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ABSTRACT

Research on generalization bounds for deep networks seeks to give ways to pre-
dict test error using just the training dataset and the network parameters. While
generalization bounds can give many insights about architecture design, training
algorithms etc., what they do not currently do is yield good predictions for ac-
tual test error. A recently introduced Predicting Generalization in Deep Learning
competition (Jiang et al., 2020) aims to encourage discovery of methods to better
predict test error. The current paper investigates a simple idea: can test error be
predicted using synthetic data, produced using a Generative Adversarial Network
(GAN) that was trained on the same training dataset? Upon investigating sev-
eral GAN models and architectures, we find that this turns out to be the case. In
fact, using GANs pre-trained on standard datasets, the test error can be predicted
without requiring any additional hyper-parameter tuning. This result is surprising
because GANs have well-known limitations (e.g. mode collapse) and are known
to not learn the data distribution accurately. Yet the generated samples are good
enough to substitute for test data. Several additional experiments are presented to
explore reasons why GANs do well at this task. In addition to a new approach for
predicting generalization, the counter-intuitive phenomena presented in our work
may also call for a better understanding of GANs’ strengths and limitations.

1 INTRODUCTION

Why do vastly overparametrized neural networks achieve impressive generalization performance
across many domains, with very limited capacity control during training? Despite some promising
initial research, the mechanism behind generalization remains poorly understood. A host of papers
have tried to adapt classical generalization theory to prove upper bounds of the following form on
the difference between training and test error:

test− train ≤

√
C

|S|
+ tiny term

where S is the training dataset and C is a so-called complexity measure, typically involving some
function of the training dataset as well as the trained net parameters (e.g., a geometric norm). Current
upper bounds of this type are loose, and even vacuous. There is evidence that such classically
derived bounds may be too loose (Dziugaite & Roy, 2017) or that they may not correlate well with
generalization (Jiang et al., 2019). This has motivated a more principled empirical study of the
effectiveness of generalization bounds. The general idea is to use machine learning to determine
which network characteristics promote good generalization in practice and which do not —in other
words, treat various deep net characteristics/norms/margins etc. as inputs to a machine learning
model that uses them to predict the generalization error achieved by the net. This could help direct
theorists to new types of complexity measures and motivate new theories.

A recently started competition of Predicting Generalization in Deep Learning (Jiang et al., 2020)
(PGDL) seeks to increase interest in such investigations, in an effort to uncover new and promising
network characteristics and/or measures of network complexity that correlate with good generaliza-
tion. As required in Jiang et al. (2020), a complexity measure should depend on the trained model,
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optimizer, and training set, but not the held out test data. The first PGDL competition in 2020 did
uncover quite a few measures that seemed to be predictive of good generalization but had not been
identified by theory work.

In this paper, we explore a very simple baseline for predicting generalization that had hitherto
not received attention: train a Generative Adversarial Network (GAN) on the training dataset, and
use performance on the synthetic data produced by the GAN to predict generalization. At first sight
GANs may not appear to be an obvious choice for this task, due to their well known limitations. For
instance, while the goal of GANs training is to find a generator that fools the discriminator net —in
the sense that the discriminator has low probability of spotting a difference between GAN samples
and the samples from the true distribution—in practice the discriminator is often able to discriminate
very well at the end, demonstrating that it was not fooled. Also, GANs’ generators are known to
exhibit mode collapse i.e., the generated distribution is a tiny subset of the true distribution. There is
theory and experiments suggesting this may be difficult to avoid (Arora et al., 2018; Santurkar et al.,
2018; Bau et al., 2019).

Given all these negative results about GANs, the surprising finding in the current paper is that GANs
do allow for good estimates of test error (and generalization error). This is verified for families
of well-known GANs and datasets including primarily CIFAR-10/100, Tiny ImageNet and well-
known deep neural classifier architectures. In particular, in Section 3.1 and 3.2 we evaluate on
the PGDL and DEMOGEN benchmarks of predicting generalization and present strong results. In
Section 4 and 5, we also investigate reasons behind the surprising efficacy of GANs in predicting
generalization as well as the effects of using data augmentation during GAN training.

