelines, especially on borderline 053

cases (Markov et al., 2023). Second, it is impossi- 054

ble to enforce a universal taxonomy of harm, not 055

only due to the subjectivity of the task, but due 056

to the impact of systems scaling to new locales, 057

new audiences, and new use cases, with different 058

guidelines and different gradients of harm defined 059

on those guidelines (Shen et al., 2024). Third, the 060

fine-tuning development cycle, which encompasses 061

data collection, annotation, and model experimenta- 062

tion, is not ideally suited to the content moderation 063

domain, where mitigations must land as quickly as 064

possible once vulnerabilities are established. 065

To address these challenges of subjectivity and 066

inflexibility as a result of scale, we propose a Clas- 067

sification approach to content moderation which 068

employs Retrieval-Augmented Generation (Class- 069

RAG) to add context to elicit reasoning for content 070

classification. While RAG (Lewis et al., 2020) is 071

often used for knowledge-intensive tasks where 072

factual citation is key, we find that a RAG-based 073

solution offers a distinct value proposition for the 074

classification task of content moderation, not only 075

due to its ability to enhance accuracy with few-shot 076

learning, but because of its ability to make real- 077

time knowledge updates, which is critical in our 078

domain for speedy mitigations. 079

Our content moderation system consists of an 080

embedding model, a retrieval library consisting of 081

both negative and positive examples, a retrieval 082

module, and a fine-tuned LLM classifier. When a 083

user inputs a query, we retrieve the most similar 084
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negative and positive examples, and enrich the orig-085

