The Green KNIGHT: Green Machine Translation with
Knowledge-Distilled, Narrow, Inexpensive, Greedy, Hybrid Transformers

Anonymous ACL submission

Abstract

State-of-the-art neural machine translation
(NMT) models deliver high-quality transla-
tions at the expense of large inference la-
tency and energy consumption, requiring vast
GPU fleets and contributing significantly to car-
bon emissions. To democratize and “green”
NMT, we introduce the Green KNIGHT, a
hardware-agnostic collection of recipes to op-
timize model performance in terms of speed
and energy consumption, with only a minor
trade-off in quality. On two high-resource
benchmarks we show up to 91 x CPU speedup
and 94% energy savings for En—De, and 65 X
speedup and 10% energy usage for En—Ko;
while incurring only minor losses of 9% rel-
ative BLEU. Our results prove that efficient
and environmentally conscious NMT can be
realized through optimizations build on well-
understood, off-the-shelf techniques with no
custom low-level code required, making our ap-
proach immediately deployable in real-world
translation pipelines.

1 Introduction

Neural Machine Translation (NMT) has rapidly
become the standard for automated language trans-
fer, achieving human-competitive fluency and ade-
quacy across dozens of language pairs with Trans-
former architectures (Vaswani et al., 2017). Most
research aims at improving model performance,
which usually goes hand in hand with larger and in
particular deeper models whose inference time and
energy consumption worsen due to the quadratic
dependence on target length of the autoregressive
decoder as well as the high cost of beam search.
In particular, as shown in Figure 1, the conven-
tional Transformer ‘big” model can spend over 95%
of its per-batch runtime in the decoder. This imbal-
ance not only throttles throughput but also drives
up energy usage. Recent years have seen large
language models (LLMs) surpass traditional Trans-
former models in translation quality (Kocmi et al.,

Vanilla Transformer runtime

encoder: 100 ms decoder: 2500 ms

x generated target tokens

Optimized Green KNIGHT runtime

encoder: 32 ms decoder: 24 ms

~ /

X generated target tokens

Figure 1: Runtime breakdown for the vanilla Trans-
former (100 ms encoder + 2500 ms decoder per batch,
95% spent in the decoder) versus our optimized Green
KNIGHT model. By shifting the workload toward the
encoder (32 ms) and drastically reducing decoder cost
(24 ms), our design ultimately yields up to 91 x speedup
and 94% energy savings for En—De.

2024). However, LLMs tend to be larger by mag-
nitudes and more expensive to operate than Trans-
formers, which is not reflected by the difference
in quality. This heavy resource burden renders
LLM-based translation even less sustainable for
most enterprises and hinders broader deployment.
In contrast, we aim at NMT with a better quality-
speed/energy trade-off than recent LLMs and there-
fore focus on improving encoder-decoder models.

Parallel to our goal of making machine trans-
lation more efficient, we want to reduce the eco-
logical footprint of machine translation systems in
order to reduce significant carbon emissions—an
issue which has been advocated before in the con-
text of general Al (Strubell et al., 2019; Schwartz
et al., 2020) and NMT systems in particular (Shte-
rionov and Vanmassenhove, 2023), but received
only minor attention by the broad NMT commu-
nity. Hence, we ask the question: How “green”

can machine translation become while still being
practicable?

To tackle these issues, we aim at gaining
as much translation speed and energy savings
as possible while not losing more than 10 %
relative translation quality measured in BLEU as
well as COMET or BLEURT. As a solution we
introduce the Green KNIGHT, a recipe to build
hardware-agnostic Transformer models for green
machine translation. They combine inference-time
optimizations such as greedy decoding and
dynamic 8-bit quantization with architectural
changes to decrease the decoder work load. In
particular, we investigate fast hybrid models with
RNN (Cho et al., 2014; Bahdanau et al., 2015) and
SSRU decoders (Kim et al., 2019), augmented
with knowledge distillation (Kim and Rush, 2016).

The main contributions of our work are:

1. We comprehensively analyze the stacked ef-
fect of various inference and architecture op-
timizations, considering quality, speed and
energy measurements for every step and all
contributions mentioned next.

2. A comparison of various hybrid translation
models under the applied inference and archi-
tecture optimizations.

3. The evaluations on two real-life tasks that in-
clude multiple domains. We show that our
final model yields 91 x faster translations and
saves 94% energy on the English—German
task, while being 65 x faster and using only
10% energy for English—Korean translations.

The final model runs equally fast on CPU and
GPU, making it a viable deployment option even
in resource-constrained environments. Our work
proves that easy-to-implement methods can make
MT substantially more time- and energy effi-
cient, encouraging more research teams to consider
Green Al (Schwartz et al., 2020) when developing
and deploying NMT systems.

2 Related Work

Kim et al. (2019) introduce a suite of model-
ing and engineering improvements for fast NMT.
They enhance teacher-student training with multi-
agent dual learning and noisy back-translation,
and replace self-attention in the decoder with a
lightweight recurrent unit (SSRU), tying weights

between decoder layers to reduce parameters and
improve CPU cache efficiency. Their inference op-
timizations include 8-bit quantization, 16-bit GPU
inference, and concurrent GPU streams, all imple-
mented in a custom C++ Marian framework. Their
models achieve up to 24x CPU and 14x GPU
speedups over their 2018 baselines without BLEU
loss. In contrast, our work uses standard PyTorch,
explores a broader range of decoder sizes, and em-
ploys a simpler knowledge distillation approach.
We also explore more RNN decoder variants and
do not rely on C++-specific optimizations or weight
tying.

Hsu et al. (2020) empirically combine sev-
eral known techniques, including multi-agent dual
learning for distillation, SSRU and AAN de-
coders (Zhang et al., 2018), removal of the de-
coder feed-forward network (FFN), and a deep
encoder—shallow decoder structure (12/1 layers).
They further reduce parameters by pruning atten-
tion heads, achieving 109% CPU and 84% GPU
speedups with 25% fewer parameters, while match-
ing the Transformer “base” quality. Unlike their
work, we do not focus on parameter reduction, but
rather on maximizing speed and energy efficiency
with minimal quality loss. We systematically eval-
uate various decoder sizes, tune the beam size, and
find that removing the decoder’s FFN is not benefi-
cial in our setting.

