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Abstract

As Retrieval-Augmented Generation (RAG) evolves into service-oriented
platforms (Rag-as-a-Service) with shared knowledge bases, protecting the
copyright of contributed data becomes essential. Existing watermarking
methods in RAG focus solely on textual knowledge, leaving image knowl-
edge unprotected. In this work, we propose AQUA, the first watermark
framework for image knowledge protection in Multimodal RAG systems.
AQUA embeds semantic signals into synthetic images using two comple-
mentary methods: acronym-based triggers and spatial relationship cues.
These techniques ensure watermark signals survive indirect watermark prop-
agation from image retriever to textual generator, being efficient, effective
and imperceptible. Experiments across diverse models and datasets show
that AQUA enables robust, stealthy, and reliable copyright tracing, filling
a key gap in multimodal RAG protection.

1 Introduction

Figure 1: Overview of the RAG-as-a-Service (RaaS)
workflow. Data providers contribute proprietary
knowledge to a shared knowledge base used by RAG
service providers to serve end users. Data providers
can issue watermark probe queries to RAG services.
If the watermark is detected in an unauthorized
provider, it indicates unauthorized use.

Large Language Models (LLMs) of-
ten suffer from hallucinations and
outdated knowledge, which Retrieval-
Augmented Generation (RAG) miti-
gates by retrieving external knowledge
at inference time (Lewis et al., 2020;
Guu et al., 2020; Asai et al., 2023).
RAG has further evolved into RAG-
as-a-Service (RaaS), where platforms
such as LlamaIndex (Liu, 2022) enable
shared knowledge bases contributed by
multiple providers (Figure 1). These
systems follow a “usable but not visi-
ble” policy: service providers can use
contributed knowledge without direct
access to raw data.
While RaaS enables a mutually ben-
eficial ecosystem between knowledge
providers and service platforms, they
also introduce copyright and owner-
ship challenges. In particular, providers require mechanisms to reliably trace data usage
and restrict access to authorized services. Since unauthorized RAG providers typically
utilize the entire shared knowledge base, a practical solution is to embed watermarks at the
knowledge base level. The detection of these watermark signals in a provider’s output can
then serve as strong evidence of unauthorized data usage (Figure 1, bottom).
Existing watermarking methods for RaaS primarily focused on textual knowledge (Jovanović
et al., 2025; Guo et al., 2025). However, these methods are modality-specific, limited
to text modality and cannot be directly applied to non-textual knowledge due to
the distinct characteristics of other modalities. In practice, RaaS systems increasingly
integrate multimodal knowledge, combining textual and visual content (Riedler & Langer,
2024; Xia et al., 2024b;a). This creates a fundamental gap and leaves a critical vulnerability in
the copyright protection of Multimodal RaaS. To address this gap, we focus on a representative
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subclass: text-to-text (T2T) Multimodal RAG, where generator integrates retrieved image
knowledge and textual query to generate textual responses (Yasunaga et al., 2022; Chen
et al., 2022; Lin & Byrne, 2022; Sun et al., 2024; Zhu et al., 2024).

Figure 2: Challenges of watermarking multimodal RAG knowledge compared with plain-text
RAG, and image watermarking in traditional settings.

Compared to plain-text RAG, applying watermarking strategies in T2T Multimodal RAG
poses unique challenges. First, while text-based RAG supports direct watermark propa-
gation, multimodal RAG requires embedding the watermark in images and reflecting it in
generated text, resulting in indirect propagation that is harder to preserve. Second, unlike
textual watermarks typically involving unusual tokens resulting in obvious distribution
shift from original knowledge (Chen et al., 2024c; Cheng et al., 2024), image knowledge
differs only at the pixel level while preserving semantic naturalness, resulting in unapparent
distribution shifts (Figure 2 (B)), that reduce retrievability. Moreover, existing image
watermarking methods (Luo et al., 2020; Chen et al., 2024a) rely on implicit perturbations
designed for image-level detection, but multimodal RAG requires watermarks to be explicitly
retrieved through queries, making them unsuitable for retrieval-based multimodal settings.
To address above challenges in image knowledge copyright protection, we propose AQUA, a
novel watermarking framework tailored for T2T Multimodal RAG. Specifically, AQUA wa-
termarking framework includes two complementary watermarking methods: AQUAacronym
and AQUAspatial. AQUAacronym addresses indirect watermark propagation by embedding
uncommon acronyms and their full names into synthetic images. In the verification phase,
these acronyms are decoded through the Optical Character Recognition (OCR) abilities of
generators Vision-Language Models (VLMs) (Achiam et al., 2023; Team et al., 2023; Huang
et al., 2023) to generate detectable textual response: the full name of the acronyms. Despite
cross-modal transformation, the textual nature of the signal embedded in the image increases
its chance of surviving end-to-end processing.
For models with limited OCR ability, AQUAspatial is designed to create synthetic images
with special object configurations (e.g. uncommon positional relationships), and leverage
generators’ understanding of spatial semantics to answer position-related probe queries.
These positional relationships can bridge the gap between image semantics and textual
outputs, allowing indirect watermark propagation from retriever to generator. Both methods
introduce semantic distinctiveness by embedding subtle semantic cues into natural-looking
images, allowing explicit retrieval while maintaining a high retrieval rate. Together, these
two methods provide a flexible, robust solution to the unique challenges of watermarking in
Multimodal RAG systems, supporting both black-box and white-box deployments.
Despite simplicity, our novel insights of using synthetic images with special acronyms texts
and special positional relationships as watermark carriers are particularly effective and
efficient in bridging the gap between image-based watermarking and textually detectable
outputs, enabling robust copyright tracing in Multimodal RAG. We evaluate AQUA across
diverse Multimodal RAG and datasets spanning different domains. The experimental results
demonstrate that AQUA (1) enables the watermark images to be retrieved and reflected in
the generated textual output, (2) prevent false positive retrieval from common image content,
(3) remain imperceptible to users and undetectable by unauthorized filtering mechanisms,
and (4) is robust to attacks such as image transformations and regeneration.
Our contribution can be summarized as follows:
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• We propose AQUA, the first watermarking framework for image knowledge copyright
protection in Multimodal RAG, addressing indirect watermark propagation, and successful
retrieval under unapparent distribution shifts and explicit watermark injection.