2 RELATED WORK

Generalization Bounds Traditional approaches to predict generalization construct a generaliza-
tion bound based on some notion of capacity such as parameter count, VC dimension, Rademacher
complexity, etc. Neyshabur et al. (2018) provide a tighter generalization bound that decreases with
increasing number of hidden units. Dziugaite & Roy (2017) reveal a way to compute nonvacu-
ous PAC-Bayes generalization bounds. Recently, bounds based on knowledge distillation have also
come to light (Hsu et al., 2020). Despite progress in these approaches, a study conducted by Jiang
et al. (2019) with extensive hyper-parameter search showed that current generalization bounds may
not be effective, and the root cause of generalization remains elusive. Given the arduous nature of
constructing such bounds, an interest in complexity measures has arisen.

Predicting Generalization in Deep Learning The PGDL competition (Jiang et al., 2020) was
held in NeuRIPS 2020 in an effort to encourage the discovery of empirical generalization measures
following the seminal work of Jiang et al. (2018). The winner of the PGDL competition Natekar
& Sharma (2020) investigated properties of representations in intermediate layers to predict gen-
eralization. Kashyap et al. (2021), the second place winner, experiment with robustness to flips,
random erasing, random saturation, and other such natural augmentations. Afterwards, Jiang et al.
(2021) interestingly find that generalization can be predicted by running SGD on the same architec-
ture multiple times, and measuring the disagreement ratio between the different resulting networks
on an unlabeled test set. There are also some pitfalls in predicting generalization, as highlighted by
Dziugaite et al. (2020). They find that distributional robustness over a family of environments is
more applicable to neural networks than straight averaging.

Limitations of GANs Arora et al. (2017) prove the lack of diversity enforcing in GAN’s training
objective, and Arora et al. (2018) introduce the Birthday Paradox test to conclude that many pop-
ular GAN models in practice do learn a distribution with relatively small support. Santurkar et al.
(2018) and Bau et al. (2019) investigate the extent to which GAN generated samples can match the
distributional statistics of the original training data, and find that they have significant shortcomings.
Ravuri & Vinyals (2019) find that GAN data is of limited use in training ResNet models, and find
that neither inception score nor FID are predictive of generalization performance. Notably, despite
the small support, Arora et al. (2018) reveal that GANs generate distinct images from their nearest
neighbours in the training set. Later, Webster et al. (2019) use latent recovery to conclude more
carefully that GANs do not memorize the training set.
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Figure 1: Scatter plots of test accuracy g(f) v.s. synthetic accuracy ĝ(f) with f from a pool of deep
net classifiers on CIFAR-10 and Tiny ImageNet of diverse architectures VGG, ResNet, DenseNet,
ShuffleNet, NASNet, MobileNet with various hyper-parameters. One single BigGAN+DiffAug
model is used for each dataset. Left: CIFAR-10 classifiers. The y = x fit has R2 score 0.804
and Kendall τ coefficient 0.851. Right: Tiny ImageNet classifiers. The y = x fit has R2 score
0.918 and Kendall τ coefficient 0.803.

Theoretical Justification for Using GANs Arora et al. (2017) construct a generator that passes
training against any bounded capacity discriminator but can only generate a small number of distinct
data points either from the true data distribution or simply from the training set. For predicting
generalization, it is crucial for the generator not to memorize training data. While Arora et al.
(2017) do not answer why GANs do not memorize training data, a recent empirical study by Huang
et al. (2021) demonstrates the difficulty of recovering input data by inverting gradients. Their work
may cast light on how the generator could learn to generate data distinct from the training set when
trained with gradient feedbacks from the discriminator. However, we are not aware of any theory
that fully explains GANs’ strength for predicting generalization despite limitations.

3 PREDICTING TEST PERFORMANCE USING GAN SAMPLES

We now precisely define what it means to predict test performance in our setting. We denote by
Strain, Stest and Ssyn the training set, test set and the synthetic dataset generated by GANs. Given a
classifier f trained on the training set Strain, we aim to predict its classification accuracy g(f) :=

1
|Stest|

∑
(x,y)∈Stest

1 [f(x) = y] on a test set Stest. Our proposal is to train a conditional GAN model
on the very same training set Strain, and then sample from the generator a synthetic dataset Ssyn of
labeled examples. In the end, we simply use f ’s accuracy on the synthetic dataset as our prediction
for its test accuracy. Algorithm 1 formally describes this procedure.

Algorithm 1 Predicting test performance

Require: target classifier f , training set Strain, GAN training algorithm A
1. Train a conditional GAN model using Strain:

G,D = A(Strain) where G,D are the generator and discriminator networks.
2. Generate a synthetic dataset by sampling from the generator G:

Ssyn = {(x̃1, ỹ1), . . . , (x̃N , ỹN )} where x̃i, ỹi = G(zi, ỹi).