Lin et al. (2021) present a combination of simple,
hardware-agnostic techniques for efficient Trans-
former inference, such as tuning the vocabulary
size, using a shallow decoder, pruning attention
heads, dropping the decoder FFN, and factorizing
the output projection. They also employ weight dis-
tillation and “weak” distillation (training without
dropout or label smoothing in the shallow decoder).
Their approach yields a ~ 3.5x speedup without
quality degradation. In contrast, we achieve much
higher speedups (up to 91x) by allowing small
quality degradation and incorporating RNN-based
decoders.

Lin et al. (2023) present an NMT system opti-
mized for mobile deployment through three key
architecture improvements: reducing vocabulary
size instead of using embedding factorization, re-
ducing model width rather than using parameter
sharing, and employing a deep encoder with a
shallow decoder. Combined with knowledge dis-
tillation, dropout removal, and optimization of
integer operations, their 10MB model achieves
a ~ 47x speedup while maintaining 88.4% of

Transformer-big performance, with 99.5% mem-
ory reduction. Their 20MB variant achieves 95.5%
baseline performance with a ~ 27.7x speedup.
Unlike their approach, our work does not require
custom hardware-specific implementations, and we
thoroughly investigate beam size tuning and RNN
decoder alternatives.

3 Transformer Models

Since the introduction of the Transformer (Vaswani
et al., 2017), this network architecture is the
de-facto standard for machine translation. The
model can be described as being composed of
two main parts; an encoder which compresses
the input source sentence, and a decoder which
autoregressively—i.e. word-by-word—generates
the hypothesis in the target language. Both, en-
coder and decoder consist of a stack of layers which
transform dense vector-representations of a fixed
model dimension d. The encoder as well as the de-
coder layers consist of a self-attention component,
which scales quadratically in the input sequence
length, as well as a feedforward sub-layer. In addi-
tion, the decoder also has a cross-attention compo-
nent of similar complexity as the self-attention.
Despite encoder and decoder having a compa-
rable total number of floating point operations
(roughly weighted 2:3 due to the cross-attention
in the decoder), the computations of the encoder
can be parallelized while the decoder in this archi-
tecture is inherently autoregressive. This effect is
further amplified by beam search, and in our case
leads to 95% of the total computation time being
spent in the decoder (as presented in Figure 1).

4 Inference Optimizations

We commence with optimizing inference as it is
independent of any system, i.e. it introduces no re-
training burden and can be adopted with minimal
engineering effort.

4.1 Greedy Search

To begin with, we reduce the number of candidate
hypotheses per time step by shrinking the beam
size down to 1. Moreover, by utilizing greedy de-
coding, we eliminate all overhead due to beam
management.

4.2 Quantization

The most expensive operation in the Transformer
are vector-matrix multiplications. In our measure-

ments, they take around 55% of the total baseline
computation time.

These operations can be sped up by comput-
ing them in 8-bit integer arithmetic, with hard-
ware acceleration on recent CPUs (Bhandare et al.,
2019). We apply a dynamic post-training quanti-
zation scheme which computes ranges of the ac-
tivations on-the-fly during inference (Tang et al.,
2024) and apply it to all major vector-matrix mul-
tiplications: the feedforward blocks, the attention
key/value/query computation and projection, the
softmax, and the RNN cells (in case of the SSRU
and LSTM experiments).

5 Architectural Optimizations

As our baseline, we adopt the state-of-the-art Trans-
former ‘big’ model, in which the encoder and de-
coder share the same depth. As previously shown
in Figure 1, the decoder dominates the encoder in
inference runtime. Hence, our focus lies on apply-
ing architectural modifications that shift computa-
tion towards the encoder and thus streamline the
decoder, as illustrated in Figure 2.

5.1 Layer Reallocation & Reduction

At first, we shift all decoder layers but one to the
encoder, leveraging the parallelism in the encoder.
The reallocation results in a model comprising Lg+
Lp — 1 encoder layers and a single-layer decoder.

Moreover, we empirically investigate the trade-
off between translation quality and efficiency re-
garding translation speed and energy consumption.
Since the mapping between encoder depth and
quality-efficiency ratio is not linear, our focus does
not lie on reducing the encoder to as few layers as
possible, but rather on finding a good optimum.

The combined effect of both steps is illustrated
in Figure 2b. In comparison to the baseline model
(Figure 2a), the resulting model contains only a
shallow single-layer decoder and an encoder that is
significantly less deep.

5.2 Decoder Width Compression

After having shrunk the decoder to just a single
layer (see Figure 2b), we aim at further improving
translation speed by also using reducing the de-
coder hidden dimension d to a smaller dimension
d' < d, as pictured in Figure 2c. Accordingly, we
also decrease the size of the forward-projections
(which in the baseline was chosen as 4d) to 4d’.
As every component in the Transformer decoder

%

L

Decoder

6 6 o

Encoder

6 o o

Encoder

(a) Baseline model.

(b) Reallocated & reduced layers.

L

Decoder

L

Decoder

6 6 o

Encoder

(c) Compressed decoder width.

Figure 2: Architecture optimizations.

scales with the model dimension, this reduces the
computational load of the entire decoder.

5.3 Replacing Transformer with Interleaved
RNN Decoder

Finally, we replace the Transformer decoder with a
custom lightweight RNN module. First, we experi-
ment with replacing the self-attention layer of the
decoder with an RNN layer (Kim et al., 2019; Hsu
et al., 2020; Lin et al., 2021). We tested a standard
LSTM (Hochreiter and Schmidhuber, 1997) and an
optimized SSRU (Kim et al., 2019). Unlike previ-
ous work, we use only one decoder layer (see Sec-
tion 5.1). In our initial experiments with LSTM, we
observed a notable decrease in quality, with some
smaller models practically diverging (see Table 4).
We assume that this is due to the fact that the RNN
cell is never exposed to hidden representations of
the encoder. Therefore, we rewire the decoder by
enriching the hidden state of the RNN cell h; with
a cross-attention to the hidden representation of the
encoder H.,. (Bahdanau et al., 2015):

h::; ct = RNN(z, b1, ct-1), (1)
hy = hj + Attention(Hepe, h}).
In this way, the RNN cell has a direct information
path to the source sentence. We dub this method in-
terleaving, as RNN cell and cross-attention compu-
tations are interleaved between token positions. As
the original SSRU design lacks a hidden state, we
integrate one by concatenating the input embedding
x; with the previous output hy, i.e., z; = [x¢, hy).

6 Training Optimizations

After improving translation speed and energy con-
sumption by optimizing inference and the model

architecture, we address the question of how to op-
timize the training of our models. Here, the goal
is different, as we aim at gaining better models
in terms of translation quality rather than making
them more time and energy efficient.

