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Abstract

We propose the creation of a new, open, and continuous dataset generated by a
global network of autonomous, solar-powered smart buoys. Today, the fight against
waterborne diseases like cholera and typhoid is fundamentally reactive, crippled
by a critical data bottleneck: the lack of timely, high-resolution information on
water quality. Manual sampling is slow, sparse, and expensive, meaning authorities
only learn of a contamination event after people are already sick. By providing
a continuous stream of molecular-level pathogen data fused with environmental
metrics, this dataset will, for the first time, enable the Al community to build
sophisticated, real-time forecasting models for disease outbreaks. Our vision is to
catalyze a global, Al-powered early warning system that transforms public health
from a reactive to a proactive science, preventing outbreaks and saving lives in the
world’s most vulnerable communities.

1 Al Task Definition: Multi-Scale Spatiotemporal Contamination Forecasting

The primary Al task is predictive time-series forecasting and dynamic risk modeling. The central
scientific question is: Can we accurately forecast the movement of contaminants and predict the
likelihood of a waterborne disease outbreak in a specific location 24-72 hours in advance, based on
real-time sensor data and environmental factors?

This overarching goal is composed of three interconnected Al tasks:

* Task 1: Time-Series Forecasting of Contaminant Levels. Given the historical data from
the buoy network, the task is to predict the future concentration of specific pathogens and
pollutants at each sensor location. This is a classic sequence modeling problem well-suited
for state-of-the-art models like LSTMs, GRUs, and Transformer networks, which can
capture complex temporal dependencies and seasonalities.

» Task 2: Geospatial Risk Mapping and Classification. This task involves fusing the
time-series predictions with static and dynamic environmental data (e.g., population density,
rainfall anomalies, land use) to classify geographic sub-regions by their immediate outbreak
risk (e.g., low, medium, high). Models like XGBoost and Random Forest will be trained
to generate dynamic, hourly-updated risk maps that are intuitive for public health officials.

» Task 3: Causal Inference and Driver Analysis. Beyond prediction, it is critical to
understand why an outbreak is likely. The task is to identify the key environmental and sensor-
based factors driving a high-risk prediction. This will be accomplished using Explainable
AI (XAI) techniques like SHAP (SHapley Additive exPlanations) to interpret model
outputs, providing actionable insights for targeted interventions.
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s 2 Proposed Dataset Schema:

Data Stream

Component

Details

Collection Freq.

1. Real-Time Buoy Data

Pathogen Biosensors

Water Quality Metrics

Geospatial Data

Graphene-based

biosensors providing
molecular-level

detection of key
pathogens like E.
coli, V. cholerae, S.
typhi, and chemical

fingerprints for
pollutants like PFAS.
Standard multi-
modal probes

measuring pH, tur-
bidity, conductivity,
temperature, and
oxidation-reduction
potential (ORP).

Precise GPS coordi-
nates (latitude, longi-
tude) for each buoy.

15-minute intervals

15-minute intervals

15-minute intervals

35 2. Integrated Contextual Data

Climate & Weather

Socio-environmental

Precipitation, temper-
ature anomalies, hu-
midity from NASA
Giovanni & NOAA
archives.

Population
(NASA
land

density
SEDAC),
use  maps,
and infrastructure
locations  (bridges,
industrial sites) to
identify ~ pollution
sources.

Synced Daily

Synced Weekly/Monthly

3. Ground-Truth Labels

Health Surveillance

Anonymized,
location-tagged

data on confirmed
cases of waterborne
diseases from partner
public health organi-
zations (e.g., PAHO,
local Ministries of
Health).

Synced as available

36 Scale and Scope: The project will launch with a 200-buoy pilot network in a high-risk watershed
37 (e.g., a major river system in a cholera-endemic region). The long-term vision is to scale to thousands
38 of units, creating a global, open-source repository for freshwater health.
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Appendix

Alternate Dataset Variation: Fish Scales as Bio-Indicative Tissue Dataset

An alternative approach involves using fish scales as a bio-indicative tissue reflecting environmental
conditions in subsequent growing seasons. In a recent study, fish scales from species such as common
carp (Cyprinus carpio L.), chub (Squalius cephalus), and nase (Chondrostoma nasus) were found to
be highly sensitive to the accumulation of metals like Mn, Ni, and Pb. In some parts of the scales,
concentrations of these metals were up to ten times higher than in the fish’s soft tissues, and these
values significantly correlated with metal levels in liver and kidney tissue.

This suggests strong potential for developing colorimetric methods with smartphone analysis to
detect and quantify such metals via scale-based biosensors.

Analytical Techniques

* X-ray Fluorescence (XRF) and Inductively Coupled Plasma Optical Emission Spec-
trometry (ICP-OES) have been employed to quantify elements such as Ca, K, Mg, Na, P,
S, Al, Ba, Cu, Cr, Fe, Mn, Sr, and Zn in the scales of species like chub (Squalius cephalus)
and nase (Chondrostoma nasus), demonstrating significant variability and species-specific
accumulation patterns.