The zi’s are drawn i.i.d. from G’s default input distribution. N and ỹi’ are chosen so as to match
statistics of the training set.

Output: the synthetic accuracy ĝ(f) := 1
|Ssyn|

∑
(x̃,ỹ)∈Ssyn

1 [f(x̃) = ỹ] as the prediction

Remark. Any N ≥ |Strain| is a safe choice to ensure that ĝ(f) concentrates1around its mean
Ez,ỹ [1 [f(G(z, ỹ)) = ỹ]] and its deviation has negligible influence on the performance.

1the deviation is only O
(
1/
√
N
)

by standard concentration bounds
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Task No.1 team No.2 team No.3 team Ours
DBI*LWM MM AM R2A VPM

1 : VGG on CIFAR-10 25.22 1.11 15.66 52.59 6.07 62.62
2 : NIN on SVHN 22.19 47.33 48.34 20.62 6.44 34.72
4 : AllConv on CINIC-10 31.79 43.22 47.22 57.81 15.42 52.80
5 : AllConv on CINIC-10 15.92 34.57 22.82 24.89 10.66 53.56
8 : VGG on F-MNIST 9.24 1.48 1.28 13.79 16.23 30.25
9 : NIN on CIFAR-10 25.86 20.78 15.25 11.30 2.28 33.51

Table 1: Comparison of our method to the Top-3 teams of the PGDL competition. Scores shown are
calculated using the Conditional Mutual Information metric, higher is better. DBI*LWM=Davies-
Bouldin Index*Label-wise Margin, MM=Mixup Margin and AM=Augment Margin are the pro-
posed methods from first place solution by Natekar & Sharma (2020). R2A=Robustness to Aug-
mentations (Aithal et al., 2021) and VPM=Variation of the Penultimate layer with Mixup (Lassance
et al., 2020) are the second and third place solutions. Task 4 and Task 5 differ in that Task 4 classi-
fiers have batch-norm while Task 5 do not.

We demonstrate the results in Figure 1. The test accuracy g(f) consistently resides in a small
neighborhood of ĝ(f) for a diverse class of deep neural net classifiers trained on different
datasets. For the choice of GAN architecture, we adopt the pre-trained BigGAN+DiffAug mod-
els (Brock et al., 2019; Zhao et al., 2020) from the StudioGAN library2. We evaluate on pre-
trained deep neural net classifiers with architectures ranging from VGG-(11, 13, 19), ResNet-
(18, 34, 50), DenseNet-(121, 169), ShuffleNet, PNASNet and MobileNet trained on CIFAR-
10 and Tiny ImageNet with hyper-parameter setting (learning rate, weight decay
factor, learning rate schedule) uniformly sampled from the grid

{
10−1, 10−2

}
×{

5× 10−4, 10−3
}
× {CosineAnnealing, ExponentialDecay}. We use SGD with mo-

mentum 0.9 and batch size 128 and data augmention of horizontal flips for training all classifiers.

3.1 EVALUATION ON PGDL COMPETITION

We evaluate our proposed method on the tasks of NeurIPS 2020 Competition on Predicting Gen-
eralization of Deep Learning. The PGDL competition consists of 8 tasks, each containing a set of
pre-trained deep net classifiers of similar architectures but with different hyper-parameter settings,
as well as the training data. The tasks of PGDL are based on a wide range of datasets inlcuding
CIFAR-10, SVHN, CINIC-10, Oxford Flowers, Oxford Pets and Fashion MNIST. For every task,
the goal is to compute a scalar prediction for each classifier based on its parameters and the train-
ing data that correlates as much as possible with the actual generalization errors of the classifiers
measured on a test set. The correlation score is measured by the so-called Conditional Mutual Infor-
mation, which is designed to indicate whether the computed predictions contain all the information
about the generalization errors such that knowing the hyper-parameters does not provide additional
information, see (Jiang et al., 2020) for details.

Since the goal of PGDL is to predict generalization gap instead of test accuracy, our proposed
solution is a slight adaptation of Algorithm 1. For each task, we first train a GAN model on the
provided training dataset and sample from it a labeled synthetic dataset. Then for each classifier
within the task, instead of the raw synthetic accuracy, we use as prediction the gap between training
and synthetic accuracies. For all tasks, we use BigGAN+diffAug with the default3 implementation
for CIFAR-10 from the StudioGAN library. We found that a subset of them (Task 6 with Oxford
Flowers and Task 7 with Oxford Pets) were not well-suited for standard GAN training without much
tweaking due to a small training set and highly uneven class sizes. We focused only on the subset of
the tasks where GAN training worked out of the box, specifically Task 1, 2, 4, 5, 8, and 9.

