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Abstract
Compositional Zero-Shot Learning (CZSL) aims
to recognize unseen state-object combinations by
leveraging known combinations. Existing studies
basically rely on the cross-modal alignment capa-
bilities of CLIP but tend to overlook its limitations
in capturing fine-grained local features, which arise
from its architectural and training paradigm. To ad-
dress this issue, we propose a Multi-Stage Cross-
modal Interaction (MSCI) model that effectively
explores and utilizes intermediate-layer informa-
tion from CLIP’s visual encoder. Specifically, we
design two self-adaptive aggregators to extract lo-
cal information from low-level visual features and
integrate global information from high-level visual
features, respectively. These key information are
progressively incorporated into textual representa-
tions through a stage-by-stage interaction mecha-
nism, significantly enhancing the model’s percep-
tion capability for fine-grained local visual infor-
mation. Additionally, MSCI dynamically adjusts
the attention weights between global and local vi-
sual information based on different combinations,
as well as different elements within the same com-
bination, allowing it to flexibly adapt to diverse sce-
narios. Experiments on three widely used datasets
fully validate the effectiveness and superiority of
the proposed model. Data and code are available at
https://github.com/ltpwy/MSCI.

1 Introduction
Compositional Zero-Shot Learning (CZSL) [Misra et al.,
2017] aims to strategically disassemble and recompose vi-
sual representations of seen combinations (composed of a
state and an object, such as “tall building” or “green tree”)
to construct representations of new composite classes (e.g.,
“tall tree”), thereby enabling precise recognition of them.

In the early research of CZSL, there is a greater focus on
how to effectively integrate and leverage existing visual in-
formation to recognize unseen categories. Some methods

† Equal contribution. ∗ Corresponding author.

…

Loss of local information

CLIP’s Visual Encoder

Previous worksOur work

Global 

information

Local 

details

Global 

information

Figure 1: Core idea of our work. By effectively leveraging the rich
local details in the lower-level features of the visual encoder, CLIP’s
ability to capture fine-grained local information can be enhanced.

treat state-object pairs as a single entity, directly learning
their compatibility feature representations with images [Pu-
rushwalkam et al., 2019; Naeem et al., 2021]. Furthermore,
researches [Nagarajan and Grauman, 2018; Nan et al., 2019]
have attempted to explicitly separate attributes and objects
through spatial embedding techniques to optimize their com-
bination process. However, due to the absence of a unified
feature space and effective attribute-object decoupling model-
ing, these methods struggle with cross-modal alignment, sig-
nificantly limiting the model’s performance.

The invention of CLIP [Radford et al., 2021] effectively
addresses the challenge of cross-modal alignment. Using
large-scale pretraining data and a contrastive learning strat-
egy, CLIP demonstrates strong cross-modal alignment capa-
bilities, which has led to the emergence of numerous meth-
ods that apply CLIP to downstream CZSL tasks. Zhou et al.
[Zhou et al., 2022] are the first to combine CLIP with prompt
engineering, proposing a single-path joint training paradigm
in which the text embeddings of state-object pairs generated
by CLIP are used as parameters and updated during back-
propagation. Nayak et al. [Nayak et al., 2022] further re-
fine this approach by introducing adjustable vocabulary to-
kens to represent primitive concepts in a compositional man-
ner. Huang et al. [Huang et al., 2024] propose an innovative
multi-path paradigm, training decouplers to disentangle vi-
sual features and interact the disentangled features separately
with corresponding prompt embeddings. Jing et al. [Jing et
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al., 2024] strengthen disentangled representations of states
and objects by exploring internal connections between the
same combination of objects and the same combination of
states.