inal input query to the classifier with the contextual086

information derived from similar retrieved queries.087

Main contributions Our main contributions are:088

• Real-time Mitigation: Class-RAG enables089

swift mitigation of generated content through090

its easily updated retrieval library, allowing091

changes to take effect within minutes to hours,092

contingent on retrieval library indexing speed.093

This approach significantly outpaces tradi-094

tional model retraining, which typically re-095

quires several days to weeks.096

• Improved Classification Performance: Our097

experiments demonstrate that Class-RAG098

achieves superior classification performance099

compared to fine-tuning a lightweight 4-layer100

Transformer pre-trained on content modera-101

tion data and fine-tuning a general-purpose 8b102

parameter LLM.103

• Low-Cost Customization: By customizing104

the retrieval library, Class-RAG facilitates105

low-cost adaptation to diverse applications,106

allowing seamless policy updates without re-107

quiring model retraining. Maintaining mul-108

tiple retrieval libraries is more cost-effective109

than building multiple models, reducing de-110

velopment, serving, and maintenance costs.111

2 Related Work112

Content moderation and Generative AI safety113

Much work has been done in the last decade to114

mitigate the dissemination of undesired content in115

the wake of innovations in communication tech-116

nologies. Machine learning approaches have been117

proposed to address sentiment classification (Yu118

et al., 2017), harassment (Yin et al., 2009), hate119

speech detection (Gambäck and Sikdar, 2017), abu-120

sive language (Nobata et al., 2016), and toxicity121

(C.J. Adams, 2017). General improvements in deep122

learning have also accelerated the field of content123

moderation. WPIE, or Whole Post Integrity Em-124

beddings, built with BERT and XLM on top of125

advances in self-supervision, obtains a holistic un-126

derstanding of a post through a pretrained univer-127

sal representation of content (Schroepfer, 2019).128

Advances in Generative AI have also spurred the129

question of whether or not LLMs could poten-130

tially be used as content moderators (Huang, 2024).131

However, the capabilities of Generative AI intro- 132

duce a proliferation of harm types beyond hate 133

speech or toxicity detection whose mitigations and 134

benchmarks engage further research and explo- 135

ration. A comprehensive AI harm taxonomy en- 136

compasses such harm categories like academic dis- 137

honesty, unauthorized privacy violations, and non- 138

consensual nudity (Zeng et al., 2024). Studies es- 139

tablish the difficulty of moderating text-predictive 140

models, finding that neural classifiers have stronger 141

performance but occasionally unacceptable leakage 142

(stronger precision) while extensive blocklists are 143

more effective in harm mitigation but lead to un- 144

necessary suppression (stronger recall) (Vashishtha 145

et al., 2023). OpenAI partially mitigates the weak- 146

nesses of neural classifiers by investing in data 147

quality management and active learning (Markov 148

et al., 2023). Benchmarks establish baselines for 149

the efficacy of existing classifiers and have pro- 150

vided valuable datasets to evaluate harmful cate- 151

gories like self-harm, illegal activity, sexual con- 152

tent, and graphic violence, such as UnsafeBench 153

(Qu et al., 2024), I2P (Schramowski et al., 2023a), 154

and P4D (Chin et al., 2024). 155

RAG and its applications Retrieval Augmented 156

Generation (RAG) (Lewis et al., 2020) improves 157

the base capabilities of large pre-trained language 158

models with a retrieval mechanism to explicit non- 159

parametric memory, and has been demonstrated 160

to mitigate problems with LLM outputs such as 161

training cut-off, interpretability, and hallucination 162

(Zhao et al., 2024), showing particular success with 163

knowledge-intensive tasks (Gao et al., 2024). The 164

flexibility of RAG-based approaches allows for ap- 165

plications that do not require additional in-domain 166

finetuning. For example, RAFT improves the 167

model’s ability to answer questions in open-book 168

in-domain settings (Zhang et al., 2024). The base- 169

line capabilities of RAG can also be augmented 170

by innovating on its components, such as retrieval, 171

by improving the documents or embedding model. 172

Employing LLM generations in conjunction with 173

vanilla retrieval often results in better performance, 174

potentially due to better utilization of the world 175

knowledge stored in parameters (Yu et al., 2023) or 176

better identification of neighborhoods in the corpus 177

embedding space (Gao et al., 2022). DRAGON 178

demonstrates that a fairly small BERT-based model 179

can be trained for good performance on dense re- 180

trieval with an ensemble of data augmentation with 181

diverse relevance labels (Lin et al., 2023). 182
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3 System Architecture183

Class-RAG is a four-part system consisting of an184

embedding model, a retrieval library, a retrieval185

module, and a fine-tuned LLM classifier (Figure186

1). When a user inputs a prompt, an embedding is187

computed on the prompt via the embedding model,188

which is compared against an index of embeddings189

for positive and negative prompts in the retrieval190

library. Using Faiss, a library for efficient similarity191

search (Douze et al., 2024), k nearest reference192

examples are retrieved against the embedding of193

the user input prompt, and the reference examples194

and input prompt are then sent to the fine-tuned195

LLM for classification.196

3.1 Embedding Model197

We leverage the DRAGON RoBERTa (Lin et al.,198

2023) context encoder as our primary embedding199

model. DRAGON is a bi-encoder dense retrieval200

model utilizing a dual-encoder architecture to em-201

bed queries and documents into dense vector repre-202

sentations, facilitating efficient retrieval of relevant203

information. Ablations on embedding model are204

discussed in the Experiments section below.205

3.2 Retrieval Library206

Our retrieval library is comprised of two distinct207

sub-libraries: a safe library and an unsafe library.208

Each entry in the retrieval library is represented by209

four attributes: (1) prompt, (2) label, (3) embed-210

ding, and (4) explanation. The construction of the211

retrieval library is described in detail in the Data212

Preparation section.213

3.2.1 Retrieval Module214

Given the selected embedding, we leverage the215

Faiss library for similarity search (Douze et al.,216

2024) to efficiently retrieve the two nearest safe and217

unsafe examples from the retrieval library, comput-218

ing the L2 distance metric to establish the similarity219

between the input embedding and the embeddings220

stored in the retrieval library.221

3.3 LLM Classifier222

Inspired by Llama Guard (Inan et al., 2023), the223

classifier is fine-tuned on top of the OSS Llama-224

3-8b checkpoint (Dubey, 2024). We leverage the225

CoPro dataset (Liu et al., 2024) to train and evaluate226

our model.227

Table 1: Summary of source dataset size

Dataset Train Valid Test
CoPro 61,128 - 16,344
I2P++ - 8,838 20,879
UD - 426 1,008