To achieve this goal, we apply sequence-level
knowledge distillation (KD; Kim and Rush, 2016)
using the baseline model as the teacher model pr,
which aids the training of the student model pg
using the aforementioned optimized architecture.
However, instead of using the cross-entropy be-
tween student and teacher, we use the Kullback-
Leibler divergence Dy (-, -) to compute the addi-
tional training loss Lxp:

1
Lxp = —*<DKL(ps,pT) + DKL(pT,ps)>- 2

2
The resulting overall training loss is computed as
L=aoa- -Lcg+ P Lkp. 3)

LcE is the cross-entropy loss of the student model
and «, 3 are corresponding hyper parameters.

7 Experiments

We evaluate our methods on two real-world, large-
scale machine translation tasks: En—De and
En—Ko. Although we evaluate our proposed
recipes on both tasks, due to limited space we
move the intermediate results for En—Ko to the
Appendix A.

The overall goal is to build a system that pre-
serves 90% translation quality of the baseline,
while yielding as much translation speed and en-
ergy savings as possible.

7.1 Data

We aim to evaluate systems in an realistic, industry-
scale setting by training general-domain MT sys-

tems on a large dataset. To evaluate the general-
domain quality of the MT systems, we chose four
test sets of varying domains for both the En—De
and En—Ko task. The corresponding training data
was selected as a mix of in-domain data matching
the test set domains, and general out-of-domain
and crawled data.

For En—De, we use four test sets from the movie
subtitles (OpenSubtitles 2018 test set), talks (TED
tst2018), news (WMT newstest2019), and parlia-
ment speech domain (Europarl ST test) (Tiede-
mann, 2012; Tiedemann and Thottingal, 2020).
Concatenated, this test set spans a total of 9k sen-
tences with 154k source words. As training data,
we select four corresponding corpora from OPUS
(OpenSubtitles 2018, TED 2020, NewsCommen-
tary & Global Voices, Europarl), and mix it with
out-of-domain data in a ratio of 3:1. In total, the
models are trained on 90M bilingual sentence pairs
with 1.4B target words—detailed statistics can be
found in the Appendix B.

For En—Ko, we report on four test sets com-
prised of subtitles (2018 OpenSubtitles test set),
talks (TED tst2018), newswire texts from FBIS
(2013 test set), as well as a general-domain test set
from the Korean-English treebank (2013 version).
In total, these test sets have 10k sentences with
123.6k source words. Generally, less data is pub-
licly available for this language pair and we train
on a total of 28M sentence pairs with 201M target
words from these corpora.

7.2 Setup

We train models based on the Transformer architec-
ture and implemented them in PyTorch 2.5 (Paszke
et al., 2019). We apply byte-pair encodings (Sen-
nrich et al., 2016; Kudo and Richardson, 2018) to
the training data and obtain a source and target vo-
cabulary of 30k and 10k units respecively. Segmen-
tation and casing is encoded via two separate trans-
lation factors (Wilken and Matusov, 2019). Our
models are trained for 250 sub-epochs of 1M sen-
tences each using the Adam optimizer (Loshchilov
and Hutter, 2019) with weight decay 0.01 and base
learning rate of 3-10™4, 0.1 label smoothing and 0.1
dropout. For more details we refer to Appendix B.

In the following, we abbreviate a model with Lg
encoder and Lp decoder layers by Lg/Lp, e.g. a
12/12 model refers to a system with 12 encoder and
decoder layers each.

For testing, we evaluate both the translation qual-
ity, as well as the inference speed and energy con-

sumption of each of the trained model configura-
tions. For this we compute BLEU (Papineni et al.,
2002) and COMET (Rei et al., 2020) for each of
the language pair’s four test sets, and in the interest
of readability report the average of each metric in
the tables. BLEU is computed via Sacrebleu (Post,
2018) with paired approximate randomization (Rie-
zler and III, 2005), COMET uses the checkpoint
Unbabel/wmt22-comet-da and bootstrap resam-
pling (Koehn, 2004). As the use of white spaces
is inconsistent in Korean, we report character-level
BLEU for this language pair, and report BLEURT
(Sellam et al., 2020) instead of COMET".

Profiling the CPU time and energy is done on
a single fixed machine which resembles a server-
typical setup with a total of 128 Intel® Xeon®
Gold 6438Y+ CPUs (Sapphire Rapid) and 500 GB
RAM running Ubuntu 22. We reserve this machine
exclusively for the translation executable which we
give access to a subset of 8 of these CPUs. For
each model, we concatenate the four language-pair
specific test sets, and then measure the total time
and energy the translation itself takes. Sequences
are sorted by their length to reduce the amount of
padding, translating 16 sentences at a time in each
batch. Our models are converted into TorchScript
and automatically optimized using PyTorch’s JIT
engine®. As it may take longer to translate when the
model and data is first loaded , we run a translation
of all data once as a warmup phase before profiling
the actual runtime and energy usage.

The CPU energy usage is measured in a separate
thread by rapidly polling the current power usage®
and integrating over time. This also includes the
passive energy usage by running the node and op-
eration system. As the runtime and energy con-
sumption varies between different executions, we
run each inference three times and then report the
median to omit outliers. For GPU inference we use
one NVIDIA RTX 2080 Ti*.

We report the translation speed measured in unto-
kenized English words per second (WPS), and the
energy consumption in kJ for running the complete
inference.

'In our experiments, COMET turned out highly unreliable
for Korean; achieving ~ 50 COMET even for completely bro-
ken models as can also be seen in Table 1 of Lee et al. (2025)’s
work.

2Using torch. jit.optimize_for_inference

3Via s-tui, https://github.com/amanusk/s-tui

4Running nvidia-smi --query-gpu=power.draw peri-
odically to poll the power usage

https://github.com/amanusk/s-tui

Beam Size BLEU COMET WPS KkJ Enc Dec BLEU COMET WPS KkJ
32 353 85.4 18 2462 12 12 34.4 84.8 776 66

16 35.3 85.3 31 1429 18 6 34.3 85.0 1.1k 51

12 353 85.4 49 931 21 3 34.2 84.9 1.5k 45

8 353 85.3 77 588 23 1 33.7 83.4 19k 42

4 3.0 853 135 338 12 1 335 80 28k 39

2 348 852 184 239 6 1 330 83 38k 37

! 343 850 280 166 5 1 328 82 41k 37
greedy 34.3 85.0 329 145 4 1 32.3 81.7 44k 36

+ quantize 34.4 84.8 776 66 3 1 31.8 81.1 48k 35
2 1 309 80.3 5.1k 36

Table 1: Impact of beam size on quality, speed and en- 1 1 28.7 77.8 5.6k 35

ergy for the En—De 12/12 system. We also investigate
greedy search and quantization.