These methods fully leverage the powerful cross-modal
alignment capabilities of CLIP, achieving remarkable results.
However, they generally overlook the inherent limitations of
CLIP itself. From a local perspective, the CLIP image en-
coder, based on a transformer architecture, compresses the
entire image into a fixed global feature vector. To improve
computational efficiency and training speed, the model tends
to focus on global visual information, while being less sen-
sitive to fine-grained local details. From a global perspec-
tive, CLIP’s contrastive learning objective aims to maximize
the similarity between global features of matched image-text
pairs while minimizing the similarity of mismatched pairs.
This global optimization strategy prioritizes capturing the
overall alignment between images and texts in the semantic
space, rather than aligning fine-grained local features. Con-
sequently, for tasks requiring precise differentiation of local
features, such as fine-grained modeling of state-object com-
binations in CZSL, CLIP’s performance is often limited.

Therefore, to address the aforementioned issues, this pa-
per proposes MSCI, a Multi-Stage Cross-modal Interaction
model for compositional zero-shot image classification. The
model fully leverages CLIP’s strengths in cross-modal align-
ment while compensating for its shortcomings in handling
fine-grained local features, as illustrated in Figure 1. Unlike
previous CZSL models that rely solely on the features of the
output layer, MSCI employs two trainable feature aggregators
to extract local visual information and global visual informa-
tion from low- and high-level visual features, respectively.
By interacting with textual embeddings in a stage-by-stage
manner, MSCI not only integrates global visual information
into the text features, but also captures valuable local details
that are often overlooked, thereby significantly enhancing the
model’s accuracy and generalization capability in recogniz-
ing unseen combinations.

Furthermore, to enable the model to dynamically adjust its
focus on local and global visual information based on dif-
ferent combinations, as well as the different elements within
the same combination (i.e., states and objects), we propose
a fusion module to regulate the relative influence of local
and global visual features on the final text embeddings. This
mechanism greatly enhances the model’s ability to handle
complex tasks and improves its adaptability to a wide range
of scenarios.

The contributions of this paper are summarized as follows:

• We are the first to emphasize CLIP’s inherent limitations
in local feature perception for CZSL tasks due to its ar-
chitecture and training paradigm, and propose address-
ing this issue by effectively utilizing the intermediate
layer information of its visual encoder.

• We propose the MSCI model for compositional zero-
shot learning. Through stage-wise feature fusion and
interaction, we progressively enhance the relationships
between text embeddings, local visual information, and
global visual information, ensuring their collaborative

interaction in cross-modal tasks.

• We validate the effectiveness of the proposed model
through experiments and the results show that the model
achieves state-of-the-art performance on the majority of
key metrics across three widely used datasets under both
open-world and closed-world settings.

2 Related Work
2.1 Compositional Zero-Shot Learning
CZSL is a specialized form of zero-shot learning that does
not rely on any auxiliary information. Its core objective is to
achieve generalization from known combinations to unseen
combinations by decoupling and recombining visual features.
Current CZSL models can be broadly categorized into two
types: CLIP-based models and non-CLIP-based models.

In CLIP-based CZSL models, Zhou et al. [Zhou et al.,
2022] were the first to propose combining prompt engineer-
ing with pre-trained vision language models (VLM) to ad-
dress efficiency issues when designing prompts for down-
stream tasks. By learning adjustable contextual word vectors,
they achieved automated generation of prompt sentences, ef-
fectively mitigating the dependency on task-specific prompt
designs. To address the limitations of VLMs in downstream
CZSL tasks, Nayak et al. [Nayak et al., 2022] treated attribute
and object tokens defining categories as learnable parameters,
optimizing them through multiple combinations of prompts.
Xu et al. [Xu et al., 2024a] further modeled the composi-
tional relationships between objects and attributes as graph
structures, treating attributes and object labels as graph nodes,
and utilized Graph Neural Networks (GNNs) [Scarselli et al.,
2008; Du et al., 2021] to update and optimize soft prompt
representations.

In particular, Huang et al. [Huang et al., 2024] extended
the single-path paradigm to a multi-path framework, estab-
lishing separate recognition branches for states, objects, and
their combinations. They also introduced a cross-modal
alignment module to better align prompt representations with
current visual content. However, this approach focuses only
on the interaction between final-layer visual features and text,
resulting in the loss of significant local information during the
forward pass of the visual encoder. Building on the multi-path
paradigm, Jing et al. [Jing et al., 2024] further enhanced the
decoupling of visual features by constructing a database of
related samples.

