
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONSTRAINT-AWARE ZERO-SHOT VISION-LANGUAGE
NAVIGATION IN CONTINUOUS ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Constraint-Aware Navigator (CA-Nav), a zero-shot approach for
Vision-Language Navigation in Continuous Environments (VLN-CE). CA-Nav
reframes the zero-shot VLN-CE task as a sequential constraint-aware sub-
instruction completion process, continuously translating sub-instructions into nav-
igation plans via a cross-modal value map. Central to our approach are two mod-
ules namely Constraint-aware Sub-instruction Manager (CSM) and Constraint-
aware Value Mapper (CVM). CSM defines the completion criteria of decomposed
sub-instructions as constraints and tracks navigation progress by switching sub-
instructions in a constraint-aware manner. Based on the constraints identified by
CSM, CVM builds a value map on-the-fly and refines it using superpixel clustering
to enhance navigation stability. CA-Nav achieves the state-of-the-art performance
on two VLN-CE benchmarks, surpassing the compared best method by 12% on
R2R-CE and 13% on RxR-CE in terms of Success Rate on the validation unseen
split. Furthermore, CA-Nav demonstrates its effectiveness in real-world robot de-
ployments across diverse indoor scenes and instructions1.

1 INTRODUCTION

Vision-Language Navigation (VLN) is a fundamental task in Embodied AI. It requires the agent to
navigate in novel environments according to natural language instructions (Anderson et al., 2018b).
Early efforts focused on discrete environments, where the agent follows instructions to navigate
on predefined connectivity graphs. Recently, the more practical VLN in Continuous Environments
(VLN-CE) (Krantz et al., 2020) has garnered increasing attention, allowing the agent to navigate
freely in 3D environments. However, most existing VLN and VLN-CE methods (Chen et al., 2022b;
An et al., 2024) rely on annotated trajectories for policy learning, encountering issues of data scarcity
and generalization. In response, zero-shot VLN has emerged as a promising direction, leveraging
Vision-Language Models (VLMs) (Li et al., 2023) and Large Language Models (LLMs) (Achiam
et al., 2023) for decision-making, without training on annotated trajectories. Existing methods (Zhou
et al., 2024b; Chen et al., 2024) follow a text-based prompt paradigm, converting visual observations
and navigation history into text, which is then combined with the full instruction and input into an
LLM to infer the next action.

Despite these attempts, few works have explored zero-shot VLN-CE. One approach would be to di-
rectly adapt existing zero-shot VLN methods to continuous environments. However, such an adap-
tation faces two major challenges and shows substantial performance degradation. First, continuous
environments expand the state space, making it difficult for the agent to accurately track navigation
progress and determine which part of the instruction is being executed. Existing methods (Zhou
et al., 2024b; Chen et al., 2024) that input the full instruction into the LLM might overlook the
importance of monitoring the completion status of sub-instructions. Second, converting visual ob-
servations into text often leads to losing visual details and environmental structures (Wunderlich &
Gramann, 2021), impairing the agent’s spatial understanding and path planning.

In light of the above, we present Constraint-aware Navigator (CA-Nav), a new approach for the
challenging zero-shot VLN-CE task. CA-Nav reframes VLN-CE as a sequential constraint-aware
sub-instruction completion process. Within each episode, a Constraint-aware Sub-instruction Man-
ager (CSM) decomposes instructions and switches between sub-instructions by assessing whether

1Project webpage with demonstration videos and code https://anony-mouser.github.io/CA-Nav/

1

https://anony-mouser.github.io/CA-Nav/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

LLM

Instruction: Turn around and go to your

right. Turn right and go past the painting.

Then go left to go into the bar area. Pass the

bar and go towards the dining table. Stop in

the dining room near the table.

Sub-instruction4: Pass the bar and go

towards the dining table.

sub1 sub2 sub3 sub4 sub5

(a) Constraint-aware

Sub-instruction Manager (CSM)

Dining table

Object constraint: Dining table

Location constraint: bar

Direction constraint: forward

(b) Constraint-aware Value Mapper (CVM)

State Constraint Queue

I have completed the constraints of the first

three sub-instructions, now I can switch to

the next one to pass the bar and find the

dining table. Now I will build a value map

focus on dining table. I think exploring the

higher-value area ahead is a good choice.

Bar area

Agent

Destination

Value

Waypoint

Figure 1: Illustration of the proposed CA-Nav. (a) The Constraint-aware Sub-instruction Manager
decomposes the instruction into a sequence of sub-instructions and identifies object constraints,
location constraints and direction constraints for each of them. (b) During navigation, a Constraint-
aware Value Mapper builds a value map based on the landmark prompt provided by CSM and
uses the superpixel clustering method to segment it into regions. It switches sub-instructions in
a constraint-aware manner and chooses the most promising region’s geometric center as waypoints.

the relevant constraints are met. Meanwhile, a Constraint-aware Value Mapper (CVM) builds and
continuously updates a value map based on current constraints and observations, capturing both vi-
sual details and spatial layouts. CA-Nav generates navigation plans using CVM, which are then
executed by classical control algorithms, guiding the agent to accomplish each sub-instruction until
the episode terminates.

As shown in Figure 1 (a), at the start of an episode, CSM prompts the LLM to decompose the in-
struction into sub-instructions and generate constraints for completing each sub-instruction. During
navigation, CSM continuously monitors the fulfillment of these constraints and switches to the next
sub-instruction once the current constraints are met. We leverage VLMs (Liu et al., 2023; Li et al.,
2023) to detect various constraints, such as landmark detection, location recognition, and direction
estimation. These constraints are composed to cover diverse sub-instruction expressions.

Given the sub-instructions identified by CSM, the next challenge is grounding them in the map
alongside visual details for improved spatial understanding and navigation planning. We address
this with the CVM, which evaluates the potential of each observation for satisfying the current con-
straint. As illustrated in Figure 1 (b), CVM builds a map to capture both the semantics and spatial
layout of the environment. Using a VLM, it calculates the similarity between current observations
and landmarks associated with task constraints, generating a constraint-aware value map projected
onto the ground plane. To enhance the accuracy and stability of navigation, superpixel cluster-
ing (Achanta et al., 2012) is applied to refine the map, reducing noise and maintaining coherence
within regions. This enables the agent to select waypoints from high-value regions, ensuring that
navigation aligns with both task constraints and environmental understanding. Classical control
algorithms (Sethian, 1999) is finally used for the waypoint navigation.

Experiments in both simulation and real-world demonstrate the effectiveness of CA-Nav. CA-Nav
achieves the state-of-the-art on two VLN-CE benchmarks in the zero-shot setting, surpassing the
compared best methods by 12% on R2R-CE and 13% on RxR-CE in terms of success rate on the
validation unseen split. Notably, CA-Nav achieves approximately 10 times faster response times and
a 95% cost reduction compared to counterparts. Furthermore, real-world robot deployments verify
CA-Nav’s potential for practical applications, showcasing its effectiveness across open-vocabulary
instructions and various indoor environments.

2 RELATED WORK

Vision-Language Navigation. Vision-Language Navigation (VLN) has garnered significant atten-
tion in recent years. Various methods have been explored: some employ novel architectures and
cross-modal alignment techniques (An et al., 2021; Chen et al., 2021b; Wang et al., 2023b), some

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

utilize data augmentation (He et al., 2021; 2024; Chen et al., 2022c; Li et al., 2022; Lin et al.,
2023; Wang et al., 2023d; Li & Bansal, 2024), and some explore pre-training methods and auxil-
iary tasks (Hao et al., 2020; Qiao et al., 2022; 2023; Hong et al., 2024). However, these methods
are limited to discrete environments and show a significant performance drop when applied to the
real-world (Anderson et al., 2021). Consequently, Krantz et al. (2020) transfers the VLN task into
continuous environments (VLN-CE) with low-level actions. This more practical task setting pro-
motes the development of sim-to-real for VLN (Zhang et al., 2024; Wang et al., 2024b).