7.3 Evaluation: Inference Optimizations

At first, we investigate the effect of the beam size
during inference in terms of translation quality,
speed and energy. The results for En—De are pre-
sented in Table 1. Starting from the baseline beam
size of 8, increasing it stepwise to 32 does not effect
quality, but slows down translation from 77 to 18
WPs while also increasing the energy consumption
by a factor of 4. This underlines that higher beam
sizes yield no improvement (Yang et al., 2018).

Moving into the opposite direction, decreasing
the beam size down to 1 yields a 3.6x speedup
and a 3.5 x energy efficiency boost at the cost of
1.0 BLEU and 0.3 COMET. To discard the overhead
of beam search, we replace it by a greedy search
implementation. This does not affect quality, but
further improves speed and energy to 329 WPS and
145 kJ, respectively.

Additionally quantizing the model results in a
translation speed of 776 WPS while consuming
66 kJ, which corresponds to improvement factors
of 10.1 and 8.9 over the baseline. If not mentioned
otherwise, we use greedy search and quantization
for all evaluations to follow, all being carried out
on CPUs.

7.4 Evaluation: Architectural Optimizations

We then investigate the impact of reallocating lay-
ers from the decoder to the encoder (see Table 2,
lines 1-4). Starting from the 12/12 baseline model,
we can shift 6 or even 9 layers without seeing a
degradation in quality, increasing translation speed
from 776 to 1.1k WPS. Moving all but one layer
to the encoder results in the 23/1 model which is
nearly 2.5x faster than the 12/12 model at the cost

Table 2: Impact of layer reallocation and reduction on
quality, speed and energy for En—De. All systems here
utilize greedy search and quantization.

Decoder BLEU COMET WpPS KkJ
‘big’ 32.8 82.2 4.1k 37
‘base’ 32.3 81.3 5.1k 36
‘small’ 31.7 79.8 6.1k 35
‘tiny’ 31.1 78.0 72k 35

Table 3: Impact of decoder width on quality, speed
and energy for the En—De quantized 5/1 system with
greedy search.

of 0.7 BLEU points. The energy consumption is
improved by a factor of more than 1.5.
Furthermore, we decrease the number of layers
in the decoder down to a point where it is still
acceptable in terms of translation quality, bearing
in mind that we also want to improve the decoder
width. The results are presented in the bottom part
of Table 2. Given our minimum 90% threshold of
our baseline, i.e. 31.8 BLEU, the 3/1 model with
4.8k WPS would be still acceptable. However, as
we want to have the possibility to further improve
the decoder width, we settle with the 5/1 model
as trade-off between quality and efficiency. Note,
that the number of encoder layers has only a minor
effect on the energy consumption (lines 4-11).
Having settled on a quantized 5/1 model with
greedy search, we proceed with decoder-width opti-
mization (see Table 3). Starting with a Transformer
‘big’ decoder, we stepwise halve the decoder di-
mension d until reaching the Transformer ‘tiny’
model with only 1/8 dimension width in compari-
son to Transformer ‘big’ (where d = 1024). The
number of attention heads and the feedforward di-

Decoder BLEU COMET Wps KkJ Decoder KD BLEU COMET WPS
Transformer 31.7 79.8 6.1k 35 Transformer X 31.7 79.8 6.1k
SSRU 3050 7847 73k 35 v 322 85 61k
+ interleave 30.6" 79.8 7.3k 35 SSRU interl. X 30.6 79.8 7.3k
LSTM 7.67 43 .3F 6.0k 35 v 31.7 81.0 7.4k
: i

+ interleave 31.4 80.5 7.0k 35 LSTM interl. X 314 805 7.0k
v 32.0 81.3 7.0k

Table 4: Different decoder architectures, applied to the
En—De quantized 5/1 model with the ‘small’ decoder
size. T indicates a statistically significant difference
w.r.t. the Transformer decoder (p < 0.005).

mension is down-scaled accordingly. Although the
quality loss per step is 0.5-0.6 BLEU, the gain in
speed becomes less while the energy consumption
is basically constant. Thus, we choose the Trans-
former ‘small’ decoder (decoder model dimension
d = 256, 4 attention heads, dg = 1024) for further
experiments, as it offers a good trade-off between
the speedup and quality loss.

7.5 Evaluation: RNN Decoder Replacement

A common approach to speed up the inference for
MT is to replace the decoder with an RNN (Kim
etal., 2019; Hsu et al., 2020; Lin et al., 2021). How-
ever, existing research has not studied the perfor-
mance of such hybrid models when they are com-
bined with inference optimizations such as greedy
search and quantization—which for themselves al-
ready yield a speedup of factor 10 at only minor
drop in quality.

In Figure 3 we show that the effect of quantiza-
tion and beam size reduction varies between differ-
ent metrics: we compare our hybrid models with
Transformer and LSTM decoders (with interleav-
ing). Across all metrics, the hybrid LSTM decoder
performs better than the Transformer decoder when
using beam search and not applying quantization.
However, in BLEU this advantage vanishes when
decoding with quantization and greedy search. For
COMET and BLEURT, this is not the case.

We proceed to compare different RNN architec-
tures: the standard LSTM (Hochreiter and Schmid-
huber, 1997) and the optimized SSRU (Kim et al.,
2019); and apply our proposed interleaving ap-
proach to both models.

As shown in Table 4, the interleaved SSRU de-
coder is faster but the quality is worse. Interleaving
proves to be crucial for the LSTM decoder, which
offers the best speed-quality trade-off: It has the
best COMET score of 80.5, and despite its 31.4

Table 5: Impact of knowledge distillation (KD) on qual-
ity, speed and energy for the En—De quantized 5/1
system with a Transformer ‘small’ decoder and greedy
search. All systems have consumption of 34-35 kJ.
All three KD systems have pairwise statistically signifi-
cantly different COMET scores (p < 0.005).

BLEU being slightly lower than the 31.7 BLEU
gained with the Transformer decoder, this differ-
ence is statistically not significant. At the same
time it is 91 x faster than the baseline model.

