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ABSTRACT

Adapting the pre-trained model across domains with few samples, known as cross-domain
few-shot learning, is a challenging task in statistical machine learning. Most previous ef-
forts focused on training robust and transferable feature representations but rarely explored
how to train an accurate few-shot model from a given pre-trained model. In this paper,
we are interested in the performance of training a cross-domain few-shot classifier with
representations from different layers of a pre-trained model and the impact of reducing the
dimensionality of these representations. Based on this, we propose a simple and provable
method, Average Pooling Ensemble Few-shot Learning (APEF). We demonstrate the effec-
tiveness of average pooling and ensemble in cross-domain few-shot image classification
both theoretically and experimentally. In particular, we provide a theoretical analysis in the
PAC-Bayesian framework to illustrate why our method works, and we also empirically eval-
uate our approach on the challenging CD-FSL benchmark, which shows that our proposed
method consistently outperforms all baselines.

1 INTRODUCTION

The availability of large-scale datasets initiates the development of deep learning methods, whose performance
can be continuously improved by annotating more samples from the same(source) domain, but they cannot
generalize well to a new(target) domain given a few training samples. In contrast, humans can quickly learn
new tasks with a few trials by leveraging what they have learned in the past. Therefore, few-shot learning,
aiming to learn from a small number of annotated samples, has gained extensive research attention with some
creative works proposed. For example, Zhang et al. (2018); Xian et al. (2018) attempted to synthesize samples
or features with a generative model to alleviate the data shortage problem. Vinyals et al. (2016); Finn et al.
(2017) trained the model in a meta-learning manner so that the model can be quickly adapted to new tasks by
learning general information (meta-knowledge) across tasks. However, most previous works still suffer from
insufficient generalization capability when there is a large gap across the source and target domains, which is
widely encountered by the deployment in real applications (Chen et al., 2019; Guo et al., 2020).

To help investigate this problem, Guo et al. (2020) introduced a challenging benchmark, CD-FSL, which
contains images from agricultural, medical, and satellite domains with a wide range of context, color, and
perspective variations. Essentially, the pioneer efforts for the CD-FSL problem can be roughly categorized
into two directions: how to pre-train the backbone network to obtain more robust and transferable feature
representations, and how to fine-tune the given pre-trained model for the subsequent few-shot learning
task. Following the first direction, most previous efforts have been contributed by pre-training the backbone
network with various techniques (Tseng et al., 2020; Phoo & Hariharan, 2020; Das et al., 2021; Du et al.,
2021). Here, we focus on the less explored second direction, which aims to unlock the potential of the
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expensive pre-trained models. Without loss of any generality, we use standard feature representations and
methods to train the backbone model that will be fine-tuned for the cross-domain few-shot evaluation.

It is widely accepted that we shall fix the pre-trained backbone to retain the previously learned knowledge
and retrain a new head for the target few-shot task. However, significant challenges limit the performance
and usage of such methods. First, the features extracted from the last layer of the pre-trained model may
be irrelevant to the target task. Based on the Information Bottleneck (IB) principle (Tishby & Zaslavsky,
2015; Shwartz-Ziv & Tishby, 2017), the pre-training process can be viewed as finding a compressed map
of the input to maximally preserve information about the outputs (labels) of the source domain. Given the
independence of the subsequent new task, the last-layer features of the pre-trained model may exhibit great
randomness, while useful features related to the new task have been prematurely filtered. Second, although
the maximum likelihood estimator (MLE) is statistically consistent and asymptotically normal, with wide
usage to guide the fine-tuning process on the target few-shot tasks, MLE is seriously biased for a small
number of samples. Recent research has shown that bias is also related to feature dimensions: the larger the
dimension, the more serious the bias (Sur & Candès, 2019). To address both challenges, we propose a simple
and provable method, Average Pooling Ensemble Few-shot Learning (APEF), where we first perform average
pooling on features obtained on different layers of a pre-trained model, then use them independently to train
the learners. The final prediction can be achieved by integrating all independent learners.

Our main contribution can be summarized as follows: (1) We introduce a simple yet efficient method
combining average pooling and ensemble for cross-domain few-shot evaluation. (2) We provide a theoretical
analysis to illustrate why our proposed method works. The proposed theorems may also benefit the further
optimization of cross-domain few-shot learning. (3) Our proposed method achieves superior empirical
performance on the challenging CD-FSL benchmark (Guo et al., 2020).

2 MOTIVATION FROM EMPIRICAL OBSERVATIONS

To facilitate our presentation, we first formulate the cross-domain few-shot learning problem. Motivated by the
IB principle, we compare the performance of classifiers implemented on the features extracted from different
layers of the pre-trained model. Finally, some insights are provided by adopting multiple dimensionality
reduction methods.

2.1 PROBLEM FORMULATION

We define a domain as a joint distribution P over input space X and label space Y . PX , PY represents
the marginal distribution of X ,Y respectively. In cross-domain few-shot setting, we have a source domain
(Xs,Ys) ∼ Ps, and a target domain (Xt,Yt) ∼ Pt, where PXs

is significantly different form PXt
, and Ys

is disjoint from Yt. The source dataset Ds is sampled from the source domain and used to pre-train or
meta-train the model. The target dataset Dt consists of a support set S = {(xi, yi)}N×K

i=1 and a query set
Q = {xi}N×H

i=1 sampled from the target domain. The support set S is used to adapt the pre-trained model,
and the query set Q is used to evaluate the performance of the adapted model. Because the support set S
contains K data points from N new classes, this configuration is called the N -way K-shot problem.

2.2 EFFECTS OF DIFFERENT LAYERS ON THE PERFORMANCE OF CROSS-DOMAIN FEW-SHOT LEARNING

To help understand the optimization process DNNs, (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017)
recently propose the Information Bottleneck (IB) principle, which formulates the training process of deep
learning as an information-theoretic trade-off between compression and prediction. The IB principle treats the
function represented by a neural network as a Markov chain, which successively transforms representations
of the original input feature. Each network layer can be quantified by the amount of mutual information
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Figure 1: The performance of few-shot classifiers when applied on top of representation from different
residual blocks of a ResNet-18 network pre-trained on ImageNet.

between its input variables and output variables. Under this schema, it is believed that by incorporating
supervised learning, deep neural networks can capture and effectively represent relevant information from the
input variables and maximally preserve the information of the output (label) variables. However, the problem
of large domain shift remains challenging. Since the independent downstream tasks may show significant
domain shifts, we argue that the relationship between the features from each layer of a pre-trained model
and the expected output of the target domain may exhibit a large amount of randomness. To investigate
this conjecture, we train multiple classifiers on features extracted from the different residual blocks of the
ResNet-18 pre-trained on ImageNet. Figure 1 visualizes the performance of CD-FSL benchmark (Guo et al.,
2020) under the 5-Way 50-Shot setting, respectively. It shows that representations from intermediate blocks
perform competitively or even better than those of the last block (more results are provided in Appendix D.1).
Similar experimental results are also reported by Yosinski et al. (2014); Neyshabur et al. (2020); Adler et al.
(2020); Baldock et al. (2021); Abnar et al. (2021).

2.3 THE TRADE-OFF BETWEEN DIMENSIONALITY REDUCTION AND PERFORMANCE

Figure 2: Dimensionality reduction methods produce consistent improvements across different blocks. The
experiments are performed on a ResNet-18 network pre-trained on ImageNet, with the few-shot evaluation set
to 5-way 5-shot. Left: Average test accuracy of four target tasks for each block. Right: The four small graphs
correspond to the test accuracy of four target tasks on block 4, respectively. (W/O denotes no dimensionality
reduction method is used.)

During the above investigation, we found that features extracted from the early layers of the pre-trained
model are usually located in high-dimensional spaces. For reliable generalization, the amount of data needed
grows exponentially with dimension (Verleysen & François, 2005). This phenomenon is known as the curse
of dimensionality. Feature selection and dimensionality reduction methods are widely used to address this
problem. Next, we focus on the impact of commonly used dimensionality reduction methods on the few-shot
classification problem. More specifically, before training a few-shot classifier, we apply the dimensionality
reduction methods to the representations obtained from each residual block to reduce their dimension while

3



Under review as a conference paper at ICLR 2023

preserving their geometry structure. We selected five classical and effective dimensionality reduction methods,
including random pooling (RANDPOOL), maximum pooling (MAXPOOL), average Pooling (AVGPOOL),
Principal Component Analysis (PCA), and Linear Optimal Low-Rank Projection (LOL) (Vogelstein et al.,
2021). As shown in Figure 2, almost all dimensionality reduction methods improve test accuracy per block,
with average pooling achieving the most significant improvement (see appendix D.2 for more results).

3 A PAC-BAYESIAN BASED GENERALIZATION BOUND FOR APEF

Based on the above findings, we are motivated to propose a simple and efficient algorithm, Average Pooling
Ensemble Few-shot Learning (APEF). We independently train multiple cross-domain few-shot learners on top
of representations from different layers while applying average pooling to improve the learners’ performance.
All learners are integrated through an average ensemble model to utilize the pre-trained model’s information
fully. The complete pseudo-code of our method is outlined in the Algorithm 1.