We report the results in Table 1, where we observe that on tasks involving either CIFAR-10 or VGG-
like classifiers, our proposed solution out-performs all of the solutions from the top 3 teams of the
competition by a large margin. One potential reason may be that the default hyper-parameters of

2available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
3Task 8 uses the single-channel 28×28 Fashion-MNIST dataset. For GAN training, we symmetrically zero-

pad the training images to 32 × 32 and convert to RGB by replicating the channel. To compute the synthetic
accuracy, we convert the generated images back to single-channel and perform a center cropping.
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Figure 2: Scatter plots of test accuracy g(f) v.s. synthetic accuracy ĝ(f) with f from DEMOGEN
consisting of 216 Network in Network classifiers and 216 ResNet classifiers on CIFAR-10 as well
as 324 ResNet classifiers on CIFAR-100. The synthetic examples are from the BigGAN+DiffAug.

the BigGAN model have been engineered towards CIFAR-10 like datasets and VGG/ResNet-like
discriminator networks. It is worth mentioning that we conducted absolutely zero hyper-parameter
search for all tasks here. Especially for CIFAR-10 tasks, we directly take the pre-trained models
from the StudioGAN library. It is likely that we may achieve even better scores with fine-tuned
GAN hyper-parameters and optimized training procedure for each PGDL task, and we leave it to
future work.

3.2 EVALUATION ON DEMOGEN BENCHMARK

The seminal work of Jiang et al. (2018) constructed the Deep Model Generalization benchmark
(DEMOGEN) that consists of 216 ResNet-32 (He et al., 2016) models and 216 Network-in-
Networks (Lin et al., 2013) models trained on CIFAR-10 plus another 324 ResNet-32 models trained
on CIFAR-100, along with their training and test performances. These models are configured with
different normalization techniques (group-norm v.s. batch-norm), network widths, learning rates,
weight-decay factors, and notably whether to train with or without data augmentation.

The goal of DEMOGEN, different from PGDL, is to numerically predict generalization gap (or
equivalently test accuracy) with the additional knowledge of the test accuracies of a few pre-
trained classifiers. Following the setup of Jiang et al. (2018), we use a simple linear predictor
g(f) = a · ĝ(f) + b with two scalar variables a, b ∈ R instead of directly using ĝ(f) for the best
performance. Here a, b are estimated using least squares regression on a separate pool of pre-trained
classifiers with known test accuracies. Jiang et al. (2018) proposes to use variants of coefficient of
determination (R2) of the resulted predictor as evaluation metrics. Specifically, the adjusted R2 and
k-fold R2 are adopted (see Jiang et al. (2018) for concrete definitions).

NiN+CIFAR-10 ResNet+CIFAR-10 ResNet+CIFAR-100

adj R2 10-fold R2 adj R2 10-fold R2 adj R2 10-fold R2

qrt+log 0.94 0.90 0.87 0.81 0.97 0.96
qrt+log+unnorm 0.89 0.86 0.82 0.74 0.95 0.94
moment+log 0.93 0.87 0.83 0.74 0.94 0.92

Self-Attention GAN 0.992 0.991 0.903 0.897 –– —
Spec-Norm GAN 0.994 0.993 0.874 0.869 — —
BigGAN 0.988 0.986 0.911 0.904 0.992 0.991
BigGAN+ADA 0.991 0.989 0.932 0.928 — —
BigGAN+DiffAug 0.995 0.995 0.981 0.921 0.993 0.993

Table 2: Comparison of predicting generalization using GAN samples to the Top-3 methods of Jiang
et al. (2018) (qrt+log, qrt+log+unnorm and moment+log) on DEMOGEN. Overall, our
method of predicting generalization using GAN samples outperforms any of the previous solution
by a large margin. The BigGAN+DiffAug appears to be the best performing. ‘—’ means not tested.
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In Table 2, we compare the scores of our method with several state-of-the-art GAN models. Specif-
ically, we again take the pre-trained GAN models from the StudioGAN library to generate synthetic
datasets for the CIFAR-10 tasks. For the CIFAR-100 task, we use the same hyper-parameters as the
CIFAR-10 models to train a plain BigGAN and a BigGAN+DiffAug model from scratch. Again,
each synthetic dataset is sampled only once. Overall, predicting using GAN samples achieves re-
markably higher scores than all methods proposed in Jiang et al. (2018). We also visualize the
resulted linear fit for each task in Figure 2 where we observe the strong linear correlation. Note that
the resulting linear fits are close the ideally desired y = x fit. In fact, using directly ĝ(f) as the
prediction would also lead to extremely competitive R2 values 0.928, 0.995 and 0.975 respectively.