7.6 Evaluation: Training Optimization

After having improved the model speed and en-
ergy consumption, we shift our focus on improving
its translation quality through knowledge distilla-
tion (KD). We utilize the strongest model—the
12/12 Transformer ‘big’ baseline—as the teacher
and weigh the CE and KD losses with o = 0.5 and
B = 1.0, respectively, since this setting performed
best in prior experiments.

Table 5 presents the performance of the models
trained with KD in comparison to their counter-
parts without. The Transformer system with KD
performs best in BLEU with a small 0.2 advantage
over the interleaved LSTM with KD, which in turn
outperforms the Transformer by 0.8 COMET and
is faster by 0.9k WPS. On the other hand, the in-
terleaved SSRU offers the fastest inference speed
with 7.4k WPS, but its performance in both BLEU
and COMET is worse by 0.3 in comparison to the
interleaved LSTM.

Note, that the BLEU score of 31.7 gained by the
interleaved SSRU with KD corresponds to only
89.8% translation quality w.r.t. our baseline Trans-
former system, which is does not fulfill our goal to
preserve at least 90% quality.

7.7 Evaluation: Summary

Table 6 summarizes the gains by all optimization
techniques proposed in this work when applied in-
crementally for both the En—De and En— Ko tasks.

33.0 {5 8344 4 294,
4 Ay 20 20
Decoder type - 32.5 1% 266 = 82 g & 2
x Transf. = x 22 S 2 ”
3 b\, SIS L. 27044 4
@ +quant. M 32.0 - 1 { O 81 x 2@ {2 1| = x 20 12
LSTM +il X ® X xe) X xe
31.5 ; Noso{ : 1 I
@ +quant. : o X e X)
T T T T 68 T T
2500 5000 2500 5000 2500 5000
WPs WPs WPs

Figure 3: Comparing the decoding quality and speed, with different beam sizes: 4, 2, and 1 (using greedy search).
All models use the 5/1 architecture with either a Transformer ‘small’ or interleaved LSTM ‘small’ decoder.

English — German English — Korean

Technique Quality CPU GPU Quality CPU
BLEU COMET WPS k] Wps KkJ | BLEU BLEURT WPS KkJ
Transformer ‘big’ 353 85.3 77 588 484 76 | 28.1 57.6 90 413
+ greedy search 343 85.0 329 145 13k 23 | 273 56.9 316 123
+ quantize 344 84.8 776 66 na. na. | 272 56.8 785 60
+ depth opt. 32.8 82.2 41k 37 6.0k 56| 256 553 3.6k 42
+ width opt. 31.7 79.8 58k 35 6.6k 34| 249 54.2 54k 41
+LSTM interl. 31.4 80.5 7.0k 35 69k 3.0 | 247 54.2 5.8k 40
+ KD 32.0 81.3 70k 35 69k 29 | 25.7 55.4 59k 40

Table 6: Incrementally applying all proposed techniques to the En—De and En— Ko task. We report inference
speed (WPS) and energy consumption (kJ) on CPU and GPU.

Details on all intermediate results for En—Ko are
to be found in the Appendix A.

For En—De, we preserve 90.7% relative BLEU
and 95.3% relative COMET, i.e. we lose 3.3 BLEU
and 4.0 COMET absolute. At the same time, we
gain 91 x translation speed and 94.0% energy
savings on CPU. An extended analysis reveals that
the speed gains are particularly high for long se-
quences (see appendix, Figure 4).

On GPU we obtain 14.3 x translation speed and
96.2% energy savings. Note, that the final model is
14.5x faster on CPU than the vanilla Transformer
‘big’ model on GPU. Overall, our final model is as
fast on CPU as it is on GPU. Note, that no GPU ker-
nels exist in PyTorch 2.5 for quantization. Hence,
all GPU results are obtained without quantization.

In the En—Ko test sets, there are 1.19 target
tokens per source token on average, whereas in
the En—De test sets this number is 1.36. As there
are less target words to be generated per source
word in the En—Ko task, there are less decoding
steps, which explains why for En—Ko the baseline
system achieves a translation speed of 90 WPs.

Overall, the speedup for En—Ko is 65-fold and
our finals systems achieves 90% energy savings,

while still achieving 91% relative BLEU and 96%
relative BLEURT, which underlines the general ap-
plicability and gains of our proposed optimizations.
However, as there are less decoding steps than in
the En—De task on average, there is also less gain
to be expected by the proposed techniques.

8 Conclusion

In this work, we introduced Green KNIGHT, an
easy-to-cook recipe that substantially accelerates
inference and reduces the energy consumption of
NMT models while incurring only minimal loss in
translation quality. In contrast to specialized low-
level or hardware-specific optimizations, Green
KNIGHT achieves these gains through widely
used and well-understood tools and methods, mak-
ing it immediately adoptable in production NMT
pipelines. Our experiments on two language pairs
show that this carefully crafted recipe achieves
speed-ups up to 91x, reduces energy consump-
tion up to 94%, while losing not more than 4.7%
relative COMET or 9.5% relative BLEU compared
to the baseline. Crucially, the final models achieve
the same throughput on both the CPU and GPU,
significantly contributing to democratizing NMT.

Limitations

The empirical relevance of this work might be lim-
ited by the tasks we report on and the evaluation.
We report on two high-resource datasets translating
from English as the source language. Although, ac-
cording to our findings, the encoder (and therefore
the source language) does not seem to be the bottle-
neck, further investigation would be needed to con-
firm this. We base our findings on higher-resource
language pairs and do not investigate low-resource
settings or other language pairs.

Due to resource constraints, we were also only
able to perform a single training run per reported
system. Furthermore, our evaluation is limited to
automatic metrics. We validate our results using a
range of automatic metrics (COMET, BLEURT, and
BLEU), but we do not perform a human evaluation.

We only reported results measured on a single
machine and one specific driver version for the mea-
surement of translation speed and energy. Although
the setup used is typical for a server CPU, using dif-
ferent hardware might impact the translation speed
and energy consumption. Furthermore, time and
energy measurements inherently suffer from some
variance between runs, which can depend on ex-
terior factors such as the server’s temperature or
system background jobs.