We further provide a theoretical view based on the PAC-Bayesian framework to demonstrate why our proposed
APEF works. To simplify our explanation, given a data distribution P over X × Y , we define a predictor
hθ : X → Y with parameter θ ∈ Θ, and the expected and empirical loss can be defined as,

L (θ) = E(x,y)∼P [ℓ (θ,x, y)] , and L̂(θ, D) =
1

n

n∑
i=1

ℓ (θ,xi, yi) ,

where D = {(xi, yi)}ni=1 ∼ Pn denotes the i.i.d. observation of n elements, ℓ : Θ × X × Y → R is an
arbitrary loss function (e.g. the cross-entropy (CE) loss). In the PAC-Bayesian setting, we assume that the
predictor hθ has prior knowledge of the hypothesis space Θ in the form of a prior distribution π. After the
training dataset D is fed to the predictor, the prior is updated to a posterior distribution ρ.

The PAC-Bayesian theory (McAllester, 1999) provides data-dependent generalization guarantees for a model’s
generalization error Eρ(θ)[L(θ)] (also known as Gibbs error), given the empirical estimate of Eρ(θ)[L̂(θ, D)]
and other parameters. The full bound theorem is restated below, derived from the theorems in Germain et al.
(2009); Alquier et al. (2016); Masegosa (2020), and we give the proof in appendix A.1 for completeness.
Theorem 3.1 (Germain et al. (2009); Alquier et al. (2016); Masegosa (2020)). Given a data distribution P
over X ×Y , a hypothesis set Θ, a prior distribution π over Θ, for any δ ∈ (0, 1], and λ > 0, with probability
at least 1− δ over samples D ∼ Pn, we have for all posterior ρ,

Eρ(θ)[L(θ)] ≤ Eρ(θ)[L̂(θ, D)] +
1

λ

[
DKL(ρ∥π) + log

1

δ
+ΨP,π(λ, n)

]
,

where ΨP,π(λ, n) = logEπ(θ)ED∼Pn

[
eλ(L(θ)−L̂(θ,D))

]
.

The above theory provides a well-founded approach. Since the PAC-Bayesian bound applies simultaneously to
all posteriors ρ, we can learn the algorithm by choosing an appropriate distribution ρ that minimizes the upper
bound on the risk of generalization. In the following content, motivated by previous works (Masegosa, 2020;
Ortega et al., 2022), we first derive the relationship between the diversity of our ensemble and generalization
error and show that our model achieves a tighter upper bound by implicitly optimizing diversity. Furthermore,
we demonstrate the importance of dimensionality reduction in few-shot problems by analyzing the Kullback-
Leibler divergence term. Finally, we use a technique inspired by Grønlund et al. (2020) to explain that average
pooling is an effective dimensionality reduction method.

3.1 A TIGHTER BOUND BY IMPLICITLY OPTIMIZING DIVERSITY WITH ENSEMBLE

In this paper, we consider an ensemble model consisting of M distinct models {θi}Mi=1, each one defined by a
set of parameters Θi ∈ Rdi . Specifically, we make predictions by simply averaging the predictions of M mod-
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els, 1
M

∑M
i=1 p(y|x,θi). For a specific data-point (x, y), the CE loss of an individual predictor hθi is defined

as ℓ (θi,x, y) = − log p(y|x,θi) and the CE loss of an ensemble is ℓ(θ,x, y) = − log 1
M

∑M
i=1 p(y|x,θi).

To simplify the notation, we denote L(θ) = E(x,y)∼P [ℓ (θ,x, y)] as the expected loss of an ensemble.

In the following Theorem 3.2, we show that the upper bound on the expected loss L(θ) of an averaging
ensemble can be decomposed into the average loss of the individual models and a second-order term, which
can be considered as a diversity measure. Meanwhile, we introduce a second-order PAC-Bayesian bound
for the averaging ensemble model in Theorem 3.3, which also provides generalization guarantees over the
performance of the posterior predictive distribution (See Appendix A.2, A.3 for full proof).
Theorem 3.2. (Second-order Oracle bound) Given a data distribution P , a set of model parameters {Θi}Mi=1,
for any distribution {ρi}Mi=1 over {Θi}Mi=1 satisfies that,

Eρ(θ)[L(θ)] ≤
1

M

M∑
i=1

Eρi(θi)[L(θi)]− V(ρ(θ)),

where θi ∈ Θi,θ = {θi}Mi=1, ρ (θ) =
∏M

i=1 ρi(θi), and V(ρ(θ)) is a variance term defined as

V(ρ(θ)) = Eρ(θ)E(x,y)∼P

 1

2M maxθ p(y|x,θ)2
M∑
i=1

(
p(y|x,θi)−

1

M

M∑
k=1

p(y|x,θk)

)2
 .

Theorem 3.3. Given a data distribution P , a set of model parameters {Θi}Mi=1 and associated priors {πi}Mi=1,
where πi is defined over Θi, a δ ∈ (0, 1], and a real number c > 0, with probability at least 1− δ over draws
of training data D ∼ Pn, for all posteriors {ρi}Mi=1 over {Θi}Mi=1, simultaneously,

Eρ(θ)[L(θ)] ≤
1

M

M∑
i=1

(
Eρi(θi)[L̂(θi, D)] +

DKL(ρi∥πi)

cn

)
− V̂(ρ(θ), D) +

ϵ

cnM
,

where V̂(ρ(θ), D) is the empirical version of V(ρ(θ)), V(ρ(θ)) = Eρ(θ)[V(θ)], and ϵ(P, π, c, n, δ) =

logEπ(θ)ED∼Pn

[
ecn(

∑M
i=1(L(θi)−L̂(θi,D))−M(V(θ)−V̂(θ,D)))

]
+ log 1

δ .

According to the above theorem, we need to balance how well each model fits the training data, the Kullback-
Leibler divergence, and diversity among models to learn the optimal ensemble. Here, the second-order term
V(ρ(θ)) is used to measure the diversity among the predictions of all models following Masegosa (2020);
Ortega et al. (2022). It is widely noted that the diversity within an ensemble is a key factor for its superior
performance (Geman et al., 1992; Krogh & Vedelsby, 1994; Cunningham & Carney, 2000; Brown et al.,
2005). Intuitively, a set of predictors are diverse when their predictions for some samples are inconsistent.
Conversely, when all models provide the same predictions, V(ρ(θ)) is null, with no gain by averaging
these sub-models. In consequence, when the ensemble consists of M independent models with different
dimensional parameters, the expected diversity V(ρ(θ)) will be positive, as the following lemma stated:
Lemma 3.4. If there exists an input sample x ∈ PX such that hθi

(x) ̸= hθj
(x), we then have that

V(ρ(θ)) > 0.

Our method uses features from different blocks to train M models independently. Although we do not
explicitly optimize for the diversity of ensembles, from the above theorem, our optimization process is
naturally looking for a tighter upper bound of the expected loss of the averaging ensemble.

3.2 THE IMPORTANCE AND EFFECTIVENESS OF DIMENSIONALITY REDUCTION

Since the number of training samples n in the target task is small, the lower-order term (cn)−1DKL(ρi∥πi)
in the PAC-Bayesian bound would produce a non-negligible generalization gap that grows with O(1/n). To
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further analysis this term, we assume θi ∈ Rdi , πi(θi) ∼ N (0, σ2I), and ρi(θi) as a Dirac-delta distribution
centered around θ′

i with ρi(θi) = δθ′
i
(θi),∀i ∈ [M ]. Then, we have

Eρi(θi)[L̂(θi, D)] = Eδθ′
i
(θi)[L̂(θi, D)] =

∫
δθ′

i
L̂(θi, D) dθi = L̂(θ′

i, D),

and

DKL(ρi∥πi) =

∫
δθ′

i
(θi) log

δθ′
i
(θi)

π(θi)
dθi = − log π(θ′

i) =
di
2
log(2πσ2) +

1

2σ2
∥θ′i∥2.

Hence, the upper bound of the Theorem 3.3 can be expressed as

1

M

M∑
i=1

(
L̂(θ′

i, D) +
1

2cnσ2
∥θ′i∥2 +

di
2cn

log(2πσ2)

)
− V̂(ρ(θ), D) +

ϵ

cnL
. (1)

The balance between empirical expected loss and Kullback-Leibler divergence can be reformulated as a
trade-off between empirical expected loss with a penalty of L2 norm and dimensionality of model parameters.
Specifically, for fixed π(θ), D, c, n, and δ, minimizing Equation 1 is equivalent to find θ = {θi}Mi=1 by

minθ
∑M

i=1

(
L̂(θi, D) + λ1∥θi∥2 + λ2di

)
/M , where di is the dimension of θi, λ1, λ2 > 0 are the hyper-

parameters. Since the parameter dimension is not differentiable, we adopt a two-step method based on the
idea of the search algorithm. We first perform a dimensionality reduction operation on each layer’s features
to reduce each classifier’s parameter dimension. Each classifier is then independently trained with a loss
function with L2 penalty terms.

Dimensionality reduction can also be viewed as restricting the solution space to a linear subspace of the
original high dimensional parameter space. In the following, we show that average pooling is a simple and
effective method for dimensionality reduction, where the new optimal solution can be as close as possible to
the minimum training loss optimized in the original high-dimensional space, especially for image tasks.

