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Abstract001

State-of-the-art neural machine translation002
(NMT) models deliver high-quality transla-003
tions at the expense of large inference la-004
tency and energy consumption, requiring vast005
GPU fleets and contributing significantly to car-006
bon emissions. To democratize and “green”007
NMT, we introduce the Green KNIGHT, a008
hardware-agnostic collection of recipes to op-009
timize model performance in terms of speed010
and energy consumption, with only a minor011
trade-off in quality. On two high-resource012
benchmarks we show up to 91× CPU speedup013
and 94% energy savings for En→De, and 65×014
speedup and 10% energy usage for En→Ko;015
while incurring only minor losses of 9% rel-016
ative BLEU. Our results prove that efficient017
and environmentally conscious NMT can be018
realized through optimizations build on well-019
understood, off-the-shelf techniques with no020
custom low-level code required, making our ap-021
proach immediately deployable in real-world022
translation pipelines.023

1 Introduction024

Neural Machine Translation (NMT) has rapidly025

become the standard for automated language trans-026

fer, achieving human-competitive fluency and ade-027

quacy across dozens of language pairs with Trans-028

former architectures (Vaswani et al., 2017). Most029

research aims at improving model performance,030

which usually goes hand in hand with larger and in031

particular deeper models whose inference time and032

energy consumption worsen due to the quadratic033

dependence on target length of the autoregressive034

decoder as well as the high cost of beam search.035

In particular, as shown in Figure 1, the conven-036

tional Transformer ‘big’ model can spend over 95%037

of its per-batch runtime in the decoder. This imbal-038

ance not only throttles throughput but also drives039

up energy usage. Recent years have seen large040

language models (LLMs) surpass traditional Trans-041

former models in translation quality (Kocmi et al.,042

× generated target tokens

× generated target tokens

encoder: 100 ms decoder: 2500 ms

decoder: 24 msencoder: 32 ms

Optimized Green KNIGHT runtime

Vanilla Transformer runtime

Figure 1: Runtime breakdown for the vanilla Trans-
former (100 ms encoder + 2500 ms decoder per batch,
95% spent in the decoder) versus our optimized Green
KNIGHT model. By shifting the workload toward the
encoder (32 ms) and drastically reducing decoder cost
(24 ms), our design ultimately yields up to 91× speedup
and 94% energy savings for En→De.

2024). However, LLMs tend to be larger by mag- 043

nitudes and more expensive to operate than Trans- 044

formers, which is not reflected by the difference 045

in quality. This heavy resource burden renders 046

LLM-based translation even less sustainable for 047

most enterprises and hinders broader deployment. 048

In contrast, we aim at NMT with a better quality- 049

speed/energy trade-off than recent LLMs and there- 050

fore focus on improving encoder-decoder models. 051

Parallel to our goal of making machine trans- 052

lation more efficient, we want to reduce the eco- 053

logical footprint of machine translation systems in 054

order to reduce significant carbon emissions—an 055

issue which has been advocated before in the con- 056

text of general AI (Strubell et al., 2019; Schwartz 057

et al., 2020) and NMT systems in particular (Shte- 058

rionov and Vanmassenhove, 2023), but received 059

only minor attention by the broad NMT commu- 060

nity. Hence, we ask the question: How “green” 061
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can machine translation become while still being062