• We design two complementary watermarking strategies, AQUAacronym, AQUAspatial
to support more realistic black-box scenarios;

• Comprehensive experiments on two RAG datasets and RAG architectures to demonstrate
the effectiveness, harmlessness, stealthiness and robustness of AQUA;

• AQUA can serve as a crucial baseline methodology for the emerging research area
focused on copyright protection for multimodal datasets in RaaS.

2 Related Works
2.1 Multimodal Retrieval-Augmented Generation
Relying only on textual information is a limited approach for describing the intricate nature
of the physical world. Yu et al. (2024); Mei et al. (2025); Papageorgiou et al. (2025) extends
the text-only RAG framework to multimodal, explicitly incorporate diverse data modalities
into both the retrieval and generation stages. A common strategy for enabling cross-modal
retrieval is to employ powerful multimodal encoders (e.g. CLIP (Radford et al., 2021) ), to
map different modalities (e.g., text and images) into a shared semantic embedding space.
This unification allows standard vector search algorithms like cosine similarity to retrieve
relevant items across modalities based on semantic relatedness.

2.2 RAG Watermarking
Several watermarking approaches have been proposed to protect the copyright of textual
knowledge in RAG. WARD (Jovanović et al., 2025) uses the LLM red-green list watermarking
technology to watermark all the texts in the RAG knowledge base (Kirchenbauer et al., 2023;
Gloaguen et al., 2024). RAG-WM (Lv et al., 2025) presents a black-box RAG watermarking
approach that leverages interactions among multiple LLMs to generate high-quality water-
marks. RAG© (Guo et al., 2025) leverages Chain-of-Thought (CoT) (Wei et al., 2022) to
establish a watermarking approach. DMI-RAG (Liu et al., 2025) performs dataset member-
ship inference by injecting a small number of synthetic, watermarked "canary" documents
into the Intellectual Property (IP) dataset. However, existing methods on watermarking
knowledge base in RAG system have exclusively focused on purely textual data. To the
best of our knowledge, no prior work has addressed the protection of knowledge copyright
in Multimodal RAG systems, particularly those integrating image and text modalities, via
watermarking techniques.

3 Preliminary
In this section, we outline the workflow of the T2T Multimodal RAG system and define the
notations in Section 3.1. Then, we establish the threat model of protecting the knowledge
copyright in Multimodal RAG system in Section 3.2.

3.1 Multimodal RAG System Workflow
The T2T Multimodal RAG system contains three components: a retriever E , a generator
G, and an external image knowledge base D. The retriever consists of a text encoder Etext

and an image encoder Eimg. Images Ii in the external knowledge base D = {I1, . . . , In} are
pre-processed to a latent space through the image encoder: eIi

= Eimg(Ii) ∈ Rd.
The retriever accepts the user’s text query T as input, and process it into the same latent
space as image: eT : eT = Etext(T ) ∈ Rd. Then the retriever employs a similarity function,
Sim(·, ·) := Rd × Rd → Score (e.g., cosine similarity), to find the most relevant image
knowledge according to user’s text query: si = Sim(eT , eIi

). Based on these similarity scores
si, the retriever selects the top-k most relevant images as output:

Dretrieved = R(D, T, k) = {Is(1) , Is(2) , . . . , Is(k)}, where Stop-k = {s(1), s(2), . . . , s(k)} (1)

The original text query T and the retrieved set of images Dretrieved are combined and passed
to the generator G to produce the final answer: A = G(Dretrieved, T )
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3.2 Threat Model
We consider the image knowledge copyright protection in Multimodal RAG service.
Defender represents the knowledge provider, aiming to detect and prevent unauthorized use
of their proprietary image knowledge by external Multimodal RAG services. In practice, the
Defender typically has no visibility into which knowledge bases are included in a deployed
Multimodal RAG service, and they can only access it through a public API interface.
Defender can only operate on their own datasets to implement protection mechanisms such
as injecting watermarks before contributing their data to a RaaS.
Adversary is a Multimodal RAG service provider who incorporates image datasets without
authorization, with the goal of improving system performance while avoiding licensing costs.
Adversary may unknowingly ingest the watermarked data and expose its presence through
the system’s generated outputs, creating an opportunity for Defender to audit its misuse.

4 Methodology
AQUA is a watermarking framework designed to protect the image knowledge copyrights
in Multimodal RAG service, meeting four key requirements: effectiveness, harmlessness,
stealthiness, and robustness. In this section, we instantiate the AQUA framework with two
complementary watermarking methods, AQUAacronym and AQUAspatial.

Figure 3: Illustration of the watermark injection (left) and verification (right) of AQUA.

4.1 AQUAacronym

Watermark Injection. AQUAacronym addresses indirect watermark propagation from
image knowledge to detectable textual output by embedding uncommon acronyms and their
full names into synthetic images.
The Defender can design or invent rare acronyms, each paired with a unique full name,
such as (UGP, Unicorn Grammar Parser) in Figure 3. Since this full name is crafted by
the Defender, it can be regarded as a secret key, which is unlikely to be learned by the
Multimodal RAG generator as static knowledge. Despite cross-modal transformation, the
textual nature of the signal embedded in the image increases its chance of surviving end-to-
end processing. The acronym pair can also be generated in large quantities using LLM (e.g.,
textttGemini-2.5-Pro), with the ability of In-Context Learning (ICL) (Brown et al., 2020)
and the prompt provided in Appendix A.1, and more examples are relegated in Appendix A.2.
Each pair is then embedded as a watermark image and injected into the image knowledge
base: D = Doriginal ∪ Dwatermark. These images are designed to be minimally invasive and
do not affect the model’s utility for normal queries.
Watermark Verification. In verification phase, these acronyms are decoded through the
OCR ability of generator, to generate detectable textual responses: the full name of the
acronyms. Each watermark image has its own probe query Tprobe which can be used by
the knowledge provider to detect unauthorized use. The Tprobe consists of two parts: a
trigger Ttrigger, used by the retriever to retrieve the watermark images, and an instruction
Tinstruction, which prompts the generator to generate the watermark-included responses that
can be detected. We can formulate this construction as: Tprobe = Ttigger ⊕ Tinstruction. For
example, in Figure 3, Ttrigger is “Background: UGP is a machine” and Tinstruction is “What
is the full name of UGP?”. To verify the watermark signal, we define a strict exact match
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protocol Eval(·, ·) based on a normalization function Norm(·) that lowercases and strips
whitespace from both generated output ORAG and the verification signature S:

Eval(ORAG, S) = I[Norm(S) ⊆ Norm(ORAG)] (2)

where I[·] is the indicator function, returning 1 if the condition (substring presence) is true,
and 0 otherwise. The predefined signature (e.g., "Unicorn Grammar Parser") serves as the
ground truth. Due to the inherent randomness of generation (e.g., temperature, top-k/top-p
sampling) (Fan et al., 2018; Holtzman et al., 2019), the presence of a watermark signal is
not guaranteed even when the corresponding image is retrieved. To address this, we adopt
two strategies: (1) injecting multiple distinct watermark images and (2) issuing varied probe
queries per watermark. We define the Verification Success Rate (VSR) as:

VSR = 1
Nwm · Nds

Nwm∑
j=1

Nds∑
i=1

Evalj(ORAGi
, Si) (3)

where Nwm is the number of watermark images and Nds is the number of distinct queries
per image. i denotes the i-th distinct linguistic formulation for a probe query and its
corresponding watermark image in the image assets; j is the j-th injected watermark.
Hypothesis Testing. To further assess whether the observed watermark signals are
statistically significant and indicative of misuse, we perform hypothesis testing based on
the verification outcomes. Specifically, following Xu et al. (2023), we conduct Welch’s t-test
(Welch, 1947) to compare the behavior of the suspect Multimodal RAG and the clean
Multimodal RAG. Null Hypothesis (H0) indicates there is no statistical evidence suggesting
the suspect Multimodal RAG including the watermark image datasets: H0 : µsuspect = µclean,
where the VSR of the suspect Multimodal RAG is equal to the VSR of the clean one. Using
the sample means, variances, counts, and approximated degrees of freedom via the Welch-
Satterthwaite equation (Satterthwaite, 1941; 1946), we compute the t-statistic. The p-value
is compared against a significance level (e.g. α = 0.05) to decide whether to reject H0 and
conclude potential unauthorized use. The practical deployment of AQUA presents unique
challenges due to the specific state of each target RAG database; these issues are discussed
in detail in the Appendix B.

4.2 AQUAspatial

Watermark Injection. For those models with limited OCR capabilities, we propose
AQUAspatial, which is designed to create synthetic images with special object configurations
(e.g. unusual positional relationships), and leverage generators’ understanding of spatial
semantics to answer position-related probe queries. Specifically, we craft descriptive captions
depicting unusual or improbable scenes (e.g. “A red apple on the head of a reading dog.”)
and generate corresponding images using a diffusion model (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Rombach et al., 2022). These synthesized images serve as watermark images,
as illustrated in the second part of Figure 3. Similar to AQUAacronym, these watermark
images are injected into the dataset and can be scaled using LLM-based in-context generation
of diverse captions. More examples and image caption template are relegated to Appendix
A.2 and Appendix A.3, respectively.
Watermark Verification and Hypothesis Testing. The verification and the hypothesis
testing are similar to that of AQUAacronym method. Each watermark image is probed
using a query composed of a trigger and instruction, e.g., Ttrigger = “There is a dog reading
a book.” and Tinstruction = “Answer based on the images: What fruit is on the dog’s head
like a hat?”. The expected signature is “Apple”. As before, the system output is evaluated
using the exact-match protocol Eval(·, ·), and Welch’s t-test is applied to determine whether
the suspect system statistically includes the watermarked dataset.

4.3 Evaluation Metrics
We evaluate AQUA using multiple metrics that capture both retrieval and generation
performance. Verification success rate and hypothesis-testing-based assessments quantify the
overall effectiveness of watermark detection. In addition, we introduce Rank and Conditional
Generation Success Rate (CGSR).
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Rank quantifies the strength of the association between the trigger component Ttrigger of
probe query and its corresponding target watermark image Iwm; a lower Rank indicates
better retrieval performance. For a given query, Dretrieved = (I1, I2, . . . , Ik) indicates the
top-k retrieved images knowledge. The Rank is defined as the 1-based index r of Iwm within
Dretrieved. If Iwm is not present within the top k retrieved images, a penalty value, set to
twice the retrieval depth (2k), is assigned. Formally, the Rank is calculated as:

Rank(Iwm, Dretrieved, k) =
{

r , if ∃ r ∈ {1, . . . , k} such that Ir = Iwm

2k , otherwise (4)

Conditional Generation Success Rate (CGSR) measures the proportion of successful
generations where the verification signature S is correctly produced, given that the corre-
sponding watermark image has been successfully retrieved. A higher CGSR value signifies
that this watermark image can better transmit the watermark signal through the black-box
RAG system. Let Tretrieved be the queries for which the retrieval of the watermark image
is successful. The CGSR is then defined as the success rate over the subset of successful
retrievals:

CGSR =
∑

t∈Tretrieved
Eval(O(t)

RAG, S(t))
|Tretrieved|

(5)

SimScore quantifies the output quantifies the semantic similarity between a watermark
probe query and a benign query with similar intent, as judged by an LLM (Gemini-2.5-Pro),
with scores ranging from 0 to 100%. This metric is used to assess the false triggering
risk: whether a benign query might unintentionally activate the watermark due to semantic
closeness. The prompting details are provided in Appendix A.1.