Early approaches to VLN-CE concentrate on supervised learning. Some of them directly learn low-
level control (Krantz et al., 2021; Raychaudhuri et al., 2021; Irshad et al., 2022; Chen et al., 2022a;
Wang et al., 2023c; He et al., 2023), while others use a waypoint predictor (Hong et al., 2022)
trained on the navigation graph from Matterport 3D dataset (Chang et al., 2017) to discretize the
environment into candidate waypoints. This allows models trained for VLN can be transferred to
VLN-CE (Hong et al., 2021; An et al., 2023; 2024). However, these methods rely heavily on anno-
tated trajectories, which demand substantial human effort to create. Therefore, we aim to develop a
zero-shot approach for the VLN-CE task relying on foundation models.

Foundation Models for Robotic Navigation. Foundation models are those trained on broad data
that can be adapted to a wide range of downstream tasks including LLMs (Brown et al., 2020;
Achiam et al., 2023; Touvron et al., 2023) and VLMs (Radford et al., 2021; Li et al., 2023; Liu et al.,
2023). Their strengths in reasoning, task planning, visual grounding, and multi-modal understanding
make them promising for robotic navigation.

Recently, zero-shot VLN methods (Long et al., 2023; Zhou et al., 2024b;a; Chen et al., 2024; Zhan
et al., 2024; Lin et al., 2024) have emerged, they use VLMs to describe observations and GPT-4 to
make step-by-step decisions in discrete environments. Specifically, DiscussNav (Long et al., 2023)
employs multiple GPT-4 experts to discuss the current observations, status, and instructions before
moving; NavGPT (Zhou et al., 2024b) utilizes GPT-4 to process descriptions of visual observations
and navigation history before navigating; MapGPT (Chen et al., 2024) converts a topological map
into prompts and then uses GPT-4 for navigation. However, few studies focus on zero-shot VLN-CE.
A2Nav (Chen et al., 2023) attempts to decompose instructions into action-specific object navigation
sub-tasks. However, it’s not truly training-free as it relies on room region bounding box annotations
from HM3D (Ramakrishnan et al., 2021) to collect data for training five action-specific navigators.
In contrast, we introduce a new training-free method, CA-Nav, which enables entirely zero-shot
sub-instruction switching in a constraint-aware manner.

3 METHOD

Problem Definition. We address the zero-shot VLN-CE task (Krantz et al., 2020), where the
agent navigates to a destination following natural language instructions. Unlike methods like
A2Nav (Chen et al., 2023), which are trained on datasets for specific navigation skills, our approach
only utilizes foundation models for decision-making. The agent is equipped with an odometry and
an egocentric RGB-D camera with a 79◦ Horizontal Field of View (HFOV). It can perform low-level
actions such as MOVE FORWARD (0.25m), TURN LEFT/RIGHT (30◦), and STOP. An episode is
considered successful if the agent stops within a certain distance from the target.

3.1 METHOD OVERVIEW

As illustrated in Figure 2, for each episode, CSM and CVM work coherently to execute instruction-
following navigation. The CSM identifies key constraints that define the completion criteria for
each sub-instruction, ensuring constraint-aware sub-instruction switching and navigation progress
tracking. Upon completing a sub-instruction, CSM uses these constraints to automatically transit to
the next one (§ 3.2). Then the CVM uses the identified constraints to build a constraint-aware value
map, which guides navigation for the current sub-instruction (§ 3.3).

3.2 CONSTRAINT-AWARE SUB-INSTRUCTION MANAGER

The Constraint-aware Sub-instruction Manager (CSM) aims to decompose instructions and track
the navigation progress through explicit sub-instruction switching. We achieve this by appropriately
prompting an LLM and designing a constraint-aware switching mechanism.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

BLIP-2

ITM

Agent Pose

Action

S
em

a
n

ti
c

M
a

p
p

in
g

S
u

p
er

p
ix

el

C
lu

st
er

in
g

Instruction

LLM

Navigation State

Constraint-aware

Sub-instruction Manager
Update Constraint

Constraint

Prompt

Constraints Detection

FMM

+

Constraint-aware Value Mapper

C
V

M
-

G
en

er
a

ti
o

n

Update State

RGB-D

Object Constraint

Location Constraint

Direction Constraint

Current Constraints

BLIP-2

VQA

Grounding

DINO

Odometry

FMM

…

Sub-instruction 1

Sub-instruction 2

Sub-instruction N

State Constraint Queue

…
Superpixel Value MapSemantic Map Value Map

Figure 2: An overall pipeline of CA-Nav. The details of the Constraint-aware Value Map Generation
are shown in Figure 3.

Instruction Decomposition. As shown in Figure 1, at the beginning of an episode, CSM decom-
poses the instruction into a sequence of sub-instructions. Each of them outlines the goal for the
current sub-instruction and specifies the constraints for switching to the next one. We categorize
these constraints as object constraints (e.g., “chair”), location constraints (e.g., “bedroom”), and
direction constraints (e.g., “turn left”). Particularly, object and location constraints describe the
landmarks that can be observed along the desired navigation path. Thus, they will prompt subse-
quent building of the value map (§ 3.3). In practice, we implement the above decomposition and
constraints extraction process through an LLM, and the prompts are detailed in Appendix (§ A.1).

Sub-instruction Switching. In the zero-shot VLN-CE setting, the agent should be aware of its
navigation progress and automatically switch sub-instructions. We achieve this through a constraint-
aware sub-instruction switching mechanism. As shown in Figure 2, CSM maintains a queue in the
order of decomposed sub-instructions, with each element containing a set of constraints. These
constraints can be a combination of object, location, and direction constraints, depending on the
current sub-instruction. CSM always selects the first unsatisfied constraint set as the current and only
switches to the next set once all constraints in the current set are satisfied. The agent sequentially
checks each constraint within the current set at each step (pseudocode is in § A.2). We leverage
VLM and odometry information to design satisfaction checks for the constraints:

• Object Constraints: Since the navigation instructions include open vocabulary, we use Grounding
DINO (Liu et al., 2023) to detect objects. A constraint is considered satisfied if the agent detects
the object within a certain range r which could empirically be set as 5 meters.

• Location Constraints: Indoor location detection can be approached as scene recognition, using
a Visual Question Answering (VQA) model such as BLIP2 (Li et al., 2023) with the template:
“Can you see the < location >?”. If the answer is yes, the constraint is considered satisfied.

• Direction Constraints: The change in direction should be assessed based on the agent’s trajectory
rather than just its orientation. To do this, we query the odometry for the poses within a certain
time window τ , which could be empirically selected as 5. The poses are denoted as pt and pt−τ .
The change of direction and angle is then calculated using their cross-product and dot product.

Sometimes, the agent may get stuck on a single constraint or switch between constraints too fre-
quently. To address this, we empirically establish a maximum step threshold of 25 to prompt the
agent to switch constraints when progress stalls, along with a minimum step threshold of 10 to
ensure adequate focus on each constraint before switching.

3.3 CONSTRAINT-AWARE VALUE MAPPER

After CSM provides the current sub-instruction along with its associated constraints, these con-
straints serve as guiding factors for the value map construction. Specifically, we propose a
Constraint-aware Value Mapper (CVM) to ground the constraints within the visual environment, en-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Previous value/confidence mask

Current value/confidence mask


BLIP-2

ITM

trajectory mask

Constraint Prompt:

Dining Table

Cosine similarity value

Observation (t=98)

Semantic map (t=98)

Navigable

 area

HFOV

…
…

Value map (t=97)

Value map (t=98)



…

V
a

lu
e

m
a

p
 u

p
d

a
te

Value=0.19

Value=0.23

Figure 3: Details of the Constraint-aware Value Map Generation.

suring that the value map reflects the potential of each observation to satisfy the current constraints.
The CVM is then refined using a superpixel clustering method for waypoint selection.

Constraint-aware Value Map Generation. The constraint-aware value map generation process
first creates a semantic map (Chaplot et al., 2020) that captures the environment’s layout and then
projects navigation values onto the navigable areas. As shown in Figure 2, we first build a semantic
map and extract navigable areas using egocentric RGB-D images and the camera’s pose. Then we
use BLIP-2 (Li et al., 2023), a pre-trained VLM to compute the cosine similarity value between the
current RGB observation and the constraint prompt identified by CSM (§ 3.2). The value measures
how relevant the current HFOV is for satisfying the constraint prompt. These values are then updated
onto the navigable area, forming the value map.