practicable?063

To tackle these issues, we aim at gaining064

as much translation speed and energy savings065

as possible while not losing more than 10 %066

relative translation quality measured in BLEU as067

well as COMET or BLEURT. As a solution we068

introduce the Green KNIGHT, a recipe to build069

hardware-agnostic Transformer models for green070

machine translation. They combine inference-time071

optimizations such as greedy decoding and072

dynamic 8-bit quantization with architectural073

changes to decrease the decoder work load. In074

particular, we investigate fast hybrid models with075

RNN (Cho et al., 2014; Bahdanau et al., 2015) and076

SSRU decoders (Kim et al., 2019), augmented077

with knowledge distillation (Kim and Rush, 2016).078

079

The main contributions of our work are:080

1. We comprehensively analyze the stacked ef-081

fect of various inference and architecture op-082

timizations, considering quality, speed and083

energy measurements for every step and all084

contributions mentioned next.085

2. A comparison of various hybrid translation086

models under the applied inference and archi-087

tecture optimizations.088

3. The evaluations on two real-life tasks that in-089

clude multiple domains. We show that our090

final model yields 91× faster translations and091

saves 94% energy on the English→German092

task, while being 65× faster and using only093

10% energy for English→Korean translations.094

The final model runs equally fast on CPU and095

GPU, making it a viable deployment option even096

in resource-constrained environments. Our work097

proves that easy-to-implement methods can make098

MT substantially more time- and energy effi-099

cient, encouraging more research teams to consider100

Green AI (Schwartz et al., 2020) when developing101

and deploying NMT systems.102

2 Related Work103

Kim et al. (2019) introduce a suite of model-104

ing and engineering improvements for fast NMT.105

They enhance teacher-student training with multi-106

agent dual learning and noisy back-translation,107

and replace self-attention in the decoder with a108

lightweight recurrent unit (SSRU), tying weights109

between decoder layers to reduce parameters and 110

improve CPU cache efficiency. Their inference op- 111

timizations include 8-bit quantization, 16-bit GPU 112

inference, and concurrent GPU streams, all imple- 113

mented in a custom C++ Marian framework. Their 114

models achieve up to 24× CPU and 14× GPU 115

speedups over their 2018 baselines without BLEU 116

loss. In contrast, our work uses standard PyTorch, 117

explores a broader range of decoder sizes, and em- 118

ploys a simpler knowledge distillation approach. 119

We also explore more RNN decoder variants and 120

do not rely on C++-specific optimizations or weight 121

tying. 122

Hsu et al. (2020) empirically combine sev- 123

eral known techniques, including multi-agent dual 124

learning for distillation, SSRU and AAN de- 125

coders (Zhang et al., 2018), removal of the de- 126

coder feed-forward network (FFN), and a deep 127

encoder–shallow decoder structure (12/1 layers). 128

They further reduce parameters by pruning atten- 129

tion heads, achieving 109% CPU and 84% GPU 130

speedups with 25% fewer parameters, while match- 131

ing the Transformer “base” quality. Unlike their 132

work, we do not focus on parameter reduction, but 133

rather on maximizing speed and energy efficiency 134

with minimal quality loss. We systematically eval- 135

uate various decoder sizes, tune the beam size, and 136

find that removing the decoder’s FFN is not benefi- 137

cial in our setting. 138

Lin et al. (2021) present a combination of simple, 139

hardware-agnostic techniques for efficient Trans- 140

former inference, such as tuning the vocabulary 141

size, using a shallow decoder, pruning attention 142

heads, dropping the decoder FFN, and factorizing 143

the output projection. They also employ weight dis- 144

tillation and “weak” distillation (training without 145

dropout or label smoothing in the shallow decoder). 146

Their approach yields a ∼ 3.5× speedup without 147

quality degradation. In contrast, we achieve much 148

higher speedups (up to 91×) by allowing small 149

quality degradation and incorporating RNN-based 150

decoders. 151

Lin et al. (2023) present an NMT system opti- 152

mized for mobile deployment through three key 153

architecture improvements: reducing vocabulary 154

size instead of using embedding factorization, re- 155

ducing model width rather than using parameter 156

sharing, and employing a deep encoder with a 157

shallow decoder. Combined with knowledge dis- 158

tillation, dropout removal, and optimization of 159

integer operations, their 10MB model achieves 160

a ∼ 47× speedup while maintaining 88.4% of 161
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Transformer-big performance, with 99.5% mem-162