Potential Risks

As our primary results are based on automated met-
rics, they do not necessarily reflect the quality as
assessed by humans. This is especially true for neu-
ral metrics such as COMET and BLEURT, which
are not auditable and may lead to unpredictable re-
sults in varying domains and language pairs. E.g.,
we observed that COMET did not give reasonable
scores for our English to Korean evaluations, de-
spite the authors claiming it should work for this
language pair’. Relying blindly on these metrics to
make decisions can lead to potential misjudgments
in translation quality.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Shttps://github.com/Unbabel/COMET

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada,
Vivek Menon, Sun Choi, Kushal Datta, and Vikram A.
Saletore. 2019. Efficient 8-bit quantization of trans-
former neural machine language translation model.
CoRR, abs/1906.00532.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder—decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724—
1734, Doha, Qatar. Association for Computational
Linguistics.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT sentence embedding. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 878—
891. Association for Computational Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735-
1780.

Yi-Te Hsu, Sarthak Garg, Yi-Hsiu Liao, and Ilya Chatsv-
iorkin. 2020. Efficient inference for neural machine
translation. In Proceedings of SustaiNLP: Workshop
on Simple and Efficient Natural Language Process-
ing, pages 48-53, Online. Association for Computa-
tional Linguistics.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317-1327, Austin,
Texas. Association for Computational Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Has-
san, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. 2019. From
research to production and back: Ludicrously fast
neural machine translation. In Proceedings of the
3rd Workshop on Neural Generation and Transla-
tion, pages 280-288, Hong Kong. Association for
Computational Linguistics.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
Ondrej Bojar, Anton Dvorkovich, Christian Feder-
mann, Mark Fishel, Markus Freitag, Thamme Gowda,
Roman Grundkiewicz, Barry Haddow, Marzena
Karpinska, Philipp Koehn, Benjamin Marie, Christof
Monz, Kenton Murray, Masaaki Nagata, Martin
Popel, Maja Popovic, and 3 others. 2024. Findings
of the WMT24 general machine translation shared
task: The LLM era is here but MT is not solved yet.
In Proceedings of the Ninth Conference on Machine
Translation, WMT 2024, Miami, FL, USA, November
15-16, 2024, pages 1-46. Association for Computa-
tional Linguistics.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://github.com/Unbabel/COMET
https://arxiv.org/abs/1906.00532
https://arxiv.org/abs/1906.00532
https://arxiv.org/abs/1906.00532
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/V1/2022.ACL-LONG.62
https://doi.org/10.18653/V1/2022.ACL-LONG.62
https://doi.org/10.18653/V1/2022.ACL-LONG.62
https://doi.org/10.18653/v1/2020.sustainlp-1.7
https://doi.org/10.18653/v1/2020.sustainlp-1.7
https://doi.org/10.18653/v1/2020.sustainlp-1.7
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632
https://aclanthology.org/2024.wmt-1.1
https://aclanthology.org/2024.wmt-1.1
https://aclanthology.org/2024.wmt-1.1
https://aclanthology.org/2024.wmt-1.1
https://aclanthology.org/2024.wmt-1.1
https://aclanthology.org/W04-3250/
https://aclanthology.org/W04-3250/
https://aclanthology.org/W04-3250/

the 2004 Conference on Empirical Methods in Nat-
ural Language Processing , EMNLP 2004, A meet-
ing of SIGDAT, a Special Interest Group of the ACL,
held in conjunction with ACL 2004, 25-26 July 2004,
Barcelona, Spain, pages 388-395. ACL.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2018: System Demonstrations, Brussels, Belgium,
October 31 - November 4, 2018, pages 66—71. Asso-
ciation for Computational Linguistics.

Daniel Lee, Harsh Sharma, Jieun Han, Sunny Jeong,
Alice Oh, and Vered Shwartz. 2025. Team ack at
semeval-2025 task 2: Beyond word-for-word ma-
chine translation for english-korean pairs. Preprint,
arXiv:2504.20451.

Ye Lin, Yanyang Li, Tong Xiao, and Jingbo Zhu. 2021.
Bag of tricks for optimizing transformer efficiency.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 42274233, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Ye Lin, Xiaohui Wang, Zhexi Zhang, Mingxuan Wang,
Tong Xiao, and Jingbo Zhu. 2023. MobileNMT:
Enabling translation in 15MB and 30ms. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 5: Industry
Track), pages 368378, Toronto, Canada. Association
for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory F. Diamos, Erich Elsen, David Garcfia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2017. Mixed preci-
sion training. CoRR, abs/1710.03740.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311-318. ACL.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
and 2 others. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing

10

Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 8024—-8035.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, WMT 2018,
Belgium, Brussels, October 31 - November 1, 2018,
pages 186—-191. Association for Computational Lin-
guistics.

Ricardo Rei, Craig Stewart, Ana C. Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2020, Online, November 16-20, 2020,
pages 2685-2702. Association for Computational
Linguistics.

Stefan Riezler and John T. Maxwell III. 2005. On some
pitfalls in automatic evaluation and significance test-
ing for MT. In Proceedings of the Workshop on
Intrinsic and Extrinsic Evaluation Measures for Ma-
chine Translation and/or Summarization @ACL 2005,
Ann Arbor, Michigan, USA, June 29, 2005, pages
57-64. Association for Computational Linguistics.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. 2020. Green Al. Commun. ACM, 63(12):54—
63.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. BLEURT: learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7881-7892.
Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers. The Association for
Computer Linguistics.

Dimitar Shterionov and Eva Vanmassenhove. 2023. The
ecological footprint of neural machine translation
systems. In Helena Moniz and Carla Parra Escartin,
editors, Towards Responsible Machine Translation -
Ethical and Legal Considerations in Machine Trans-
lation, volume 4, pages 185-213. Springer.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 3645-3650.
Association for Computational Linguistics.

Yehui Tang, Yunhe Wang, Jianyuan Guo, Zhijun Tu, Kai
Han, Hailin Hu, and Dacheng Tao. 2024. A survey
on transformer compression. CoRR, abs/2402.05964.

