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Abstract
Traditional adversarial examples are typically gen-
erated by adding perturbation noise to the input
image within a small matrix norm. In practice, un-
restricted adversarial attack has raised great con-
cern and presented a new threat to the AI safety.
In this paper, we propose a wavelet-VAE structure
to reconstruct an input image and generate ad-
versarial examples by modifying the latent code.
Different from perturbation-based attack, the mod-
ifications of the proposed method are not limited
but imperceptible to human eyes. Experiments
show that our method can generate high quality
adversarial examples on ImageNet dataset.

1. Introduction
Despite the great success of deep neural networks, they have
been shown to be vulnerable to adversarial examples (Big-
gio et al., 2013; Szegedy et al., 2013). By adding small
perturbations, the well-designed adversarial examples are in-
distinguishable from the original ones, while the prediction
labels of deep models can be confused. As the application
of DNNs penetrates into various fields, The existence of
adversarial examples has raised great concern about safety
and robustness of DNNs.

For long, perturbation-based adversarial examples have been
the focus of attention. Various adversarial attack methods
have been proposed, including Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2014), Projected Gradient De-
scent (PGD) (Madry et al., 2017), etc. However, in the
actual scene, more threats to the DNNs come from the un-
restricted adversarial examples. To be specific, the attacker
makes large and visible modifications to the original images,
which causes the model misclassification, while preserving
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the normal observation from human perspective. The un-
restricted adversarial examples put a new threat to the AI
safety. Therefore, it is necessary to explore the scene and
novel methods of unrestricted adversarial attacks.

Previous works have already given a formal definition of un-
restricted adversarial attacks, Song (Song et al., 2018) first
introduced the new threat and generates some adversarial
examples from AC-GAN structure. Stutz (Stutz et al., 2019)
divided the adversarial examples into two groups accord-
ing to the definition of data manifold. However, limited by
the model generation capability and coupling phenomenon
of the latent code, most of the previous works are based
on low resolution images. The image quality of the gen-
erated adversarial examples has not been taken into well
consideration.

To address the aforementioned image quality problem, we
introduce wavelet transform and Variational Autoencoder
(VAE) (Kingma & Welling, 2013) structure to the recon-
struct process. The intuition behind wavelet transform is
that human eyes are not sensitive to high frequency signal
changes. The function of wavelet transform is to decouple
the input images into different frequency bands. Besides, to
make the manipulations work in a more continuous way, we
introduce the VAE structure.

In our work, we propose a novel adversarial attack algorithm
based on wavelet-VAE network to encode and reconstruct
the original images. By manipulating the latent space codes,
we can generate adversarial examples which are impercep-
tible to human eyes. To be specific, we decompose the
original images into different frequency bands, and a VQ-
VAE (Razavi et al., 2019) network is trained to approximate
the wavelet coefficients of different scales. Conditioned
on the encoded latent space, we can formulate the attack
problem as an optimization problem of finding a constrained
latent code to maximize the adversarial loss.

Experiments on the ImageNet validation dataset (Deng et al.,
2009) show that, when compared with classic perturbation-
based attack methods, our method can achieve higher attack
success rate with better image quality, which is measure by
two metrics, FID and LPIPS.

In summary, we make the technical contributions as:
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Figure 1. The structure of wavelet-VAE Network. The input image is first decomposed by WPT. Then the high frequency components,
HL,LH and HH are sent to VQ-VAE. Finally, the reconstructed high frequency components and the original low frequency component LL
are composed to the reconstructed image by inverse WPT.

• We project the real data distribution to a latent space
with a wavelet-VAE network, which can decouple the
human imperceptible high frequency bands by combin-
ing the wavelet transform with the Variational Autoen-
coder structure.

• We propose an unrestricted adversarial attack method
based on the wavelet-VAE network, which is modeled
as a optimization problem to the encoded latent code.

2. Related works
Song (Song et al., 2018) first proposed unrestricted ad-
versarial examples and they generate new adversarial ex-
amples with AC-GAN. Kakizaki (Kakizaki & Yoshida,
2019) proposed a method to generate unrestricted ad-
versarial examples against face recognition systems.
Shamsabadi (Shamsabadi et al., 2020) proposed a black-
box unrestricted adversarial attack, which modifies the color
of semantic regions. Stutz (Stutz et al., 2019) provided a
new way to understand the function of unrestricted adversar-
ial attack from the manifold perspective, and the adversarial
examples are generated from AC-GAN.

3. Method
In this section, we will describe in detail about the adversar-
ial attack algorithm based on wavelet-VAE network.