ory reduction. Their 20MB variant achieves 95.5%163

baseline performance with a ∼ 27.7× speedup.164

Unlike their approach, our work does not require165

custom hardware-specific implementations, and we166

thoroughly investigate beam size tuning and RNN167

decoder alternatives.168

3 Transformer Models169

Since the introduction of the Transformer (Vaswani170

et al., 2017), this network architecture is the171

de-facto standard for machine translation. The172

model can be described as being composed of173

two main parts; an encoder which compresses174

the input source sentence, and a decoder which175

autoregressively—i.e. word-by-word—generates176

the hypothesis in the target language. Both, en-177

coder and decoder consist of a stack of layers which178

transform dense vector-representations of a fixed179

model dimension d. The encoder as well as the de-180

coder layers consist of a self-attention component,181

which scales quadratically in the input sequence182

length, as well as a feedforward sub-layer. In addi-183

tion, the decoder also has a cross-attention compo-184

nent of similar complexity as the self-attention.185

Despite encoder and decoder having a compa-186

rable total number of floating point operations187

(roughly weighted 2:3 due to the cross-attention188

in the decoder), the computations of the encoder189

can be parallelized while the decoder in this archi-190

tecture is inherently autoregressive. This effect is191

further amplified by beam search, and in our case192

leads to 95% of the total computation time being193

spent in the decoder (as presented in Figure 1).194

4 Inference Optimizations195

We commence with optimizing inference as it is196

independent of any system, i.e. it introduces no re-197

training burden and can be adopted with minimal198

engineering effort.199

4.1 Greedy Search200

To begin with, we reduce the number of candidate201

hypotheses per time step by shrinking the beam202

size down to 1. Moreover, by utilizing greedy de-203

coding, we eliminate all overhead due to beam204

management.205

4.2 Quantization206

The most expensive operation in the Transformer207

are vector-matrix multiplications. In our measure-208

ments, they take around 55% of the total baseline 209

computation time. 210

These operations can be sped up by comput- 211

ing them in 8-bit integer arithmetic, with hard- 212

ware acceleration on recent CPUs (Bhandare et al., 213

2019). We apply a dynamic post-training quanti- 214

zation scheme which computes ranges of the ac- 215

tivations on-the-fly during inference (Tang et al., 216

2024) and apply it to all major vector-matrix mul- 217

tiplications: the feedforward blocks, the attention 218

key/value/query computation and projection, the 219

softmax, and the RNN cells (in case of the SSRU 220

and LSTM experiments). 221

5 Architectural Optimizations 222

As our baseline, we adopt the state-of-the-art Trans- 223

former ‘big’ model, in which the encoder and de- 224

coder share the same depth. As previously shown 225

in Figure 1, the decoder dominates the encoder in 226

inference runtime. Hence, our focus lies on apply- 227

ing architectural modifications that shift computa- 228

tion towards the encoder and thus streamline the 229

decoder, as illustrated in Figure 2. 230

5.1 Layer Reallocation & Reduction 231

At first, we shift all decoder layers but one to the 232

encoder, leveraging the parallelism in the encoder. 233

The reallocation results in a model comprising LE+ 234

LD − 1 encoder layers and a single-layer decoder. 235

Moreover, we empirically investigate the trade- 236

off between translation quality and efficiency re- 237

garding translation speed and energy consumption. 238

Since the mapping between encoder depth and 239

quality-efficiency ratio is not linear, our focus does 240

not lie on reducing the encoder to as few layers as 241

possible, but rather on finding a good optimum. 242

The combined effect of both steps is illustrated 243

in Figure 2b. In comparison to the baseline model 244

(Figure 2a), the resulting model contains only a 245

shallow single-layer decoder and an encoder that is 246

significantly less deep. 247

5.2 Decoder Width Compression 248

After having shrunk the decoder to just a single 249

layer (see Figure 2b), we aim at further improving 250

translation speed by also using reducing the de- 251

coder hidden dimension d to a smaller dimension 252

d′ < d, as pictured in Figure 2c. Accordingly, we 253

also decrease the size of the forward-projections 254

(which in the baseline was chosen as 4d) to 4d′. 255

As every component in the Transformer decoder 256
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Encoder Decoder

(a) Baseline model.

Encoder Decoder

(b) Reallocated & reduced layers.

Encoder Decoder

(c) Compressed decoder width.

Figure 2: Architecture optimizations.

scales with the model dimension, this reduces the257

computational load of the entire decoder.258

5.3 Replacing Transformer with Interleaved259

RNN Decoder260

Finally, we replace the Transformer decoder with a261

custom lightweight RNN module. First, we experi-262

ment with replacing the self-attention layer of the263

decoder with an RNN layer (Kim et al., 2019; Hsu264

et al., 2020; Lin et al., 2021). We tested a standard265

LSTM (Hochreiter and Schmidhuber, 1997) and an266

optimized SSRU (Kim et al., 2019). Unlike previ-267

ous work, we use only one decoder layer (see Sec-268

tion 5.1). In our initial experiments with LSTM, we269

observed a notable decrease in quality, with some270

smaller models practically diverging (see Table 4).271

We assume that this is due to the fact that the RNN272

cell is never exposed to hidden representations of273

the encoder. Therefore, we rewire the decoder by274

enriching the hidden state of the RNN cell ht with275

a cross-attention to the hidden representation of the276

encoder Henc (Bahdanau et al., 2015):277

h′t, ct = RNN(xt, ht−1, ct−1),

ht = h′t + Attention(Henc, h
′
t).

(1)278

In this way, the RNN cell has a direct information279

path to the source sentence. We dub this method in-280

terleaving, as RNN cell and cross-attention compu-281

tations are interleaved between token positions. As282

the original SSRU design lacks a hidden state, we283

integrate one by concatenating the input embedding284

xt with the previous output ht, i.e., xt = [xt, ht].285

6 Training Optimizations286

After improving translation speed and energy con-287

sumption by optimizing inference and the model288

architecture, we address the question of how to op- 289

timize the training of our models. Here, the goal 290

is different, as we aim at gaining better models 291

in terms of translation quality rather than making 292

them more time and energy efficient. 293

To achieve this goal, we apply sequence-level 294

knowledge distillation (KD; Kim and Rush, 2016) 295

using the baseline model as the teacher model pT, 296

which aids the training of the student model pS 297

using the aforementioned optimized architecture. 298

However, instead of using the cross-entropy be- 299

tween student and teacher, we use the Kullback- 300

Leibler divergence DKL(·, ·) to compute the addi- 301

tional training loss LKD: 302

LKD = −1

2

(
DKL(pS, pT) +DKL(pT, pS)

)
. (2) 303

The resulting overall training loss is computed as 304

L = α · LCE + β · LKD. (3) 305

LCE is the cross-entropy loss of the student model 306

and α, β are corresponding hyper parameters. 307

7 Experiments 308

We evaluate our methods on two real-world, large- 309

scale machine translation tasks: En→De and 310

En→Ko. Although we evaluate our proposed 311

recipes on both tasks, due to limited space we 312

move the intermediate results for En→Ko to the 313

Appendix A. 314

The overall goal is to build a system that pre- 315

serves 90% translation quality of the baseline, 316

while yielding as much translation speed and en- 317

ergy savings as possible. 318

7.1 Data 319

We aim to evaluate systems in an realistic, industry- 320

scale setting by training general-domain MT sys- 321
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tems on a large dataset. To evaluate the general-322