Let fUk
: Rd → Rk denote a function of random pooling, where Uk is a projection matrix sampled from

Qk, the projection matrix of average pooling is defined as the expectation of Uk (EQk
[Uk(x)]) (A detailed

definition is provided in Appendix A.4). We use Uk(x) instead of fUk
(x) for simplicity. The next theorem

shows that for any pair (x, y), either sampled from P or a sampled set S ∈ Pm, we can find a w̃ ∈ Rk such
that the values of ⟨x,w⟩ and ⟨EQk

[Uk(x)], w̃⟩ are not to be too far apart with very high probability.
Theorem 3.5 (Inner Product Preservation). Let R, d, k ∈ N+, and d > k. Denote by X the ball of radius R
in Rd, and let P be any data distribution over X × Y . For every w ∈ Rd with ∥w∥2 ≤ 1, and δ > 0, there
exist a w̃ ∈ H satisfying,

Pr(x,y)∼P,Uk∼Qk
[|⟨x,w⟩ − ⟨EQk

[Uk(x)], w̃⟩| ≥ δ] ≤ 4 exp(− δ2k

8d2R2
) +

(d+ k)2

δ2k2

k∑
j=1

Var(xj),

and for every S ∈ supp (Pn),

Pr(x,y)∼S,Uk∼Qk
[|⟨x,w⟩ − ⟨EQk

[Uk(x)], w̃⟩| ≥ δ] ≤ 4 exp(− δ2k

8d2R2
) +

(d+ k)2

δ2k2

k∑
j=1

Var(xj),

where Var(xj) represents the element-wise variance of batch j of x.

The above results show that the probability of inner product preservation is related to the dimension ratio of
the pooling operation and the element-variance of the input. More specifically, the smaller the percentage
of dimensionality reduction, the more significant the difference between the input elements, then the inner
product will be distorted with a high probability. Since images are always piecewise constant (Chan & Vese,
2001), choosing an appropriate pooling kernel size can reduce the variance between input elements. But in
general, there exists a trade-off between dimensionality reduction and generalization in the few-shot problem.
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4 RELATED WORKS

Few-shot learning (FSL) algorithms can be roughly divided into three categories: generative-based, meta-
learning-based, and transfer-learning-based methods. Generative-based methods focus on alleviating data
shortages by data augmentation. Most methods implement GANs (Goodfellow et al., 2014) or autoencoder
from the source domain and use them to generate samples (Zhang et al., 2018) or features (Xian et al.,
2018) for new classes. Meta-learning-based methods aim to quickly adapt to new tasks by learning general
information across tasks. It usually includes metric-based and optimization-based methods. Metric-based
methods look for suitable learning metrics to judge data similarity for novel classes. Examples of distance
metrics include cosine similarity for MatchingNet (Vinyals et al., 2016), Euclidean distance between class
feature means for ProtoNet (Snell et al., 2017), CNN-based relational networks for RelationNet (Sung et al.,
2018), and linear classification rules for MetaOpt (Lee et al., 2019). Optimization-based methods focus on
using prior knowledge to influence the update of model parameters, e.g., MAML (Finn et al., 2017) aims to
find a good initialized parameter. Transfer-learning-based methods are based on the core idea of feature reuse
and are mainly performed by fine-tuning. The most common practice is to use the pre-trained backbone as a
fixed feature extractor, and the obtained high-dimensional feature vectors are used to learn the target task.

Cross-domain few-shot learning (CD-FSL) focuses on the FSL problem with large gaps between source
and target domains. Chen et al. (2019); Guo et al. (2020) found that simple fine-tuning methods significantly
outperform most meta-learning-based methods when faced with CD-FSL problems. Previous CD-FSL
approaches can be roughly categorized into two directions. One is to pre-train a more robust and transferable
backbone. For example, FWT (Tseng et al., 2020) introduced a feature-wise transformation layer on top
of features to model cross-domain distributions. STARTUP (Phoo & Hariharan, 2020) assumed that many
additional unlabeled data from the target domain are available for pre-training. HVM (Du et al., 2021)
proposed a hierarchical variational inference framework to optimize and store features at different semantic
levels. Another direction focuses on fine-tuning the given pre-trained model for the subsequent few-shot
learning task, e.g., CHEF (Adler et al., 2020) applying a fusion of Hebbian learners to increase the importance
of low and mid-level features. Additional related works are left to Appendix C.

5 EXPERIMENTS

In this section, we conduct extensive experiments to compare the performance of our proposed method with
the state-of-the-art methods on four cross-domain few-shot challenges. Additional results and more details
about the datasets, experiment setup, baselines, and model architectures are presented in the Appendix E.

5.1 EXPERIMENTAL SETUP

Datasets We evaluate our algorithm on the CD-FSL benchmark (Guo et al., 2020). The benchmark uses
mini-ImageNet (Vinyals et al., 2016), or ImageNet (Deng et al., 2009) as the source domain and evaluates
the pre-trained model on four different target domains with only a few labeled data. These four target
domains include data from the CropDiseases (Mohanty et al., 2016), EuroSAT (Helber et al., 2019), ISIC2018
(Tschandl et al., 2018; Codella et al., 2019), and ChestX (Wang et al., 2017) datasets, which cover plant
disease images, satellite images, dermoscopic images of skin lesions, and X-ray images. More details
about the datasets are provided in the Appendix E.1. We evaluate 5-way k-shot classification tasks for
k ∈ {5, 20, 50} and report the average accuracy(%, top-1) and 95% confidence interval over 600 few-shot
episodes following (Guo et al., 2020). Each episode contains randomly sampled 5 classes and k samples per
class for adaptation, and 15 query samples per class for evaluation.

Implementation details For a fair comparison, we use the ResNet-10 backbone architecture and adopt the
publicly accessed code to pre-train this backbone (Guo et al., 2020). Specifically, during the pre-training stage,
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we train the network on the miniImageNet dataset for 400 epochs by the Adam optimizer with a learning
rate of 0.001 and a batch size of 16. During the few-shot evaluation phase, we apply AdaptiveAvgPool2d
to reduce the dimension of features and train few-shot classifiers by using the official logistic regression
(LR) implementation of scikit-learn (Pedregosa et al., 2011). Finally, we apply the average ensemble for all
classifiers to predict. For all target tasks, we set the maximum number of iterations of LR to 1000, the output
size of AdaptiveAvgPool2d to 1, and the ensemble selects the middle residual block to the last residual
block. For example, ResNet-18 has a total of 8 residual blocks. We use the features of block 5 to block 8,
reduce their dimensionality, and independently train distinct learners for the future average ensemble.

5.2 RESULTS AND ABLATION STUDIES

Table 1: Experimental results on four cross-domain few-shot challenges. The average accuracy and 95%
confidence interval of 600 runs are reported. †, ∗, and ⋆ denotes results reported by Guo et al. (2020), Adler
et al. (2020) and Du et al. (2021) respectively. The runner-up method is underlined.

ChestX ISIC EuroSAT CropDiseases
Method 5-way 5-shot 5-way 20-shot 5-way 5-shot 5-way 20-shot 5-way 5-shot 5-way 20-shot 5-way 5-shot 5-way 20-shot

MatchingNet† 22.40 ± 0.70 23.61 ± 0.86 36.74 ± 0.53 45.72 ± 0.53 64.45 ± 0.63 77.10 ± 0.57 66.39 ± 0.78 76.38 ± 0.67
MatchingNet + FWT† 21.26 ± 0.31 23.23 ± 0.37 30.40 ± 0.48 32.01 ± 0.48 56.04 ± 0.65 63.38 ± 0.69 62.74 ± 0.90 74.90 ± 0.71

MAML† 23.48 ± 0.96 27.53 ± 0.43 40.13 ± 0.58 52.36 ± 0.57 71.70 ± 0.72 81.95 ± 0.55 78.05 ± 0.68 89.75 ± 0.42
ProtoNet† 24.05 ± 1.01 28.21 ± 1.15 39.57 ± 0.57 49.50 ± 0.55 73.29 ± 0.71 82.27 ± 0.57 79.72 ± 0.67 88.15 ± 0.51

ProtoNet + FWT† 23.77 ± 0.42 26.87 ± 0.43 38.87 ± 0.52 43.78 ± 0.47 67.34 ± 0.76 75.74 ± 0.70 72.72 ± 0.70 85.82 ± 0.51
RelationNet† 22.96 ± 0.88 26.63 ± 0.92 39.41 ± 0.58 41.77 ± 0.49 61.31 ± 0.72 74.43 ± 0.66 68.99 ± 0.75 80.45 ± 0.64

RelationNet + FWT† 22.74 ± 0.40 26.75 ± 0.41 35.54 ± 0.55 43.31 ± 0.51 61.16 ± 0.70 69.40 ± 0.64 64.91 ± 0.79 78.43 ± 0.59
MetaOpt† 22.53 ± 0.91 25.53 ± 1.02 36.28 ± 0.50 49.42 ± 0.60 64.44 ± 0.73 79.19 ± 0.62 68.41 ± 0.73 82.89 ± 0.54

Fixed† 25.35 ± 0.96 30.83 ± 1.05 43.56 ± 0.60 52.78 ± 0.58 75.69 ± 0.66 84.13 ± 0.52 87.48 ± 0.58 94.45 ± 0.36
CHEF∗ 24.72 ± 0.14 29.71 ± 0.27 41.26 ± 0.34 54.34 ± 0.34 74.15 ± 0.27 83.31 ± 0.14 86.87 ± 0.27 94.78 ± 0.12
HVM⋆ 27.15 ± 0.45 30.54 ± 0.47 42.05 ± 0.34 54.97 ± 0.35 74.88 ± 0.45 84.81 ± 0.34 87.65 ± 0.35 95.13 ± 0.35

Ours 26.43 ± 0.44 32.62 ± 0.45 44.02 ± 0.53 56.94 ± 0.57 81.65 ± 0.65 89.34 ± 0.44 91.48 ± 0.47 96.65 ± 0.27

Comparison to State-of-the-arts Table 1 shows the performance comparison of our method with other
methods on the CD-FSL benchmark. Our proposed method achieves state-of-the-art performance in 7 out
of 8 categories. Compared with meta-learning-based methods, the performance of our method is greatly
improved in all settings. For example, under the 5-way 5-shot, our method yields an improvement of
9.90%, 9.69%, 11.41%, 14.75% over the state-of-the-art meta-learning-based method. This result shows
that our method can better handle extremely cross-domain few-shot problems. Compared to other non-meta-
learning-based methods, our method also shows strong competitiveness. Specifically, under the 5-way 20-shot,
our method outperforms the runner-up method by 1.79%, 1.97%, 4.53%, 1.52% on ChestX, ISIC, EuroSAT
and CropDisease, respectively. Furthermore, we can see that the improvement increases as the number of
shots on the ChestX and ISIC datasets increases. Results under 5-way 50-shot are provided in Appendix E.4.