* Scanning Electron Microscopy (SEM) is used to characterize scale morphology, identify-
ing structural differences that may influence element retention and accumulation.

* Micro-XRF Mapping provides qualitative elemental maps to pre-screen samples before
quantitative ICP-OES analysis, enabling cost-effective sample selection.

e Laser-Induced Breakdown Spectroscopy (LIBS) has shown promise in detecting Fe and
Pb in fish scales (e.g., Salminus brasiliensis, Prochilodus lineatus), outperforming atomic
absorption spectroscopy in sensitivity—particularly for lead.

Environmental and Structural Insights

* Fish scales, as calcareous structures with growth rings, incorporate pollutants over time,
enabling reconstruction of exposure history. Non-lethal sampling and repeated monitoring
are possible.

* Metal accumulation in scales can occur within days of exposure and often correlates linearly
with ambient water concentrations.

* Fish fins, like scales, can also bioaccumulate trace metals (e.g., As, Cu, Hg) and in some
cases show correlations with muscle tissue levels, depending on species and metal.

Acceleration Potential: From Reactive Response to Proactive Prevention

This dataset will not be an incremental improvement; it will be a transformational catalyst for public
health, environmental science, and Al research.

* For Public Health: Revolutionizing Emergency Response. Instead of reacting to hospital
reports, health officials can use Al-powered dashboards to receive automated alerts about
high-risk areas. This enables proactive, targeted interventions: distributing water purification
tablets, launching public awareness campaigns, and pre-positioning medical teams before a
single person gets sick.

¢ For Environmental Science: A ''Digital Twin'' for Waterways. The dataset network will
create the first high-resolution, dynamic map of a river’s health. Scientists can use this data
to precisely identify and track pollution sources in real-time and provide policymakers with
the quantitative evidence needed to enforce environmental regulations.

* For AI Research: Catalyzing New Algorithmic Frontiers. dataset will become a bench-
mark dataset for a new class of socio-environmental AI models. It will drive innovation
in:
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— Graph Neural Networks (GNNs): Modeling entire river systems as graphs to predict
how contaminants flow and disperse through the network.

— Physics-Informed Neural Networks (PINNs): Integrating the physical laws of fluid
dynamics into deep learning models to improve prediction accuracy.

— Epidemiology-Aware AI Models (EAAMs): Developing agent-based models that
simulate human behavior and its interaction with the dynamic contamination map to
forecast disease spread.

Data-Creation Pathway: A Distributed, Autonomous Sensor Network

The data will be generated by a newly designed, open-standard hardware and software platform,
ensuring transparency and community involvement.

* Hardware - The '"Smart Buoy'': Each unit is a self-sustaining, low-cost data collection
platform.

— Sensing: A modular sensor array featuring novel graphene-based biosensors for
pathogens and standard probes for chemical/physical properties.

— Power: A hybrid system using a primary solar panel and secondary energy harvesting
(piezoelectric/triboelectric) from water motion for continuous, long-term, autonomous
operation.

— Communication: A low-power, long-range wireless module (e.g., LoORaWAN or cellular
IoT) to transmit data to a central gateway.
* Platform Architecture & Data Flow:

1. Ingestion: Data from the buoy network is transmitted to regional gateways.

2. Integration & Fusion: A centralized, cloud-based platform ingests raw sensor data
and automatically fuses it with contextual data streams from NASA, NOAA, and other
archives.

3. Storage & Access: The integrated dataset is stored in a time-series database and made
publicly available via a simple, open APIL, ensuring it is FAIR (Findable, Accessible,
Interoperable, and Reusable).

* Deployment Strategy: We will pursue a phased rollout in partnership with a local river
authority and a public health NGO to ensure the pilot program is grounded in real-world
needs.

Hardware Specifications

Our strategy is designed for cost-effective generation at scale, with a clear path from a pilot project to
a global utility.

Buoy-Based E. coli Detection System Overview

The current version of the buoy tested utilizes an optochemical reaction that changes color in the
presence of E. coli, with a camera mounted on top to capture and relay the visual information. The
system involves two main vials used for the biochemical detection of coliforms.

First Vial: Lauryl Tryptose Broth (LTB) Powder

This vial contains a dehydrated powder formulation of Lauryl Tryptose Broth, designed to be
reconstituted with 10 mL of water obtained from a pre-concentrated 100 mL water sample. The
standard composition per liter of LTB is:

Final pH: 6.8 £ 0.2 at 25°C.