domain quality of the MT systems, we chose four323

test sets of varying domains for both the En→De324

and En→Ko task. The corresponding training data325

was selected as a mix of in-domain data matching326

the test set domains, and general out-of-domain327

and crawled data.328

For En→De, we use four test sets from the movie329

subtitles (OpenSubtitles 2018 test set), talks (TED330

tst2018), news (WMT newstest2019), and parlia-331

ment speech domain (Europarl ST test) (Tiede-332

mann, 2012; Tiedemann and Thottingal, 2020).333

Concatenated, this test set spans a total of 9k sen-334

tences with 154k source words. As training data,335

we select four corresponding corpora from OPUS336

(OpenSubtitles 2018, TED 2020, NewsCommen-337

tary & Global Voices, Europarl), and mix it with338

out-of-domain data in a ratio of 3:1. In total, the339

models are trained on 90M bilingual sentence pairs340

with 1.4B target words—detailed statistics can be341

found in the Appendix B.342

For En→Ko, we report on four test sets com-343

prised of subtitles (2018 OpenSubtitles test set),344

talks (TED tst2018), newswire texts from FBIS345

(2013 test set), as well as a general-domain test set346

from the Korean-English treebank (2013 version).347

In total, these test sets have 10k sentences with348

123.6k source words. Generally, less data is pub-349

licly available for this language pair and we train350

on a total of 28M sentence pairs with 201M target351

words from these corpora.352

7.2 Setup353

We train models based on the Transformer architec-354

ture and implemented them in PyTorch 2.5 (Paszke355

et al., 2019). We apply byte-pair encodings (Sen-356

nrich et al., 2016; Kudo and Richardson, 2018) to357

the training data and obtain a source and target vo-358

cabulary of 30k and 10k units respecively. Segmen-359

tation and casing is encoded via two separate trans-360

lation factors (Wilken and Matusov, 2019). Our361

models are trained for 250 sub-epochs of 1M sen-362

tences each using the Adam optimizer (Loshchilov363

and Hutter, 2019) with weight decay 0.01 and base364

learning rate of 3·10−4, 0.1 label smoothing and 0.1365

dropout. For more details we refer to Appendix B.366

In the following, we abbreviate a model with LE367

encoder and LD decoder layers by LE/LD, e.g. a368

12/12 model refers to a system with 12 encoder and369

decoder layers each.370

For testing, we evaluate both the translation qual-371

ity, as well as the inference speed and energy con-372

sumption of each of the trained model configura- 373

tions. For this we compute BLEU (Papineni et al., 374

2002) and COMET (Rei et al., 2020) for each of 375

the language pair’s four test sets, and in the interest 376

of readability report the average of each metric in 377

the tables. BLEU is computed via Sacrebleu (Post, 378

2018) with paired approximate randomization (Rie- 379

zler and III, 2005), COMET uses the checkpoint 380

Unbabel/wmt22-comet-da and bootstrap resam- 381

pling (Koehn, 2004). As the use of white spaces 382

is inconsistent in Korean, we report character-level 383

BLEU for this language pair, and report BLEURT 384

(Sellam et al., 2020) instead of COMET1. 385

Profiling the CPU time and energy is done on 386

a single fixed machine which resembles a server- 387

typical setup with a total of 128 Intel® Xeon® 388

Gold 6438Y+ CPUs (Sapphire Rapid) and 500 GB 389

RAM running Ubuntu 22. We reserve this machine 390

exclusively for the translation executable which we 391

give access to a subset of 8 of these CPUs. For 392

each model, we concatenate the four language-pair 393

specific test sets, and then measure the total time 394

and energy the translation itself takes. Sequences 395

are sorted by their length to reduce the amount of 396

padding, translating 16 sentences at a time in each 397

batch. Our models are converted into TorchScript 398

and automatically optimized using PyTorch’s JIT 399

engine2. As it may take longer to translate when the 400

model and data is first loaded , we run a translation 401

of all data once as a warmup phase before profiling 402

the actual runtime and energy usage. 403

The CPU energy usage is measured in a separate 404

thread by rapidly polling the current power usage3 405

and integrating over time. This also includes the 406

passive energy usage by running the node and op- 407

eration system. As the runtime and energy con- 408

sumption varies between different executions, we 409

run each inference three times and then report the 410

median to omit outliers. For GPU inference we use 411

one NVIDIA RTX 2080 Ti4. 412

We report the translation speed measured in unto- 413

kenized English words per second (WPS), and the 414

energy consumption in kJ for running the complete 415

inference. 416

1In our experiments, COMET turned out highly unreliable
for Korean; achieving ≈ 50 COMET even for completely bro-
ken models as can also be seen in Table 1 of Lee et al. (2025)’s
work.

2Using torch.jit.optimize_for_inference
3Via s-tui, https://github.com/amanusk/s-tui
4Running nvidia-smi --query-gpu=power.draw peri-

odically to poll the power usage

5

https://github.com/amanusk/s-tui


Beam Size BLEU COMET WPS kJ

32 35.3 85.4 18 2462
16 35.3 85.3 31 1429
12 35.3 85.4 49 931
8 35.3 85.3 77 588
4 35.1 85.3 135 338
2 34.8 85.2 184 239
1 34.3 85.0 280 166

greedy 34.3 85.0 329 145
+ quantize 34.4 84.8 776 66

Table 1: Impact of beam size on quality, speed and en-
ergy for the En→De 12/12 system. We also investigate
greedy search and quantization.

7.3 Evaluation: Inference Optimizations417

At first, we investigate the effect of the beam size418

during inference in terms of translation quality,419

speed and energy. The results for En→De are pre-420

sented in Table 1. Starting from the baseline beam421

size of 8, increasing it stepwise to 32 does not effect422

quality, but slows down translation from 77 to 18423

WPS while also increasing the energy consumption424

by a factor of 4. This underlines that higher beam425

sizes yield no improvement (Yang et al., 2018).426

Moving into the opposite direction, decreasing427

the beam size down to 1 yields a 3.6× speedup428

and a 3.5× energy efficiency boost at the cost of429

1.0 BLEU and 0.3 COMET. To discard the overhead430

of beam search, we replace it by a greedy search431

implementation. This does not affect quality, but432

further improves speed and energy to 329 WPS and433

145 kJ, respectively.434

Additionally quantizing the model results in a435

translation speed of 776 WPS while consuming436

66 kJ, which corresponds to improvement factors437

of 10.1 and 8.9 over the baseline. If not mentioned438

otherwise, we use greedy search and quantization439

for all evaluations to follow, all being carried out440

on CPUs.441

7.4 Evaluation: Architectural Optimizations442

We then investigate the impact of reallocating lay-443

ers from the decoder to the encoder (see Table 2,444

lines 1–4). Starting from the 12/12 baseline model,445

we can shift 6 or even 9 layers without seeing a446

degradation in quality, increasing translation speed447

from 776 to 1.1k WPS. Moving all but one layer448

to the encoder results in the 23/1 model which is449

nearly 2.5× faster than the 12/12 model at the cost450

Enc Dec BLEU COMET WPS kJ

12 12 34.4 84.8 776 66
18 6 34.3 85.0 1.1k 51
21 3 34.2 84.9 1.5k 45
23 1 33.7 83.4 1.9k 42