Although these methods have made significant progress in
adapting CLIP’s cross-modal alignment capabilities to CZSL
tasks, they often overlook the inherent limitations of CLIP
in its architecture and contrastive learning training paradigm,
specifically its weaker sensitivity to fine-grained local fea-
tures. In contrast, the proposed MSCI model directly ad-
dresses this critical limitation, providing a more robust and
higher-performing solution for CZSL tasks.

2.2 Multi-layer Feature Aggregation
In recent years, the exploration of intermediate-layer infor-
mation in Transformers for downstream tasks has garnered
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Figure 2: The general framework of the MSCI model. We design two self-adaptive aggregators to extract local and global visual information
from low-level and high-level visual features, respectively, and integrate this information into the prompt embeddings through stage-wise
cross-modal interactions. Additionally, a fusion module is introduced to regulate the influence of local and global information on the genera-
tion of the final prompt embeddings.

significant attention in the field of computer vision. By lever-
aging the multi-level and multi-scale feature information con-
tained in intermediate layers, this approach effectively ad-
dresses the limitations of traditional deep learning models
that rely solely on high-level features. For example, Tang
et al. [Tang et al., 2023] utilized the boundary characteristics
of low-level features and semantic information of high-level
features, applying them to medical image segmentation tasks.
Similarly, Liu et al. [Liu et al., 2024] enhanced the capture of
multi-scale local details and structural relationships by jointly
training multi-layer feature learning and encoding modules
with Transformers, achieving outstanding performance in
malicious webpage detection. Furthermore, this idea has
been extended to other domains [Li et al., 2024b; Miao et
al., 2025], such as cross-modal retrieval [Yang et al., 2023;
Li et al., 2024a] and visual localization [Wang et al., 2022;
Xu et al., 2024b], demonstrating its broad applicability.

3 Methodology
This section begins by providing a formal definition of the
CZSL task, which serves as the foundation for analyzing
the inherent limitations of CLIP when tackling downstream
CZSL tasks. Building on this analysis, we present our pro-
posed model in detail. The core of the model lies in aggregat-
ing multi-layer information from CLIP’s visual encoder and
conducting stage-wise cross-modal interactions with textual
embeddings. This design enables the model to precisely inte-
grate global visual information with local visual features, fa-
cilitating adaptive adjustment of prompt representations. By
doing so, our model effectively addresses CLIP’s limitations
in perceiving fine-grained local features. The general frame-
work of the proposed model is illustrated in Figure 2.

3.1 Preliminaries
Problem Formulation
Given a state set S = {s0, s1, . . . , sn} and an object set O =
{o0, o1, . . . , om}, a label space C can be constructed via the
Cartesian product, denoted as C = S × O. From C, we
extract two non-intersecting subsets: the seen class set Cs

and the unseen class set Cu, satisfying Cs ∪ Cu ⊆ C and
Cs ∩ Cu = ∅. During the training phase, the task of CZSL
is to learn a discriminative mapping P : X → Cs from the
input image space X to Cs. In the testing phase, given an
image I , the task is to predict a class label c = (s, o) from the
test class set Ctest using the learned discriminative mapping
P .

Depending on the search space, the CZSL tasks are con-
figured in two settings: In the closed-world setting, only the
predefined combination space is considered, i.e., Ctest =
Cs ∪ Cu; In the more challenging open-world setting, the
search space includes all possible pairs of state objects, i.e.,
Ctest = C.

Limitations of CLIP
The limitations of CLIP in local feature perception can be
primarily attributed to two factors: the design of its visual en-
coder architecture and its contrastive learning-based training
paradigm. CLIP’s visual encoder is based on the Transformer
architecture, which excels in modeling long-range feature
dependencies through its global attention mechanism at the
expense of sacrificing local details. This limitation is par-
ticularly evident in its sub-par performance when capturing
low-level features such as edges and textures. Furthermore,
the CLIP training objective aims to maximize global seman-
tic alignment between images and texts through contrastive
learning, causing the model to prioritize capturing general se-



mantic information while neglecting finer local details. Addi-
tionally, the contrastive learning paradigm requires the model
to rapidly distinguish prominent features across images, fur-
ther diminishing its sensitivity to fine-grained local features.