As shown in Figure 3, when updating the value map, we focus on the current HFOV and assign the
value from BLIP-2 to the value mask. The confidence mask then applies a cosine-weighted average
to adjust the update. Specifically, in the confidence mask the pixels along the optical axis have a full
confidence of 1, while those at the left and right edges have a confidence of 0. We set the confidence
of a pixel at position (i, j) as: ci,j = cos2(θ/(θhfov/2) · π/2), where θ is the angle between the pixel
and the optical axis, θhfov is a constant angle HFOV. The process is formulated as follows:

vcurr
i,j = (ccurr

i,j vcurr
i,j + cprev

i,j vprev
i,j)/(ccurr

i,j + cprev
i,j); ccurr

i,j =
[
(ccurr

i,j)2 + (cprev
i,j)2

]
/(ccurr

i,j + cprev
i,j) (1)

where vcurr
i,j and ccurr

i,j represent current step’s value and confidence at position (i, j), respectively and
vprev

i,j and cprev
i,j denote previous step’s value and confidence.

It is worth noting that when CSM switches constraints, the constraint prompt changes. If the previ-
ous value map is cleared entirely, the agent loses navigational cues and must rebuild from scratch,
often causing it to linger and collide. To address this, we introduce a historical decay factor γ
that retains past value map Vt with exponentially reduced weights, helping the agent focus on new
constraints while still leveraging past exploration:

Vt+1 =

{
γ · f(Vt), if switch constraint
f(Vt) , otherwise

(2)

where f denotes the update function for the value map (pseudocode is in Appendix § A.2).

To encourage exploration, we introduce a trajectory mask representing the agent’s willingness to
explore. This mask starts as a matrix of ones, but its values decay exponentially by a factor of λ in
regions the agent has already traversed. The value map is then adjusted by element-wise multiplica-
tion with this trajectory mask.

Superpixel-based Waypoint Selection. Next, we need to choose a waypoint according to the value
map. A common approach is using frontier-based exploration (FBE) (Yamauchi, 1997) which has
been widely used in object navigation task (Yokoyama et al., 2024; Zhou et al., 2023; Shah et al.,
2023). Among them, VLFM (Yokoyama et al., 2024) is the most comparable to ours, as it also con-
structs a value map and selects the frontier with the highest value as the navigation target. However,
it only focuses on the boundaries of the explored area, restricting the full utilization of the value

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

map. We propose that using the full value map can benefit navigation, however, our CSM introduces
sub-instruction switching, which may lead to abrupt value changes at the frontiers. To that end, we
propose a superpixel-based waypoint selection approach that considers the global value map.

Specifically, we employ SLIC (Achanta et al., 2012) to refine the constraint-aware value map. Given
current value map V, SLIC produces a set of superpixels {S1,S2, · · · ,Sn}, where each superpixel
Si represents a visually consistent region. Let v(p) denote the value at pixel p in V, then compute
the average value of each superpixel Si. The optimal region S∗ is then selected based on the highest
average value, guiding the agent towards areas of greater semantic relevance:

V(Si) =
1

|Si|
∑
p∈Si

v(p), S∗ = argmax
Si

V(Si) (3)

Finally, the waypoint is the geometric center of the optimal region S∗. Note that when the
agent reaches the final sub-instruction, it extracts the target’s segmentation mask using RepViT-
SAM (Wang et al., 2023a; 2024a), which achieves real-time segmentation of anything. The mask
is then projected onto the semantic map and its geometric center will be the destination waypoint
(details in § A.2). After determining the waypoint, the Fast Marching Method (FMM) (Sethian,
1999) is used to plan low-level actions to the waypoint.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENT SETUP

Dataset and Evaluation. We conduct experiments using Habitat simulator (Savva et al., 2019) on
the val-unseen split of R2R-CE (Krantz et al., 2020) and RxR-CE (Ku et al., 2020), the only two
VLN-CE datasets. They provide 1839 and 3669 step-by-step trajectory-instruction pairs across 11
val unseen environments, respectively, with RxR containing more detailed instructions.

We use standard metrics following (Anderson et al., 2018b; Krantz et al., 2020): Navigation Error
(NE), i.e., the mean distance from the final location to the destination, Success Rate (SR), i.e., the
proportion of episodes with NE under 3 meters, Oracle Success Rate (OSR), i.e., SR with an oracle
stop policy, Success weighted by Trajectory Length (SPL), i.e., SR normalized by trajectory length,
Normalized Dynamic Time Warping (NDTW), i.e., the fidelity between the agent’s and the annotated
trajectories, and Success-weighted Dynamic Time Warping (SDTW), i.e., NDTW weighted by SR.

4.2 MAIN RESULTS

Methods for Comparison. We compare CA-Nav with VLN-CE methods that also use low-level
actions. These methods can be categorized into two types: the first type is training-based meth-
ods, including Sara (Irshad et al., 2022), Seq2Seq (Krantz et al., 2020), VLN⟳ BERT (Hong et al.,
2022), AG-CMTP (Chen et al., 2021a), WS-MGMap (Chen et al., 2022a) and LAW (Raychaudhuri
et al., 2021). The second type is zero-shot methods, including NavGPT-CE (Zhou et al., 2024b),
A2Nav (Chen et al., 2023) and our CA-Nav. NavGPT was originally for zero-shot VLN, we trans-
fer it to zero-shot VLN-CE by using a waypoint model (Hong et al., 2022) to predict navigable
nodes in panoramas, discretizing the continuous environment for high-level navigation planning.
We also list other methods that rely on high-level actions, including Sim2Sim (Krantz & Lee, 2022),
GridMM (Wang et al., 2023c), ETPNav (An et al., 2024), and BEVBert (An et al., 2023).

R2R-CE Dataset. As shown in Table 1, our method surpasses various models trained with panorama
in NE, SR and OSR. This indicates that building an egocentric zero-shot VLN-CE system with
LLMs and VLMs is feasible and potential. We believe our method’s success with egocentric ob-
servations lies in the value map’s dual role: storing environmental layout memory and leveraging
VLM’s prior knowledge. To study the performance of zero-shot methods in continuous environ-
ments, we transfer NavGPT2 to continuous environments (i.e., NavGPT-CE), with results showing a
success rate drop of over 50%. One potential issue is that the caption model sometimes misses cru-
cial details like landmarks and spatial layout. Additionally, the LLM may generate hallucinations
when summarizing navigation history or reasoning about the agent’s status, resulting in incorrect
navigation planning. (visualization analysis in § 4.4). The method closest to our setting is A2Nav,
which also uses LLM efficiently and utilizes egocentric observation. Our method surpasses it be-
cause A2Nav focuses more on actions. However, descriptions of actions in instructions are more

2NavGPT achieved a navigation success rate (SR) of 34.0 and a success weighted by path length (SPL) of
42.0 on the R2R dataset.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison with SOTA methods on R2R val-unseen split. In the Efficient LLM Usage
column: - means the LLM is not used, ✓ means the LLM is only used before navigation starts, and
✗ means the LLM is accessed for each navigation decision. †: Our reproduced NavGPT-CE for
VLN-CE. ∗: Methods use the same waypoint predictor proposed in (Hong et al., 2022). ✓∖∖∖: A2Nav
pretrained the navigator on an action-specific dataset built from HM3D (Ramakrishnan et al., 2021)

Method Zero-shot Efficient LLM Usage Egocentric Obs NE↓ SR↑ OSR↑ SPL↑
Sasra ✗ - ✗ 8.32 24.0 - 22.0
Seq2Seq ✗ - ✗ 7.77 25.0 37.0 22.0
AG-CMTP ✗ - ✗ 7.90 23.1 39.2 19.1
VLN⟳ BERT ✗ - ✗ 7.66 23.2 - 21.7
VLN⟳ BERT∗ ✗ - ✗ 5.74 44.0 53.0 39.0
Sim2Sim∗ ✗ - ✗ 6.07 43.0 52.0 36.0
GridMM∗ ✗ - ✗ 5.11 49.0 61.0 41.0
ETPNav∗ ✗ - ✗ 4.71 57.0 65.0 49.0
BEVBert∗ ✗ - ✗ 4.57 59.0 67.0 50.0
WS-MGMap ✗ - ✓ 6.28 38.9 47.6 34.3

NavGPT-CE† ✓ ✗ ✗ 8.37 16.3 26.9 10.2
A2Nav ✓∖∖∖ ✓ ✓ - 22.6 - 11.1
CA-Nav ✓ ✓ ✓ 7.58 25.3 48.0 10.8

Table 2: Comparison with SOTA methods on RxR-Habitat val-unseen split (only English).