4 GAN SAMPLES ARE CLOSER TO TEST SET THAN TRAINING SET

In this section, we demonstrate a surprising property of the synthetic examples produced by GANs
that may provide insights into their observed ability to predict generalization: synthetic datasets
generated by GANs are ‘closer’ to test set than training set in the feature space of well-trained deep
net classifiers, even though GAN models had (indirect) access to the training set but no access to
the test set. Here ‘well-trained’ classifiers are the ones that almost perfectly classify the training
examples, i.e. its training accuracy is > 97%. To define closeness properly, we modify the widely
used standard Fréchet Distance proposed by Heusel et al. (2017) to account for labeled examples.
We name our modified version as the Class-conditional Fréchet Distance.

4.1 CLASS-CONDITIONAL FRÉCHET DISTANCE

The goal is to measure how close the labeled synthetic dataset is to the test set in the eyes of a
certain pre-trained classifier. However, FID does not capture any label information by default. Our
proposed class-conditional Fréchet Distance can be viewed as the sum over each class of the Fréchet
Distance between test and synthetic examples in a certain feature space. The original FID measures
a certain distance between the feature embeddings of real examples and synthetic examples from
GANs, in the feature space of an Inception network pre-trained on ImageNet. For our purposes, we
modify the notion of FID to use any feature extractor h. Specifically, we define the distance between
two sets of examples S and S′ w.r.t. a feature extractor h as

Fh (S, S
′) := ‖µS(h)− µS′(h)‖22 +Tr

[
CovS (h) + CovS′ (h)− 2 [CovS (h) CovS′ (h)]

1/2
]

where we have the empirical mean of h’s output µS(h) := 1
|S|
∑

(x,y)∈S h(x) and the empirical

covariance CovS(h) := 1
|S|
∑

(x,y)∈S (h(x)− µS(h)) (h(x)− µS(h))
> over the examples from

S, and µS′(h),CovS′(h) are computed analogously. Furthermore, [·]1/2 is the matrix square root
and Tr [·] is the trace function.

For labeled datasets S and S̃, we denote by C the collection of all possible labels. For each label
c ∈ C, we let Sc and S̃c denote the the subsets of examples with label c in S and S̃ respectively. This
leads to the class-conditional Fréchet Distance:

dh

(
S, S̃

)
:=
∑
c∈C
Fh

(
Sc, S̃c

)
In Figure 3, we evaluate dh on CIFAR-10 among the training set Strain, the test set Stest and the
synthetic set Ssyn, with h being the feature map immediately before the fully-connected layer of each
pre-trained deep net used in the middle sub-figure of Figure 2. The synthetic dataset is generated by
the same BigGAN+DiffAug model used in Figure 2 as well. We observe that for all pre-trained nets,
dh(Ssyn, Stest) < dh(Strain, Stest) by a big margin, which provides a partial explanation for why GAN
synthesized samples may be a good replace for the test set. Furthermore, for every well-trained
net, dh(Ssyn, Stest) < dh(Ssyn, Strain) as well. This is particularly surprising because Ssyn ends up
being ‘closer’ to the unseen Stest rather than Strain, despite the GAN model being trained to minimize
certain distance between Ssyn and Strain as part of the training objective.