4 Data Preparation 228

4.1 Dataset Details 229

We leverage the CoPro dataset (Liu et al., 2024) 230

to train and evaluate our classifier. In addition 231

to CoPro, we use the Unsafe Diffusion (UD) (Qu 232

et al., 2023) and I2P++ (Liu et al., 2024) datasets 233

to evaluate our model’s generalization capabilities. 234

I2P (Schramowski et al., 2023b) consists of unsafe 235

prompts only, which we combine with captions in 236

the COCO 2017 validation set (Lin et al., 2015) 237

(assuming all captions are safe) to create the I2P++ 238

dataset. We split I2P++ and UD into validation 239

and test sets with a ratio of 30/70. The sizes of the 240

source datasets are summarized in Table 1. 241

4.2 Robustness Test Set Construction 242

To assess our model’s robustness against adversar- 243

ial attacks, we augment all test sets with 8 com- 244

mon obfuscated techniques using the Augly library 245

(Papakipos and Bitton, 2022). These techniques 246

include: 247

• change_case: Hello world ⇒ HELLO 248

WORLD 249

• insert_punctuation_chars: Hello world 250

⇒ He’ll’o ’wo’rl’d 251

• insert_text: Hello world ⇒ PK Hello 252

world 253

• insert_whitespace_chars: Hello world ⇒ 254

Hello worl d 255

• merge_words: Hello world ⇒ Helloworld 256

• replace_similar_chars: Hello world ⇒ 257

Hell[] world 258

• simulate_typos: Hello world ⇒ Hello 259

worls 260

• split_words: Hello world ⇒ Hello worl d 261

4.3 Retrieval Library Construction 262

In-Distribution Library Construction We con- 263

structed the in-distribution (ID) library by leverag- 264

ing the CoPro training set, where each prompt is 265

associated with a specific concept. The ID library 266
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Figure 1: Architecture of Class-RAG. For comparison, Llama Guard is depicted without a retrieval model.

comprises two distinct sub-libraries: one for safe267

examples and one for unsafe examples. To populate268

the safe library, we employed K-Means clustering269

to group safe examples into 7 clusters per concept,270

and selected the centroid examples from each clus-271

ter for inclusion in the safe sub-library. We applied272

the same clustering approach to collect unsafe ex-273

amples. This process yielded a total of 3,484 safe274

examples and 3,566 unsafe examples, which collec-275

tively form the in-distribution retrieval library. To276

further enhance the library’s utility for model rea-277

soning, we utilized the Llama3-70b model (Dubey,278

2024). to generate explanatory text for each exam-279

ple (Figure 3). Each entry in the retrieval library is280

represented by a quadruplet of attributes: prompt,281

label, explanation, and embedding, all of which282

are retrieved together when a reference example is283

selected from the library.284

External Library Construction To assess the285

model’s adaptability to external datasets, we cre-286

ated an external library using the I2P++ and UD287

datasets. We applied K-Means clustering to the288

safe and unsafe examples in these datasets, with K289

set to 1000. After discarding clusters with fewer290

than 2 examples, our library consisted of 991 safe291

examples and 700 unsafe examples collected from292

the I2P++ and UD validation sets.293

External Library Downsampling To investi-294

gate the impact of library size on model perfor-295

mance, we generated a series of smaller external296

libraries by downsampling the original external297

library. Specifically, we created three smaller li-298

braries, each containing 1/8, 1/4, and 1/2 of the299

Table 2: Retrieval library size. This table summarizes
the size of overall retrieval libraries, safe sub-libraries,
and unsafe sub-libraries, including the in-distribution
(ID) library and the external (EX) libraries. We note
that the external library was downsampled to 1/8, 1/4,
and 1/2 of its original size using the aforementioned
clustering and centroid selection approach.

Retrieval library Size Safe Unsafe
ID 7,050 3,484 3,566
EX 1,691 991 700
EX (1/8) 212 125 87
EX (1/4) 425 250 175
EX (1/2) 850 500 350

external library’s examples (Table 2). To downsam- 300

ple, we reapplied K-Means clustering to the safe 301

and unsafe examples in the full-size library, using a 302

reduced number of clusters (K) proportional to the 303

desired library size. For instance, for the EX(1/2) 304

library, we set K to 500 (approximately half of 991) 305

for safe examples and 350 (half of 700) for unsafe 306

examples. 307

4.4 Training Data Construction 308

Our training data construction process involves 309

three key steps, which are applied to each input 310

prompt in the CoPro training set. First, we re- 311

trieve reference examples from the in-distribution 312

retrieval library using the Faiss index (Douze et al., 313

2024). Specifically, we retrieve 4 reference ex- 314

amples for each input prompt, including 2 nearest 315

safe reference examples and 2 nearest unsafe ref- 316

erence examples. Next, we generate a reasoning 317
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process for each input prompt using the Llama-318

