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Abstract

We propose the creation of a new, open, and continuous dataset generated by a1

global network of autonomous, solar-powered smart buoys. Today, the fight against2

waterborne diseases like cholera and typhoid is fundamentally reactive, crippled3

by a critical data bottleneck: the lack of timely, high-resolution information on4

water quality. Manual sampling is slow, sparse, and expensive, meaning authorities5

only learn of a contamination event after people are already sick. By providing6

a continuous stream of molecular-level pathogen data fused with environmental7

metrics, this dataset will, for the first time, enable the AI community to build8

sophisticated, real-time forecasting models for disease outbreaks. Our vision is to9

catalyze a global, AI-powered early warning system that transforms public health10

from a reactive to a proactive science, preventing outbreaks and saving lives in the11

world’s most vulnerable communities.12

1 AI Task Definition: Multi-Scale Spatiotemporal Contamination Forecasting13

The primary AI task is predictive time-series forecasting and dynamic risk modeling. The central14

scientific question is: Can we accurately forecast the movement of contaminants and predict the15

likelihood of a waterborne disease outbreak in a specific location 24-72 hours in advance, based on16

real-time sensor data and environmental factors?17

This overarching goal is composed of three interconnected AI tasks:18

• Task 1: Time-Series Forecasting of Contaminant Levels. Given the historical data from19

the buoy network, the task is to predict the future concentration of specific pathogens and20

pollutants at each sensor location. This is a classic sequence modeling problem well-suited21

for state-of-the-art models like LSTMs, GRUs, and Transformer networks, which can22

capture complex temporal dependencies and seasonalities.23

• Task 2: Geospatial Risk Mapping and Classification. This task involves fusing the24

time-series predictions with static and dynamic environmental data (e.g., population density,25

rainfall anomalies, land use) to classify geographic sub-regions by their immediate outbreak26

risk (e.g., low, medium, high). Models like XGBoost and Random Forest will be trained27

to generate dynamic, hourly-updated risk maps that are intuitive for public health officials.28

• Task 3: Causal Inference and Driver Analysis. Beyond prediction, it is critical to29

understand why an outbreak is likely. The task is to identify the key environmental and sensor-30

based factors driving a high-risk prediction. This will be accomplished using Explainable31

AI (XAI) techniques like SHAP (SHapley Additive exPlanations) to interpret model32

outputs, providing actionable insights for targeted interventions.33
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2 Proposed Dataset Schema:34

Data Stream Component Details Collection Freq.
1. Real-Time Buoy Data Pathogen Biosensors Graphene-based

biosensors providing
molecular-level
detection of key
pathogens like E.
coli, V. cholerae, S.
typhi, and chemical
fingerprints for
pollutants like PFAS.

15-minute intervals

Water Quality Metrics Standard multi-
modal probes
measuring pH, tur-
bidity, conductivity,
temperature, and
oxidation-reduction
potential (ORP).

15-minute intervals

Geospatial Data Precise GPS coordi-
nates (latitude, longi-
tude) for each buoy.

15-minute intervals

2. Integrated Contextual Data Climate & Weather Precipitation, temper-
ature anomalies, hu-
midity from NASA
Giovanni & NOAA
archives.

Synced Daily

Socio-environmental Population density
(NASA SEDAC),
land use maps,
and infrastructure
locations (bridges,
industrial sites) to
identify pollution
sources.

Synced Weekly/Monthly

3. Ground-Truth Labels Health Surveillance Anonymized,
location-tagged
data on confirmed
cases of waterborne
diseases from partner
public health organi-
zations (e.g., PAHO,
local Ministries of
Health).

Synced as available

35

Scale and Scope: The project will launch with a 200-buoy pilot network in a high-risk watershed36

(e.g., a major river system in a cholera-endemic region). The long-term vision is to scale to thousands37

of units, creating a global, open-source repository for freshwater health.38
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Appendix39

Alternate Dataset Variation: Fish Scales as Bio-Indicative Tissue Dataset40

An alternative approach involves using fish scales as a bio-indicative tissue reflecting environmental41

conditions in subsequent growing seasons. In a recent study, fish scales from species such as common42

carp (Cyprinus carpio L.), chub (Squalius cephalus), and nase (Chondrostoma nasus) were found to43

be highly sensitive to the accumulation of metals like Mn, Ni, and Pb. In some parts of the scales,44

concentrations of these metals were up to ten times higher than in the fish’s soft tissues, and these45

values significantly correlated with metal levels in liver and kidney tissue.46

This suggests strong potential for developing colorimetric methods with smartphone analysis to47

detect and quantify such metals via scale-based biosensors.48

Analytical Techniques49

• X-ray Fluorescence (XRF) and Inductively Coupled Plasma Optical Emission Spec-50

trometry (ICP-OES) have been employed to quantify elements such as Ca, K, Mg, Na, P,51