12 1 33.5 83.0 2.8k 39
6 1 33.0 82.3 3.8k 37
5 1 32.8 82.2 4.1k 37
4 1 32.3 81.7 4.4k 36
3 1 31.8 81.1 4.8k 35
2 1 30.9 80.3 5.1k 36
1 1 28.7 77.8 5.6k 35

Table 2: Impact of layer reallocation and reduction on
quality, speed and energy for En→De. All systems here
utilize greedy search and quantization.

Decoder BLEU COMET WPS kJ

‘big’ 32.8 82.2 4.1k 37
‘base’ 32.3 81.3 5.1k 36
‘small’ 31.7 79.8 6.1k 35
‘tiny’ 31.1 78.0 7.2k 35

Table 3: Impact of decoder width on quality, speed
and energy for the En→De quantized 5/1 system with
greedy search.

of 0.7 BLEU points. The energy consumption is 451

improved by a factor of more than 1.5. 452

Furthermore, we decrease the number of layers 453

in the decoder down to a point where it is still 454

acceptable in terms of translation quality, bearing 455

in mind that we also want to improve the decoder 456

width. The results are presented in the bottom part 457

of Table 2. Given our minimum 90% threshold of 458

our baseline, i.e. 31.8 BLEU, the 3/1 model with 459

4.8k WPS would be still acceptable. However, as 460

we want to have the possibility to further improve 461

the decoder width, we settle with the 5/1 model 462

as trade-off between quality and efficiency. Note, 463

that the number of encoder layers has only a minor 464

effect on the energy consumption (lines 4-11). 465

Having settled on a quantized 5/1 model with 466

greedy search, we proceed with decoder-width opti- 467

mization (see Table 3). Starting with a Transformer 468

‘big’ decoder, we stepwise halve the decoder di- 469

mension d until reaching the Transformer ‘tiny’ 470

model with only 1/8 dimension width in compari- 471

son to Transformer ‘big’ (where d = 1024). The 472

number of attention heads and the feedforward di- 473

6



Decoder BLEU COMET WPS kJ

Transformer 31.7 79.8 6.1k 35

SSRU 30.5† 78.4† 7.3k 35
+ interleave 30.6† 79.8 7.3k 35

LSTM 7.6† 43.3† 6.0k 35
+ interleave 31.4 80.5† 7.0k 35

Table 4: Different decoder architectures, applied to the
En→De quantized 5/1 model with the ‘small’ decoder
size. † indicates a statistically significant difference
w.r.t. the Transformer decoder (p < 0.005).

mension is down-scaled accordingly. Although the474

quality loss per step is 0.5–0.6 BLEU, the gain in475

speed becomes less while the energy consumption476

is basically constant. Thus, we choose the Trans-477

former ‘small’ decoder (decoder model dimension478

d = 256, 4 attention heads, dff = 1024) for further479

experiments, as it offers a good trade-off between480

the speedup and quality loss.481

7.5 Evaluation: RNN Decoder Replacement482

A common approach to speed up the inference for483

MT is to replace the decoder with an RNN (Kim484

et al., 2019; Hsu et al., 2020; Lin et al., 2021). How-485

ever, existing research has not studied the perfor-486

mance of such hybrid models when they are com-487

bined with inference optimizations such as greedy488

search and quantization—which for themselves al-489

ready yield a speedup of factor 10 at only minor490

drop in quality.491

In Figure 3 we show that the effect of quantiza-492

tion and beam size reduction varies between differ-493

ent metrics: we compare our hybrid models with494

Transformer and LSTM decoders (with interleav-495

ing). Across all metrics, the hybrid LSTM decoder496

performs better than the Transformer decoder when497

using beam search and not applying quantization.498

However, in BLEU this advantage vanishes when499

decoding with quantization and greedy search. For500

COMET and BLEURT, this is not the case.501

We proceed to compare different RNN architec-502

tures: the standard LSTM (Hochreiter and Schmid-503

huber, 1997) and the optimized SSRU (Kim et al.,504

2019); and apply our proposed interleaving ap-505

proach to both models.506

As shown in Table 4, the interleaved SSRU de-507

coder is faster but the quality is worse. Interleaving508

proves to be crucial for the LSTM decoder, which509

offers the best speed-quality trade-off: It has the510

best COMET score of 80.5, and despite its 31.4511

Decoder KD BLEU COMET WPS

Transformer ✗ 31.7 79.8 6.1k
✓ 32.2 80.5 6.1k

SSRU interl. ✗ 30.6 79.8 7.3k
✓ 31.7 81.0 7.4k

LSTM interl. ✗ 31.4 80.5 7.0k
✓ 32.0 81.3 7.0k

Table 5: Impact of knowledge distillation (KD) on qual-
ity, speed and energy for the En→De quantized 5/1
system with a Transformer ‘small’ decoder and greedy
search. All systems have consumption of 34–35 kJ.
All three KD systems have pairwise statistically signifi-
cantly different COMET scores (p < 0.005).