https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
https://arxiv.org/abs/2504.20451
https://arxiv.org/abs/2504.20451
https://arxiv.org/abs/2504.20451
https://arxiv.org/abs/2504.20451
https://arxiv.org/abs/2504.20451
https://doi.org/10.18653/v1/2021.findings-emnlp.357
https://doi.org/10.18653/v1/2023.acl-industry.36
https://doi.org/10.18653/v1/2023.acl-industry.36
https://doi.org/10.18653/v1/2023.acl-industry.36
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/V1/W18-6319
https://doi.org/10.18653/V1/W18-6319
https://doi.org/10.18653/V1/W18-6319
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.213
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.213
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.213
https://aclanthology.org/W05-0908/
https://aclanthology.org/W05-0908/
https://aclanthology.org/W05-0908/
https://aclanthology.org/W05-0908/
https://aclanthology.org/W05-0908/
https://doi.org/10.1145/3381831
https://doi.org/10.18653/V1/2020.ACL-MAIN.704
https://doi.org/10.18653/V1/2020.ACL-MAIN.704
https://doi.org/10.18653/V1/2020.ACL-MAIN.704
https://doi.org/10.18653/V1/P16-1162
https://doi.org/10.18653/V1/P16-1162
https://doi.org/10.18653/V1/P16-1162
https://doi.org/10.1007/978-3-031-14689-3_10
https://doi.org/10.1007/978-3-031-14689-3_10
https://doi.org/10.1007/978-3-031-14689-3_10
https://doi.org/10.1007/978-3-031-14689-3_10
https://doi.org/10.1007/978-3-031-14689-3_10
https://doi.org/10.18653/V1/P19-1355
https://doi.org/10.18653/V1/P19-1355
https://doi.org/10.18653/V1/P19-1355
https://doi.org/10.48550/ARXIV.2402.05964
https://doi.org/10.48550/ARXIV.2402.05964
https://doi.org/10.48550/ARXIV.2402.05964

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation, LREC 2012, Istanbul, Turkey, May 23-
25, 2012, pages 2214-2218. European Language Re-
sources Association (ELRA).

Jorg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT - building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation,
EAMT 2020, Lisboa, Portugal, November 3-5, 2020,
pages 479-480. European Association for Machine
Translation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, L.ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998-6008. Cur-
ran Associates, Inc.

Patrick Wilken and Evgeny Matusov. 2019. Novel appli-
cations of factored neural machine translation. CoRR,
abs/1910.03912.

Yilin Yang, Liang Huang, and Mingbo Ma. 2018. Break-
ing the beam search curse: A study of (re-)scoring
methods and stopping criteria for neural machine
translation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, Brussels, Belgium, October 31 - November 4,
2018, pages 3054-3059. Association for Computa-
tional Linguistics.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accel-
erating neural transformer via an average attention
network. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1789—-1798, Melbourne,
Australia. Association for Computational Linguistics.

11

http://www.lrec-conf.org/proceedings/lrec2012/summaries/463.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/463.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/463.html
https://aclanthology.org/2020.eamt-1.61/
https://aclanthology.org/2020.eamt-1.61/
https://aclanthology.org/2020.eamt-1.61/
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://arxiv.org/abs/1910.03912
https://arxiv.org/abs/1910.03912
https://arxiv.org/abs/1910.03912
https://doi.org/10.18653/V1/D18-1342
https://doi.org/10.18653/V1/D18-1342
https://doi.org/10.18653/V1/D18-1342
https://doi.org/10.18653/V1/D18-1342
https://doi.org/10.18653/V1/D18-1342
https://doi.org/10.18653/V1/D18-1342
https://doi.org/10.18653/V1/D18-1342
https://doi.org/10.18653/v1/P18-1166
https://doi.org/10.18653/v1/P18-1166
https://doi.org/10.18653/v1/P18-1166
https://doi.org/10.18653/v1/P18-1166
https://doi.org/10.18653/v1/P18-1166

Beam Size BLEU BLEURT Wps KkJ Decoder BLEU BLEURT WPS KkJ
32 27.8 57.3 22 1645 ‘big’ 25.6 55.3 3.6k 42
16 27.9 57.5 38 977 ‘base’ 25.1 54.8 477k 41
12 279 57.4 58 649 ‘small’ 249 54.2 54k 41
8 28.1 57.6 90 413 ‘tiny’ 24.3 53.4 5.6k 40
4 28.1 57.5 151 245
2 27.8 57.4 196 184 Table 9: Comparison of En-Ko system with various
1 273 56.9 287 133 decoder width. All investigated system utilize a 5-layer
Transformer ‘big’ encoder, a single layer Transformer
greedy 27.3 56.9 315 122 decoder and greedy search with quantization.
+ quantize 27.1 56.8 785 60

Table 7: Various beam sizes of En-Ko system with a
12-layer encoder and a 12-layer decoder. We also inves-
tigate greedy search and quantization.

Enc Dec BLEU BLEURT WPS KkJ
12 12 27.2 56.8 785 60
23 3 27.3 57.2 1.3k 49
21 1 26.6 56.3 1.7k 47
12 1 26.3 55.9 24k 44
6 1 25.7 55.4 33k 42
5 1 25.6 55.3 3.6k 42
4 1 25.1 55.0 37k 42
3 1 24.9 54.7 4.0k 41
2 1 24.1 53.6 4.2k 42
1 1 22.4 51.5 48k 41

Table 8: Comparison of En-Ko systems with varying
encoder and decoder depth. All investigated systems
utilize greedy search with quantization.

A Detailed Results on Secondary Task

We verify the effectiveness of the proposed opti-
mizations on the English to Korean task.

The procedure here is exactly the same as for
English to German and investigate the beam size
first as shown in Table 7. We choose the beam size
of 8 as a baseline, as it gives the best BLEU and
BLEURT. Then we follow the recipe as described
for English to German. We then start with the infer-
ence optimization (greedy search and quantization)
in Table 7. Then we optimize the architecture, i.e.
the depth and width shown in Tables 8, and 9 re-
spectively. We then replace the decoder with our
LSTM implementation, and apply knowledge dis-
tillation, as shown in Table 10. In each step, the
chosen hyperparameters correspond to the same
ones as for the English to German task.

12

Decoder BLEU BLEURT WpSs KkJ
Transformer 24.9 54.2 54k 41
+ KD 25.4 54.9 5.5k 40
Interl. LSTM 24.7 54.2 5.8k 40
+ KD 25.7 55.4 59k 40

Table 10: Impact of training optimization on quality,
speed and energy for the En—Ko quantized 5/1 system
with a ‘small’ decoder and greedy search.

B Training Details

The statistics of our training and test data is pre-
sented in Table 11. The exact training corpora are
stated in Tables 12a and 12b. We apply some fil-
tering to our training data based on a set of rules,
as well as similarity based on LaBSE embeddings
(Feng et al., 2022).

All models, independently of the configuration,
are trained for 250 sub-epochs of 1M samples. Our
optimizer is AdamW (Loshchilov and Hutter, 2019)
with 8 = (0.9,0.98), weight decay 0.01 and a
learning rate of 3 - 10~%, which after a warmup of
ten epochs is reduced by factor 0.9 if the validation
perplexity plateaus. We use 16-bit mixed precision
training (Micikevicius et al., 2017) as provided by
PyTorch lighting, and an effective batch size of
up to 120k source plus target tokens. We apply a
training dropout of 0.1 and label smoothing of 0.1.