S, Al, Ba, Cu, Cr, Fe, Mn, Sr, and Zn in the scales of species like chub (Squalius cephalus)52

and nase (Chondrostoma nasus), demonstrating significant variability and species-specific53

accumulation patterns.54

• Scanning Electron Microscopy (SEM) is used to characterize scale morphology, identify-55

ing structural differences that may influence element retention and accumulation.56

• Micro-XRF Mapping provides qualitative elemental maps to pre-screen samples before57

quantitative ICP-OES analysis, enabling cost-effective sample selection.58

• Laser-Induced Breakdown Spectroscopy (LIBS) has shown promise in detecting Fe and59

Pb in fish scales (e.g., Salminus brasiliensis, Prochilodus lineatus), outperforming atomic60

absorption spectroscopy in sensitivity—particularly for lead.61

Environmental and Structural Insights62

• Fish scales, as calcareous structures with growth rings, incorporate pollutants over time,63

enabling reconstruction of exposure history. Non-lethal sampling and repeated monitoring64

are possible.65

• Metal accumulation in scales can occur within days of exposure and often correlates linearly66

with ambient water concentrations.67

• Fish fins, like scales, can also bioaccumulate trace metals (e.g., As, Cu, Hg) and in some68

cases show correlations with muscle tissue levels, depending on species and metal.69

Acceleration Potential: From Reactive Response to Proactive Prevention70

This dataset will not be an incremental improvement; it will be a transformational catalyst for public71

health, environmental science, and AI research.72

• For Public Health: Revolutionizing Emergency Response. Instead of reacting to hospital73

reports, health officials can use AI-powered dashboards to receive automated alerts about74

high-risk areas. This enables proactive, targeted interventions: distributing water purification75

tablets, launching public awareness campaigns, and pre-positioning medical teams before a76

single person gets sick.77

• For Environmental Science: A "Digital Twin" for Waterways. The dataset network will78

create the first high-resolution, dynamic map of a river’s health. Scientists can use this data79

to precisely identify and track pollution sources in real-time and provide policymakers with80

the quantitative evidence needed to enforce environmental regulations.81

• For AI Research: Catalyzing New Algorithmic Frontiers. dataset will become a bench-82

mark dataset for a new class of socio-environmental AI models. It will drive innovation83

in:84
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– Graph Neural Networks (GNNs): Modeling entire river systems as graphs to predict85

how contaminants flow and disperse through the network.86

– Physics-Informed Neural Networks (PINNs): Integrating the physical laws of fluid87

dynamics into deep learning models to improve prediction accuracy.88

– Epidemiology-Aware AI Models (EAAMs): Developing agent-based models that89

simulate human behavior and its interaction with the dynamic contamination map to90

forecast disease spread.91

Data-Creation Pathway: A Distributed, Autonomous Sensor Network92

The data will be generated by a newly designed, open-standard hardware and software platform,93

ensuring transparency and community involvement.94

• Hardware - The "Smart Buoy": Each unit is a self-sustaining, low-cost data collection95

platform.96

– Sensing: A modular sensor array featuring novel graphene-based biosensors for97

pathogens and standard probes for chemical/physical properties.98

– Power: A hybrid system using a primary solar panel and secondary energy harvesting99

(piezoelectric/triboelectric) from water motion for continuous, long-term, autonomous100

operation.101

– Communication: A low-power, long-range wireless module (e.g., LoRaWAN or cellular102

IoT) to transmit data to a central gateway.103

• Platform Architecture & Data Flow:104

1. Ingestion: Data from the buoy network is transmitted to regional gateways.105

2. Integration & Fusion: A centralized, cloud-based platform ingests raw sensor data106

and automatically fuses it with contextual data streams from NASA, NOAA, and other107

archives.108

3. Storage & Access: The integrated dataset is stored in a time-series database and made109

publicly available via a simple, open API, ensuring it is FAIR (Findable, Accessible,110

Interoperable, and Reusable).111

• Deployment Strategy: We will pursue a phased rollout in partnership with a local river112

authority and a public health NGO to ensure the pilot program is grounded in real-world113

needs.114

Hardware Specifications115

Our strategy is designed for cost-effective generation at scale, with a clear path from a pilot project to116

a global utility.117

Buoy-Based E. coli Detection System Overview118

The current version of the buoy tested utilizes an optochemical reaction that changes color in the119

presence of E. coli, with a camera mounted on top to capture and relay the visual information. The120

system involves two main vials used for the biochemical detection of coliforms.121

First Vial: Lauryl Tryptose Broth (LTB) Powder122

This vial contains a dehydrated powder formulation of Lauryl Tryptose Broth, designed to be123

reconstituted with 10 mL of water obtained from a pre-concentrated 100 mL water sample. The124

standard composition per liter of LTB is:125

Final pH: 6.8 ± 0.2 at 25°C.126

Function: This medium is commonly used for the detection of coliform bacteria in water and food127

samples.128
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Component Concentration (g/L)
Tryptose 20.0
Lactose 5.0
Sodium Chloride (NaCl) 5.0
Dipotassium Hydrogen Phosphate (K2HPO4) 2.75
Potassium Dihydrogen Phosphate (KH2PO4) 2.75
Sodium Lauryl Sulfate (SLS) 0.1