3-70b model (Dubey, 2024). This process takes319

into account the input prompt, label, and 4 refer-320

ence examples (2 safe and 2 unsafe), and aims to321

provide a clear reasoning process for the model to322

learn (Figure 4). Finally, we enrich the input text323

by incorporating a specific format of instructions,324

including the retrieved reference examples and the325

generated reasoning process. This enriched prompt326

is then used as input for our model training (Figure327

5).328

We construct the training data for LLAMA3, the329

Llama-3-8b baseline model following the method-330

ology outlined in the Llama Guard paper (Inan331

et al., 2023). A detailed example of this process332

can be found in Figure 7. In this paper, we focus on333

illustrating the construction of Class-RAG training334

and evaluation data.335

4.5 Evaluation Data Construction336

We construct the evaluation data using the same ap-337

proach as the training data, with two key exceptions.338

Firstly, the retrieval library used for evaluation may339

differ from the one used for training. Secondly,340

the response and reasoning content are excluded341

from the evaluation data (Figure 6). This allows342

us to assess the model’s performance in a more343

realistic setting, while also evaluating its ability to344

generalize to new, unseen data.345

5 Experiments346

We conducted a comprehensive experimental eval-347

uation to assess the performance of our proposed348

model. To provide a thorough comparison, we349

selected two baseline models: WPIE (a 4-layer350

XLM-R) and LLAMA3 (Llama-3-8b), with the lat-351

ter configured according to the settings outlined in352

Llama Guard (Inan et al., 2023). Our experimen-353

tal content consisted of seven distinct components,354

which are detailed in the following sections.355

The experimental setup is described in Section356

5.1. We then present the results of our evaluation,357

which examined six key aspects of our model’s358

performance: (1) classification performance and359

robustness to adversarial attacks (Section 5.2); (2)360

adaptability to external data sources (Section 5.3);361

(3) ability to follow instructions (Section 5.4); (4)362

impact of retrieval library size on performance (Sec-363

tion 5.5); (5) impact of reference example numbers364

on performance (Section 5.6); and (6) impact of365

embedding models on performance (Section 5.7).366

5.1 Experimental Setup 367

For training and evaluation, we enrich the input 368

text with additional information by adding system 369

instruction and reference prompts to both training 370

and evaluation data. For training data specifically, 371

we also include the reasoning process to enable our 372

model to learn from the context and explanations 373

provided. 374

Training Configuration We developed both 375

LLAMA3 and Class-RAG models on top of the 376

Llama-3-8b model (Dubey, 2024). The training 377

setup for both models was identical, with the fol- 378

lowing hyperparameters: training on a single ma- 379

chine equipped with 8xA100 80GB GPUs, batch 380

size of 1, model parallelism of 1, and a learning 381

rate of 2 × 10−6. We trained both models for a 382

single epoch with less than 3.5 GPU hours. 383

Modified Chain-of-Thought During training, 384

our models learned to assess the input text by lever- 385

aging retrieved reference examples. We employed 386

a modified Chain-of-Thought (CoT) (Wei et al., 387

2023) approach. CoT has been shown to improve 388

the response quality of large language models. In 389

contrast to the typical CoT setup, where answers 390

are derived by the reasoning process, we opted to 391

place the answer before the reasoning process to 392

minimize inference latency. Specifically, we en- 393

forced the first token to be the answer, followed by 394

a citation and a reasoning section (Figure 5). The 395

citation indicates which reference examples were 396

used to inform the assessment, while the reason- 397

ing section provides an explanation for the induced 398

assessment. At inference time, we only output a 399

single token and use the probability of the "unsafe" 400

token as the unsafe probability. 401

Evaluation Metrics We adopted the area under 402

the precision-recall curve (AUPRC) as our primary 403

evaluation metric for all experiments. We chose 404

AUPRC because it focuses on the performance of 405

the positive class, making it more suitable for im- 406

balanced datasets. 407

5.2 Classification and Robustness 408

We conducted a comprehensive evaluation of Class- 409

RAG, comparing its performance to two baseline 410

models, WPIE and LLAMA3, on the CoPro test 411

set. To assess the robustness of our model against 412

adversarial attacks, we augmented the test sets with 413

8 common obfuscation techniques using the Augly 414

library (Papakipos and Bitton, 2022). The results, 415
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Table 3: Area under the precision-recall curve (AUPRC)
scores for the WPIE, LLAMA3, and Class-RAG models.
Higher AUPRC scores indicate better performance. We
report results for Class-RAG using two distinct embed-
ding models: DRAGON RoBERTa and WPIE. Note that
the WPIE model produces both prompt embeddings and
unsafe probabilities, which are leveraged in our evalua-
tion.