3.1. Problem formulation

We start by introducing the definition of unrestricted adver-
sarial attacks. Let I denotes the set of all digital images
taken into consideration. The ground truth prediction can
be formulated as a mapping function from the input set to
the label set, i.e., g : X ⊆ I → {1, 2, · · · ,K}. In addition,

a well trained classifier,denoted as f : X → {1, 2, · · · ,K},
will approximate but not equal to the ground truth function g.
With these notations, the unrestricted adversarial examples
can be defined as:

Definition 1 (Unrestricted Adversarial Examples)
Unrestricted adversarial examples to a target
classifier f can be defined as any element in
Au , {x ∈ X |f(x) 6= g(x)}.

The unrestricted adversarial attacks set no constraint to the
modification range. However, the perception distance be-
tween the original images and the modified ones should
not be too large. One possible way to achieve this goal is
projecting the original high-dimensional pixel level space to
a lower-dimensional manifold with VAE. Besides, another
advantage of VAE is introducing noise to the latent code,
which means small perturbations to the latent code will not
greatly change the semantic meaning of the decoded images.

However, the VAE structure can only maintain the semantic
meaning, the perceptual distance may vary greatly. Based on
the fact that human eyes are not sensitive to signal changes
in high frequency bands, we introduce wavelet transform
to decouple the high frequency components and the low
frequency ones. With the combination of wavelet transform
and VAE structure, the original adversarial attack problem
can be formulated as an optimization problem to the latent
code of wavelet coefficients

max
ζ
L(f(W−1(dec(z + ζ)))) s.t. ‖ζ‖ ≤ η, (1)

in which,W−1 is the inverse wavelet transform, dec(·) is
the decoder of the VAE structure, the latent code is obtained
from z = enc(W(x)), ζ is the perturbation added to the
latent code, f is the target classifier, L is the loss function.
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The adversarial examples with wavelet-VAE can be recog-
nized as a projection from the original pixel-level manifold
to the latent space of wavelet coefficients. The adversarial
examples can be generated from the optimized latent code

xadv =W−1(dec(z + ζ∗)), (2)

in which, ζ∗ is obtained from the optimal of Eq. (1).

3.2. Wavelet-VAE network

In this section, we will provide the detailed description
about the wavelet-VAE network, which is used as the recon-
struction model of the input image. The backbone network
comes from VQ-VAE, which is a hierarchical learning ar-
chitecture. The structure of the network is shown in Fig. 1.

We choose wavelet packet transform (WPT) to be the fre-
quency analysis tool, which decomposes an input 2D image
into four coefficients, LL (low frequency component), (HL,
LH, HH) (high frequency components) , during the each
decomposition level.

The wavelet coefficients obtained from WPT are sent into
the VQ-VAE network. In practice, to get better image qual-
ity, we select to encode and reconstruct the high frequency
components, while the low frequency components are di-
rectly sent to the inverse wavelet transform module. The
overall loss function is specified in Eq. (3) as

L(x, dec(e)) = ‖W(x)− dec(e)‖22
+ ‖sg[enc(W(x))]− e‖22
+ β‖sg[e]− enc(W(x))‖22,

(3)

in which, sg(·) refers to a stop-gradient operation that
blocks gradients from flowing into its argument, β is a
hyperparameter which controls the reluctance to change the
code corresponding to the encoder output, e is the quantized
code from enc(W(x)). The first term in the loss function is
the reconstruction loss of the selected high frequency coeffi-
cients decomposed by WPT. The second and third term are
borrowed from the original VQ-VAE network, which use
VQ to learn the embedding space.

3.3. Attack algorithm

The proposed method follows a two-stage approach: first,
we train the wavelet-VAE network to encode the wavelet
coefficients into a latent space, and then we add noise to the
latent code to obtain an adversarial example according to
the adversarial loss of the target classifier.

At the first stage, we utilize the proposed wavelet-VAE to
learn the latent code distribution of the input image. At the
second stage, we first fix the wavelet-VAE parameters and
encode the target image to obtain the latent code z. Then the
latent code is optimized using a gradient-based approach.

Algorithm 1 Unrestricted adversarial attack based on
wavelet-VAE network

1: Train wavelet-VAE to obtain the encoder enc(·) and
decoder dec(·)

2: for x ∈ dataset do
3: z ← enc(W(x))
4: for i = 1 to n do
5: loss← L(f(W−1(dec(z)))
6: z ← z + lr ∗ ∇zloss
7: end for
8: xadv ←W−1(dec(z))
9: end for

Although the VAE structure can keep the latent code staying
on the manifold, we still need to set a constraint to the l∞
norm of the latent code. The reason of doing so is that
the latent code space is not strictly compact with limited
dataset and VAE model. As the perturbation step gets larger,
the probability of the latent code leaving the real image
manifold will get higher.