Figure 3: Benefits of the ensemble on four cross-domain challenges. The ensemble is trained on the ImageNet
pre-trained ResNet-18 network. Results under different pre-trained networks are provided in Appendix E.5.
Better results were obtained under all shots on all datasets using the ensemble.
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Benefits of an Ensemble model To show the benefit of the ensemble, we compare our method with a
few-shot classifier trained using only the dimensionality-reduced features of the last block. Figure 3 shows
that the ensemble model achieves consistent improvement on all cross-domain few-shot classification tasks.
Furthermore, we find that on ChestX and ISIC, two tasks with a larger domain shift gap, the advantage of
the ensemble model is more pronounced as the number of samples increases. More results with different
pre-trained backbones and the benefit of independent training are reported in Appendix E.5, E.6.

Table 2: Ablation studies under 5-way 5-shot and the pre-trained
ResNet-18 model. Average test accuracy and 95% confidence inter-
vals of 600 runs are reported.

ENS AVGPOOL ChestX ISIC EuroSAT CropDiseases
✓ 25.41 ± 0.42 44.22 ± 0.58 84.85 ± 0.49 92.60 ± 0.46

✓ 25.60 ± 0.43 45.45 ± 0.56 80.92 ± 0.57 89.77 ± 0.55
✓ ✓ 25.75 ± 0.43 45.26 ± 0.58 87.10 ± 0.49 94.39 ± 0.41

Benefits of Average Pooling We fur-
ther investigate the benefits of using
average pooling. The experimental re-
sult are provided in Table 2. Our pro-
posed method achieves better results
on ChestX, EuroSAT, and CropDis-
eases. Especially on the EuroSAT and
CropDiseases, the improvements over
6.18% and 4.62% are obtained, respec-
tively. While the ensemble without average pooling on ISIC shows better performance, it requires more
than 20 times the training time (Figure 4). We also conduct an ablation experiment to visualize the effect of
reducing the ISIC few-shot task to different dimensions. As shown in Figure 4(c), we find that choosing the
appropriate output size of AVGPOOL can significantly improve performance. But how to select the better
output size under few-shot problems is non-trivial. We leave it for future exploration.

Figure 4: (Left:) Average test accuracy and (Middle:) Time usage for four cross-domain challenges un-
der 5-way 5-shot and the pre-trained ResNet-18 model. (Right:) The effect of different output sizes of
AdaptiveAvgPool2d on ISIC few-shot task (see Appendix E.7 for other tasks).

6 CONCLUSION

This paper explores the performance of a cross-domain few-shot classifier on top of representations from
different layers of a pre-trained model and the impact of applying dimensionality reduction to these represen-
tations. We find that dimensionality reduction consistently improves for few-shot, while the intermediate
layer information of pre-trained models may be more valuable for cross-domain. Based on this finding, we
propose a simple and effective method, Average Pooling Ensemble Few-shot Learning (APEF). We apply
average pooling on top of representations from different layers of the pre-trained model, use reduced features
to train the few-shot classifiers, and finally integrate all classifiers through the average ensemble model for
prediction. The evaluation of a challenging benchmark, CD-FSL, with different pre-trained networks and the
comparison with some state-of-the-art algorithms show the effectiveness of our method. More importantly, we
provide a theoretical analysis under the PAC-Bayesian framework to demonstrate why our method works. We
also show that average pooling is an effective dimensionality reduction method for visual recognition tasks.
Although we theoretically and empirically demonstrate the advantages of average pooling and ensemble for
the cross-domain few-shot problem, whether there exists a better strategy for ensemble and dimensionality
reduction remains an unresolved problem and is left for our future exploration.
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A APPENDIX

This section provides proof of the main theorems and lemmas presented in the paper. We also provide a brief
overview of the proof of Theorem 3.1 from Germain et al. (2009); Alquier et al. (2016); Masegosa (2020).

A.1 PROOF OF THEOREM 3.1

Theorem 3.1 (Germain et al. (2009); Alquier et al. (2016); Masegosa (2020)). Given a data distribution P
over X ×Y , a hypothesis set Θ, a prior distribution π over Θ, for any δ ∈ (0, 1], and λ > 0, with probability
at least 1− δ over samples D ∼ Pn, we have for all posterior ρ,

Eρ(θ)[L(θ)] ≤ Eρ(θ)[L̂(θ, D)] +
1

λ

[
DKL(ρ∥π) + log

1

δ
+ΨP,π(λ, n)

]
where ΨP,π(λ, n) = logEπ(θ)ED∼Pn

[
eλ(L(θ)−L̂(θ,D))

]
.

Proof. The Donsker-Varadhan’s change of measure states that for any measurable function ϕ : Θ → R, we
have

Eρ(θ)[ϕ(θ)] ≤ DKL(ρ∥π) + logEπ(θ)[e
ϕ(θ)]

Thus, with ϕ(θ) := λ
(
L(θ)− L̂(θ, D)

)
, we obtain ∀ρ on Θ:

Eρ(θ)

[
λ
(
L(θ)− L̂(θ, D)

)]
= λ

(
Eρ(θ) [L(θ)]− Eρ(θ)

[
L̂(θ, D)

])
≤ DKL(ρ∥π) + logEπ(θ)

[
eλ(L(θ)−L̂(θ,D))

]
Next, we apply Markov’s inequality on the random variable ζπ(D) := Eπ(θ)

[
eλ(L(θ)−L̂(θ,D))

]
:

Pr

(
ζπ(D) ≤ 1

δ
ED∼Pn [ζπ (D)]

)
≥ 1− δ

This implies that with probability at least 1− δ over the choice of D ∼ Pn, we have ∀ρ on Θ:

Pr

(
Eρ(θ)[L(θ)] ≤ Eρ(θ)[L̂(θ, D)] +

1

λ

[
DKL(ρ∥π) + log

1

δ
+ΨP,π(λ, n)

])
≥ 1− δ,

where ΨP,π(λ, n) = logEπ(θ)ED∼Pn

[
eλ(L(θ)−L̂(θ,D))

]
.

A.2 PROOF OF THEOREM 3.2

Theorem 3.2. (Second-order Oracle bound) Given a data distribution P , a set of model parameters {Θi}Mi=1,
for any distribution {ρi}Mi=1 over {Θi}Mi=1 satisfies that,

Eρ(θ)[L(θ)] ≤
1

M

M∑
i=1

Eρi(θi)[L(θi)]− V(ρ(θ))

where θi ∈ Θi,θ = {θi}Mi=1, ρ (θ) =
∏M

i=1 ρi(θi), and V(ρ(θ)) is a variance term defined as

V(ρ(θ)) = Eρ(θ)E(x,y)∼P

 1

2M maxθ p(y|x,θ)2
M∑
i=1

(
p(y|x,θi)−

1

M

M∑
k=1

p(y|x,θk)

)2
 .
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Proof. We first apply Taylor’s theorem with a remainder of second order to the logarithm function. That is,
given log x and a fixed value a > 0,

log x = log a+
1

a
(x− a)− 1

2ξ2
(x− a)2, ξ ∈ (x, a). (2)

Therefore, applying Eq. 2 to p(y|x,θi) centered at 1
M

∑M
k=1 p(y|x,θk) > 0, we have

log p(y|x,θi) = log
1

M

M∑
k=1

p(y|x,θk) +
1

1
M

∑M
k=1 p(y|x,θk)

[
p(y|x,θi)−

1

M

M∑
k=1

p(y|x,θk)

]

− 1

2ξ2i

(
p(y|x,θi)−

1

M

M∑
k=1

p(y|x,θk)

)2

,

where ξi ∈
(
p(y|x,θi), 1

M

∑M
k=1 p(y|x,θk)

)
, ∀i ∈ [M ].

Averaging the above equation, we have

1

M

M∑
i=1

log p(y|x,θi) = log
1

M

M∑
i=1

p(y|x,θi)−
1

M

M∑
i=1

1

2ξ2i

(
p(y|x,θi)−

1

M

M∑
k=1

p(y|x,θk)

)2

Rearranging terms,

− log
1

M

M∑
i=1

p(y|x,θi)

=
1

M

M∑
i=1

− log p(y|x,θi)−
1

M

M∑
i=1

1

2ξ2i

(
p(y|x,θi)−

1

M

M∑
k=1

p(y|x,θk))

)2

≤ 1

M

M∑
i=1

− log p(y|x,θi)−
1

2M maxθ p(y|x,θ)2
M∑
i=1

(
p(y|x,θi)−

1

M

M∑
k=1

p(y|x,θk)

)2

,

where last inequality follows from ξi ≤ maxθi
p(y|x,θi) ≤ maxθ p(y|x,θ),∀ξi.