Obfuscations WPIE LLAMA3

Class-
RAG
(DRAGON
RoBERTa)

Class-
RAG
(WPIE)

CoPro
None 0.981 1.000 1.000 1.000
change_case 0.889 1.000 1.000 1.000
insert_punctuation_chars 0.563 0.999 1.000 1.000
insert_text 0.980 0.877 0.920 0.918
whitespace_chars 0.748 0.999 0.999 1.000
merge_words 0.956 0.905 0.927 0.905
replace_similar_chars 0.738 0.697 0.805 0.746
simulate_typos 0.820 0.811 0.877 0.789
split_words 0.885 0.881 0.910 0.850
AVERAGE 0.840 0.908 0.938 0.912

presented in Table 3, demonstrate that Class-RAG416

outperforms both baseline models. Notably, both417

LLAMA3 and Class-RAG achieved an AUPRC418

score of 1 on the test set, indicating excellent419

classification performance. However, Class-RAG420

(DRAGON RoBERTa) exhibits superior robustness421

to LLAMA3 against adversarial attacks, highlight-422

ing its ability to maintain performance in the pres-423

ence of obfuscated inputs.424

5.3 Adaptability to External Data425

One of the key benefits of incorporating Retrieval-426

Augmented Generation (RAG) into Class-RAG is427

its ability to adapt to external data without requir-428

ing model retraining. To facilitate this adaptability,429

new reference examples are added to the retrieval430

library, allowing the model to leverage external431

knowledge. We evaluated the adaptability of Class-432

RAG on two external datasets, I2P++ and UD, us-433

ing the retrieval libraries constructed as described434

in the Data Preparation section. Specifically, we435

utilized the in-distribution (ID) library collected436

from the CoPro training set, as well as the external437

(EX) library collected from the validation sets of438

I2P++ and UD.439

As shown in Table 4, models trained on the440

CoPro dataset struggle to generalize to out-of-441

distribution external datasets, such as I2P++. In442

contrast, performance on the UD evaluation set443

is stronger, likely due to the similar distribution444

between UD and CoPro. Notably, Class-RAG’s445

performance on I2P++ is poor when relying solely446

Table 4: AUPRC scores on the I2P++ and UD external
datasets. Higher AUPRC scores indicate better perfor-
mance.

Obfuscations WPIE LLAMA3
Class-
RAG
(ID Lib)

Class-
RAG
(ID+EX
Lib)

I2P++
None 0.361 0.165 0.229 0.791
change_case 0.247 0.098 0.311 0.843
insert_punctuation_chars 0.171 0.114 0.183 0.318
insert_text 0.307 0.170 0.270 0.816
whitespace_chars 0.158 0.134 0.249 0.601
merge_words 0.289 0.166 0.261 0.815
replace_similar_chars 0.136 0.133 0.165 0.549
simulate_typos 0.180 0.145 0.211 0.742
split_words 0.142 0.140 0.234 0.613
AVERAGE 0.221 0.141 0.235 0.677

UD
None 0.949 0.867 0.917 0.985
change_case 0.917 0.671 0.937 0.991
insert_punctuation_chars 0.783 0.807 0.894 0.931
insert_text 0.938 0.844 0.924 0.988
whitespace_chars 0.860 0.792 0.925 0.971
merge_words 0.930 0.856 0.933 0.990
replace_similar_chars 0.817 0.750 0.864 0.953
simulate_typos 0.884 0.819 0.911 0.984
split_words 0.839 0.825 0.918 0.972
AVERAGE 0.880 0.803 0.914 0.974

on the in-distribution (ID) library, with an AUPRC 447

score of only 0.229. However, incorporating new 448

reference examples from the full external library 449

leads to a substantial improvement in AUPRC, with 450

a 245% increase to 0.791. This enhancement also 451

translates to improved robustness against adversar- 452

ial attacks, with a relative increase of 188% from 453

0.235 to 0.677. Similar improvements are observed 454

on the UD dataset, where the AUPRC score rises 455

from 0.917 to 0.985, and performance against ad- 456

versarial attacks improves from 0.914 to 0.976. 457

5.4 Instruction Following Ability 458

The instruction following ability of a LLM refers 459

to its capacity to comprehend and accurately re- 460

spond to given instructions. In this section, we 461

investigate the ability of Class-RAG to follow the 462

guidance from reference examples and generate 463

responses consistent with these examples. It is 464

crucial for Class-RAG to adapt its behavior to up- 465

dates in the retrieval library. To evaluate this, we 466

utilized the ID test set with a flipped ID library, 467

which contains the same examples as the origi- 468

nal ID library but with flipped labels ("unsafe" → 469

"safe", "safe" → "unsafe") and removed explana- 470

tions. The results, presented in Table 5, demon- 471

strate that Class-RAG possesses a strong instruc- 472

tion following ability. Notably, the predicted labels 473
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Table 5: Ratio of flipped predictions with a flipped
retrieval library.