Method Zero-shot Efficient LLM Usage Egocentric Obs NE↓ SR↑ SPL↑ NDTW↑ SDTW↑
LAW ✗ - ✗ 11.04 10.0 9.0 37.0 8.0
VLN⟳ BERT∗ ✗ - ✗ 8.98 27.1 23.7 46.7 -
GridMM∗ ✗ - ✗ 8.42 36.3 30.1 48.2 33.7
ETPNav∗ ✗ - ✗ 5.64 54.8 44.9 61.9 45.3
WS-MGMap ✗ - ✓ 9.83 15.0 12.1 - -
A2Nav ✓∖∖∖ ✓ ✓ - 16.8 6.3 - -
CA-Nav ✓ ✓ ✓ 10.37 19.0 6.0 13.5 5.0

prone to ambiguity. For example, a path to the living room might be described as either “Turn left to
the living room.” or “Turn slightly right, then turn left immediately and go to the living room.”. We
conclude that rigid execution of actions such as turning tends to cause serious cumulative errors, and
the agent should focus on more clearly described instructions such as landmarks. Overall, CA-Nav
achieves state-of-the-art performance in SR, NE, and OSR, and performs comparably on SPL.

RxR-CE Dataset. Table 2 presents the results on the RxR dataset. Instructions in RxR are much
longer and contain more fine-grained descriptions of landmarks and actions, leading to more fre-
quent instruction switches and more challenging constraints identification. Under this circumstance,
CA-Nav still exceeds several models trained with panoramic observations. Moreover, our method
outperforms A2Nav in terms of SR and NE, and is on par with it in SPL. This indicates that CA-Nav
also adapts well to complex, lengthy instructions.

4.3 ABLATION STUDY

We conduct ablation experiments on the R2R dataset to evaluate each component of CA-Nav, focus-
ing on four aspects: (1) the impact of constraints, (2) value map update methods, (3) the effectiveness
of superpixel-based waypoint selection, and (4) generalization to different LLMs.

The effect of different constraints. We begin our investigation by examining how the performance
of CA-Nav is influenced by different types of constraints. The first three rows of Table 3 show
the results after ablating each type of constraint individually. We observe that each constraint is
crucial for CA-Nav, especially the object constraint. This further supports our analysis in § 4.2
that the agent relies more on landmarks than directions during navigation, which also explains why
CA-Nav outperforms A2Nav. Then, we remove all constraints except those related to the final sub-
instruction, making the task more akin to object navigation. The results are presented in the fourth
row of Table 3. The success rate drops by about 21% compared to our best performance, as shown
in the last row. This suggests that by designing appropriate constraints and using a Constraint-aware
Sub-instruction Manager, our method can autonomously switch between sub-instructions in long-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: The effect of different constraints.
Method NE↓ SR↑ OSR↑ SPL↑
w/o direction constraint 7.74 24.0 46.9 10.9
w/o object constraint 8.10 20.9 45.4 7.2
w/o location constraint 7.93 23.1 46.6 8.6
w/o all constraints 7.95 20.0 36.4 9.8
w/ all constraints 7.58 25.3 48.0 10.8

Table 4: Influence of value map update methods.
Method NE↓ SR↑ OSR↑ SPL↑
None 7.68 22.3 38.9 10.3
w/ trajectory mask 7.65 24.6 41.3 10.9
w/ historical decay 7.57 24.6 45.6 10.8
trajectory + historical 7.58 25.3 48.0 10.8

Figure 4: CA-Nav vs. NavGPT-CE.

Table 5: Different waypoint selection methods.
Method NE↓ SR↑ OSR↑ SPL↑
FBE-based 8.08 21.9 50.2 10.4
Pixel-based 7.87 22.9 42.9 10.4
Superpixel-based 7.58 25.3 48.0 10.8

Table 6: Generalization to different LLMs.
Method NE↓ SR↑ OSR↑ SPL↑
GPT-3.5 7.66 21.1 45.0 9.4
Claude-3.5 Sonnet 7.41 25.2 47.1 11.8
GPT-4 7.58 25.3 48.0 10.8

horizon navigation tasks. This not only compensates for VLFM’s (Yokoyama et al., 2024) inability
to handle sequential tasks but also avoids frequent calls to LLMs like NavGPT.

How can the value map be better updated? Recall that in the value map generation section § 3.3,
we designed a historical decay mechanism to leverage past explorations and a trajectory mask to
encourage exploration. We investigate their influence in Table 4. In Row1, we ablate both historical
decay and trajectory mask which means the value map will be completely reset upon constraint
switching. It’s not unexpected that this brings a severe performance drop. In Row 2, we ablate the
trajectory mask, the performance drops and we observe that the agent tends to get stuck in narrow
spaces such as corridors. This suggests that the trajectory mask contributes positively to the agent’s
exploration. In Row 3, where the historical decay is ablated and shows a worse performance. This
highlights the inefficiency of discarding all previous knowledge after each constraint switches, as
it forces the agent to rediscover previously explored areas. However, Row 4, which incorporates
both a trajectory mask and long-term value maintenance using historical decay, effectively balances
exploration with exploitation and achieves the best performance.

Comparison of different waypoint selection methods. To verify the effectiveness of the
superpixel-based waypoint selection method, we compare it with the FBE-based method mentioned
in § 3.3. We also compare it to the Pixel-based method, which directly selects the pixel with the
highest value as the navigation target. Results in Table 5 show that the superpixel-based method
outperforms the FBE-based method by approximately 15.5% in terms of NE, SR, and SPL. This is
because value map updates tend to be uneven, making the FBE-based method, which focuses on lo-
cal frontiers more susceptible to disruptions from sudden value changes (§ 4.4). While a confidence
mask is applied to perform cosine-weighted averaging during value map generation (§ 3.3), the
trajectory mask leads to the map’s lack of smoothness, and the historical decay further disrupts con-
sistency when sub-instructions switch. This indicates the importance of incorporating a more global
perspective into the value map utilizing. By clustering similar regions, the superpixel-based method
enhances the understanding of the explored area, resulting in more stable navigation planning. This
also explains why the superpixel-based method outperforms the Pixel-based approach.

Generalization to other LLMs. We further replace GPT-4 in our method with GPT-3.5 and Claude
3.5 Sonnet to explore the robustness and generalizability across different LLMs. From Table 6, we
observe that Claude-3.5 Sonnet achieves a comparable SR to GPT-4 and even surpasses it in NE
and SPL. This demonstrates that our method can adapt effectively to other LLMs. However, the
performance of GPT-3.5 is not satisfactory. The reason could be that GPT-3.5 extracts less precise
constraints than GPT-4 and Claude-3.5.

4.4 QUANTITATIVE AND QUALITATIVE ANALYSIS

Economic and Low-latency. We evaluate CA-Nav’s response speed and cost efficiency. By using
CSM for minimizing GPT-4 calls, CA-Nav outperforms NavGPT-CE significantly. As shown in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

O
b

se
rv

at
io

n
S

u
p

er
p

ix
el

C
V

M

Object constraint: stairs

Direction constraint: right

Location constraint: room

Object constraint: couches
Object constraint: glass table

Object constraint: white chairs

Instruction: Go straight. Pass the stairs on the right and continue straight. When you get to the stairs going up pass those as well.

Go into the room with the couches and then turn right. wait near the glass table with white chairs.

Destination: glass table with

white chairs in the room
Start: look around

Figure 5: Navigation visualization based on superpixel value map waypoint selection method.

Figure 4, NavGPT-CE takes about 1.29 seconds per action and costs about $0.85 per episode, while
CA-Nav responds in 0.12 seconds and costs only $0.04 per episode, making it roughly 10 times
faster and 5% of the cost.