BLEU being slightly lower than the 31.7 BLEU 512

gained with the Transformer decoder, this differ- 513

ence is statistically not significant. At the same 514

time it is 91× faster than the baseline model. 515

7.6 Evaluation: Training Optimization 516

After having improved the model speed and en- 517

ergy consumption, we shift our focus on improving 518

its translation quality through knowledge distilla- 519

tion (KD). We utilize the strongest model—the 520

12/12 Transformer ‘big’ baseline—as the teacher 521

and weigh the CE and KD losses with α = 0.5 and 522

β = 1.0, respectively, since this setting performed 523

best in prior experiments. 524

Table 5 presents the performance of the models 525

trained with KD in comparison to their counter- 526

parts without. The Transformer system with KD 527

performs best in BLEU with a small 0.2 advantage 528

over the interleaved LSTM with KD, which in turn 529

outperforms the Transformer by 0.8 COMET and 530

is faster by 0.9k WPS. On the other hand, the in- 531

terleaved SSRU offers the fastest inference speed 532

with 7.4k WPS, but its performance in both BLEU 533

and COMET is worse by 0.3 in comparison to the 534

interleaved LSTM. 535

Note, that the BLEU score of 31.7 gained by the 536

interleaved SSRU with KD corresponds to only 537

89.8% translation quality w.r.t. our baseline Trans- 538

former system, which is does not fulfill our goal to 539

preserve at least 90% quality. 540

7.7 Evaluation: Summary 541

Table 6 summarizes the gains by all optimization 542

techniques proposed in this work when applied in- 543

crementally for both the En→De and En→Ko tasks. 544
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Figure 3: Comparing the decoding quality and speed, with different beam sizes: 4, 2, and 1 (using greedy search).
All models use the 5/1 architecture with either a Transformer ‘small’ or interleaved LSTM ‘small’ decoder.

English → German English → Korean
Technique Quality CPU GPU Quality CPU

BLEU COMET WPS kJ WPS kJ BLEU BLEURT WPS kJ

Transformer ‘big’ 35.3 85.3 77 588 484 76 28.1 57.6 90 413

+ greedy search 34.3 85.0 329 145 1.3k 23 27.3 56.9 316 123
+ quantize 34.4 84.8 776 66 n.a. n.a. 27.2 56.8 785 60
+ depth opt. 32.8 82.2 4.1k 37 6.0k 5.6 25.6 55.3 3.6k 42
+ width opt. 31.7 79.8 5.8k 35 6.6k 3.4 24.9 54.2 5.4k 41
+ LSTM interl. 31.4 80.5 7.0k 35 6.9k 3.0 24.7 54.2 5.8k 40
+ KD 32.0 81.3 7.0k 35 6.9k 2.9 25.7 55.4 5.9k 40

Table 6: Incrementally applying all proposed techniques to the En→De and En→Ko task. We report inference
speed (WPS) and energy consumption (kJ) on CPU and GPU.

Details on all intermediate results for En→Ko are545

to be found in the Appendix A.546

For En→De, we preserve 90.7% relative BLEU547

and 95.3% relative COMET, i.e. we lose 3.3 BLEU548

and 4.0 COMET absolute. At the same time, we549

gain 91× translation speed and 94.0% energy550

savings on CPU. An extended analysis reveals that551

the speed gains are particularly high for long se-552

quences (see appendix, Figure 4).553

On GPU we obtain 14.3× translation speed and554

96.2% energy savings. Note, that the final model is555

14.5× faster on CPU than the vanilla Transformer556

‘big’ model on GPU. Overall, our final model is as557

fast on CPU as it is on GPU. Note, that no GPU ker-558

nels exist in PyTorch 2.5 for quantization. Hence,559

all GPU results are obtained without quantization.560

In the En→Ko test sets, there are 1.19 target561

tokens per source token on average, whereas in562

the En→De test sets this number is 1.36. As there563

are less target words to be generated per source564

word in the En→Ko task, there are less decoding565

steps, which explains why for En→Ko the baseline566

system achieves a translation speed of 90 WPS.567

Overall, the speedup for En→Ko is 65-fold and568

our finals systems achieves 90% energy savings,569

while still achieving 91% relative BLEU and 96% 570

relative BLEURT, which underlines the general ap- 571

plicability and gains of our proposed optimizations. 572

However, as there are less decoding steps than in 573

the En→De task on average, there is also less gain 574

to be expected by the proposed techniques. 575

8 Conclusion 576

In this work, we introduced Green KNIGHT, an 577

easy-to-cook recipe that substantially accelerates 578

inference and reduces the energy consumption of 579

NMT models while incurring only minimal loss in 580

translation quality. In contrast to specialized low- 581

level or hardware-specific optimizations, Green 582

KNIGHT achieves these gains through widely 583

used and well-understood tools and methods, mak- 584

ing it immediately adoptable in production NMT 585

pipelines. Our experiments on two language pairs 586

show that this carefully crafted recipe achieves 587

speed-ups up to 91×, reduces energy consump- 588

tion up to 94%, while losing not more than 4.7% 589

relative COMET or 9.5% relative BLEU compared 590

to the baseline. Crucially, the final models achieve 591

the same throughput on both the CPU and GPU, 592

significantly contributing to democratizing NMT. 593
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Limitations594