Ground-
True
Label

Prediction
(initial)

Prediction
(flipped
retrieval
lib)

Count
Prediction
Flipping
Ratio

safe safe safe 39 99.49%
unsafe 8142

unsafe unsafe 3
unsafe unsafe safe 1115 12.29%

unsafe 7961

of 99.49% of ground-truth safe examples were suc-474

cessfully flipped from "safe" to "unsafe", while475

the predicted labels of 12.29% of ground-truth un-476

safe examples were flipped from "unsafe" to "safe".477

This disparity in flipping ratios between ground-478

truth safe and unsafe examples can be attributed to479

the safety fine-tuning of the Llama3 model, which480

has been designed to prevent generating harmful481

responses and has memorized unsafe content.482

Figure 2: Impact of external retrieval library size (top)
and reference example number (bottom) on average
AUPRC. Detailed results are presented in Tables 6

and Table 7, respectively.

5.5 Impact of Retrieval Library Size483

We investigated the impact of external retrieval li-484

brary size on model performance, with results pre-485

sented in Figure 2 and Table 6. To do this, we con-486

structed new retrieval libraries by augmenting the 487

in-distribution (ID) library with external libraries 488

of varying sizes. The external (EX) library was 489

sourced from the validation sets of I2P++ and UD. 490

We created downscaled versions of the external 491

library, denoted as EX (18 ), EX (14 ), and EX (12 ), 492

which were constructed by re-clustering the full 493

external library (1691 examples) to 212, 425, and 494

850 examples, respectively. 495

Our results show that model performance consis- 496

tently improves with increasing external retrieval 497

library size. On the I2P++ dataset, AUPRC scores 498

increased from 0.235 to 0.677 as the external li- 499

brary size grew from 0 to 1691 examples. Specifi- 500

cally, we observed AUPRC scores of 0.501, 0.554, 501

and 0.577 for external library sizes of 212, 425, 502

and 850 examples, respectively. A similar trend 503

was observed on the UD dataset, where AUPRC 504

scores increased from 0.914 to 0.974 as the external 505

library size increased. 506

Notably, our findings suggest that performance 507

scales with the size of the retrieval library, indi- 508

cating that increasing the library size is a viable 509

approach to improving Class-RAG performance. 510

Furthermore, as the retrieval library only incurs the 511

cost of storage and indexing for retrieval, which is 512

relatively inexpensive compared to model training, 513

scaling up the retrieval library size presents a cost- 514

effective means of enhancing model performance. 515

5.6 Impact of Reference Example Number 516

We conducted a further investigation to examine 517

the impact of the number of reference examples on 518

the performance of Class-RAG. Specifically, we 519

evaluated the model’s performance when adding 520

0, 2, 4, 6, and 8 reference examples, with an equal 521

number of safe and unsafe examples added in each 522

case. The results, presented in Figure 2 and Table 523

7, demonstrate that the performance of Class-RAG 524

consistently improves with the addition of more 525

reference examples. On the I2P++ dataset, we 526

observed average AUPRC scores of 0.303, 0.632, 527

0.677, 0.715, and 0.721 when using 0, 2, 4, 6, and 528

8 reference examples, respectively. Similarly, on 529

the UD dataset, average AUPRC scores increased 530

from 0.932 to 0.965, 0.974, 0.978, and 0.980 with 531

the addition of 0, 2, 4, 6, and 8 reference examples, 532

respectively. 533

While our results indicate that performance im- 534

proves with the number of reference examples, we 535

also observe that this improvement becomes sat- 536

urated at around 8 reference examples. Further- 537
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more, adding more reference examples leads to538