Feature Encoding
We use the CLIP image encoder as the visual backbone,
which is based on the ViT-L/14 architecture. For an input im-
age I from the image set X , we extract the [CLS] token Icls

from the output layer as its embedding representation. Build-
ing on this, we follow the three-path paradigm from previous
work, where the image embedding Icls serves as the input to
three independent multi-layer perceptrons (MLPs) [Kruse et
al., 2022] to generate visual representations of combinations,
states and objects, which are denoted as V com,V state, V obj ,
respectively. At the text level, we design soft prompt tem-
plates in the following forms: “a photo of [state] [object]”,
“a photo of [state] object” and “a photo of [object]”, which
are used to construct prompts for all candidate combinations,
states, and objects, respectively. These prompts are then
fed into the CLIP text encoder to generate prompt embed-
dings tcom, tstate, and tobj . Their dimensions are [Ncom, d],
[Nstate, d], and [Nobj , d], where Ncom, Nstate, and Nobj de-
note the numbers of all candidate combinations, states and
objects, respectively, and d represents the embedding dimen-
sion. We treat the embeddings of [state] and [object] as train-
able parameters for fine-tuning.

3.2 Aggregation of Multi-layer Information
In the ViT architecture employed by the CLIP visual encoder,
features at different levels exhibit unique information charac-
teristics: the lower layers contain rich local detail information
of the image, while the higher layers tend to integrate global
structural features. To effectively utilize the information be-
tween layers, we design a self-adaptive feature aggregation
module, as shown in Figure 3.

Suppose that the visual feature of the i-th layer are de-
noted as F i, with dimensions [b, l, d], where b is the number
of images in the set of images X , l represents the number
of patches generated after convolution (including the token
[CLS]). We extract the features from the first N layers and
the last M layers of the CLIP visual encoder, which are then
concatenated separately along the feature dimension to form
a richer feature representation. The concatenated features can
be expressed as:

F first n = Concat(F 1,F 2, . . . ,FN ) (1)

F last m = Concat(F S−M+1,F S−M+2, . . . ,F S) (2)

where S is the total number of encoder blocks in the CLIP
visual encoder, F first n and F last m represent the concate-
nation of the first N and last M layers’ features, with di-
mensions [b, l, N × d] and [b, l,M × d], respectively. The
concatenated features are first passed through a linear trans-
formation, mapping them from the concatenated dimension
(N(M) × d) to the target feature dimension d, followed by
layer normalization to ensure training stability. Then, ReLU
activation is applied to introduce non-linearity, enhancing the
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Figure 3: Illustration of the low-level feature aggregator.

model’s ability to capture complex feature relationships. Fi-
nally, a Dropout layer is used to improve the model’s gener-
alization capability. The final fused low-level and high-level
features, F low and F high, can be expressed as:

F low = D
(
max

(
0,

WF first n + b− µ

σ

)
, p

)
(3)

F high = D
(
max

(
0,

WF last m + b− µ

σ

)
, p

)
(4)

where W ∈ Rd×(N(M)×d) is the weight matrix for the linear
transformation, b ∈ Rd is the bias term, µ and σ are the mean
and standard deviation of the output features after the fully
connected layer, and D(·, p) represents the Dropout operation
with p as the dropout probability.

3.3 Multi-stage Cross-modal Interaction
The fused low-level features F low capture rich local visual
details, while the fused high-level features F high integrate
more abstract global visual information. They interact in a
stage-wise manner with the prompt embedding t from any
branch, that is, t can be any of tcom, tstate, or tobj .