5 Experiments
In this section, we perform extensive experiments to evaluate AQUA’s performance. We
cover the experimental setup (Section 5.1), and two baselines (Section 5.2), followed by
assessments of effectiveness (Section 5.3), harmlessness (Section 5.4), stealthiness (Section
5.5), and robustness (Section 5.6).

5.1 Experimental Setup
Datasets. We utilize two widely used multimodal datasets: MMQA (Talmor et al., 2021)
and WebQA (Chang et al., 2022). Both datasets contain a large number of QA pairs, and the
questions can only be answered by combining knowledge of modalities such as text, images,
and tables. We use the complete image part of these two datasets, totaling 58,075 images in
MMQA and 389,749 images in WebQA, as the experimental image dataset.
Multimodal RAG Components. We use the Contrastive Language–Image Pre-training
(CLIP) (Radford et al., 2021), specifically the openai/clip-vit-large-patch14 variant
as Retriever. Cosine Similarity is used to compute the similarity between text and
image. Following the usual search strategies (Caffagni et al., 2024; Mortaheb et al., 2025;
Ha et al., 2025), we set clip-top-k=5, ensuring the retriever selects the five most relevant
images as knowledge. The Generator contains the following four different VLM variants:
LLaVA-NeXT (7B), InternVL3 (8B), Qwen-VL-Chat (7B), and Qwen2.5-VL-Instruct (7B)
(Liu et al., 2024; Chen et al., 2024d; Bai et al., 2023; Team, 2025). To control the diversity
of the outputs, we configure the decoding process for each VLM using standard sampling
parameters, sampling temperature (T = 1.2), top-k sampling (top_k = 5), nucleus sampling
(top_p = 0.9). These settings are maintained consistently across experiments.

5.2 Baseline
We propose two baselines to compare with AQUA: a Naive random select method and
an optimization-based method. Naive baseline uses common images as watermark images.
These images are not unique to the Defender’s database but may also appear in databases of
other data providers. Specifically, we randomly crawled more than 10,000 images from the
Internet across 100+ domains, and selected a subset of them as watermark images.
Optimization-based method follows a conventional image watermarking approach by
embedding imperceptible optimized patterns. These adversarial patterns are optimized by
distilling a special phase into the image. Specifically, a perturbation δ is optimized and
added to a base image Ibase such that, when the watermarked image is queried with a textual
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prompt T , the generator G produces an output containing a predefined signature S. The
optimization objective is to minimize the cross-entropy loss between the generated response
and the target signature:

min
δ

L(G(Ibase + δ, T ), P ) (6)

We adopt Projected Gradient Descent (PGD) (Goldstein, 1964; Levitin & Polyak, 1966)
to optimize the perturbation iteratively, as it is a widely-adopted and effective adversarial
perturbation generation method:

δt+1 = Π∥·∥p≤ϵ (δt − α · ∇δt
L(M(Ibase + δt, q), P )) (7)

where α represents the step size (learning rate), and projection operator Π∥·∥p≤ϵ(·) ensures the
perturbation remains within an Lp-norm ball of radius ϵ, preserving visual imperceptibility.
The final watermarked image is Iwm = Ibase + δ∗.

5.3 Effectiveness of AQUA
This section presents an empirical evaluation of the effectiveness of the proposed AQUA
framework. Performance is quantified using Rank and CGSR metrics, with results summarized
in Table 8. Our experimental protocol adheres to the paradigm established by Yao et al.
(2024), utilizing a dataset of 50 distinct watermark images. Each image was subjected to 10
unique probe queries with diverse syntactic structures. To ensure statistical robustness, the
entire experiment was replicated 10 times.
Table 1: Effectiveness of AQUA. Models indicate which model
is used as the generator. AQUAacronym and AQUAspatial rep-
resent the two watermarking methods. Naive and Opt. denotes
the baseline methods.

Models Methods MMQA WebQA
Rank↓ CGSR↑ p-value↓ Rank↓ CGSR↑ p-value↓

LLaVA
- NeXT

Naive 2.86 28.16% 0.32 4.56 13.28% 0.93
Opt. 1.45 31.03% 3.33e−4 1.90 22.86% 3.94e−2

AQUAacronym 1.03 85.36% 0.0 1.05 78.73% 9.47e−182

AQUAspatial 1.29 75.38% 1.07e−67 1.85 86.45% 2.3e−45

InternVL3
Naive 2.86 27.11% 0.41 4.56 17.12% 0.65
Opt. 1.45 19.34% 5.39e−3 1.90 19.45% 3.87e−3

AQUAacronym 1.03 85.11% 6.29e−289 1.05 78.34% 2.88e−129

AQUAspatial 1.29 75.72% 1.49e−50 1.85 72.46% 4.31e−26

Qwen-VL
-Chat

Naive 2.86 15.79% 0.59 4.56 5.71% 0.91
Opt. 1.45 21.29% 9.05e−3 1.90 18.91% 1.21e−3

AQUAacronym 1.03 75.28% 1.05e−162 1.05 77.86% 1.24e−128

AQUAspatial 1.29 78.92% 1.35e−60 1.85 68.46% 9.63e−35

Qwen2.5-
VL-Instruct

Naive 2.86 38.15% 0.25 4.56 15.87% 0.86
Opt. 1.45 19.96% 7.35e−3 1.90 18.51% 6.77e−3

AQUAacronym 1.03 99.61% 0.0 1.05 96.68% 6.6e−145

AQUAspatial 1.29 98.42% 8.29e−72 1.85 89.85% 2.92e−49

Figure 4: TPR vs. FPR of
AQUA and two baselines.

Figure 5: Relationship of
p-value vs. query times.