For both language pairs, we compile a heldout
validation set that approximately equally represent
the four test sets, and use this validation set to
select the best checkpoint after each sub-epoch by
computing validation BLEURT.

Our En—De baseline system has 485M train-
able parameters and was trained on two NVIDIA
RTX A6000 GPUs, which took around 103 hours
to complete. Other models train faster due to their
reduced complexity. All datasets and tools that this
work is based on are publicly available.

Total Words Vocabulary Words

Dataset Sentences English German English German
Training Data 90.6M 1.6B 1.4B 11.3M 22.9M
Test Data (total) 8984 154.0k 1427k 29.6k 36.2k
WMT newstest2019 1997 42.0k 42.1k 10.6k 12.4k
TED tst2018 1978 38.0k 35.1k 6.7k 8.4k
Europarl ST 2631 60.4k 52.3k 8.2k 11.2k

OpenSubtitles 2018 2378 13.6k 13.1k 4.0k 4.3k

(a) English to German task

Total Words Vocabulary Words

Dataset Sentences English Korean English Korean
Training Data 27.9M 265M 201M 1832M 34M
Test Data (total) 10483 123.6k 83.4k 16.0k 77.7k
FBIS test 2013 676 21.8k 13.0k 4.7k 12.6k
Korean English treebank 3883 51.5k 36.7k 5.9k 33.7k
TED tst2015 1214 21.2k 15.1k 4.9k 14.4k
OpenSubtitles 2018 4710 29.1k 18.6k 6.0k 16.9k

(b) English to Korean task

Table 11: Total training and test set sizes.

140 4 — En—De
En—Ko

120 /\/_

100 A /<7
80
60 -

40 A

x-fold speedup over baseline

20 A

0 T T T T
0 10 20 30 40 50

Source sequence length (tokens)

Figure 4: Relative CPU speed up of our optimized model (final row in Table 6) vs. the Transformer ‘big’ baseline,
binned by source sequence length. While the baseline scales poorly with increasingly long sequences, this effect is
mitigated with our optimized models. The graph also shows that our models are faster at decoding sentences with
32 or less tokens. This is because longer sequences exhaust hardware parallelization or cache capabilities. These
capabilities are exhausted faster with the larger model, thus with the smaller optimized model we see this spike in
speedup for larger sequences.

13

10% OPUS-OpenSubtitles (16,166,700)

5% OPUS-TED2020 (162,134)

5% News-Commentary (317,129), OPUS-Global Voices (83,240)
5% OPUS-Europarl (2,308,549)

65% pattr (12,183,523), OPUS-CCAligned (10,876,712), OPUS-EuroPat (10,664,245), OPUS-
EUbookshop (5,459,744), OPUS-TildeMODEL (3,249,472), OPUS-MultiCCAligned
(2,638,152), OPUS-ELRC (2,599,018), OPUS-ParaCrawl (2,551,919), OPUS-DGT
(2,240,204), OPUS-JW300 (1,707,885), OPUS-WikiMatrix (1,139,146), OPUS-Wikipedia
(1,073,073), rapid (692,934), OPUS-Tatoeba (546,960), CommonCrawl (523,024), OPUS-
Tanzil (492,585), WikiTitles (487,528), OPUS-QED (417,637), OPUS-JRC-Acquis
(265,780), covost (258,177), OPUS-EMEA (201,860), EUTV (152,233), must-c (115,563),
OPUS-KDE4 (100,791), OPUS-MultiUN (63,833), OPUS-ECB (63,277), OPUS-bible-
uedin (37,857), OpenOffice (25,980), OPUS-MPCI1 (15,794), OPUS-GNOME (12,814),
OPUS-Ubuntu (6,971), OPUS-PHP (6,557), OPUS-EUconst (1,928), OPUS-Salome (1,057),
OPUS-RF (165)

10% extracted parallel short phrases and dictionary entries from the above corpora

(a) English to German training data

10% OPUS-TED2020 (323,188)
1% fbis (39,867)

14% OPUS-OpenSubtitles (947,351)

65% OPUS-NLLB (13,736,682), OPUS-CCMatrix (3,799,459), OPUS-ParaCrawl (2,267,324),
OPUS-CCAligned (2,199,281), OPUS-LinguaTools-WikiTitles (1,533,792), systran
(576,744), OPUS-MultiCCAligned (475,984), naver (375,119), OPUS-XLEnt (328,552),
taus (315,934), subscene (188,012), jaykim (118,297), OPUS-QED (112,298), OPUS-
WikiMatrix (88,069), OPUS-Tanzil (62,991), jhe-park (52,850), joongang (47,555), joint-
pubs (42,438), OPUS-bible-uedin (40,161), kaist (30,269), OPUS-KDE4 (23,249), OPUS-
wikimedia (18,285), osc translated text (15,813), goodneighbor (14,484), various-book1-
johanna (13,513), OPUS-Tatoeba (11,403), donga-ilbo (10,728), various-military (9,202),
OPUS-Mozilla-I10n (6,791), OPUS-GlobalVoices (6,108), bible world (4,794), sejong
(4,632), OPUS-MDN Web Docs (3,655), kgf (3,442), various-unknown-topic (2,871), nvtc
(2,673), OPUS-tldr-pages (1,096), OPUS-ELRC (732), usembassy (575), usfkgovplan (204),
various-medical (140), OPUS-PHP (126), social-media (92), OPUS-GNOME (74), OPUS-
Ubuntu (13)

10% extracted parallel short phrases and dictionary entries from the above corpora

(b) English to Korean training data

Table 12: Training dataset statistics per weight group. Training data is mostly taken from OPUS (Tiedemann and
Thottingal, 2020) and then filtered. We report the number of sentences after filtering here. Before training, we
additionally apply sentence deduplication.

14

	Introduction
	Related Work
	Transformer Models
	Inference Optimizations
	Greedy Search
	Quantization

	Architectural Optimizations
	Layer Reallocation & Reduction
	Decoder Width Compression
	Replacing Transformer with Interleaved RNN Decoder

	Training Optimizations
	Experiments
	Data
	Setup
	Evaluation: Inference Optimizations
	Evaluation: Architectural Optimizations
	Evaluation: RNN Decoder Replacement
	Evaluation: Training Optimization
	Evaluation: Summary

	Conclusion
	Detailed Results on Secondary Task
	Training Details