In the first stage, the prompt embedding t interacts cross-
modally with the fused low-level features F low to effectively
integrate the rich local details contained in the low-level fea-
tures into the prompt embedding. This interaction is achieved
through a cross-attention layer combined with a residual con-
nection, as represented by:

t′ = CrossAttention(t,F low,F low) + t

= Softmax

(
tF T

low√
d

)
F low + t

(5)

where t′ denotes the updated prompt embedding after the
cross-modal interaction and d is the dimension of attention.



Furthermore, we adopt the Feed-Forward Network (FFN)
design proposed by Huang et al.[Huang et al., 2024], which is
implemented through an MLP. This network aims to optimize
the feature representations after interaction and generates the
output by combining the residual connection, as represented
by:

t1 = MLP(t′) + t′ (6)
where t1 denotes the updated prompt embedding after the
FFN. After the first stage, prompt embedding integrates rich
local visual information from low-level features.

The second stage adopts an interaction pattern similar to
that in the first stage, with the aim of further integrating the
more abstract global visual information contained in the high-
level features into the prompt embedding. We use the prompt
embedding t1 obtained from the first stage and the fused high-
level visual features F high as input. These are processed
through a cross-attention layer and a feed-forward network,
resulting in the further update of the prompt embedding. This
process is represented as follows:

t′′ = CrossAttention(t1,F high,F high) + t1

= Softmax

(
tF T

high√
d

)
F high + t1

(7)

t2 = MLP(t′′) + t′′ (8)
Compared with t1, t2 further integrates the abstract global

visual information contained in the high-level visual features.
To dynamically assign attention weights to local and global
visual information based on different combinations, as well
as the different prompt branches of the same combination,
we introduce two learnable parameters λ1 and λ2 to regulate
the weights of t1 and t2 in the final prompt embedding. The
final prompt embedding is represented as follows:

tfinal = t+ λ1t1 + λ2t2 (9)

3.4 Training and Inference
We follow the standard training and inference process of the
multi-path paradigm. Assume that the initial prompt em-
beddings tcom, tstate, and tobj are transformed into T com,
T state, and T obj through multi-stage interactions. The prob-
ability of assigning the combination label c(s, o), the state la-
bel s, and the object label o to the image I can be expressed
as:

p(c|I) = exp(V com · T c
com/τ)∑Ncom

k=1 exp(V com · T k
com/τ)

, (10)

p(s|I) = exp(V state · T s
state/τ)∑Nstate

k=1 exp(V state · T k
state/τ)

, (11)

p(o|I) =
exp(Nobj · T o

obj/τ)∑Nobj

k=1 exp(T obj · V k
obj/τ)

, (12)

where τ ∈ R represents the pre-trained temperature parame-
ter, T c

com, T s
state, and T o

obj represent the prompt embeddings
of the combination c, the state s, and the object o, respec-
tively. The probabilities predicted by each branch are com-
pared with the one-hot encoded labels using cross-entropy to

compute the loss. The total training loss is then obtained as a
weighted sum of the losses from each branch, formulated as
follows:

Ls = − 1

|X|
∑
x∈X

log p(s|x) (13)

Lo = − 1

|X|
∑
x∈X

log p(o|x) (14)

Lc = − 1

|X|
∑
x∈X

log p(c|x) (15)

Ltotal = αsLs + αoLo + αcLc (16)
In the inference phase, for an input image A, suppose that

C(si, oj) is an arbitrary combination in the search space S.
The model predicts the most likely combination ĉ based on
the following formula:

ĉ = arg max
C(si,oj)∈S

β (p(C(si, oj)|A))+(1−β)·p(si|A)·p(oj |A)

(17)
where β is a predefined parameter used to control the propor-
tion of each branch’s results during the inference process.