Finally, the result of the theorem is derived by taking expectation wrt (x, y) ∼ P and θ ∼ ρ(θ) on both sides
of the above inequality, and rewriting

Eρ(θ)E(x,y)∼P

[
− log

1

M

M∑
i=1

p(y|x,θi)

]
= Eρ(θ)[L(θ)],

Eρ(θ)E(x,y)∼P

[
1

M

M∑
i=1

− log p(y|x,θi)

]
=

1

M

M∑
i=1

Eρ(θ)E(x,y)∼P [− log p(y|x,θi)]

=
1

M

M∑
i=1

Eρ(θ) [L(θi)] =
1

M

M∑
i=1

Eρi(θi) [L(θi)] ,

V(ρ(θ)) = Eρ(θ)E(x,y)∼P

 1

2M maxθ p(y|x,θ)2
M∑
i=1

(
p(y|x,θi)−

1

M

M∑
k=1

p(y|x,θk)

)2
 .
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A.3 PROOF OF THEOREM 3.3

Before proving Theorem 3.3, we need to introduce the following result,
Lemma A.1. For any distribution {ρi}Mi=1 over {Θi}Mi=1, the second-order Jensen bound of Theorem 3.2
bound can be expressed as follows,

1

M

M∑
i=1

Eρi(θi)[L(θi)]− V(ρ(θ)) = Eρ(θ)L2(θ),

where θi ∈ Θi,θ = {θi}Mi=1, ρ (θ) =
∏M

i=1 ρi(θi), and L2(θ) is defined as

L2(θ) = E(x,y)∼P

 1

M

M∑
i=1

− log p(y|x,θi)−

(
p(y|x,θi)− 1

M

∑M
k=1 p(y|x,θk)

)2
2maxθ p(y|x,θ)2




Proof. The result can be directly obtained by the following equation,

1

M

M∑
i=1

Eρi(θi)[L(θi)]− V(ρ(θ)) =
1

M

M∑
i=1

Eρi(θi)E(x,y)∼P [− log p(y|x,θi)]− V(ρ(θ))

=Eρ(θ)E(x,y)∼P

[
1

M

M∑
i=1

− log p(y|x,θi)

]

− Eρ(θ)E(x,y)∼P


∑M

i=1

(
p(y|x,θi)− 1

M

∑M
k=1 p(y|x,θk)

)2
2Lmaxθ p(y|x,θ)2


=Eρ(θ)E(x,y)∼P

 1

M

M∑
i=1

− log p(y|x,θi)−

(
p(y|x,θi)− 1

M

∑M
k=1 p(y|x,θk)

)2
2maxθ p(y|x,θ)2


 .

We now proceed to prove the Theorem 3.3.
Theorem 3.3. Given a data distribution P , a set of model parameters {Θi}Mi=1 and associated priors {πi}Mi=1,
where πi is defined over Θi, a δ ∈ (0, 1], and a real number c > 0, with probability at least 1− δ over draws
of training data D ∼ Pn, for all posteriors {ρi}Mi=1 over {Θi}Mi=1, simultaneously,

Eρ(θ)[L(θ)] ≤
1

M

M∑
i=1

(
Eρi(θi)[L̂(θi, D)] +

DKL(ρi∥πi)

cn

)
− V̂(ρ(θ), D) +

ϵ

cnM
,

where ϵ(P, π, c, n, δ) = logEπ(θ)ED∼Pn

[
ecn(

∑M
i=1(L(θi)−L̂(θi,D))−M(V(θ)−V̂(θ,D)))

]
+log 1

δ , V̂(ρ(θ), D)

is the empirical version of V(ρ(θ)), and V(ρ(θ)) = Eρ(θ)[V(θ)].

Proof. First of all, consider the following tandem loss:

L2(θ) = E(x,y)∼P

 1

M

M∑
i=1

− log p(y|x,θi)−

(
p(y|x,θi)− 1

M

∑M
k=1 p(y|x,θk)

)2
2maxθ p(y|x,θ)2




16



Under review as a conference paper at ICLR 2023

Applying 3.1 to the tandem loss function with prior distribution π (θ) =
∏M

i=1 πi(θi) described above, we
get that for any cn > 0, δ ∈ (0, 1], with probability at least 1− δ:

Eρ(θ)[L2(θ)] ≤ Eρ(θ)[L̂2(θ, D)] +
1

λ
(DKL(ρ(θ)∥π(θ)) + ϵ(P, π, λ, n, δ))

where ϵ(P, π, λ, n, δ) = logEπ(θ)ED∼Pn

[
eλ(L2(θ)−L̂2(θ,D))

]
+ log 1

δ .

Next, rewriting

Eρ(θ)[L2(θ)] =
1

M

M∑
i=1

Eρi(θi)[L(θi)]− V(ρ(θ)),

Eρ(θ)[L̂2(θ, D)] =
1

M

M∑
i=1

Eρi(θi)[L̂(θi, D)]− V̂(ρ(θ), D),

L2(θ)− L̂2(θ, D) =
1

M

M∑
i=1

(
L(θi)− L̂(θi, D)

)
−
(
V (θ)− V̂ (θ, D)

)
,

and noting that DKL (ρ(θ)∥π(θ)) = DKL

(
M∏
i=1

ρi(θi)∥
M∏
i=1

πi(θi)

)
=

M∑
i=1

DKL(ρi∥πi).

Finally, applying Theorem 3.2, we can obtain the PAC-Bayes bound of the theorem by reparametrized λ as
λ = cnM .

Eρ(θ)[L(θ)] ≤
1

M

M∑
i=1

Eρi(θi)[L(θi)]− V(ρ(θ))

≤ 1

M

M∑
i=1

Eρi(θi)[L̂(θi, D)]− V̂(ρ(θ), D) +
1

cnM

M∑
i=1

DKL(ρi∥πi) +
ϵ

cnM

=
1

M

M∑
i=1

(
Eρi(θi)[L̂(θi, D)] +

DKL(ρi∥πi)

cn

)
− V̂(ρ(θ), D) +

ϵ

cnM
.

where ϵ(P, π, c, n, δ) = logEπ(θ)ED∼Pn

[
ecn(

∑M
i=1(L(θi)−L̂(θi,D))−M(V(θ)−V̂(θ,D)))

]
+ log 1

δ

A.4 PROOF OF THEOREM 3.5

We first introduce the definition of the random pooling process.
Definition A.2 (Batches of vector). Divide x ∈ Rd into disjoint k blocks in turn, which can be expressed
as x = [x1; · · · ;xk], where xi ∈ R⌈d/k⌉ represents the batch i of x. Note that for the case where d

k is not
divisible, we can pad 0 to xk.

To get batches of a matrix or tensor, we can first convert them to vectors by flattening, as shown in Figure 5.
Definition A.3 (The Process of Random Pooling). Let d, k ∈ N+, and d > k. Denote fUk

: Rd → Rk

as a function of random pooling. The projection matrix Uk is defined as a vector concatenated by k
independent random vectors, denoted as Uk = [u1; · · · ; uk]. Each random vector ui ∈ {0, 1}⌈d/k⌉ is a
one-hot random vector representing that each entry will be selected with the same probability 1

⌈d/k⌉ . We
define the distribution of the projection matrix as Qk. Therefore, the random pooling process of x can be
expressed as fUk

(x) = [uT1 x1; · · · ; uTk xk], which Uk ∼ Qk, and xi ∈ R⌈d/k⌉ refers to the batch i of x. We
use Uk(x) instead of fUk

(x) for simplify.
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Figure 5: Schematic of pooling process U(x) : R2×4 → R2×2. x,U denotes input and projection matrix,
respectively. xi represents the batch i of x. The pooling process of x can be expressed as U(x) =
[uT

1 x1, uT2 x2; uT3 x3, uT4 x4].

Lemma A.4. Let Uk be the projection matrix of random pooling sampled from Qk. Then for every w,v ∈ Rd,
we have,

EUk∼Qk
[⟨Uk(w),Uk(v)⟩] =

1

⌈d/k⌉
⟨w,v⟩,

Proof. Since Uk(w) = [uTi wi; · · · ; uTkwk] ∈ Rk, we have

⟨Uk(w),Uk(v)⟩ =
k∑

i=1

(uTi wi)(uTi vi)

Let Zi = (uT
i wi)(uTi vi), for i ∈ [k]. Z1, · · · , Zk are independent random variables based on the inde-

pendence of u1, · · · , uk. As ui ∈ R⌈d/k⌉ be a one-hot random vector with probability 1
⌈d/k⌉ , we have

EUk∼Qk
[uiuTi ] =

1
⌈d/k⌉I . Therefore,

EUk∼Qk
[Z1 + · · ·+ Zk] =

k∑
i=1

EUk∼Qk
[Zi] =

k∑
i=1

1

⌈d/k⌉
⟨wi,vi⟩ =

1

⌈d/k⌉
⟨w,v⟩.

Thus, we obtain

EUk∼Qk
[⟨Uk(w),Uk(v)⟩] =

1

⌈d/k⌉
⟨w,v⟩.