more input tokens and incurs a higher computa-539

tional cost compared to scaling up the retrieval li-540

brary size. Therefore, while increasing the number541

of reference examples can enhance performance,542

it is essential to balance this with the associated543

computational expense.544

5.7 Impact of Embedding Models545

The choice of embedding model is crucial for re-546

trieving relevant content in our proposed approach.547

In this section, we investigate the impact of two548

different embedding models on the performance549

of Class-RAG: DRAGON RoBERTa (Lin et al.,550

2023) and WPIE (Whole Post Integrity Embed-551

ding) (Meta, 2021). DRAGON is a bi-encoder552

dense retrieval model that embeds both queries and553

documents into dense vectors, enabling efficient554

search for relevant information from a large num-555

ber of documents. We utilize the context encoder556

component of DRAGON in our experiments. To557

investigate the impact of alternative embedding558

models on our approach, we also evaluate a variant559

of WPIE. The WPIE model we test is a 4-layer560

XLM-R (Conneau et al., 2020) model that has been561

pre-trained on content moderation data, yielding562

two distinct outputs: an unsafe probability estima-563

tion and a prompt embedding representation.564

Our results, presented in Table 3, demonstrate565

that the DRAGON RoBERTa embedding outper-566

forms WPIE. Specifically, DRAGON RoBERTa567

achieves an average AUPRC of 0.938 on the Co-568

Pro test set, surpassing the performance of WPIE,569

which obtains an average AUPRC of 0.912. Future570

work will involve exploring the effectiveness of571

additional embedding models to further enhance572

the performance of Class-RAG.573

6 Conclusion574

We introduce Class-RAG, a modular framework575

integrating an embedding model, a retrieval library,576

a retrieval module, and a fine-tuned large language577

model (LLM). Class-RAG’s retrieval library can be578

used in production settings as a flexible hot-fixing579

approach to mitigate immediate harms. By employ-580

ing retrieved examples and explanations in its clas-581

sification prompt, Class-RAG offers interpretability582

into its decision-making process, fostering trans-583

parency in the model’s predictions. Exhaustive584

evaluation demonstrates that Class-RAG substan-585

tially outperforms baseline models in classification586

tasks and exhibits robustness against adversarial 587

attacks. Moreover, our experiments illustrate Class- 588

RAG’s ability to effectively incorporate external 589

knowledge through updating the retrieval library, 590

facilitating efficient adaptation to novel informa- 591

tion. We also observe a positive correlation be- 592

tween Class-RAG’s performance and the size of 593

the retrieval library, as well as the number of refer- 594

ence examples. Notably, our findings indicate that 595

performance scales with library size, suggesting a 596

novel, cost-effective approach to enhancing con- 597

tent moderation. In summary, we present a robust, 598

adaptable, and scalable architecture for detecting 599

safety risks in the Generative AI domain, provid- 600

ing a promising solution for mitigating potential 601

hazards in AI-generated content. 602

7 Future Work 603

Several future research avenues are promising. 604

Firstly, we aim to extend Class-RAG’s capabili- 605

ties to multi-modal language models (MMLMs), 606

enabling the system to effectively process and gen- 607

erate text in conjunction with other modalities. Sec- 608

ondly, our analysis in Section 5.4 reveals that Class- 609

RAG excels at following the guidance of unsafe ref- 610

erence examples, but struggles with safe examples. 611

To address this, we plan to investigate methods to 612

enhance its instruction-following abilities for safe 613

examples. Additionally, we intend to explore the 614

use of more advanced embedding models, evaluate 615

Class-RAG’s multilingual capabilities, and develop 616

more effective approaches for constructing the re- 617

trieval library. These directions hold significant 618

potential for further improving the performance 619

and versatility of Class-RAG. 620

8 Limitations 621

We acknowledge the potential risks and limitations 622

associated with our Classification approach em- 623

ploying Retrieval-Augmented Generation (Class- 624

RAG) for robust content moderation. 625

• Our classifier may produce false positives or 626

false negatives, leading to unintended conse- 627

quences. 628

• We rely on open-source English datasets, 629

which may contain biases that can skew mod- 630