A Welch’s t-test is conducted to assess the statistical significance of the detection results.
The analysis yields p-values consistently below the conventional significance level (α = 0.05),
which leads to the rejection of the null hypothesis, H0 : µsuspect = µclean. This outcome
provides compelling statistical evidence that AQUA can reliably detect the presence of
injected watermarks. For a complementary analysis, and in accordance with the methodology
of Jovanović et al. (2025), the results of a Two-proportion Z-test are provided in Appendix
C.1.
Analysis of Query Efficiency. Although the optimization-based method can also ultimately
achieve a statistically significant result (i.e., a low p-value) to reject the null hypothesis, the
number of queries required to do so is a critical performance metric in real-world applications,
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particularly where queries are costly or limited. We, therefore, evaluate query efficiency by
measuring the number of queries each method needs to reach the significance threshold. As
depicted in Figure 5, both AQUAacronym and AQUAspatial achieve a p-value below the
significance level within 30 queries. In contrast, the Opt. baseline requires over 200 queries
to attain the same level of statistical confidence. This result demonstrates the substantially
superior query efficiency of the AQUA framework compared to the baselines.
FPR vs. TPR. To further validate the effectiveness of AQUA, we analyze its True Positive
Rate (TPR) against its False Positive Rate (FPR), as shown in Figure 4. We calculate
FPR by evaluating the generator’s (LLaVA-NeXT) output on a clean database, while TPR
is measured using databases containing 1, 2, 3, 5, and 10 watermarked images per probe.
The substantial distance of the AQUA curve from the random baseline indicates a strong
statistical separation between watermarked and clean distributions. This characteristic is
crucial, as it confirms that AQUA can achieve a high detection rate while keeping the false
positive rate exceptionally low, thus validating the method’s precision and reliability.
5.4 Harmlessness of AQUA
Normal Query. To verify the harmlessness of our watermark, we evaluated the system’s
response to over 10,000 benign queries sourced from the MMQA and WebQA datasets. A
watermark is considered harmless if it is neither retrieved nor generated during the system’s
normal operation. In our experiments, with a single watermarked image embedded in
the knowledge base, the retrieval rate for the watermarked content was 0% for both the
AQUAacronym and AQUAspatial variants. Concurrently, the CGSR was also 0% across all
four generators tested. These results confirm that our verification signature remains latent
during standard interactions and does not interfere with the generation of correct responses
to benign queries.

Table 2: Examples of relevant queries and corresponding results.

Type Exa. Probe Query Exa. Relevant Query Rank SimScore ↑
Acronym-
replace

What is the subtitle of
UGP?

What is the subtitle of
ATM? 10.00 100%

Acronym-
no_instru

What is the subtitle of
UGP? What is UGP? 1.07 70.18%

Spatial-
imprecise

What fruit is the monkey
holding like a phone?

What is the monkey hold-
ing? 2.93 75.87%

Relevant Query.
We employ relevant
queries to assess
whether the em-
bedded watermark
interferes with the
model’s standard
output when process-
ing prompts highly
similar to the probe query. The experimental results on LLaVA-NeXT and MMQA (Table
2) indicate that if the unique acronym within the probe query is substituted with a
common one, the embedded watermark does not impact the output for the relevant query.
For queries that partially retain trigger components from the original probe, such as
Acronym-no_instruction and Spatial-imprecise, the watermark is retrieved to a limited
degree. Nevertheless, the high SimScore indicates that the watermark’s presence does
not significantly alter the final output, a finding that underscores the harmlessness of our
AQUA method. Additional results are presented in Appendix C.2.
5.5 Stealthiness of AQUA
PCA Visualization. Inspired by prior works (Boler et al., 2022; Chen et al., 2024b; Yao
et al., 2025), we observe that it is challenging to filter out watermarked images if their
embeddings are highly similar to those of the original images in the dataset. Therefore, we
randomly selected five watermarked images and their corresponding probe queries, along
with 300 original images and normal queries, and visualized their embeddings using Principal
Component Analysis (PCA) in Figure 6. These results indicate that AQUA maintains
strong stealthiness while preserving high retrieval performance.
VLM-based Filter as Adaptive Adversary. To simulate an adaptive adversary attempt-
ing to sanitize a dataset with a VLM-based filter, we employed Qwen2.5-VL-Instruct (32B)
to filter the watermarked images dataset. The results are presented as the average of 5
independent replicates. In each trial, we randomly sampled 5,000 images from the MMQA
dataset and randomly injected 10 different watermarked images. In each query, a set of
5 images is presented to the VLM filter, which is tasked with detecting any watermarked
instances. The prompts used are provided in Appendix A.1.
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Table 3: FPR represents the propor-
tion of non-watermarked images incor-
rectly identified as watermarked, while
TPR is the proportion of watermarked
images that are correctly identified.

Methods Metrics Result

AQUAacronym
FPR 2.84%
TPR 0%

AQUAspatial
FPR 2.36%
TPR 0%

Figure 6: PCA Visualization of Watermarked vs. Nor-
mal Images and Probe Queries vs. Normal Queries.

The experimental results in Table 10 indicate that AQUA’s images are highly resistant to
filtering because they utilize semantic information within seemingly normal images as the
verification signal. Consequently, any filtering approach will invariably produce a certain
FPR for normal images. For an analysis of more rigorous VLM-based filters, please refer to
Appendix C.3.
Retrieval Ratio vs. Watermark Number. Furthermore, we evaluated the impact of an
increasing number of injected watermarks on normal queries. Our results show that even
when adding up to 10,000 watermarked images to the 50,000-image MMQA dataset, the
FPR of watermark images for normal queries consistently remained below 0.1%. More
results and figures can be found in Appendix C.3.
5.6 Robustness of AQUA Table 4: The Rank and CGSR of the watermark image

after the following transformations.