Lemma A.5 (Hoeffding’s inequality). Let X1, · · · , Xn be independent random variables such that ai ≤
Xi ≤ bi almost surely. Consider the sum of these random variables, Sn = X1 + · · · +Xn. Then, for all
t > 0, we have

Pr (Sn − E [Sn] ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
Pr (|Sn − E [Sn]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
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Theorem 3.5 (Inner Product Preservation). Let R, d, k ∈ N+, and d > k. Denote by X the ball of radius R
in Rd, and let P be any data distribution over X × Y . For every w ∈ Rd with ∥w∥2 ≤ 1, and δ > 0, there
exist a w̃ ∈ H satisfying,

Pr(x,y)∼P,Uk∼Qk
[|⟨x,w⟩ − ⟨EQk

[Uk(x)], w̃⟩| ≥ δ] ≤ 4 exp(− δ2k

8d2R2
) +

(d+ k)2

δ2k2

k∑
j=1

Var(xj),

and for every S ∈ supp (Pn),

Pr(x,y)∼S,Uk∼Qk
[|⟨x,w⟩ − ⟨EQk

[Uk(x)], w̃⟩| ≥ δ] ≤ 4 exp(− δ2k

8d2R2
) +

(d+ k)2

δ2k2

k∑
j=1

Var(xj),

where Var(xj) represents the element-wise variance of batch j of x.

Proof. First, by the triangle inequality and the linearity of the dot product, we have

|⟨x,w⟩ − ⟨EQk
[Uk(x)], w̃⟩|

≤|⟨x,w⟩ − ⟨Uk(x), ⌈
d

k
⌉Uk(w)⟩|+ |⟨Uk(x), ⌈

d

k
⌉Uk(w)⟩ − ⟨EQk

[Uk(x)], w̃⟩|

≤|⟨x,w⟩ − ⟨Uk(x), ⌈
d

k
⌉Uk(w)⟩|+ |⟨Uk(x), ⌈

d

k
⌉Uk(w)⟩ − ⟨Uk(x), w̃⟩|

+ |⟨Uk(x), w̃⟩ − ⟨EQk
[Uk(x)], w̃⟩|.

Then,
Pr(x,y)∼P,Uk∼Qk

[|⟨x,w⟩ − ⟨EQk
[Uk(x)], w̃⟩| ≥ δ]

≤Pr(x,y)∼P,Uk∼Qk
[|⟨x,w⟩ − ⟨Uk(x), ⌈

d

k
⌉Uk(w)⟩| ≥ δ]

+ Pr(x,y)∼P,Uk∼Qk
[|⟨Uk(x), ⌈

d

k
⌉Uk(w)⟩ − ⟨Uk(x), w̃⟩| ≥ δ]

+ Pr(x,y)∼P,Uk∼Qk
[|⟨Uk(x), w̃⟩ − ⟨EQk

[Uk(x)], w̃⟩| ≥ δ].

(3)

To bound the first probability term, we observe that

EUk∼Qk
[⟨Uk(x), ⌈

d

k
⌉Uk(w)⟩] = ⌈d

k
⌉EUk∼Qk

[⟨Uk(x),Uk(w)⟩] = ⟨x,w⟩, (4)

where the last equation follows from Lemma A.4.

Let Zj = ⌈ d
k ⌉⟨Uk(xj),Uk(wj)⟩ be the weighted inner product after random pooling of batch j of x and w.

Z1, · · · , Zk are the independent random variables, and Zj ∈ (−( dk + 1)R, ( dk + 1)R), ∀j ∈ [k] follows from
the fact that Pr(x,y)∼P [∥x∥2 ≤ R] = 1 and ||w||2 ≤ 1.

Since ⟨Uk(x), ⌈ d
k ⌉Uk(w)⟩ =

∑k
j=1 Zj , applying Hoeffding’s inequality and Eq. 4, we have

Pr(x,y)∼P,Uk∼Qk
[|⟨x,w⟩ − ⟨Uk(x), ⌈

d

k
⌉Uk(w)⟩| ≥ δ]

=Pr(x,y)∼P,Uk∼Qk
[|EQk

[

k∑
j=1

Zj ]−
k∑

j=1

Zj | ≥ δ] ≤ 2e
− δ2k

2(d+k)2R2 ≤ 2e−
δ2k

8d2R2 ,
(5)

where the last inequality follows from the fact that k ≤ d.
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Next, we bound the second term in 3. Let w̃ = ⌈ d
k ⌉EQk

[Uk(w)], we have

EQk
[⟨Uk(x), ⌈

d

k
⌉Uk(w)⟩ − ⟨Uk(x), w̃⟩] = EQk

[⟨Uk(x), ⌈
d

k
⌉Uk(w)− w̃⟩] = 0. (6)

Furthermore, denote ⟨Uk(x), ⌈ d
k ⌉Uk(w)−w̃⟩ =

∑k
j=1 Vj , where Vj = uT

j xj(⌈ d
k ⌉uTj wj−1Twj),∀j ∈ [k].

Since the random variables V1, · · · , Vk are independent, and Vj ∈ (− 2dR
k , 2dR

k ), ∀j ∈ [k] follows from the
facts that Pr(x,y)∼P [∥x∥2 ≤ R] = 1 and ||w||2 ≤ 1, we can apply Hoeffding’s inequality and Eq. 6 to
obtain,

Pr(x,y)∼P,Uk∼Qk
[|⟨Uk(x), ⌈

d

k
⌉Uk(w)− w̃⟩| ≥ δ]

=Pr(x,y)∼P,Uk∼Qk
[|

k∑
j=1

Vj − EQk
[

k∑
j=1

Vj ]| ≥ δ] ≤ 2e−
δ2k

8d2R2 .
(7)

Finally, we bound the third term in 3.

Denote ⟨Uk(x), w̃⟩ =
∑k

j=1 Tj , where Tj = w̃juTj xj ,∀j ∈ [k]. Since w̃ = ⌈ d
k ⌉EQk

[Uk(w)], then

w̃j =
∑⌈d/k⌉

i=1 wji denotes the element-wise sum of batch j of w. For every j ∈ [k], we have

VarQk
(Tj) = EQk

[T 2
j ]− (EQk

[Tj ])
2 = w̃2

j

(
EQk

[(uTj xj)
2]− EQk

[(uT
j xj)]

2
)
= w̃2

jVar(xj),

where Var(xj) represents the element-wise variance of batch j of x.

Hence, applying Chebyshev’s inequality, we have

Pr(x,y)∼P,Uk∼Qk
[|⟨Uk(x), w̃⟩ − ⟨EQk

[Uk(x)], w̃⟩| ≥ δ]

=Pr(x,y)∼P,Uk∼Qk
[|

k∑
j=1

Tj − EQk
[

k∑
j=1

Tj ]| ≥ δ]

≤ 1

δ2
VarQk

(

k∑
j=1

Tj) =
1

δ2

k∑
j=1

VarQk
(Tj) (Since T1, · · · , Tk are independent)

=
1

δ2

k∑
j=1

w̃2
jVar(xj) <

(d+ k)2

δ2k2

k∑
j=1

Var(xj)

(8)

where the second inequality comes from w̃2
j = (

∑⌈d/k⌉
i=1 wji)

2 < (⌈d/k⌉)2 < ( dk + 1)2, ||w||2 ≤ 1, and the
last inequality follows from the fact that k ≤ d.

Plugging (5), (7) and 8 into (3), we can obtain

Pr(x,y)∼P,Uk∼Qk
[|⟨x,w⟩ − ⟨EQk

[Uk(x)], w̃⟩| ≥ δ] ≤ 4 exp(− δ2k

8d2R2
) +

(d+ k)2

δ2k2

k∑
j=1

Var(xj),

where Var(xj) represents the element-wise variance of batch j of x.

Thus, we have concluded the first part of the lemma.

The proof of the second part is identical, as we did not use any properties of the distribution P other than
Pr(x,y)∼P [||x||2 ≤ R] = 1. For every S ∈ supp (Pn), it holds that Pr(x,y)∼S [||x||2 ≤ R] = 1, and the
result follows.
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B PSEUDO-CODE OF OUR METHOD

Algorithm 1 Average Pooling Ensemble Few-shot Learning (APEF)

Require: Support set S = {(xi, yi)}N×K
i=1 , Query set Q = {xi}N×M

i=1 , Pre-trained Network F with L
layers, Output size of AdaptiveAvgPool2d d, start layer for ensemble r.
function TRAIN(S)

for j = r, · · · , L do
zij = AdaptiveAvgPool2d(d)(Fj(xi)) ▷ Get dimensionality reduction features
Sj = {(zij , yi)}N×K

i=1 ▷ Generate new support set
Train a classifier fθj

with ℓj =
1

N×K

∑
(zij ,yi)∼Sj

− logP (yi|zij ,θj).
end for

end function
function INFERENCE(Q)

zij = AdaptiveAvgPool2d(d)(Fj(xi)) for j ∈ [r, · · · , L]
ŷi =

∑
j∈[r,··· ,L] fθj (zij) ▷ Integrate the predictions of all trained classifiers

end function
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Figure 6: Schematic of APEF inference.

C ADDITIONAL RELATED WORK

C.1 FEW-SHOT LEARNING (FSL)

Given abundant training examples from the source domain, few-shot learning aims to learn to recognize novel
classes in the target domain with a limited amount of labeled samples. FSL algorithms can be roughly divided
into three categories: generative-based, meta-learning-based, and transfer-learning-based methods.