The empirical relevance of this work might be lim-595

ited by the tasks we report on and the evaluation.596

We report on two high-resource datasets translating597

from English as the source language. Although, ac-598

cording to our findings, the encoder (and therefore599

the source language) does not seem to be the bottle-600

neck, further investigation would be needed to con-601

firm this. We base our findings on higher-resource602

language pairs and do not investigate low-resource603

settings or other language pairs.604

Due to resource constraints, we were also only605

able to perform a single training run per reported606

system. Furthermore, our evaluation is limited to607

automatic metrics. We validate our results using a608

range of automatic metrics (COMET, BLEURT, and609

BLEU), but we do not perform a human evaluation.610

We only reported results measured on a single611

machine and one specific driver version for the mea-612

surement of translation speed and energy. Although613

the setup used is typical for a server CPU, using dif-614

ferent hardware might impact the translation speed615

and energy consumption. Furthermore, time and616

energy measurements inherently suffer from some617

variance between runs, which can depend on ex-618

terior factors such as the server’s temperature or619

system background jobs.620

Potential Risks621

As our primary results are based on automated met-622

rics, they do not necessarily reflect the quality as623

assessed by humans. This is especially true for neu-624

ral metrics such as COMET and BLEURT, which625

are not auditable and may lead to unpredictable re-626

sults in varying domains and language pairs. E.g.,627

we observed that COMET did not give reasonable628

scores for our English to Korean evaluations, de-629

spite the authors claiming it should work for this630

language pair5. Relying blindly on these metrics to631

make decisions can lead to potential misjudgments632

in translation quality.633
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Beam Size BLEU BLEURT WPS kJ

32 27.8 57.3 22 1645
16 27.9 57.5 38 977
12 27.9 57.4 58 649
8 28.1 57.6 90 413
4 28.1 57.5 151 245
2 27.8 57.4 196 184
1 27.3 56.9 287 133

greedy 27.3 56.9 315 122
+ quantize 27.1 56.8 785 60

Table 7: Various beam sizes of En-Ko system with a
12-layer encoder and a 12-layer decoder. We also inves-
tigate greedy search and quantization.

Enc Dec BLEU BLEURT WPS kJ

12 12 27.2 56.8 785 60
23 3 27.3 57.2 1.3k 49
21 1 26.6 56.3 1.7k 47

12 1 26.3 55.9 2.4k 44
6 1 25.7 55.4 3.3k 42
5 1 25.6 55.3 3.6k 42
4 1 25.1 55.0 3.7k 42
3 1 24.9 54.7 4.0k 41
2 1 24.1 53.6 4.2k 42
1 1 22.4 51.5 4.8k 41

Table 8: Comparison of En-Ko systems with varying
encoder and decoder depth. All investigated systems
utilize greedy search with quantization.

A Detailed Results on Secondary Task846

We verify the effectiveness of the proposed opti-847

mizations on the English to Korean task.848

The procedure here is exactly the same as for849

English to German and investigate the beam size850

first as shown in Table 7. We choose the beam size851

of 8 as a baseline, as it gives the best BLEU and852

BLEURT. Then we follow the recipe as described853

for English to German. We then start with the infer-854

ence optimization (greedy search and quantization)855

in Table 7. Then we optimize the architecture, i.e.856

the depth and width shown in Tables 8, and 9 re-857

spectively. We then replace the decoder with our858

LSTM implementation, and apply knowledge dis-859

tillation, as shown in Table 10. In each step, the860

chosen hyperparameters correspond to the same861

ones as for the English to German task.862

Decoder BLEU BLEURT WPS kJ

‘big’ 25.6 55.3 3.6k 42
‘base’ 25.1 54.8 4.7k 41
‘small’ 24.9 54.2 5.4k 41
‘tiny’ 24.3 53.4 5.6k 40

Table 9: Comparison of En-Ko system with various
decoder width. All investigated system utilize a 5-layer
Transformer ‘big’ encoder, a single layer Transformer
decoder and greedy search with quantization.

Decoder BLEU BLEURT WPS kJ

Transformer 24.9 54.2 5.4k 41
+ KD 25.4 54.9 5.5k 40

Interl. LSTM 24.7 54.2 5.8k 40
+ KD 25.7 55.4 5.9k 40

Table 10: Impact of training optimization on quality,
speed and energy for the En→Ko quantized 5/1 system
with a ‘small’ decoder and greedy search.

B Training Details 863

The statistics of our training and test data is pre- 864

sented in Table 11. The exact training corpora are 865

stated in Tables 12a and 12b. We apply some fil- 866

tering to our training data based on a set of rules, 867

as well as similarity based on LaBSE embeddings 868

(Feng et al., 2022). 869

All models, independently of the configuration, 870

are trained for 250 sub-epochs of 1M samples. Our 871

optimizer is AdamW (Loshchilov and Hutter, 2019) 872

with β = (0.9, 0.98), weight decay 0.01 and a 873

learning rate of 3 · 10−4, which after a warmup of 874

ten epochs is reduced by factor 0.9 if the validation 875

perplexity plateaus. We use 16-bit mixed precision 876

training (Micikevicius et al., 2017) as provided by 877

PyTorch lighting, and an effective batch size of 878

up to 120k source plus target tokens. We apply a 879

training dropout of 0.1 and label smoothing of 0.1. 880

For both language pairs, we compile a heldout 881

validation set that approximately equally represent 882

the four test sets, and use this validation set to 883

select the best checkpoint after each sub-epoch by 884

computing validation BLEURT. 885

Our En→De baseline system has 485M train- 886

able parameters and was trained on two NVIDIA 887

RTX A6000 GPUs, which took around 103 hours 888

to complete. Other models train faster due to their 889

reduced complexity. All datasets and tools that this 890

work is based on are publicly available. 891
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Dataset Sentences
Total Words Vocabulary Words