Attack Methods AQUAacronym AQUAspatial

Rank ↓ CGSR ↑ Rank ↓ CGSR ↑
Rescale 1.026 99.33% 1.355 95.78%
Rotate 1.071 98.54% 1.613 89.80%

Gaussian 1.068 99.00% 1.459 91.21%
Brightness 1.053 98.59% 1.454 90.76%

Compression 1.027 98.96% 1.288 97.36%
Regen_VAE 1.052 97.61% 1.498 93.91%

Regen_Diffusion 1.036 98.17% 1.502 94.33%
Regen_VAE + Regen_Diffusion 1.037 96.55% 1.516 87.39%

rinse_2xDiff 1.032 97.78% 1.482 90.29%
rinse_4xDiff 1.028 97.01% 1.548 88.69%

To evaluate the robustness of
AQUA, we conducted exper-
iments utilizing the WAVES
benchmark (An et al., 2024).
For the experimental protocol,
the attack ‘strength’ parameter
was uniformly set to 1 across
all watermark distortion and
regeneration methods. A total
of 50 watermarked images
were selected for each tech-
nique, with the entire MMQA
dataset serving as the original
data corpus. All experimen-
tal results, generated by the
Qwen-2.5-VL-Instruction(7B)
model, are presented in Table 4. The results indicate that images watermarked by AQUA
sustain high retrieval rates and positive statistical verification outcomes following various
image transformations, distortions, and regeneration attacks, which demonstrates the
significant robustness of the proposed watermarking scheme.

6 Conclusion
This research focuses on safeguarding image dataset copyright in T2T Multimodal RAG sys-
tems. We proposed AQUA, a watermarking framework that meets four design requirements:
effectiveness, harmlessness, stealthiness, and robustness. Two complementary watermarking
strategies in AQUA can protect the copyright of image datasets through statistical verifi-
cation methods using only a few watermark images. Since AQUA is the first method to
protect data copyright through watermarking in the realistic black-box Multimodal RAG
scenarios, AQUA can serve as a crucial baseline for future studies in Multimodal RAG data
protection, contributing to more robust copyright protection in this important area.
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A Detailed Information of AQUA

A.1 Prompt

Acronym Prompt

Here is an example:
(UGP, Unicorn Grammar Parser)
Please create {num_of_watermark} pairs of uncommon acronyms and their
full names based on this example.

This is an example prompt where we use LLM (Gemini-2.5-Pro) to build a large number of
acronyms and their full names. {num_of_watermark} indicates the number of watermarks
you want.

SimScore Prompt

Determine the semantic similarity between the following two strings and
give your score on a scale of 0-100:
String 1: {Clean_Answer}
String 2: {Watermark_Answer}
Just answer with numbers.

This is the prompt where we ask LLM (Gemini-2.5-Pro) to determine whether two strings
are semantically similar. {Clean_Answer} and {Watermark_Answer} indicate the response
of Multimodal RAG’s generator with the un-watermarked dataset and the watermarked one,
respectively.

VLM-based Filter Prompt for AQUAacronym

You are an OCR filter. As long as the picture contains unusual acronym, it is a
watermark picture. Your task is to identify if any of these five images are suspected
of being the watermarked images. If yes, please answer ’yes’ and indicate how many
watermarked images there are. If no, please answer ’no’.

VLM-based Filter Prompt for AQUAspatial

You are a dataset watermark filter. Watermarked images are those that look unnatural
or even defy common sense. You need to identify if any of these five images are
suspected watermarks. If yes, please answer ’yes’ and indicate how many watermarked
images there are. If no, please answer ’no’.

A.2 Watermark Examples

The acronym images used by AQUAacronym can be generated through various means: they
may be constructed manually, implemented programmatically via libraries, or produced
with the assistance of Large Language Models (LLMs). There are no specific stylistic
requirements for these images. They can range from simple black text on a white background,
as exemplified above, to acronyms embedded within naturalistic images, as depicted in the
Table 5. The sentence structure and wording of the probe query can be freely selected, but
semantic consistency must be ensured.
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Table 5: Examples of watermark images designed by the AQUAacronym method.

Watermark Image Probe Query Verification Signature
1. What’s the meaning of
UGP?
2. Background: UGP is a ma-
chine. What is the full name of
UGP?
3. Provide the full name of
UGP.

Unicorn Grammar Parser

1. UGP is the name of a store.
What is the full name of this
store?
2. Please output all the purple
English letters on a black shop
in a magic style

Unicorn Grammar Parser

1. Help me find a picture of a
street with green plants. Please
output the English words on the
sign to the right of the green
plants.
2. Find an image with a green
UGP acronym and output the
English text on the street sign
in full.

Unicorn Grammar Parser

1. Find a green book standing
on the table and output the
title of the book.
2. What is the full name of a
book titled UGP?

Unicorn Grammar Parser

1. What does XCO signify?
2. Could you decode XCO?
3. Give me the full form of
XCO.

Xenon Cubist Ottoman

Here are three additional examples of the AQUAspatial method (Figure 7). Since the data
provider adds the watermarks themselves, they have the flexibility to define watermarks
that either slightly deviate from the dataset’s overall distribution or conform to it while
containing subtle variations in detail. We provide a pipeline to guide data providers in
achieving a balance between semantic distinctiveness and statistical naturalness for their
specific datasets. The details of this pipeline are elaborated in Appendix A.3.
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Table 6: Examples of watermark images designed by the AQUAspatial method.

Watermark Image Probe Query Verification Signa-
ture

1. What fruit is the monkey hold-
ing like a phone?
2. The monkey seems to be mak-
ing a call. What object is it us-
ing?
3. Instead of a telephone, what
yellow item is the monkey pre-
tending with?

Banana

1. Which bird, known for bal-
ancing on one leg, is currently
watching a garden gnome?
2. Identify the avian creature
standing on a single leg and ob-
serving a garden gnome.
3. A garden gnome is being
watched by a bird resting on one
leg. What type of bird is this?

Flamingo

1. Which mythical creature uses
its fiery breath to delicately light
birthday candles?
2. This fire-breathing beast is
gently lighting birthday candles.
What is it?
3. Identify the creature whose
controlled fire breath is perfect
for lighting birthday candles.

Dragon
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Table 7: Examples of watermark images designed by the Opt. baseline.

Watermark Image Probe Query Verification Signa-
ture

1. Three basketball. Does any image
contain word ‘AQUA’?
2. Three basketball. Can word AQUA
be found within these images?
3. Three basketball. Is ‘AQUA’ visible
anywhere in the image?

