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ABSTRACT

Recently, out-of-distribution (OOD) detection has gained traction as a key re-
search area in object detection (OD), aiming to identify incorrect predictions of-
ten linked to unknown objects. In this paper, we reveal critical flaws in the current
OOD-OD evaluation protocol: it fails to account for scenarios where unknown ob-
jects are ignored since the current metrics (AUROC and FPR) do not evaluate the
ability to find unknown objects. Moreover, the current benchmark violates the as-
sumption of non-overlapping objects with respect to in-distribution (ID) classes.
These problems question the validity and relevance of previous evaluations. To
address these shortcomings, first, we manually curate and enhance the existing
benchmark with new evaluation splits—semantically near, far, and farther rela-
tive to ID classes. Then, we integrate established metrics from the open-set object
detection (OSOD) community, which, for the first time, offer deeper insights into
how well OOD-OD methods detect unknown objects, when they overlook them,
and when they misclassify OOD objects as ID—key situations for reliable real-
world deployment of object detectors. Our comprehensive evaluation across sev-
eral OD architectures and OOD-OD methods show that the current metrics do not
necessarily reflect the actual localization of unknown objects, for which OSOD
metrics are necessary. Furthermore, we observe that semantically and visually
similar OOD objects are easier to localize but more likely to be confused with ID
objects, whereas far and farther objects are harder to localize but less prone to
misclassification.

1 INTRODUCTION

In the last decade, the rise of deep learning has introduced prominent breakthroughs and achieve-
ments in object detection (OD) (Zou et al., 2023), where models are usually trained under a closed-
world assumption: test-time categories are the same as the training ones. However, during de-
ployment in the real world, OD models will encounter Out-of-Distribution (OOD) objects (Nitsch
et al., 2021), i.e., object categories different than those observed during training. While facing OOD
objects, one of two safety-critical (high-risk) situations can arise: either the unknown objects are
incorrectly classified as one of the In-Distribution (ID) classes, or the OOD objects will be ignored
(Dhamija et al., 2020).

In response to these safety challenges, researchers have developed two primary approaches: Out-
of-Distribution Object Detection (OOD-OD) (Du et al., 2022b) and Open-Set Object Detection
(OSOD) (Dhamija et al., 2020). OOD-OD focuses on identifying predictions that do not belong to
the ID categories, while OSOD actively attempts to detect the unknown objects themselves. Though
both approaches address the fundamental problem of encountering objects from a different semantic
space than the training distribution, they employ significantly different methodologies, evaluation
metrics, and benchmarks. This methodological divergence has led to isolated research communities
and evaluation frameworks that fail to capture the complete picture of model performance when
encountering unknown objects.

Currently, the evaluation of OOD-OD relies on a single benchmark, to the best of our knowledge:
the VOS-benchmark Du et al. (2022b). The fundamental assumption of this benchmark is that none
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Figure 1: Predictions of Faster-RCNN trained on two ID datasets on samples from each ID and the OOD
datasets in blue rectangles. The first row contains predictions of the Faster-RCNN trained on Pascal-VOC. The
second row contains the predictions by the model trained on BDD100k. Ground Truth (GT) labels are shown
in clear green. The base model predictions are the inputs to OOD scoring functions; without predictions,
objects in images will be ignored by OOD scoring functions too. The proposed FMIYC benchmark removes
undesirable semantic overlaps and separates semantically near, far, and farther objects with respect to the ID
dataset. FMIYC uses ground truth bounding boxes to leverage OSOD metrics that measure when unknown
objects are ignored, when they are detected, and when they are confounded with ID objects.

of the images in the OOD datasets include any of the ID classes, implying non-overlapping semantic
spaces. Consequently, any prediction made on the OOD datasets by a model trained on the ID classes
is inherently incorrect, regardless of the accuracy of object localization. The benchmark employs
the area under the ROC curve (AUROC) and the false positive rate at 95% true positive rate (FPR95)
as metrics. However, these metrics can be misleading, as they might suggest that a higher AUROC
or lower FPR95 indicates better localization of unknown objects, which is not necessarily true.
The current benchmark metrics evaluate how well OOD-OD methods identify incorrect predictions,
which may potentially correspond to unknown objects. Yet, they fall short of measuring the actual
identification of unknown objects. This raises a critical question: Are AUROC and FPR95 sufficient
metrics for assessing the deployment of OOD-OD methods in real-world scenarios?

In this study, we identify and address fundamental flaws in the existing OOD-OD benchmark and its
metrics, while bridging the gap between OOD-OD and OSOD research communities. We demon-
strate that the current evaluation violates the fundamental assumption of non-overlap, as the OOD
datasets contain ID classes. The benchmark may give the misleading impression of evaluating the
identification of unknown objects, fails to penalize ignored unknown objects, and lacks proper as-
sessment of object localization precision–issues that cannot be overlooked for safety-critical appli-
cations. To address these challenges, we propose FindMeIfYouCan (FMIYC), a comprehensively
curated benchmark that: (1) eliminates undesired semantic overlaps between ID and OOD datasets,
(2) introduces semantically stratified near, far, and farther OOD splits to evaluate detection robust-
ness across varying levels of semantic similarity, and (3) properly evaluates the actual identification
of unknown objects by integrating complementary metrics from the OSOD community, thus provid-
ing a robust OOD-OD evaluation framework. By combining strengths from both approaches, our
benchmark enables fair comparison across multiple architectures (Faster R-CNN, YOLOv8, RT-,
OWLv2) and reveals insights previously obscured in the current standard benchmark. Addition-
ally, we adapt OOD detection methods from image classification and evaluate prominent OOD-OD
methods as strong baselines for both OOD-OD and OSOD tasks, establishing a solid foundation for
future research that can benefit from both perspectives.