4.2 CLASS-CONDITIONAL FRÉCHET DISTANCE ACROSS CLASSIFIER ARCHITECTURES

It is natural to wonder whether we can attribute the phenomenon of GAN samples being closer to
test set to the architectural similarity between the evaluated classifiers and the discriminator network
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Figure 3: Histograms of dh’s measured using the feature spaces of the pool of 216 pre-trained
ResNet models on CIFAR-10 in DEMOGEN. Since features vectors h(x) of different classifiers
may have vastly different norms, we plot the histograms of the ratios dh(Ssyn, Stest)/dh(Strain, Stest)
and dh(Ssyn, Stest)/dh(Ssyn, Strain) instead. The synthetic dataset is the identical one generated
by the BigGAN-DiffAug model used in Section 3.2. Top: the histograms of all the 216 pre-
trained classifiers, including the not-so-well-trained ones with training accuracy below 90%. Bot-
tom: the histograms of only the well-trained 162 out of 216 classifiers with training accuracy at
least 97%. Clearly, the ratio dh(Ssyn, Stest)/dh(Strain, Stest) is below 1 consistently, and the ratio
dh(Ssyn, Stest)/dh(Strain, Stest) is below 1 for all well-trained classifiers. This indicates that in their
feature space the labeled synthetic examples behave more similarly to the test set rather than to the
training set.

used in the GAN model — they are all derivatives from the ResNet family. Thus we investigate
the values of dh for the collection of classifiers with diverse architectures used in Figure 1, which
contains network architectures that may be remote from ResNet such as VGG, MobileNet, PNASNet
etc. The result is demonstrated in Figure 4, where we observe the surprising phenomenon that the
single copy of the synthetic dataset is regarded closer to the test set by all classifiers in the collection.
This suggests that certain GAN models are capable of matching, to a degree, the feature distribution
universally for a diverse set of deep neural classifiers.

5 EXPLORATION: EFFECTS OF DATA AUGMENTATION

In this section, we discuss certain intriguing effects of data augmentation techniques used during
GAN training on the performance of the resulted synthetic datasets for predicting generalization.
We use the CIFAR-100 task from DEMOGEN as a demonstration where the effects are the most
pronounced. The task consists of 324 ResNet classifiers, only half of which are trained with data
augmentation, specifically random crop and horizontal flipping.

Given the success of complexity measures that verify ‘robustness to augmentation’ in the PGDL
competition, one would imagine applying data augmentations to the real examples during GAN
training could be beneficial for prediciting generalization, since the generator would be encouraged
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Figure 4: Histograms of dh’s measured using the feature spaces of deep neural nets with various
architectures on CIFAR-10 (same ones from Figure 1). The synthetic dataset is the same one used
in Figure 1 as well. All the classifiers are well-trained. dh(Ssyn, Stest) is consistently the smallest
among all three pairwise distances among Strain, Stest and Ssyn.

to match the distribution of the augmented images. However, we show in Figure 5 this is not the
case here.

Specifically, Figure 5a indicates that, when evaluated on a synthetic dataset from a GAN model
trained with augmentation only applied to real examples, the ResNets trained without any data
augmentation exhibit a test accuracy v.s. synthetic accuracy curve that substantially deviates from
y = x, while the ones trained with data augmentations are relatively unaffected. In comparison,
once data augmentation is removed from GAN’s training procedure, this deviation disappears, as
captured in Figure 5b. This could be because the ResNets trained without data augmentation are
sensitive to the perturbations learned by the generator. Overall, the best result is achieved by de-
ploying the differential augmentation technique that applies the same differentiable augmentation to
both real and fake images and enables the gradients to be propagated through the augmentation back
to the generator so as to regularize the discriminator without manipulating the target distribution.
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Figure 5: Scatter plots of test accuracy g(f) v.s. synthetic accuracy ĝ(f) on the DEMOGEN CIFAR-
100 task using BigGAN models trained with a) data augmentation (random crop + horizontal Flip-
ping) only to real (training) examples, b) without any data augmentation, and c) with the differen-
tiable data augmentation technique. Blue and orange dots represent ResNet-34 classifiers trained
with and without data augmentation.

6 DISCUSSION AND CONCLUSIONS

Competitions such as PGDL are an exciting way to inject new ideas into generalization theory. The
interaction of GANs and good generalization needs further exploration. It is conceivable that the
quality of the GAN-based prediction is correlated with the niceness of architectures in some way. It
would not be surprising that it works for popular architectures but does not work for all. We leave it
as future work to determine the limits of using GANs for predicting generalization.
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Our finding presented here offers a new approach for predicting generalization, and it sheds light on a
possibly bigger question —what can GANs learn despite known limitations? To our best knowledge,
we are not aware of any existing theory that completely explains this counter-intuitive empirical
phenomena. Such a theoretical understanding will necessarily require innovative techniques and
thus is perceivably non-trivial. However, we believe it is an important future direction as it will
potentially suggest more use cases of GANs and will help improve existing models in a principled
way. We hope our work inspires new endeavors along this line.
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