4. Experiments
4.1. Experimental settings

Dataset and Models. The tested dataset are crafted on 1000
randomly selected ImageNet validation images. As for tar-
get models, we choose 5 state-of-the-art DNNs: VGG19 (Si-
monyan & Zisserman, 2014), ResNet-152 (RN152) (He
et al., 2016), DenseNet-201 (Huang et al., 2017), Inception
V3 (IncV3) (Szegedy et al., 2016) and Inception-ResNet V2
(IncResV2) (Szegedy et al., 2017).

Evaluation Metrics. In our experiments, we use Attack
Success Rate (ASR) as the evaluation metrics for attack
ability, which can be expressed as

ScoreASR = 100%× ‖{xadv|f(xadv) 6= y}‖
N

. (4)

The image quality is measure from two metrics fréchet
inception distance (FID) (Heusel et al., 2017) and perceptual
distance (LPIPS) (Zhang et al., 2018). We normalize these
two metrics as

ScoreFID = 100%×
√
1− min(FID(x, xadv), 200)

200
,

(5)

ScoreLPIPS = 100%×
∑
l

1

HlWl

∑
h,w

d(f lhw, f
l
0hw),

(6)
in which, f lhw and f l0hw are the lth layer feature output of
VGG with the input x and xadv , d is a distance metric.

Comparison Methods. We compared our method with
the classic perturbation-based attack method, which are
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Figure 2. The visualization results of the adversarial examples generated by different attack methods.

Table 1. The image quality (FID and LPIPS) of the adversarial examples generated by different attack methods on the selected models.

Method VGG19 RN152 DN201 IncV3 IncRes

FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS

FGSM 95.20 87.11 95.44 87.40 95.36 88.48 89.96 84.04 90.47 83.24
PGD 99.00 99.74 99.54 99.95 99.40 99.93 97.57 99.92 97.83 99.96
MIM 96.85 94.48 97.08 94.77 96.92 94.67 90.57 92.16 89.34 91.64
DIM 86.27 88.34 85.74 90.18 85.82 90.22 83.54 89.01 83.53 88.34
Ours 99.65 99.89 99.70 99.94 99.33 99.96 98.98 99.96 99.96 99.98

FGSM (Goodfellow et al., 2014), PGD (Madry et al., 2017),
MIM (Dong et al., 2017) and DIM (Xie et al., 2019), for
both the attack success rate and the quality of the adversarial
examples.

Hyper-parameters. We set the maximum perturbation of
all the perturbation-based attack method to be 8 with pixel
value ∈ [0, 255]. For the iterative methods, the number of
iteration steps is to be 100. The decay factor of momentum
is set to be 1.0 for methods with momentum. And the
transformation probability of DIM is set to be 0.7. For
our method, we set the modification constrain of the latent
vector to be η = 0.3.

4.2. Experimental Results

We adopt a white-box attack with different attack methods
on the selected classification models. And we compare
the ASR and image quality of the adversarial generated by
these attack methods separately. Table 1 shows the results
of the image quality (FID and LPIPS score) and Table 2
shows the results of the ASR. Results from both tables
show that our method can obtain higher attack success rate
and higher image quality for most of the models. From
Fig.2, it is shown that the adversarial examples generated
by traditional perturbation-based methods have perceptible

Table 2. The ASR of different attack methods on the selected mod-
els.

Attack VGG19 RN152 DN201 IncV3 IncRes

FGSM 95.8 88.9 94.1 78.9 58.9
PGD 98.2 98.2 99.4 97.6 96.0
MIM 97.8 98.2 99.4 97.7 97.0
DIM 98.2 98.4 99.5 97.8 95.7
Ours 99.9 98.4 99.6 99.0 91.0

noise-like patterns, while the ones generated by our method
are more natural from human perspective.

5. Conclusion
We propose an unrestricted adversarial attack algorithm
based on wavelet-VAE network. The VAE structure can
make the latent code space more compact and wavelet trans-
form can decouple the input image into different frequency
bands, in which the higher frequency bands can be used to
modify the image in an imperceptible way to human eyes.
By adding perturbations to the latent code of high frequency
wavelet coefficients, we can obtain high quality adversarial
examples.
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