Function: This medium is commonly used for the detection of coliform bacteria in water and food
samples.
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Component Concentration (g/L)

Tryptose 20.0
Lactose 5.0
Sodium Chloride (NaCl) 5.0

Dipotassium Hydrogen Phosphate (KoHPO,)  2.75
Potassium Dihydrogen Phosphate (KH2PO4)  2.75
Sodium Lauryl Sulfate (SLS) 0.1

Second Vial: Gel-Based Detection Matrix

This vial contains a gel matrix (100-1000 uL) composed of the following:

* Agar or Purified Agar: 2-20 mg
Serves as a gelling agent to provide structural integrity.

¢ Triton X-100 in Tris-HCI Buffer (10-50 mM, pH 7.5-8.5): 25-100 uL
Triton X-100 is a non-ionic surfactant that lyses cells, releasing intracellular enzymes.
Tris-HCI buffer maintains pH stability.

* Lauryl Tryptose Broth Solution: 100—400 uL
Provides nutrients to support coliform bacterial growth during incubation.

* Chemical Solution/Mixture: 50-200 pL, containing:

— 6-Chloro-3-indolyl-3-D-galactopyranoside (Red-Gal): 20-90 mg
A chromogenic substrate for 5-galactosidase. Upon enzymatic cleavage, a colored
product is formed, enabling visual detection.
— N,N-Dimethylformamide (DMF): 1000-2000 pL
Solvent for Red-Gal, which is sparingly soluble in water.
— Deionized Water: 1000-2000 uL.
Used to dilute the chemical mixture to the desired concentration.

Function: This matrix visually indicates coliform presence by detecting [-galactosidase activity,
which cleaves Red-Gal to produce a colored compound.

Data Processing and Transmission

An edge-computing microcontroller processes sensor data and transmits it via a LoORaWAN/IoT
network. Collected data is streamed to an online system for real-time processing and visualization as
an Al-assisted geospatial contamination map.

Additional Features:

» Parameters such as turbidity, pH, conductivity, and oxidation-reduction potential (ORP) are
simultaneously recorded.

* The Al model analyzes this dataset to predict contamination hotspots and pollutant dispersion
patterns along the river’s path through villages, urban centers, and industrial zones.

Proposed Biosensor Methodology

The next step is to create biosensors via the immobilization of enzymes that target analytes released
during the respiration of Salmonella, Shigella, Cholera, and E. coli. When these bacteria respire,
they produce analytes that, upon contacting specific enzymes, generate a varying electric current
measurable with an ammeter to determine bacterial presence.

Graphene on a plastic film is submerged in a 5 mM solution of 1-pyrenebutyric acid (PBA) dissolved
in DMSO and left at room temperature. After two hours, the substrates are removed and rinsed with
distilled water, bonding the PBA onto the graphene through 7-7 interactions.

Enzyme immobilization: Glucose Oxidase, Glycerol-3-Phosphate Oxidase, Galactose Oxidase, and
Lactate Oxidase are immobilized onto the PBA-functionalized graphene. First, 24 uL of distilled
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water is added to the anhydrous enzyme, and the solution is ultrasonicated for 180s. This process is
repeated for each enzyme. One aliquot of each enzyme is micro-pipetted onto a separate graphene
substrate and stored at 7 °C overnight to complete immobilization.

Conductive paint terminals are applied on opposite, parallel sides of the graphene biosensor to
facilitate electrical measurements.

Sensor for PFAS Detection

The sensor is built on a lateral-flow paper-based platform—a format similar to that used in
COVID-19 and pregnancy tests. Unlike antibody-based visual readouts, this sensor uses a conductive
polymer to detect PFAS (per- and polyfluoroalkyl substances) through changes in electrical resistance.

Core Technical Components

Polymer: Polyaniline

The active sensing element is polyaniline, a conductive polymer that can reversibly switch between
semiconducting and conducting states when protons interact with it.

Substrate: Nitrocellulose Paper

Polyaniline is deposited onto a nitrocellulose strip, which acts as a structural substrate. This material
allows for fluid wicking and ensures the platform remains lightweight and portable.

Surfactant Coating
A surfactant layer coats the strip and facilitates the extraction of acidic PFAS molecules, including:

¢ PFOA (Perfluorooctanoic acid)
¢ PFBA (Perfluorobutanoic acid)

These molecules are drawn from a small droplet of water into the sensing region.

Detection Mechanism

PFAS-Driven Proton Transfer

When acidic PFAS enter the sensor strip, protons are transferred into the polyaniline, switching it
from a semiconducting to a conducting state. This transition causes a drop in electrical resistance,
which forms the basis for detection.

Quantitative Readout

Electrodes embedded in the device measure the change in resistance, yielding a quantitative signal
that corresponds to the PFAS concentration. This electrical signal can be:

* Read via an ammeter

* Transmitted to a smartphone or external device for data processing and display



Figure 2: Early prototype version carrying the
Figure 1: Proposed Buoy System red-gal chemical test for e.coli
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