Navigation Visualization. We visualize the navigation process of CA-Nav, NavGPT-CE and FBE-
Nav in Figure 5, Figure 9, and Figure 10, respectively. Note that the FBE-Nav uses frontier-based
exploration for waypoint selection, while the rest of the process is the same as the CA-Nav. Among
these three methods, CA-Nav shows the most stable and coherent navigation, thanks to CSM’s ef-
fective instruction decomposition and constraint identification, along with CVM’s comprehensive
use of the value map. In contrast, FBE-Nav fails at step 56 due to abrupt value changes at the fron-
tier. NavGPT-CE struggles with inaccurate waypoint predictions and imprecise scene descriptions,
leading to failures. More analysis are in Appendix § A.3

4.5 REAL ROBOT EXPERIMENTS

(a) Entrance Hall

(b) Office (c) Meeting Room

(d) Reception Room (d) Lounge (e) QiZhi Robot

Figure 6: Real robot and real-world scenes.

We conduct real robot experiments
based on the QiZhi mobile robot3, as
shown in Figure 6 (e). We equip the
robot with a laptop (including an In-
tel i9-14900HX CPU and a GeForce
RTX 4090 GPU) and a Kinect V2.0
RGB-D camera whose HFoV is 84◦

and VFoV is 42◦. However, due
to the camera’s limited depth sens-
ing range and the inaccuracies or
depth loss at the edges, we utilize
Depth Anything V2 (Yang et al.,
2024) to generate depth images. An
RPLIDAR-A2M8 LiDAR is also used to obtain a relatively accurate pose through Hector SLAM. It
is important to note that Hector SLAM is employed solely for estimating the camera’s pose, not for
constructing a pre-built map. The robot has a radius of 22.5cm and a height of 137cm.

Corresponding to the experiments in simulation (§ 3), we still set the low-level action as MOVE
FORWARD (0.25m), TURN LEFT/RIGHT (30◦), and STOP. The only modification is that suc-
cessful navigation is defined as the robot stopping within 1 meter of the destination. For waypoint
navigation, we continue to rely on the FMM approach, rather than adopting ROS navigation pack-
ages or other trained PointNav policies (Anderson et al., 2018a). The linear and angular velocities
are set to 0.1m/s and 0.1rad/s respectively.

3QiZhi robot

9

https://github.com/6-robot/wpb_home

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

O
b

se
rv

at
io

n
S

u
p

er
p

ix
el

C
V

M

Instruction: Go towards the plant then turn right, walk along the wall and stop near the world cup trophy.

Object constraint: plant Direction constraint: right Location constraint: wall Destination: world cup trophyStart: look around

T
h

ir
d

-P
er

so
n

 V
ie

w

t=12 t=32 t=67 t=91 t=103
Time

0: out of map 1: obstacle 2: free space 3: agent trajectory 4: waypoint 5: plant 6: bottle 7: fridge 8: cup

9: vase

18: oven

10: table 11: book

19: toilet

15: wall13: tv 14: couch12: clock

20: bed

16: chair

21: world cup trophy

17: sink

Figure 7: Visualization of the real-world navigation

To demonstrate the effectiveness of CA-Nav we conduct experiments in diverse indoor scenes in-
cluding lounge, meeting room, reception room, entrance hall, and office, as shown in Figure 6. For
instructions, we design 8 instructions with increasing complexity. Easy instructions contain only
one sub-instruction and the destination is obvious, such as, “Go to the door.”. Complex instructions
are longer and with more than three constraints and the agent can not directly see the destination
from its initial position, thus requiring exploration following the instruction. To check our method’s
ability to novel landmarks we design open vocabulary destinations such as “robot” and “world cup
trophy” (details in Table 7).

For each instruction, we run 10 episodes, with the robot’s initial pose slightly different each time
(details in Table 7). The results indicate that even without a pre-built map, our real-time constructed
constraint-aware value map is capable of handling long-horizon navigation tasks. Furthermore,
thanks to the VLM, CA-Nav demonstrates a certain level of generalization to open vocabularies.
As shown in Figure 7, the agent follows a complex instruction consisting of four sub-instructions
and ultimately stops successfully near a World Cup Trophy. This indicates that the CA-Nav can
generalize to new instructions and effectively track the navigation process.

5 CONCLUSION

In this work, we focus on developing a novel Constraint-Aware Navigator for the challenging zero-
shot Vision-Language Navigation in Continuous Environments. To reach this goal we propose a
Constraint-aware Sub-instruction Manager and a Constraint-aware Value Mapper. The two modules
work coherently to navigate novel environments by identifying and adapting to the constraints of
each sub-instruction. Experiments are conducted in both simulated and real-world environments.
Our method not only outperforms other zero-shot methods in simulations but also demonstrates
effectiveness in the real-world scenes. The current CA-Nav relies on closed-source LLMs, and the
constraint-aware value map is affected by sensor noise. In the future, we aim to develop an approach
that utilizes open-source LLMs and VLMs, relying solely on egocentric RGB cameras.

ETHICS STATEMENT

This research develops an approach for zero-shot vision-language navigation, leveraging large lan-
guage models and vision-language models to enhance autonomous navigation in indoor environ-
ments. While our approach has potential, it is crucial to acknowledge privacy concerns related to
the use of open-source vision language models for object detection, as they may inadvertently cap-
ture sensitive information. Experiments were conducted in real-world settings with unavoidable

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

human presence. All participants, including scene owners and individuals in the laboratory, were
informed about the study. They also provided their consent to participate. Additionally, our current
implementation requires manual intervention to stop the robot, as it cannot autonomously detect
and respond to dangers. This limitation poses safety risks in home environments. Addressing these
ethical considerations is essential for the responsible use of this approach in diverse applications.

REPRODUCIBILITY STATEMENT

We thoroughly explain our approach’s architectures and implementation details in § 3. We describe
our experimental setup in § 4.1 and LLM prompts in Appendix A.1. The pseudocodes are also
provided in Appendix A.2 and the code can be found on our project page.

REFERENCES

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
Süsstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions
on pattern analysis and machine intelligence, 2012.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Dong An, Yuankai Qi, Yan Huang, Qi Wu, Liang Wang, and Tieniu Tan. Neighbor-view enhanced
model for vision and language navigation. In Proceedings of the 29th ACM International Confer-
ence on Multimedia, 2021.

Dong An, Yuankai Qi, Yangguang Li, Yan Huang, Liang Wang, Tieniu Tan, and Jing Shao. Bevbert:
Multimodal map pre-training for language-guided navigation. Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023.

Dong An, Hanqing Wang, Wenguan Wang, Zun Wang, Yan Huang, Keji He, and Liang Wang. Etp-
nav: Evolving topological planning for vision-language navigation in continuous environments.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta,
Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, et al. On
evaluation of embodied navigation agents. arXiv preprint arXiv:1807.06757, 2018a.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2018b.

Peter Anderson, Ayush Shrivastava, Joanne Truong, Arjun Majumdar, Devi Parikh, Dhruv Batra,
and Stefan Lee. Sim-to-real transfer for vision-and-language navigation. In Conference on Robot
Learning, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
environments. arXiv preprint arXiv:1709.06158, 2017.

Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, and Ruslan Salakhutdinov. Object goal
navigation using goal-oriented semantic exploration. In In Neural Information Processing Sys-
tems (NeurIPS), 2020.

Jiaqi Chen, Bingqian Lin, Ran Xu, Zhenhua Chai, Xiaodan Liang, and Kwan-Yee K Wong.
Mapgpt: Map-guided prompting for unified vision-and-language navigation. arXiv preprint
arXiv:2401.07314, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kevin Chen, Junshen K Chen, Jo Chuang, Marynel Vázquez, and Silvio Savarese. Topological
planning with transformers for vision-and-language navigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021a.

Peihao Chen, Dongyu Ji, Kunyang Lin, Runhao Zeng, Thomas Li, Mingkui Tan, and Chuang Gan.
Weakly-supervised multi-granularity map learning for vision-and-language navigation. Advances
in Neural Information Processing Systems, 2022a.