4 Experiment
4.1 Experimental Setup
Datasets
We evaluate the performance of the proposed MSCI on three
widely-used compositional zero-shot learning datasets: MIT-
States [Isola et al., 2015], UT-Zappos [Yu and Grauman,
2014], and C-GQA [Naeem et al., 2021]. The MIT-States
dataset contains 53,753 images involving 245 object cate-
gories and 115 state categories. The UT-Zappos dataset in-
cludes 50,025 images, covering 12 object categories and 16
state categories. C-GQA, constructed based on the GQA
dataset [Hudson and Manning, 2019], comprises 870 object
categories and 453 state categories. Consistent with previous
research, we adopt the dataset partitioning method proposed
by Purushwalkam et al. [Purushwalkam et al., 2019] , with
specific details presented in Table 1.

Dataset Train Validation Test
|Ys| |X| |Ys| |Yu| |X| |Ys| |Yu| |X|

MIT-States 1,262 30,338 300 300 10,420 400 400 12,995
UT-Zappos 83 22,998 15 15 3,214 18 18 2,914
C-GQA 5,592 26,920 1,252 1,040 7,280 888 923 5,098

Table 1: Statistics of datasets

Metrics
We follow the standard evaluation protocols adopted in previ-
ous studies [Nayak et al., 2022] to comprehensively evaluate
the performance of the model in both close- and open-world
settings. Specifically, the evaluation metrics include the best
seen accuracy (S), the best unseen accuracy (U), the best har-
monic mean (HM), and the area under the seen-unseen ac-
curacy curve (AUC). Among these, S measures the model’s



highest accuracy for seen combinations when the calibration
bias is set to +∞, while U reflects the highest accuracy for
unseen combinations when the bias is set to -∞. HM repre-
sents the point where the model achieves the optimal balance
between the prediction accuracies of seen and unseen cate-
gories. AUC, computed by dynamically adjusting the bias
range from -∞ to +∞, represents the area under the curve of
seen versus unseen accuracy. As a consequence, AUC serves
as the core metric that can best reflects the overall perfor-
mance of the model.

Implementation Details
We implement the proposed model based on PyTorch, using
CLIP’s backbone with the ViT-L/14 architecture, fine-tuned
via Low-Rank Adaptation (LoRA) [Hu et al., 2021]. All
experiments are conducted on an Nvidia H20 GPU. During
training, we use the Adam optimizer, combined with learn-
ing rate decay and weight decay strategies. To simplify the
model complexity, we use only one cross-attention layer for
both local feature interaction and global feature fusion across
the three datasets, with 12 attention heads and a dropout rate
set to 0.1. The parameter β, used to control the inference
weights of each branch, is set to 0.1, 1.0 and 0.1 for MIT-
States, UT-Zappos and C-GQA in the close-world setting,
and set to 0.3, 1.0 and 0.3 in the open-world setting. Addi-
tionally, in the open-world setting, we introduce a feasibility
score as a threshold to eliminate unreasonable combinations,
effectively reducing the search space. The specific threshold
is determined based on the model’s performance on the vali-
dation set.

4.2 Main Results
We compare MSCI with other CZSL models using the same
backbone (ViT-L/14). This comparison includes both CLIP-
based and non-CLIP-based models. The results in the close-
world setting are shown in Table 2, while the results in the
open world setting are presented in Table 3, respectively.

In the close-world setting, MSCI achieves optimal AUC
and H metrics in all three datasets, with AUC improve-
ments of 1.8%, 9.8%, and 14.5% in MIT-States, UT-Zappos
and C-GQA, respectively, compared to the second-best mod-
els. Such improvement percentages are closely related to the
level of fine-grained information contained in the datasets:
compared to MIT-States, UT-Zappos and C-GQA include
richer fine-grained details, resulting in more significant per-
formance improvements.

In the open-world setting, MSCI continues to exhibit ex-
ceptional performance, with AUC improvements of 13.0%
and 40.7% on UT-Zappos and C-GQA, respectively. The
greater performance improvements gained in the open-world
setting can be attributed to the expanded search space, where
discriminative local information becomes increasingly criti-
cal during inference. MSCI effectively exploits this informa-
tion, maintaining robust generalization capabilities and supe-
rior performance.