Generative-based methods focus on learning augmentation to alleviate data shortages. Most methods
implement Generative Adversarial Networks (Goodfellow et al., 2014) or autoencoder (Rumelhart et al.,
1986) from the source domain and use them to generate samples (Zhang et al., 2018; Schwartz et al., 2018;
Yang et al., 2021) or features (Xian et al., 2018; Zhang et al., 2019) for new classes. More specifically, Zhang
et al. (2018) and Xian et al. (2018) proposed an adversarial generator to synthetic data, Zhang et al. (2019)
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introduced a variational autoencoder to approxiamted the distibution and predict labels based on the estimated
statics. Recently, Yang et al. (2021) proposed a method without additional training parameters, which expands
samples by a calibration distribution obtained from the statistics of classes with sufficient samples.

Meta-learning-based methods aim to quickly adapt to new tasks by learning general information across
tasks. It usually includes metric-based and optimization-based methods. Metric-based methods look for
suitable learning metrics or distance functions to judge the similarity of new data classes. Examples of
distance metrics include cosine similarity for MatchingNet (Vinyals et al., 2016), Euclidean distance between
class feature means for ProtoNet (Snell et al., 2017), CNN-based relational networks for RelationNet (Sung
et al., 2018), and linear classification rules for MetaOpt (Lee et al., 2019). Optimization-based methods use
prior knowledge to influence the update of model parameters, either by finding a good initialized parameter
(Finn et al., 2017; Rusu et al., 2018), or by directly learning an optimizer to output search steps, e.g. Ravi &
Larochelle (2016) proposed an LSTM-based meta-learner to replace the stochastic gradient descent optimizer,
Munkhdalai & Yu (2017) introduced the weight-update mechanism using external memory.

Transfer-learning-based methods are based on the core idea of feature reuse and are mainly performed
through fine-tuning. The most common practice is to use a pre-trained backbone as a fixed feature extractor,
and the obtained high-dimensional feature vectors are used to learn the target task. Some works use different
classifiers to learn downstream tasks, such as cosine-similarity based classifier (Chen et al., 2019), mean-
centroid classifier (Guo et al., 2020). Recent work (Ghaffari et al., 2021) improved the performance of
few-shot classifiers from the perspective of firth bias reduction.

C.2 CROSS-DOMAIN FEW-SHOT LEARNING (CD-FSL)

Cross-domain few-shot learning focuses on the FSL problem with large gaps between source and target
domains. Previous works (Chen et al., 2019; Guo et al., 2020) found that simple fine-tuning methods
significantly outperform most meta-learning-based methods when faced with CD-FSL problems. To help
investigate this problem, Guo et al. (2020) also proposed a novel and challenging CD-FSL benchmark,
which covers several target domains with different similarities to natural images. Most previous efforts of
CDFSL can be roughly categorized into two directions. One is to pre-train a more robust and transferable
backbone. For example, Tseng et al. (2020) introduced a feature-wise transformation layer on top of the
features to simulate the cross-domain distribution. Phoo & Hariharan (2020) and (Islam et al., 2021) assumed
that many unlabeled data from the target domain is available for pre-training and combined contrastive
learning and knowledge distillation with adaptation to the target task. HVM (Du et al., 2021) introduces
a hierarchical variational inference framework to optimize and store features at different semantic levels.
Another direction focuses on fine-tuning the given pre-trained model for the subsequent few-shot learning
task, e.g., CHEF (Adler et al., 2020) applying a fusion of Hebbian learners to increase the importance of
low and mid-level features. More recently, ConFeSS Das et al. (2021) proposed a framework that combines
contrastive learning and feature selection to tackle large domain shifts between the base and novel categories.
Luo et al. (2022) introduced a channel-wise feature transformation to alleviate the channel bias problem in
few-shot image classification. In contrast, our work focuses on how to quickly adapt a given pre-trained
model into a cross-domain with only accessing a few labeled data in the target domain. To the best of our
knowledge, we are the first work to propose theoretical guarantees for CD-FSL.

D MORE EXPERIMENTAL RESULTS OF SECTION 2

D.1 EFFECTS OF DIFFERENT LAYERS ON THE PERFORMANCE OF CROSS-DOMAIN FEW-SHOT
LEARNING

Figure 7 shows 5-shot and 20-shot classifier performance on four challenging datasets adapted to represen-
tations of different residual blocks of a ResNet-18 network pre-trained on ImageNet. The result of 50-shot
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is shown in Figure 1 of the main text. These experiments report the average accuracy (%, top-1) for ten
few-shot episodes. We can see that representations from intermediate blocks may be more transferable than
representations from the last block. For example, under 5-way 20-shot, the performance of the ISIC classifier
trained on the 5-th block representation is significantly better than that trained on the last block representation.

Figure 7: Investigate the performance of few-shot classifiers when applied on top of representation from
different residual blocks of a ResNet-18 network pre-trained on ImageNet. The four panels on the left show
the test accuracy of the 5-Way 5-Shot classifiers, and the four panels on the right show the test accuracy of
the 5-Way 20-Shot classifiers.

D.2 THE TRADE-OFF BETWEEN DIMENSIONALITY REDUCTION AND PERFORMANCE

Figure 8: Dimensionality reduction methods produce consistent improvements across different blocks. The
experiments are performed on the ResNet-18 network pre-trained on ImageNet, and four target task used for
adaptation is set to 5-way 20-shot. Left: Average test accuracy of four target tasks for each block. Right: The
four small graphs correspond to the test accuracy of four target tasks on block 4, respectively. (W/O denotes
no dimensionality reduction method is used.)
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Figure 9: Dimensionality reduction methods produce consistent improvements across different blocks. The
experiments are performed on the ResNet-18 network pre-trained on ImageNet, and four target task used for
adaptation is set to 5-way 50-shot. Left: Average test accuracy of four target tasks for each block. Right: The
four small graphs correspond to the test accuracy of four target tasks on block 4, respectively. (W/O denotes
no dimensionality reduction method is used.)

Figure 8, 9 show the performance of different dimensionality reduction methods under 20-shot and 50-shot.
The result of 5-shot is shown in Figure 2 of the main text. We selected five classical and effective dimension-
ality reduction methods, including random pooling (RANDPOOL), maximum pooling (MAXPOOL), average
pooling (AVGPOOL), Principal Component Analysis (PCA), and Linear Optimal Low-Rank Projection
(LOL) (Vogelstein et al., 2021). Most of the existing sufficient dimensional reduction (SDR) methods are
not well suited for few-shot problems, as they completely break down in the N ≪ d regime (N : number of
samples, d: sample dimension).

We implement AVGPOOL(MAXPOOL) by applying AdaptiveAvgPool2d(AdaptiveMaxPool2d). The
hyperparameter of output size is set by grid-search (Hout = Wout) listed in Table 3. Note that the dimension
of features would be reduced to C ×Hout ×Wout. The implementation of RANDPOOL is similar to that of
MAXPOOL, except that the maximum value selection is changed to choose one randomly. PCA is performed
by applying the implementation of scikit-learn. Since PCA does not require label information, we use all
support and query samples for decomposition. While LOL Vogelstein et al. (2021) is an extension of PCA, it
combines the mean and variance of each class, so we only use samples from the support set to train LOL.
The number of components to keep is set by grid-search as Table 3. We report the best average accuracy (%,
top-1) over 10 few-shot episodes.

Table 3: List of hyperparameters for different dimensionality reduction methods.

Block Block 1,2 Block 3,4 Block 5,6 Block 7,8

Size of Features (C × H × W) 64× 56× 56 128× 28× 28 256× 14× 14 512× 7× 7
AVG/MAX/RANDPOOL [56, 28, 14, 7, 4, 2, 1] [28, 14, 7, 4, 2, 1] [14, 7, 4, 2, 1] [7, 4, 2, 1]

PCA [8, 16, 32, 64, · · · ,min (256, (# shot + # query) × # way)]
LOL [8, 16, · · · ,min (256, # shot × # way)]
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E EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

E.1 DATASETS

The Cross-Domain Few-Shot Learning (CD-FSL) challenge benchmark we used is proposed by Guo et al.
Guo et al. (2020). It uses miniImagenet (Vinyals et al., 2016), or ImageNet (Deng et al., 2009) as the source
domain and evaluates the pre-trained model on four different target domains with only a few labeled data.
The target domains are chosen based on increasing dissimilarity from the source domain: 1) CropDiseases
(Mohanty et al., 2016), consisting of leaf images with different plant diseases, 2) EuroSAT (Helber et al.,
2019), a collection of satellite imagery containing different land use and land cover categories, 3) ISIC
(Tschandl et al., 2018; Codella et al., 2019), which contains dermoscopic images of skin lesions, and 4)
ChestX (Wang et al., 2017), which consists of chest X-Ray images of different lung diseases. The above
datasets reflect real-world use cases for few-shot learning, as collecting enough examples from these domains
is often difficult, expensive, or sometimes impossible. Examples of four datasets are provided in Figure 10.
Refer to Guo et al. (2020) for more information.

CropDiseases EuroSAT ISIC ChestX

Figure 10: Example of four datasets in the CD-FSL benchmark.