Peihao Chen, Xinyu Sun, Hongyan Zhi, Runhao Zeng, Thomas H Li, Gaowen Liu, Mingkui Tan, and
Chuang Gan. A2nav: Action-aware zero-shot robot navigation by exploiting vision-and-language
ability of foundation models. arXiv preprint arXiv:2308.07997, 2023.

Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. History aware multimodal
transformer for vision-and-language navigation. Advances in Neural Information Processing Sys-
tems, 2021b.

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Think
global, act local: Dual-scale graph transformer for vision-and-language navigation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022b.

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Learning
from unlabeled 3d environments for vision-and-language navigation. In European Conference on
Computer Vision, 2022c.

Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and Jianfeng Gao. Towards learning a
generic agent for vision-and-language navigation via pre-training. Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2020.

Keji He, Yan Huang, Qi Wu, Jianhua Yang, Dong An, Shuanglin Sima, and Liang Wang. Landmark-
rxr: Solving vision-and-language navigation with fine-grained alignment supervision. Advances
in Neural Information Processing Systems, 2021.

Keji He, Chenyang Si, Zhihe Lu, Yan Huang, Liang Wang, and Xinchao Wang. Frequency-enhanced
data augmentation for vision-and-language navigation. Advances in Neural Information Process-
ing Systems, 2024.

Zongtao He, Liuyi Wang, Shu Li, Qingqing Yan, Chengju Liu, and Qijun Chen. Mlanet: Multi-
level attention network with sub-instruction for continuous vision-and-language navigation. arXiv
preprint arXiv:2303.01396, 2023.

Haodong Hong, Sen Wang, Zi Huang, Qi Wu, and Jiajun Liu. Why only text: Empowering vision-
and-language navigation with multi-modal prompts. arXiv preprint arXiv:2406.02208, 2024.

Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. Vln bert: A
recurrent vision-and-language bert for navigation. In Proceedings of the IEEE/CVF conference
on Computer Vision and Pattern Recognition, 2021.

Yicong Hong, Zun Wang, Qi Wu, and Stephen Gould. Bridging the gap between learning in dis-
crete and continuous environments for vision-and-language navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Muhammad Zubair Irshad, Niluthpol Chowdhury Mithun, Zachary Seymour, Han-Pang Chiu, Supun
Samarasekera, and Rakesh Kumar. Semantically-aware spatio-temporal reasoning agent for
vision-and-language navigation in continuous environments. In 2022 26th International Con-
ference on Pattern Recognition (ICPR), 2022.

Jacob Krantz and Stefan Lee. Sim-2-sim transfer for vision-and-language navigation in continuous
environments. In European Conference on Computer Vision, 2022.

Jacob Krantz, Erik Wijmans, Arjun Majundar, Dhruv Batra, and Stefan Lee. Beyond the nav-
graph: Vision and language navigation in continuous environments. In European Conference on
Computer Vision (ECCV), 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jacob Krantz, Aaron Gokaslan, Dhruv Batra, Stefan Lee, and Oleksandr Maksymets. Waypoint
models for instruction-guided navigation in continuous environments. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021.

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
Multilingual vision-and-language navigation with dense spatiotemporal grounding. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
2020.

Jialu Li and Mohit Bansal. Panogen: Text-conditioned panoramic environment generation for
vision-and-language navigation. Advances in Neural Information Processing Systems, 2024.

Jialu Li, Hao Tan, and Mohit Bansal. Envedit: Environment editing for vision-and-language naviga-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, 2023.

Bingqian Lin, Yunshuang Nie, Ziming Wei, Jiaqi Chen, Shikui Ma, Jianhua Han, Hang Xu, Xiaojun
Chang, and Xiaodan Liang. Navcot: Boosting llm-based vision-and-language navigation via
learning disentangled reasoning. arXiv preprint arXiv:2403.07376, 2024.

Kunyang Lin, Peihao Chen, Diwei Huang, Thomas H Li, Mingkui Tan, and Chuang Gan. Learning
vision-and-language navigation from youtube videos. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2023.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Yuxing Long, Xiaoqi Li, Wenzhe Cai, and Hao Dong. Discuss before moving: Visual language
navigation via multi-expert discussions. arXiv preprint arXiv:2309.11382, 2023.

Yanyuan Qiao, Yuankai Qi, Yicong Hong, Zheng Yu, Peng Wang, and Qi Wu. Hop: History-and-
order aware pre-training for vision-and-language navigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

Yanyuan Qiao, Yuankai Qi, Yicong Hong, Zheng Yu, Peng Wang, and Qi Wu. Hop+: History-
enhanced and order-aware pre-training for vision-and-language navigation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
2021.

Santhosh K Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alex Clegg,
John Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, et al.
Habitat-matterport 3d dataset (hm3d): 1000 large-scale 3d environments for embodied ai. arXiv
preprint arXiv:2109.08238, 2021.

Sonia Raychaudhuri, Saim Wani, Shivansh Patel, Unnat Jain, and Angel X Chang. Language-aligned
waypoint (law) supervision for vision-and-language navigation in continuous environments. arXiv
preprint arXiv:2109.15207, 2021.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied ai
research. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019.

James A Sethian. Fast marching methods. SIAM review, 1999.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Dhruv Shah, Michael Robert Equi, Błażej Osiński, Fei Xia, Brian Ichter, and Sergey Levine. Navi-
gation with large language models: Semantic guesswork as a heuristic for planning. In Conference
on Robot Learning, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ao Wang, Hui Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Repvit-sam: Towards real-time
segmenting anything. arXiv preprint arXiv:2312.05760, 2023a.

Ao Wang, Hui Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Repvit: Revisiting mobile
cnn from vit perspective. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024a.

Hanqing Wang, Wei Liang, Luc Van Gool, and Wenguan Wang. Dreamwalker: Mental planning for
continuous vision-language navigation. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2023b.

Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, and Shuqiang Jiang. Gridmm: Grid memory map
for vision-and-language navigation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023c.

Zihan Wang, Xiangyang Li, Jiahao Yang, Shuqiang Jiang, et al. Sim-to-real transfer via 3d feature
fields for vision-and-language navigation. arXiv preprint arXiv:2406.09798, 2024b.

Zun Wang, Jialu Li, Yicong Hong, Yi Wang, Qi Wu, Mohit Bansal, Stephen Gould, Hao Tan,
and Yu Qiao. Scaling data generation in vision-and-language navigation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2023d.

Anna Wunderlich and Klaus Gramann. Landmark-based navigation instructions improve incidental
spatial knowledge acquisition in real-world environments. Journal of Environmental Psychology,
2021.

Brian Yamauchi. A frontier-based approach for autonomous exploration. In Proceedings 1997
IEEE International Symposium on Computational Intelligence in Robotics and Automation
CIRA’97.’Towards New Computational Principles for Robotics and Automation’, 1997.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
Zhao. Depth anything v2. arXiv:2406.09414, 2024.

Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang Wang, and Bernadette Bucher. Vlfm:
Vision-language frontier maps for zero-shot semantic navigation. In International Conference
on Robotics and Automation (ICRA), 2024.

Zhaohuan Zhan, Lisha Yu, Sijie Yu, and Guang Tan. Mc-gpt: Empowering vision-and-language
navigation with memory map and reasoning chains. arXiv preprint arXiv:2405.10620, 2024.

Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu,
Zhizheng Zhang, and Wang He. Navid: Video-based vlm plans the next step for vision-and-
language navigation. arXiv preprint arXiv:2402.15852, 2024.

Gengze Zhou, Yicong Hong, Zun Wang, Xin Eric Wang, and Qi Wu. Navgpt-2: Unleashing naviga-
tional reasoning capability for large vision-language models. arXiv preprint arXiv:2407.12366,
2024a.

Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language naviga-
tion with large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
2024b.

Kaiwen Zhou, Kaizhi Zheng, Connor Pryor, Yilin Shen, Hongxia Jin, Lise Getoor, and Xin Eric
Wang. Esc: Exploration with soft commonsense constraints for zero-shot object navigation. In
International Conference on Machine Learning, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CA-NAV LLM PROMPT.