4.3 Ablation Study
To further validate the effectiveness of each module in MSCI,
we conduct ablation experiments on the UT-zappos dataset.
The results are shown in Table 4 .

Ablation for Aggregator
To validate the effectiveness of the multi-layer feature ag-
gregation module, we replace it with the following two
alternative approaches: First, by using the features from
the first and last layers of the visual encoder to perform
cross-modal interactions in the first and second stages,
respectively(w/oAgga). Second, by using the average of the
features from the first N layers and the average of the features
from the last N layers to perform stage-wise cross-modal
interactions(w/oAggb). The experimental results show that,
compared to the two methods mentioned above, the proposed
adaptive fusion module achieves better aggregation while
maintaining information richness.

Ablation for Multi-stage Cross-modal Interaction
To validate the effectiveness of the multi-stage cross-modal
interaction module, we remove the interaction modules in
the first (w/oMsa) and second stages(w/oMsb) in two sep-
arate ablation scenarios. The experimental results show that,
compared to single-stage cross-modal interaction, stage-wise
cross-modal interaction is able to incorporate global visual
information into the prompt embedding and further integrate
rich local visual information, thereby achieving better results.

Ablation Experiment S U H AUC
w/oAgga 68.1 74.0 54.3 42.6
w/oAggb 65.9 75.2 56.2 43.2
w/oMsa 63.8 70.4 51.5 37.4
w/oMsb 66.8 75.2 56.1 43.1
w/oDf 67.2 76.4 57.3 45.3

67.4 75.5 59.2 45.8

Table 4: Ablation results for UT-Zappos in the close-world setting.

Ablation for Dynamic Fusion
To validate the effectiveness of the proposed fusion method,
we replace it with the direct use of the output from the multi-
stage cross-modal interaction module (i.e., removing the λ1t1
term in Equation 9) (w/oDf). Based on the experimental
results, compared to the single fusion approach, the fusion
method we propose can dynamically adjust the attention to
global and local visual information according to different
combinations, as well as the different prompt branches of the
same combination, achieving superior performance.

4.4 Qualitative Results
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Figure 4: The impact of the number of aggregated layers N on AUC.

Within the framework of MSCI, we adjust the number
of selected layers based on the complexity of each dataset.



Category Model Venue MIT-States UT-Zappos C-GQA
S U H AUC S U H AUC S U H AUC

SCEN [Li et al., 2022] CVPR 29.9 25.2 18.4 5.3 63.5 63.1 47.8 32.0 28.9 25.4 17.5 5.5
OADis [Saini et al., 2022] CVPR 31.1 25.6 18.9 5.9 59.5 65.5 44.4 30.0 33.4 14.3 14.7 3.8

non CLIP-based models CANet [Wang et al., 2023b] CVPR 29.0 26.2 17.9 5.4 61.0 66.3 47.3 33.1 30.0 13.2 14.5 3.4
CAPE [Khan et al., 2023] ICCV 32.1 28.0 20.4 6.7 62.3 68.5 49.5 35.2 33.0 16.4 16.3 4.6
ADE [Hao et al., 2023] CVPR - - - - 63.0 64.3 51.1 35.1 35.0 17.7 18.0 5.2

CSP [Nayak et al., 2022] ICLR 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2
DFSP [Lu et al., 2023] CVPR 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.9 38.2 32.9 27.1 10.5
HPL [Wang et al., 2023a] IJCAI 47.5 50.6 37.3 20.2 63.0 68.8 48.2 35.0 30.8 28.4 22.4 7.2
GIPCOL [Xu et al., 2024a] WACV 48.5 49.6 36.6 19.9 65.0 68.5 48.8 36.2 31.9 28.4 22.5 7.1

CLIP-based models Troika [Huang et al., 2024] CVPR 49.0 53.0 39.3 22.1 66.8 73.8 54.6 41.7 41.0 35.7 29.4 12.4
CDS-CZSL [Li et al., 2024c] CVPR 50.3 52.9 39.2 22.4 63.9 74.8 52.7 39.5 38.3 34.2 28.1 11.1
PLID [Bao et al., 2025] ECCV 49.7 52.4 39.0 22.1 67.3 68.8 52.4 38.7 38.8 33.0 27.9 11.0

MSCI IJCAI 50.2 53.4 39.9 22.8 67.4 75.5 59.2 45.8 42.4 38.2 31.7 14.2

Table 2: Comparison with other models in the close-world setting. The best results are in bold, and the second-best results are underlined.