Yes

1. Find the full moon image with
black background. What word is in
the image?
2. Find the full moon image with
black background. What’s the word
shown in this picture?
3. Find the full moon image with
black background. Can you tell me
the word displayed in the image?

AQUA

1. Find an image within seven books.
Does any image contain word AQUA?
2. Find an image within seven books.
Is AQUA word in any picture?
3. Find an image within seven books.
Does any image contain word AQUA?

Yes

1. Find a picture of a panda with
its mouth wide open. What word is
shown in the picture?
2. Find an image within seven books.
What’s written in the picture?
3. Find a picture of a panda with its
mouth wide open. What text appears
on the image?

AQUA

A.3 Image Caption Template and Evaluation Pipeline

We note that semantic distinctiveness in images is largely driven by object-level details, while
naturalness is influenced by global factors such as composition, spatial arrangement, color,
and background. Our image generation process is designed to preserve both aspects.
To ensure semantic distinctiveness, we employ structured and controllable templates. We
then populate these templates with concept pairs that exhibit low co-occurrence probabili-
ties—these can be identified using methods such as word embedding similarity, BERT-based
measures, or prompting large language models.

Image Caption Template

{number 1} {color 1} {object 1} {location/action/state} {number 2} {color 2} {object
2}

Any part of this template can be used as the verification signal, for instance, “what {object
2} is”, or “the {number 1} of object 1”. If using the example from our paper, the template
would be “{a} {red} {apple} {on the head of} {a} {} {dog}”, and the verification signal
would be “apple”.
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To ensure statistical naturalness, we score the generated captions using pre-trained
language models (e.g., BERT) and filter out those with high perplexity, which typically
correspond to unnatural or ungrammatical sentences.
Through this two-stage process, concept selection and language model-based filtering, the
data provider can strike a balance between semantic distinctiveness and linguistic naturalness.
For data providers who possess intimate knowledge of their datasets, intuitively constructed
watermarks are often sufficient for effective copyright protection. The advanced pipeline
serves as an optional extension to further enhance the performance of the AQUA method.
We have omitted a detailed description of this pipeline from the main text to maintain
simplicity and highlight the core effectiveness of our primary approach.

B Real-world Deployment

Section 5.3 have proved the effectiveness of the AQUA method, but in reality, we cannot
obtain the mean and variance before and after the watermarks are injected on a RAG
service at the same time. We can only get one mean and variance (µ̂suspect, ŝ2

suspect) from
the suspected RAG service, so we propose a verification strategy with a predefined VSR’s
reference distribution. We first characterize the reference distribution of a clean Multimodal
RAG using mean and variance (µclean, σ2

clean), and the same with a watermarked one
(µwm, σ2

wm). Subsequently, we can perform Welch’s t-test between (µ̂suspect, ŝ2
suspect) and

two respective reference distributions. The null hypotheses (H0) for two hypothesis tests
are: Suspect vs. Clean: H(1)

0 : µ̂suspect < µclean and Suspect vs. Watermarked:
H(2)

0 : µ̂suspect > µwm. To avoid a false accusation, the significance level α can be set to a
very low value (e.g. 3e−5 in Jovanović et al. (2025)). Through our extensive experiments, we
can provide an example reference distribution below. AQUAacronym and AQUAspatial need
to use different means and variances to characterize their respective reference distributions.
Since this reference distribution is related to the specific watermark image constructed and
its performance, here we can give an example reference distribution through our extensive
experiments:

• AQUAacronym: (µclean, σ2
clean) = (0.005, 0.02); (µwm, σ2

wm) = (0.6, 0.2)
• AQUAspatial: (µclean, σ2

clean) = (0.2, 0.2); (µwm, σ2
wm) = (0.55, 0.25)

When a data provider constructs their own watermarked images by referencing the AQUA
methodology, they should first establish a specific reference distribution from those images.
Notably, the requirements for this reference distribution are not overly strict. This is because
once the watermark signal is detected in a RAG system, the resulting VSR value will differ
significantly from that of any non-infringing RAG system.

C More Experimental Results

C.1 More Results of Effectiveness of AQUA

Q: Why is Welch’s t-test the appropriate statistical method in this experimental setting?
1) The standard Student’s t-test requires the assumption of equal variances (homogeneity of
variance) between the two groups being compared. This assumption is not met in our analysis.
For the datasets before and after watermarking, a given probe query retrieves different sets
of images. Since the RAG generator’s output is conditioned on this retrieved context, the
resulting VSR scores for the two groups are expected to have unequal variances. Therefore,
Welch’s t-test, which does not assume equal variances, is the appropriate statistical method
for our comparison. 2) For each watermarked image, we conducted multiple detection trials
using a set of similar yet distinct probe queries. This repeated experimentation ensures that
the resulting data distribution meets the normality assumption required for Welch’s t-test.
3) To ensure the stability and robustness of watermark detection in a practical deployment,
we inject multiple watermarked images for a single probe query. For example, if the retriever
returns the top-5 results, we can inject 10 watermarked images. This guarantees that for
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a given probe query, all images retrieved from the watermarked dataset are watermarked,
while all images retrieved from the original dataset are normal. This design satisfies the
independence assumption of Welch’s t-test.
Two-proportion Z-test. While Welch’s t-test serves as a robust and powerful method for
comparing the means of two independent groups, particularly when population variances are
unequal, the two-proportion Z-test is an equally standard and widely applied statistical tool
specifically tailored for comparing proportions. The rationale for employing the Z-test in our
experimental setting is direct and compelling.
The two-proportion Z-test is the canonical statistical method for evaluating whether an
observed difference between two such proportions is statistically significant. Our experimental
design, which involves two independent groups—the watermarked (experimental) and non-
watermarked (control) datasets—and a large number of trials, perfectly aligns with the
underlying assumptions of this test. It provides a rigorous framework for rejecting the null
hypothesis that the performance is equivalent. Accordingly, we applied the two-proportion
Z-test to our experimental data to quantitatively validate the efficacy of our watermarking
scheme. The results of this analysis are presented below:

Table 8: The table shows the p-values obtained from the Z-test.