[TASK DESCRIPTION]
Parse a navigation instruction delimited by triple quotes and your task is to perform the following actions:

1. Extract Destination: Understand the entire instruction and summarize a description of the destination. The description should be a

sentence containing landmark and room type. The description of the destination should not accurately describe the orientation and order.

Here are examples about destination: "second room on the left" -> "room"(neglect order and direction); "between the bottom of the first

stair and the console table in the entry way" -> "console table near entry way"(simplify description); "in front of the railing about halfway

between the two upstairs rooms" -> "railing near two upstair rooms"

2. Split instructions: Split the instruction into a series of sub-instructions according to the execution steps. Each sub-instruction contain

one landmark.

3. Infer agent's state constraints: Infer the state constraints that the agent should satisfy for each sub-instruction. There're thee constraint

types: location constraints, direction constraints and object constraints. You need to select an appropriate constraint type and give the

corresponding constraint object. Direction constraint object has two types: left, right. Constraints can format as a tuple: (constraint type,

constraint object)

4. Make a decision: Analyze the landmarks, actions, and directions in each sub-instruction to determine how the agent should act. For a

landmark, the agent has three options: approach, move away, or approach and then move away. For direction, the agent has three options:

turn left, turn right, or go forward

[OUTPUT DEFINITION]
Provide your answer in JSON format with the following details:

1. use the following keys: destination, sub-instructions, state-constraints, decisions

2. the value of destination is a string

3. the value of sub-instructions is a list of all sub-instructions

4. the value of state-constraints is a JSON. The key is index start from zero and the value is a list of all constraints, each constraint is a

tuple

5. the value of decisions is a nested JSON. The first level JSON's key is index start from zero and it’s value is second level JONS with

keys: landmarks, directions. The value of landmarks is a list of tuples, each tuple contains (landmark, action). The value of directions is a

list of direction choice for each sub-instruction.

[FEW-SHOT PROMPT]
An Example:

User: "Walk into the living room and keep walking straight past the living room. Then walk into the entrance under the balcony. Wait in

the entrance to the other room."

You: {{"destination": "entrance to the other room under the balcony", "sub-instructions": ["Walk into the living room", "keep walking

straight past the living room", "walk into the entrance under the balcony", "wait in the entrance to the other room"], "state-constraints":

{{"0": [["location constraint", "living room"]], "1": [["location constraint", "living room"]], "2": [["location constraint", "balcony"],

["object constraint", "entrance"]], "3": [["location constraint", "other room"], ["object constraint", "entrance"]]}}, "decisions": {{"0":

{{"landmarks": [["living room", "approach"]], "directions": ["forward"]}}, "1": {{"landmarks": [["living room", "move away"]],

"directions": ["forward"]}}, "2": {{"landmarks": [["balcony", "approach"], ["entrance", "approach"]], "directions": ["forward"]}}, "3":

{{"landmarks": [["other room", "approach"], ["entrance", "approach"]], "directions": ["forward"]}}}}}}

[KEY CONTENT REMINDER]
ATTENTION:

1. constraint type: location constraint is for room type, object constraint is for object type, directions constraint. Don't confuse object

constraint with location constraint!

2. landmark choice: approach, move away, approach then move away

3. direction choice: left, right, forward

4. The landmark and constraint object should not accurately describe the orientation and order. Here are examples about landmark:

"second step from the top" -> "step"(neglect order and position relation); "room directly ahead" -> "room"; "right bedroom door" ->

"bedroom door"

Figure 8: Instruction decomposition prompt.

Figure 8 illustrates the prompt details of CA-Nav. It consists of four parts, namely task description,
output definition, few-shot prompt, and key content reminder. We find that it’s helpful to give large
language models an example to follow. Because the few-shot prompt can set a clear expectation of
the desired output.

A.2 PSEUDOCODE FOR THE CA-NAV

The full navigation process is detailed in Algorithm 1, with the Check Constraints procedure ex-
plained further in Algorithm 2. Before navigation begins, an LLM provides a queue of constraints
along with a description of the destination. During navigation, the Constraint-aware Sub-instruction
Manager (CSM) keeps monitoring the process. At each step, CSM verifies whether the current set
of constraints has been satisfied and determines if it needs to switch to the next sub-instruction.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 1 Navigation algorithm in an episode

1: Input: Instruction I
2: LLM Prompt P
3: Initialize: Step Number t← 0
4: Agent Pose P0 ← ∅
5: Constraints Queue C ← ∅
6: switch sub-instruction flag S← False
7: search and go to destination flag D← False
8: value map V0 ← 0m×m

9: semantic mapM0 ← 0m×m

10: trajectory mask T0 ← 1m×m

11:
12: C, d← Parse Instruction(P, I) ▷ d is the destination description extract by LLM
13: ct ← Get CurrentConstraints(C) ▷ get current set of constraints
14: pt ← Get LandmarkPrompt(ct) ▷ get landmark prompt for value map generation
15: Ot,Pt,Mt ← LookAround()
16: Tt ← Update TrajectoryMask(Pt, λ)
17: while Episode is not done do
18: if S = True and C is not empty then ▷ switch to next sub-instruction
19: ct ← Get CurrentConstraints(C)
20: if length of C ≤ 1 then ▷ reach the last sub-instruction
21: D← True
22: pt ← d
23: else
24: pt ← Get LandmarkPrompt(ct)

25: S← False
26: check ← Check Constraints(ct,Ot,Pt) ▷ details in Algorithm2
27: if all constraints in ct are checked as True then
28: pop(C)
29: S← True ▷ ready to switch to next sub-instruction
30: else
31: ct ← Remove CheckedConstraints(check, ct) ▷ only keep unsatisfied constraints
32: new pt ← Get LandmarkPrompt(ct)
33: if new pt ̸= pt then
34: Vt ← γ · Vt−1 ▷ use historical decay when switching sub-instruction
35: pt ← new pt
36: vt ← BLIP2(Ot, pt)
37: Vt ← Update V alueMap(Mt, vt,Pt)
38: Vt ← Tt ⊙ Vt ▷ use trajectory mask to encourage exploration
39: if D = True then
40: detection← GroundingDINO(Ot, d)
41: if detection is not None then
42: wt ← Project Location(detection,Pt,Mt)
43: else
44: wt ← π(Vt)
45: else
46: wt ← π(Vt)
47: at ← FMM(wt,Mt) ▷ plan low-level action based on the waypoint and map
48: t← t+ 1
49: Ot,Pt, done← Execute at
50: if done is True then
51: break
52: Tt ← Update TrajectoryMask(Pt, λ)
53: Mt ← Update SemanticMap(Ot,Mt,Pt)

54: Result: Episode ends.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

It’s worth noting that the current set of constraints ct may include multiple constraints, which will
be checked individually as shown in Algorithm 2. Specifically, the function Check Constraints
identifies each constraint ci in ct, applies the corresponding method to check it and stores the results
in a list. Next, CSM will pop the current element from the queue if all constraints in ct are satis-
fied. Otherwise, it will remove the constraints that have already been met and check the remaining
constraints in the next step. When the prompt provided by ct changes, the value map built from the
previous prompt will be decayed by a factor of γ. As the agent navigates, the trajectory mask Tt
tracks the agent’s trajectory and reduces the willingness to explore within those areas. This mask is
a 2D matrix, initialized to all ones and matching the shape of the map. Similar to historical decay,
the trajectory mask decays by a factor λ.

Algorithm 2 Check Constraints algorithm

1: Input: Current set of constraints ct
2: Current observation Ot

3: Current agent pose Pt

4: Output: Checklist of current set of constraints check
5: Initialize: Constraints check results checks← ∅
6:
7: for ci in ct do
8: if ci is object constraint then
9: checks← chekcs ∪ {check object constraint(ci,Ot)} ▷ utilize Grounding DINO

10: if ci is location constraint then
11: checks← chekcs ∪ {check location constraint(ci,Ot)} ▷ utilize BLIP2 VQA
12: if ci is direction constraint then
13: checks← chekcs ∪ {check direction constraint(ci,Pt)}

A.3 MORE ANALYSIS OF VISUALIZATION.