Category Model Venue MIT-States UT-Zappos C-GQA
S U H AUC S U H AUC S U H AUC

KG-SP [Karthik et al., 2022] CVPR 28.4 7.5 7.4 1.3 61.8 52.1 42.3 26.5 31.5 2.9 4.7 0.8
non CLIP-based models DRANet [Li et al., 2023] ICCV 29.8 7.8 7.9 1.5 65.1 54.3 44.0 28.8 31.3 3.9 6.0 1.1

ADE [Hao et al., 2023] CVPR - - - - 62.4 50.7 44.8 27.1 35.1 4.8 7.6 1.4

CSP [Nayak et al., 2022] ICLR 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.2
DFSP [Lu et al., 2023] CVPR 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3 38.3 7.2 10.4 2.4
HPL [Wang et al., 2023a] IJCAI 46.4 18.9 19.8 6.9 63.4 48.1 40.2 24.6 30.1 5.8 7.5 1.4
GIPCOL [Xu et al., 2024a] WACV 48.5 16.0 17.9 6.3 65.0 45.0 40.1 23.5 31.6 5.5 7.3 1.3

CLIP-based models Troika [Huang et al., 2024] CVPR 48.8 18.7 20.1 7.2 66.4 61.2 47.8 33.0 40.8 7.9 10.9 2.7
CDS-CZSL [Li et al., 2024c] CVPR 49.4 21.8 22.1 8.5 64.7 61.3 48.2 32.3 37.6 8.2 11.6 2.7
PLID [Bao et al., 2025] ECCV 49.1 18.7 20.4 7.3 67.6 55.5 46.6 30.8 39.1 7.5 10.6 2.5

MSCI IJCAI 49.2 20.6 21.2 7.9 67.4 63.0 53.2 37.3 42.0 10.6 13.7 3.8

Table 3: Comparison with other models in the open-world setting. The best results are in bold, and the second-best results are underlined.

For the relatively simple UT-zappos dataset, selecting fea-
tures from the first three and the last three layers for aggre-
gation has proven to optimize model performance. In con-
trast, for the more structurally complex MiT-States and C-
GQA datasets, processing features from the first four and the
last four layers is more effective to ensure optimal results.
The variation in the AUC metric with the number of selected
layers N for each dataset is shown in Figure 4. Notably, ex-
tensive evaluations suggest that setting M and N to identical
values yields better performance; thus, this configuration is
adopted by default.

In addition, we select one typical case from each of the
three datasets for qualitative analysis, as shown in Figure 5.
Through the two successful cases, it can be intuitively ob-
served that, compared to the single-stage interaction model,
MSCI’s multi-stage interaction can more effectively and com-
prehensively integrate cross-modal information, demonstrat-
ing significant advantages. However, in the failure case, we
observe that certain distractors were highly similar to the ac-
tual items, causing MSCI to misjudge both local and global
features, which further led to incorrect final prediction results.

5 Conclusion
In this study, we propose a novel model called MSCI for
compositional zero-shot learning. MSCI employs an adap-
tive mechanism to progressively integrate local and global
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Figure 5: Qualitative analysis of the proposed model.

information from lower and higher visual feature layers and
incorporate them into the prompt embeddings in a stage-by-
stage manner, which effectively overcomes CLIP’s inherent
limitations for capturing local visual details. Furthermore,
MSCI can autonomously optimize the allocation of attention
weights on local details and global visual information based
on different combinations, as well as the different elements
within the same combination. Experiments show that MSCI
achieves significant improvements in terms of various evalu-
ation metrics on three widely used datasets.
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