E.2 BASELINES

We compare our method with techniques reported in Guo et al. (2020), which includes most state-of-the-art
methods: MatchingNet (Vinyals et al., 2016), MAML (Finn et al., 2017), ProtoNet (Snell et al., 2017),
RelationNet (Sung et al., 2018), and MetaOpt (Lee et al., 2019). Moreover, Feature Transform (FWT) (Tseng
et al., 2020), as a model-agnostic method, is added to the pre-trained model to simulate the cross-domain
setting. We also include Fixed (Guo et al., 2020), which only utilizes the pre-trained model as a fixed
feature extractor. In addition, we also compare two relatively new methods, CHEF (Adler et al., 2020) and
Hierarchical Variational Memory (HVM) (Du et al., 2021), both of which use multiple layers of features to
train cross-domain few-shot tasks.

E.3 PRE-TRAINING MODELS

We use the following four pre-trained models for few-shot evaluation on the CD-FSL benchmark.

1. ResNet-10: We train the ResNet-10 using the publicly accessed code provided in the CD-FSL
benchmark. We keep everything the same. Specifically, we train the network on the miniImageNet
dataset for 400 epochs by the Adam optimizer with a learning rate of 0.001 and a batch size of 16.

2. ResNet-18 (He et al., 2016): We use the pre-trained ResNet-18 available on PyTorch with
ResNet18_Weights.IMAGENET1K_V1.

3. ResNet-50 (He et al., 2016): We use the pre-trained ResNet-50 available on PyTorch with
ResNet50_Weights.IMAGENET1K_V2.

25



Under review as a conference paper at ICLR 2023

4. Wide ResNet-50-2 (Zagoruyko & Komodakis, 2016): We use the pre-trained Wide ResNet-50-2
available on PyTorch with Wide_ResNet50_2_Weights.IMAGENET1K_V2.

5. Vision Transformer (ViT) (Dosovitskiy et al., 2020): We use the pre-trained Vision Transformer
(ViT_B_16) available on PyTorch with ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1.

6. DenseNet-121 (Huang et al., 2017): We use the pre-trained DenseNet-121 available on PyTorch
with torch.hub.load(′pytorch/vision : v0.10.0′,′ densenet121′, pretrained = True).

E.4 ADDITIONAL EXPERIMENTAL RESULTS

Table 4 shows the performance comparison of our method with other methods on the CD-FSL benchmark
when using the ResNet-10 backbone pre-trained on miniImageNet.

Table 4: Experimental results on four cross-domain few-shot challenges. The average accuracy and 95%
confidence interval of 600 runs are reported. †, ∗, and ⋆ denotes results reported by Guo et al. (2020), Adler
et al. (2020) and Du et al. (2021) respectively. The runner-up method is underlined.

ChestX ISIC
Method 5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

MatchingNet† 22.40 ± 0.70 23.61 ± 0.86 22.12 ± 0.88 36.74 ± 0.53 45.72 ± 0.53 54.58 ± 0.65
MatchingNet + FWT† 21.26 ± 0.31 23.23 ± 0.37 23.01 ± 0.34 30.40 ± 0.48 32.01 ± 0.48 33.17 ± 0.43

MAML† 23.48 ± 0.96 27.53 ± 0.43 - 40.13 ± 0.58 52.36 ± 0.57 -
ProtoNet† 24.05 ± 1.01 28.21 ± 1.15 29.32 ± 1.12 39.57 ± 0.57 49.50 ± 0.55 51.99 ± 0.52

ProtoNet + FWT† 23.77 ± 0.42 26.87 ± 0.43 30.12 ± 0.46 38.87 ± 0.52 43.78 ± 0.47 49.84 ± 0.51
RelationNet† 22.96 ± 0.88 26.63 ± 0.92 28.45 ± 1.20 39.41 ± 0.58 41.77 ± 0.49 49.32 ± 0.51

RelationNet + FWT† 22.74 ± 0.40 26.75 ± 0.41 27.56 ± 0.40 35.54 ± 0.55 43.31 ± 0.51 46.38 ± 0.53
MetaOpt† 22.53 ± 0.91 25.53 ± 1.02 29.35 ± 0.99 36.28 ± 0.50 49.42 ± 0.60 54.80 ± 0.54

Fixed† 25.35 ± 0.96 30.83 ± 1.05 36.04 ± 0.46 43.56 ± 0.60 52.78 ± 0.58 57.34 ± 0.56
CHEF∗ 24.72 ± 0.14 29.71 ± 0.27 31.25 ± 0.20 41.26 ± 0.34 54.34 ± 0.34 60.86 ± 0.18
HVM⋆ 27.15 ± 0.45 30.54 ± 0.47 32.76 ± 0.46 42.05 ± 0.34 54.97 ± 0.35 61.71 ± 0.32

Ours 26.43 ± 0.44 32.62 ± 0.45 37.46 ± 0.50 44.02 ± 0.53 56.94 ± 0.57 64.20 ± 0.55

EuroSAT CropDiseases
Method 5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

MatchingNet† 64.45 ± 0.63 77.10 ± 0.57 54.44 ± 0.67 66.39 ± 0.78 76.38 ± 0.67 58.53 ± 0.73
MatchingNet + FWT† 56.04 ± 0.65 63.38 ± 0.69 62.75 ± 0.76 62.74 ± 0.90 74.90 ± 0.71 75.68 ± 0.78

MAML† 71.70 ± 0.72 81.95 ± 0.55 - 78.05 ± 0.68 89.75 ± 0.42 -
ProtoNet† 73.29 ± 0.71 82.27 ± 0.57 80.48 ± 0.57 79.72 ± 0.67 88.15 ± 0.51 90.81 ± 0.43

ProtoNet + FWT† 67.34 ± 0.76 75.74 ± 0.70 78.64 ± 0.57 72.72 ± 0.70 85.82 ± 0.51 87.17 ± 0.50
RelationNet† 61.31 ± 0.72 74.43 ± 0.66 74.91 ± 0.58 68.99 ± 0.75 80.45 ± 0.64 85.08 ± 0.53

RelationNet + FWT† 61.16 ± 0.70 69.40 ± 0.64 73.84 ± 0.60 64.91 ± 0.79 78.43 ± 0.59 81.14 ± 0.56
MetaOpt† 64.44 ± 0.73 79.19 ± 0.62 83.62 ± 0.58 68.41 ± 0.73 82.89 ± 0.54 91.76 ± 0.38

Fixed† 75.69 ± 0.66 84.13 ± 0.52 86.62 ± 0.47 87.48 ± 0.58 94.45 ± 0.36 96.62 ± 0.25
CHEF∗ 74.15 ± 0.27 83.31 ± 0.14 86.55 ± 0.15 86.87 ± 0.27 94.78 ± 0.12 96.77 ± 0.08
HVM⋆ 74.88 ± 0.45 84.81 ± 0.34 87.16 ± 0.35 87.65 ± 0.35 95.13 ± 0.35 97.83 ± 0.33

Ours 81.65 ± 0.65 89.34 ± 0.44 92.07 ± 0.36 91.48 ± 0.47 96.65 ± 0.27 98.07 ± 0.18
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E.5 BENEFITS OF AN ENSEMBLE MODEL

We compare our method with a few-shot classifier trained using only the dimensionality-reduced features of
the last block under the pre-trained ResNet-10, ResNet-18, ResNet-50, Wide ResNet-50-2, Vision Transformer
(ViT), and DenseNet-121 backbone, respectively. As shown in Figure 12, we find that our method shows more
significant improvements under deeper pre-trained backbones. Furthermore, the advantage of our ensemble
model is more obvious with the increase of the shot of ChestX and ISIC tasks on all pre-trained backbones.
In particular, both tasks have more than 10% improvements on 5-way 50-shot and pre-trained ResNet-50 or
Wide ResNet-50-2.

E.6 BENEFITS OF INDEPENDENT TRAINING

Table 5 shows the benefit of training all classifiers independently, where diversity is computed as defined
by theorem 3.2. For non-independent training, we sum the losses of all classifiers and then use an optimizer
for the ensemble model update. As shown in Table 5, we find that high diversity is consistently positively
associated with higher performance across all four challenges. Moreover, independent training also resulted
in higher model diversity across all datasets.

Table 5: The benefit of independent training under 5-way 5-shot and the pre-trained ResNet-18 model.
Average test accuracy and diversity over 600 runs are reported. (Indep. denotes independent training)

ChestX ISIC EuroSAT CropDiseases
Indep. ACC(%) Diversity ACC(%) Diversity ACC(%) Diversity ACC(%) Diversity

25.74 ± 0.42 0.027 44.08 ± 0.56 0.032 85.74 ± 0.50 0.041 92.62 ± 0.44 0.050
✓ 25.75 ± 0.43 0.061 45.26 ± 0.58 0.056 87.10 ± 0.49 0.046 94.39 ± 0.41 0.051

E.7 THE EFFECT OF OUTPUT SIZE OF AVERAGE POOLING

Figure 11 shows the effect of the output size of AdaptiveAvgPool2d on four cross-domain tasks under
5-way 5−shot and pre-trained ResNet-18 backbone. The output size d is set to {1, 2, 4, 7, 14, 28}, which
means the feature dimension is reduced to C × d× d (C denotes feature’s channel size). As shown in Figure
11, we find that the optimal output size of each task is different.

Figure 11: The effect of different output sizes of AdaptiveAvgPool2d on four cross-domain challenges.
Experiments are performed under 5-way 5-shot and the pre-trained ResNet-18 model.

27



Under review as a conference paper at ICLR 2023

Figure 12: The benefit of the ensemble on four cross-domain challenges. The ensemble is trained on the
ImageNet pre-trained ResNet-10, ResNet-18, ResNet-50, Wide ResNet-50-2, Vision Transformer (ViT), and
DenseNet-121 backbone, respectively.
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