Analysis of NavGPT-CE. As shown in Figure 9, the agent initially follows the instructions correctly,
but errors start to appear from step 30. There are two main types of errors: The first type is due to
the waypoint model failing to accurately predict navigable nodes, as seen in step 30. At step 30,
the ground truth action was to move forward, and the LLM correctly identified this. However,
the waypoint model failed to predict the navigable viewpoint, causing the agent to move to the
right instead. The second type arises from the caption model incorrectly describing the scene, as
illustrated in steps 41, 55, and 125. At step 55, the caption model describes the current panoramic
observation as “a bathroom with a toilet and a sink.” However, the primary objects in the scene are
stairs, and this incorrect caption ultimately misleads the agent. Our analysis indicates that NavGPT-
CE converts all visual observations into text and makes navigation decisions based solely on scene
descriptions and a summary of the history. This approach can easily lead to incorrect decisions when
the descriptions are inaccurate.

Analysis of FBE-based waypoint selection method. As shown in Figure 10, the agent navigates
correctly during the first sub-instruction. However, upon reaching the second sub-instruction, the
landmark prompt changes to “room,” causing the value map, initially based on the previous landmark
prompt “stairs”, to decay as new values are updated. The FBE-based waypoint selection method then
chooses a left frontier, which has the highest value among the available options, but the correct path
is to walk straight toward the open area with the stairs. Compared to the Superpixel Value Map
based waypoint selection method shown in Figure 5, CA-Nav avoids focusing solely on local high
values. Instead, it considers the global value map, allowing it to navigate correctly during the second
sub-instruction.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Observation:

Current Viewpoint “2e880bca51f7e5b920f8e3719638b2c0”:

…

Direction: Rear Left, range (left 157.50 to left 112.50):

Caption: 'a hallway with a staircase leading to a living room'

Rear Left Objects in 3m: None

Rear Left Navigable

Viewpoints:{'96b3728375ec14aa18a7a36bb378bcab': 'left 156.00,

1.25m’}

…

Thought: From the current viewpoint, I can see a hallway with a

staircase leading to a living room to the rear left. This aligns

with the instruction to pass the stairs on the right. Therefore, I

should move to the viewpoint in the rear left direction

('96b3728375ec14aa18a7a36bb378bcab') to continue following the

instruction.

Action: "96b3728375ec14aa18a7a36bb378bcab"

T=1 T=55

Observation:

Current Viewpoint “ff1a2e47bef979a2cd0b063adfce2f5d”:

…

Direction: Right, range (right 67.50 to right 112.50):

Caption: 'a house with a doorway and a table and chairs'

Right Objects in 3m: None

Right Navigable

Viewpoints:{'8c69af1b139dac31f9a25b3d9a79aced': 'right 72.00,

1.25m'}

…

Thought: From the current viewpoint, I can see a hallway with a

white door and a painting on the wall to the front right, and a house

with a doorway and a table and chairs to the right. The instruction

tells me to go into the room with the couches and then turn

right. Since there are no navigable viewpoints directly in front

of me, I should move to the right viewpoint

('8c69af1b139dac31f9a25b3d9a79aced’).

Action: "8c69af1b139dac31f9a25b3d9a79aced"

Observation:

Current Viewpoint “8c69af1b139dac31f9a25b3d9a79aced”:

…

Direction: Right, range (right 67.50 to right 112.50):

Caption: 'a bathroom with a toilet and a sink in it'

Right Objects in 3m: None

Right Navigable

Viewpoints:{'8077400fd43c0c5d4dc68c3fd011b3b3': 'right 90.00,

1.00m’}

…

Thought: From the current viewpoint, I can see a dining room with

a table and chairs in front of me, which aligns with the instruction

to go into the room with the couches. The instruction also tells me

to turn right and wait near the glass table with white chairs.

Since there is a navigable viewpoint to the right

('8077400fd43c0c5d4dc68c3fd011b3b3'), I should move to that

viewpoint to continue following the instruction.

Action: "8077400fd43c0c5d4dc68c3fd011b3b3"

Instruction: Go straight. Pass the stairs on the right and continue straight. When you get to the stairs going up pass those

as well. Go into the room with the couches and then turn right. wait near the glass table with white chairs.

T=135

T=30

T=41

T=120

Observation:

Current Viewpoint “2e880bca51f7e5b920f8e3719638b2c0”:

…

Direction: Front, range (left 22.50 to right 22.50):

Caption: 'a bathroom with a toilet and a sink'

Front Objects in 3m: None

Front Navigable Viewpoints:{'5edaddee63e3a454aa645602ee8cb89f':

'right 9.00, 1.00m’}

…

Thought: From the current viewpoint, I can see a bathroom with a

toilet and a sink in front of me, and a living room with a fireplace in

the rear right. The instruction tells me to go into the room with the

couches and then turn right, waiting near the glass table with white

chairs. Since there is no glass table with white chairs visible from

this viewpoint, I should move to the next navigable viewpoint

that might lead me closer to the target. The closest navigable

viewpoint is to the front ('5edaddee63e3a454aa645602ee8cb89f’).

Action: "5edaddee63e3a454aa645602ee8cb89f"

Observation:

Current Viewpoint "96f06c10564f541994a4cbe12c94e8ee":

…

Direction: Left, range (left 112.50 to left 67.50):

Caption: 'a glass door in a room with a table and chairs'

Left Objects in 3m: None

Left Navigable Viewpoints:{'cdf8ef16efbf982bdbe434b2b1933608':

'left 84.00, 1.00m’}

…

Thought: From the current viewpoint, I can see a living room with a

couch and a fireplace in front of me, and a living room filled with

furniture and a fireplace to the front right. The instruction tells me to

go into the room with the couches and then turn right, waiting near

the glass table with white chairs.

Given the current layout, the left navigable viewpoint seems to

lead to a room with a table and chairs, which might be closer to

the target location described in the instruction. I should move to that

viewpoint to continue following the instruction.

Action: "cdf8ef16efbf982bdbe434b2b1933608"

Thought: I have now reached a viewpoint where I can see a

dining room with a table and chairs in front of me, which matches

the instruction to wait near the glass table with white chairs. Since

the instruction specifies to wait near the glass table with white

chairs and I am within 3 meters of it, I have reached the

destination.

Final Answer: Finished!

Legend:

Bold Green font with underline: correct choice and reasoning

Bold Red font with underline: wrong choice and reasoning

Figure 9: Case study for NavGPT-CE.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Instruction: Go straight. Pass the stairs on the right and continue straight. When you get to the stairs going up pass those as well.

Go into the room with the couches and then turn right. wait near the glass table with white chairs.

t=12 t=32 t=63 t=94 t=156
Time

Object constraint: stairs

Direction constraint: right

Location constraint: room

Object constraint: couches
Object constraint: glass table

Object constraint: white chairs

Destination: glass table with

white chairs in the room
Start: look around

O
b

se
rv

at
io

n
F

ro
n

ti
er

C

V
M

Frontiers Candidate waypoints Target waypoints

Figure 10: Navigation visualization based on FBE-based waypoint selection method

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Information about real robot experiments. The robot’s initial pose will be slightly different
in each episode. d represents the distances between the initial position and the destination. SR is the
success rate.

Instruction Initial Pose d SR

Go to the door. 5.4m 8/10

Turn left then walk
towards the

signboard and wait
by the elevator.

5.5m 4/10

Walk out of the door
then stop in front of

the plant.
6.6m 5/10

Walk out to the
corridor, and stop in
front of the poster.

4.3m 6/10

Walk towards the
robot. 3.6m 7/10

Walk towards the
living room then stop

beside the couch
6.0m 4/10

Turn slightly right
and walk into the

meeting room, step
forward then stop in

front of the table.

3.8m 4/10

Go towards the
plant, turn right,

walk along the wall
then stop near the

World Cup Trophy.

10.4m 2/10

20

	Introduction
	Related Work
	Method
	Method Overview
	Constraint-aware Sub-instruction Manager
	Constraint-aware Value Mapper

	Experiments And Results
	Experiment Setup
	Main Results
	Ablation Study
	Quantitative and Qualitative Analysis
	Real Robot Experiments

	Conclusion
	Appendix
	CA-Nav LLM Prompt.
	Pseudocode For The CA-Nav
	More Analysis of Visualization.