Models Methods MMQA WebQA

LLaVA- NeXT
Naive 0.45 0.91
Opt. 1.06e−3 7.42e−2

AQUAacronym 1.28e−273 4.32e−173

AQUAspatial 5.04e−43 3.89e−38

InternVL3
Naive 0.38 0.73
Opt. 4.97e−3 6.19e−3

AQUAacronym 2.89e−251 3.91e−110

AQUAspatial 4.31e−48 7.73e−36

Qwen-VL-Chat
Naive 0.53 0.84
Opt. 5.19e−3 9.33e−2

AQUAacronym 5.62e−127 8.02e−86

AQUAspatial 2.07e−52 7.11e−27

Qwen2.5-VL-Instruct
Naive 0.32 0.81
Opt. 2.01e−2 9.33e−3

AQUAacronym 1.11e−175 2.70e−133

AQUAspatial 3.43e−71 5.19e−47

C.2 More Results of Harmlessness of AQUA

This section is a supplement to the experiment section on harmlessness of AQUA (Section
5.4) in the main text, adding three more models as generators and another WebQA dataset.
The results are shown in Table 9.
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Table 9: This table shows the Rank and SimScore of relevant queries. Supplemented the
experiments of three other models.

Models Type MMQA WebQA
Rank SimScore ↑ Rank SimScore ↑

LLaVA-NeXT
Acronym-replace 10.00 100% 10.00 100%

Acronym-no_instruction 1.07 70.18% 1.24 67.53%
Spatial-imprecise 2.93 75.87% 3.17 71.27%

InternVL3
Acronym-replace 10.00 100% 10.00 100%

Acronym-no_instruction 1.07 71.28% 1.2 68.29%
Spatial-imprecise 2.93 68.92% 3.17 63.31%

Qwen-VL-Chat
Acronym-replace 10.00 100% 10.00 100%

Acronym-no_instruction 1.07 56.42% 1.24 51.58%
Spatial-imprecise 2.93 63.60% 3.17 56.20%

Qwen2.5-VL-Instruct
Acronym-replace 10.00 100% 10.00 100%

Acronym-no_instruction 1.07 82.85% 1.24 78.51%
Spatial-imprecise 2.93 78.23% 3.17 69.82%

C.3 More Results of Stealthiness of AQUA

Figure 7 illustrates the retrieval probability of watermarked images as a function of the
number of injected images.

Figure 7: The retrieval rate of watermarks under normal query as the number of injected
watermark images increases.

More Stringent VLM-based Filters Furthermore, we explored the use of other prompts
to filter watermarked images from the AQUA method.
To evaluate a more stringent adaptive attack scenario for the AQUA method, we simulated
a stricter OCR-based filter. In contrast to the primary approach where a VLM assesses 5
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images collectively, this filter evaluates images individually. An image is flagged if the VLM
detects any presence of text within it. Intuitively, this method is expected to screen out the
majority of AQUAacronym’s text-based watermarks, but at the cost of an exceptionally high
FPR on benign images. The prompt used and the experimental results are presented below:

OCR Filter Simulator

You are an image filter. You need to identify whether there is text in this picture. If
yes, answer ’yes’, if not, answer ’no’.

Similarly, we conducted an experiment to assess the VLM’s ability to discern plausibility
from its internal knowledge. Single image is input to the model, which is prompted to
determine whether the content is unnatural or semantically incongruous. The prompt and
corresponding results are detailed below:

Strange Image Filter from VLM’s Perspective

You are an image filter. If you think this picture is unreasonable or unnatural, answer
’yes’, otherwise answer ’no’.

Table 10: FPR represents the proportion of non-watermarked images incorrectly identified
as watermarked, while TPR is the proportion of watermarked images that are correctly
identified.

Methods Metrics Exp. 1 Exp. 2 Exp. 3

AQUAacronym
FPR 67.60% 61.44% 72.02%
TPR 100% 100% 100%

AQUAspatial
FPR 2.76% 3.44% 4.10%
TPR 2% 4% 2%

Our experimental results indicate that while a stringent VLM-based filter can remove a
subset of the watermarked images, it concurrently incurs a prohibitively FPR on benign
images. Given that an adaptive adversary’s primary objective is to augment their RAG
system’s capabilities with the unauthorized database, adopting a filter that severely degrades
the quality of legitimate data is an impractical strategy. This operational constraint for the
adversary further underscores the stealthiness of our AQUA watermarking framework.

D Ethics Statement

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal
experimentation were involved. All datasets used, including synthetic images, were sourced
in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken
care to avoid any biases or discriminatory outcomes in our research process. No personally
identifiable information was used, and no experiments were conducted that could raise
privacy or security concerns. We are committed to maintaining transparency and integrity
throughout the research process.

E Reproducibility Statement

We have made every effort to ensure that the results presented in this paper are reproducible.
All code has been uploaded as the supplemental materials to facilitate replication and
verification. The experimental setup, including training steps, model configurations, is
described in detail in the paper.
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Additionally, multimodal QA datasets, such as MMQA and WebQA, are publicly available,
ensuring consistent and reproducible evaluation results.
We believe these measures will enable other researchers to reproduce our work and further
advance the field.

F The Use of Large Language Models (LLMs)

Large Language Models (LLMs) were used to aid in the writing and polishing of the
manuscript. Specifically, we used an LLM to assist in refining the language, improving
readability, and ensuring clarity in various sections of the paper. The model helped with
tasks such as sentence rephrasing, grammar checking, and enhancing the overall flow of the
text.
It is important to note that the LLM was not involved in the ideation, research methodology,
or experimental design. All research concepts, ideas, and analyses were developed and
conducted by the authors. The contributions of the LLM were solely focused on improving
the linguistic quality of the paper, with no involvement in the scientific content or data
analysis.
The authors take full responsibility for the content of the manuscript, including any text
generated or polished by the LLM. We have ensured that the LLM-generated text adheres
to ethical guidelines and does not contribute to plagiarism or scientific misconduct.
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