eration decisions. These biases can be demo- 631

graphic, cultural, or reflect stereotypes. For 632

example, our model may disproportionately 633

8



block content from certain groups or unfairly634

moderating certain types of content.635

• Our model’s common sense knowledge is lim-636

ited by its base model and training data, and it637

may not perform well on out-of-scope knowl-638

edge or non-English languages.639

• There is a risk of misuse, such as over-640

censorship or targeting certain user groups641

unfairly.642

• Our model may generate unethical or unsafe643

language if used in a chat setting or be suscep-644

tible to prompt injection attacks.645

9 Ethics Disclosure646

Class-RAG was neither trained nor evaluated on647

any data containing information that names or648

uniquely identifies private individuals. Though649

Class-RAG can be an important component of an650

AI safety system, it should not be used as the sole651

or final arbiter in making content moderation deci-652

sions without any other checks or balances in place.653

We believe in the importance of careful deployment654

and responsible use to mitigate these risks, and em-655

phasize that model-only approaches to ensuring656

content moderation will never be fully robust and657

must be used in conjunction with human-assisted658

strategies in order to mitigate bias. Ultimately, we659

stress the importance of ongoing evaluation and660

model development to address potential and future661

biases and limitations. To communicate our ideas662

more effectively, sections of original text in this663

paper were refined and synthesized with the help664

of Meta AI, though the original writing, research665

and coding is our own.666
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Figure 3: Instruction template to generate explanation for retrieval library
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Figure 4: Instruction template to generate reasoning response
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Figure 5: An example of Class-RAG training data
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Figure 6: An example of Class-RAG evaluation data
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Figure 7: An example of LLAMA3 model training data
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Table 6: AUPRC scores for Class-RAG on the I2P++
and UD external datasets, using various retrieval li-
braries. Higher AUPRC scores indicate better perfor-
mance.

Obfuscations ID Lib
ID
+EX(1/8)
Lib

ID
+EX(1/4)
Lib

ID
+EX(1/2)
Lib

ID +EX
Lib

I2P++
None 0.229 0.548 0.634 0.685 0.791
change_case 0.311 0.650 0.721 0.761 0.843
insert_punctuation_chars0.183 0.240 0.254 0.273 0.318
insert_text 0.270 0.603 0.685 0.724 0.816
whitespace_chars 0.249 0.497 0.470 0.477 0.601
merge_words 0.261 0.599 0.689 0.723 0.815
replace_similar_chars 0.165 0.355 0.384 0.436 0.549
simulate_typos 0.211 0.527 0.621 0.630 0.742
split_words 0.234 0.495 0.525 0.486 0.613
AVERAGE 0.235 0.501 0.554 0.577 0.677

UD
None 0.917 0.966 0.973 0.977 0.985
change_case 0.937 0.978 0.983 0.985 0.991
insert_punctuation_chars0.894 0.915 0.923 0.914 0.931
insert_text 0.924 0.970 0.976 0.981 0.988
whitespace_chars 0.925 0.965 0.960 0.959 0.971
merge_words 0.933 0.975 0.980 0.984 0.990
replace_similar_chars 0.864 0.927 0.933 0.942 0.953
simulate_typos 0.911 0.971 0.975 0.975 0.984
split_words 0.918 0.961 0.964 0.959 0.972
AVERAGE 0.914 0.959 0.963 0.964 0.974

Table 7: AUPRC scores for Class-RAG on the I2P++
and UD external datasets using different numbers of
reference examples. Higher AUPRC scores indicate
better performance

Obfuscations 0 ref. 2 ref. 4 ref. 6 ref. 8 ref.
I2P++

None 0.377 0.795 0.791 0.838 0.839
change_case 0.360 0.824 0.843 0.873 0.870
insert_punctuation_chars0.227 0.292 0.318 0.332 0.354
insert_text 0.369 0.810 0.816 0.856 0.854
whitespace_chars 0.284 0.515 0.601 0.648 0.673
merge_words 0.368 0.807 0.815 0.859 0.856
replace_similar_chars 0.202 0.422 0.549 0.540 0.540
simulate_typos 0.236 0.708 0.742 0.788 0.779
split_words 0.305 0.516 0.613 0.701 0.724
AVERAGE 0.303 0.632 0.677 0.715 0.721

UD
None 0.959 0.984 0.985 0.991 0.991
change_case 0.956 0.988 0.991 0.994 0.993
insert_punctuation_chars0.900 0.911 0.931 0.934 0.943
insert_text 0.951 0.987 0.988 0.992 0.992
whitespace_chars 0.933 0.953 0.971 0.976 0.979
merge_words 0.952 0.989 0.990 0.994 0.993
replace_similar_chars 0.896 0.934 0.953 0.959 0.960
simulate_typos 0.917 0.979 0.984 0.988 0.987
split_words 0.928 0.961 0.972 0.980 0.984
AVERAGE 0.932 0.965 0.974 0.978 0.980
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