English German English German

Training Data 90.6M 1.6B 1.4B 11.3M 22.9M

Test Data (total) 8984 154.0k 142.7k 29.6k 36.2k
WMT newstest2019 1997 42.0k 42.1k 10.6k 12.4k
TED tst2018 1978 38.0k 35.1k 6.7k 8.4k
Europarl ST 2631 60.4k 52.3k 8.2k 11.2k
OpenSubtitles 2018 2378 13.6k 13.1k 4.0k 4.3k

(a) English to German task

Dataset Sentences
Total Words Vocabulary Words

English Korean English Korean

Training Data 27.9M 265M 201M 183.2M 3.4M

Test Data (total) 10483 123.6k 83.4k 16.0k 77.7k
FBIS test 2013 676 21.8k 13.0k 4.7k 12.6k
Korean English treebank 3883 51.5k 36.7k 5.9k 33.7k
TED tst2015 1214 21.2k 15.1k 4.9k 14.4k
OpenSubtitles 2018 4710 29.1k 18.6k 6.0k 16.9k

(b) English to Korean task

Table 11: Total training and test set sizes.
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Figure 4: Relative CPU speed up of our optimized model (final row in Table 6) vs. the Transformer ‘big’ baseline,
binned by source sequence length. While the baseline scales poorly with increasingly long sequences, this effect is
mitigated with our optimized models. The graph also shows that our models are faster at decoding sentences with
32 or less tokens. This is because longer sequences exhaust hardware parallelization or cache capabilities. These
capabilities are exhausted faster with the larger model, thus with the smaller optimized model we see this spike in
speedup for larger sequences.

13



10% OPUS-OpenSubtitles (16,166,700)
5% OPUS-TED2020 (162,134)
5% News-Commentary (317,129), OPUS-GlobalVoices (83,240)
5% OPUS-Europarl (2,308,549)

65% pattr (12,183,523), OPUS-CCAligned (10,876,712), OPUS-EuroPat (10,664,245), OPUS-
EUbookshop (5,459,744), OPUS-TildeMODEL (3,249,472), OPUS-MultiCCAligned
(2,638,152), OPUS-ELRC (2,599,018), OPUS-ParaCrawl (2,551,919), OPUS-DGT
(2,240,204), OPUS-JW300 (1,707,885), OPUS-WikiMatrix (1,139,146), OPUS-Wikipedia
(1,073,073), rapid (692,934), OPUS-Tatoeba (546,960), CommonCrawl (523,024), OPUS-
Tanzil (492,585), WikiTitles (487,528), OPUS-QED (417,637), OPUS-JRC-Acquis
(265,780), covost (258,177), OPUS-EMEA (201,860), EUTV (152,233), must-c (115,563),
OPUS-KDE4 (100,791), OPUS-MultiUN (63,833), OPUS-ECB (63,277), OPUS-bible-
uedin (37,857), OpenOffice (25,980), OPUS-MPC1 (15,794), OPUS-GNOME (12,814),
OPUS-Ubuntu (6,971), OPUS-PHP (6,557), OPUS-EUconst (1,928), OPUS-Salome (1,057),
OPUS-RF (165)

10% extracted parallel short phrases and dictionary entries from the above corpora

(a) English to German training data

10% OPUS-TED2020 (323,188)
1% fbis (39,867)

14% OPUS-OpenSubtitles (947,351)
65% OPUS-NLLB (13,736,682), OPUS-CCMatrix (3,799,459), OPUS-ParaCrawl (2,267,324),

OPUS-CCAligned (2,199,281), OPUS-LinguaTools-WikiTitles (1,533,792), systran
(576,744), OPUS-MultiCCAligned (475,984), naver (375,119), OPUS-XLEnt (328,552),
taus (315,934), subscene (188,012), jaykim (118,297), OPUS-QED (112,298), OPUS-
WikiMatrix (88,069), OPUS-Tanzil (62,991), jhe-park (52,850), joongang (47,555), joint-
pubs (42,438), OPUS-bible-uedin (40,161), kaist (30,269), OPUS-KDE4 (23,249), OPUS-
wikimedia (18,285), osc translated text (15,813), goodneighbor (14,484), various-book1-
johanna (13,513), OPUS-Tatoeba (11,403), donga-ilbo (10,728), various-military (9,202),
OPUS-Mozilla-I10n (6,791), OPUS-GlobalVoices (6,108), bible world (4,794), sejong
(4,632), OPUS-MDN Web Docs (3,655), kgf (3,442), various-unknown-topic (2,871), nvtc
(2,673), OPUS-tldr-pages (1,096), OPUS-ELRC (732), usembassy (575), usfkgovplan (204),
various-medical (140), OPUS-PHP (126), social-media (92), OPUS-GNOME (74), OPUS-
Ubuntu (13)

10% extracted parallel short phrases and dictionary entries from the above corpora

(b) English to Korean training data

Table 12: Training dataset statistics per weight group. Training data is mostly taken from OPUS (Tiedemann and
Thottingal, 2020) and then filtered. We report the number of sentences after filtering here. Before training, we
additionally apply sentence deduplication.
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