Second Vial: Gel-Based Detection Matrix129

This vial contains a gel matrix (100–1000 µL) composed of the following:130

• Agar or Purified Agar: 2–20 mg131

Serves as a gelling agent to provide structural integrity.132

• Triton X-100 in Tris-HCl Buffer (10–50 mM, pH 7.5–8.5): 25–100 µL133

Triton X-100 is a non-ionic surfactant that lyses cells, releasing intracellular enzymes.134

Tris-HCl buffer maintains pH stability.135

• Lauryl Tryptose Broth Solution: 100–400 µL136

Provides nutrients to support coliform bacterial growth during incubation.137

• Chemical Solution/Mixture: 50–200 µL, containing:138

– 6-Chloro-3-indolyl-β-D-galactopyranoside (Red-Gal): 20–90 mg139

A chromogenic substrate for β-galactosidase. Upon enzymatic cleavage, a colored140

product is formed, enabling visual detection.141

– N,N-Dimethylformamide (DMF): 1000–2000 µL142

Solvent for Red-Gal, which is sparingly soluble in water.143

– Deionized Water: 1000–2000 µL144

Used to dilute the chemical mixture to the desired concentration.145

Function: This matrix visually indicates coliform presence by detecting β-galactosidase activity,146

which cleaves Red-Gal to produce a colored compound.147

Data Processing and Transmission148

An edge-computing microcontroller processes sensor data and transmits it via a LoRaWAN/IoT149

network. Collected data is streamed to an online system for real-time processing and visualization as150

an AI-assisted geospatial contamination map.151

Additional Features:152

• Parameters such as turbidity, pH, conductivity, and oxidation-reduction potential (ORP) are153

simultaneously recorded.154

• The AI model analyzes this dataset to predict contamination hotspots and pollutant dispersion155

patterns along the river’s path through villages, urban centers, and industrial zones.156

Proposed Biosensor Methodology157

The next step is to create biosensors via the immobilization of enzymes that target analytes released158

during the respiration of Salmonella, Shigella, Cholera, and E. coli. When these bacteria respire,159

they produce analytes that, upon contacting specific enzymes, generate a varying electric current160

measurable with an ammeter to determine bacterial presence.161

Graphene on a plastic film is submerged in a 5mM solution of 1-pyrenebutyric acid (PBA) dissolved162

in DMSO and left at room temperature. After two hours, the substrates are removed and rinsed with163

distilled water, bonding the PBA onto the graphene through π-π interactions.164

Enzyme immobilization: Glucose Oxidase, Glycerol-3-Phosphate Oxidase, Galactose Oxidase, and165

Lactate Oxidase are immobilized onto the PBA-functionalized graphene. First, 24 µL of distilled166
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water is added to the anhydrous enzyme, and the solution is ultrasonicated for 180 s. This process is167

repeated for each enzyme. One aliquot of each enzyme is micro-pipetted onto a separate graphene168

substrate and stored at 7 ◦C overnight to complete immobilization.169

Conductive paint terminals are applied on opposite, parallel sides of the graphene biosensor to170

facilitate electrical measurements.171

Sensor for PFAS Detection172

The sensor is built on a lateral-flow paper-based platform—a format similar to that used in173

COVID-19 and pregnancy tests. Unlike antibody-based visual readouts, this sensor uses a conductive174

polymer to detect PFAS (per- and polyfluoroalkyl substances) through changes in electrical resistance.175

Core Technical Components176

Polymer: Polyaniline177

The active sensing element is polyaniline, a conductive polymer that can reversibly switch between178

semiconducting and conducting states when protons interact with it.179

Substrate: Nitrocellulose Paper180

Polyaniline is deposited onto a nitrocellulose strip, which acts as a structural substrate. This material181

allows for fluid wicking and ensures the platform remains lightweight and portable.182

Surfactant Coating183

A surfactant layer coats the strip and facilitates the extraction of acidic PFAS molecules, including:184

• PFOA (Perfluorooctanoic acid)185

• PFBA (Perfluorobutanoic acid)186

These molecules are drawn from a small droplet of water into the sensing region.187

Detection Mechanism188

PFAS-Driven Proton Transfer189

When acidic PFAS enter the sensor strip, protons are transferred into the polyaniline, switching it190

from a semiconducting to a conducting state. This transition causes a drop in electrical resistance,191

which forms the basis for detection.192

Quantitative Readout193

Electrodes embedded in the device measure the change in resistance, yielding a quantitative signal194

that corresponds to the PFAS concentration. This electrical signal can be:195

• Read via an ammeter196

• Transmitted to a smartphone or external device for data processing and display197
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Figure 1: Proposed Buoy System
Figure 2: Early prototype version carrying the
red-gal chemical test for e.coli
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