Contributions. In summary, the main contributions of this work are:
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• We identify and address fundamental flaws in the existing OOD-OD evaluation method-
ology, demonstrating how the current approach fails to capture a complete picture of the
model’s performance when encountering unknown objects.

• We propose FindMeIfYouCan, a benchmark that removes the existing semantic overlaps
and introduces stratified near, far, and farther OOD splits for OOD-OD evaluation across
varying levels of semantic similarity.

• We reveal the limitations of legacy AUROC and FPR95 metrics and integrate complemen-
tary metrics from the OSOD community for a comprehensive OOD-OD evaluation that
captures disregarded objects.

• We assess various methods and architectures for OOD-OD. In particular, post-hoc methods
from image classification, and prominent OOD-OD methods. Additionally, we expand the
range of evaluated architectures, including the YOLOv8, RT-DETR, and OWLv2 architec-
tures alongside the commonly utilized Faster R-CNN, thereby establishing robust baselines
for OOD-OD.

2 BACKGROUND & RELATED WORK

2.1 OBJECT DETECTION

An object detector is a model M that takes as input an image x and generates a bounding box
bi and classification score ci for each i-th detected object from a predefined set of categories C
(Girshick et al., 2014). Such models are trained to localize the objects that belong to the ID classes
C and, simultaneously, ignore the rest of the objects and the background (Dhamija et al., 2020).
Consequently, the object detector is usually set to function according to a given confidence threshold
t∗ that corresponds to the one that maximizes the mAP with respect to the ID test dataset. All objects
below such threshold t∗ are discarded. The model output is the set of tuples M(x; t∗) = {(bi, ci)}.
In the remainder of the paper, the terms “unknown” and “OOD” objects are used interchangeably,
and refer to classes that do not belong to C. Two problems can arise during real-world deployment
when the model encounters an unknown object: it can be incorrectly detected as one of the ID
classes with confidence above the confidence threshold t∗, or the unknown object may be ignored.
Therefore, two approaches exist in the literature to address these problems: OOD-OD and OSOD.

2.2 OOD-OD & OSOD BENCHMARKS

Similar to OOD detection for image classification, OOD-OD is formulated as a binary classification
task, that for each detected instance (bi, ci) leverages a confidence scoring function G with its own
threshold τ to calculate a per-object score G(bi, ci) that can distinguish between ID and OOD de-
tections. Du et al. (2022b) introduced a benchmark that has been adopted by subsequent works (Du
et al., 2022a; Wilson et al., 2023; Wu & Deng, 2023). This benchmark utilizes BDD100k (Yu et al.,
2020) and Pascal-VOC (Everingham et al., 2010) as ID datasets, along with subsets of COCO (Lin
et al., 2014) and Open Images (Kuznetsova et al., 2020) as OOD datasets. Trained models on the ID
datasets are then set to perform inference on the OOD datasets.

The proposed evaluation method is deemed consistent if it adheres to the critical condition that no ID
class appears in any image within the OOD datasets. Consequently, any detection within these OOD
datasets is automatically classified as “incorrect”, irrespective of whether the prediction corresponds
to a ground truth OOD object. Conversely, all predictions on the test ID dataset are considered
“correct”. By employing this approach, the binary classification metrics AUROC and the FPR95
are utilized to assess the efficacy of the OOD detection method. Specifically, these metrics evaluate
how effectively G(bi, ci) assigns different scores to predictions coming from the ID and the OOD
datasets (Du et al., 2022b).

On the other hand, OSOD directly adds an unknown class to the object detector, along with the ID
classes for the training process. It was first formalized by Dhamija et al. (2020), and their goal was
to tackle the fact that “unknown objects end up being incorrectly detected as known objects, often
with very high confidence”. Moreover, the authors propose a benchmark and associated metrics,
where the goal is to accurately detect known (ID) and unknown objects simultaneously, as measured
by the metrics described in Section 4.2.
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The benchmarking setup of OSOD is quite different from that of OOD-OD since, in this setting, the
goal is to actively and correctly localize OOD and ID objects at the same time. Also, for OSOD,
there is not one commonly accepted benchmark, but many benchmarks have appeared (Ammar
et al., 2024; Miller et al., 2018; Han et al., 2022; Dhamija et al., 2020). The common rule is that
there is one training dataset with a given set of labeled categories of objects (usually VOC, with 20
categories (Everingham et al., 2010)), and there is one or several subsets of an evaluation dataset
that contains the training categories and other labeled classes, semantically different from the ID
ones (usually from COCO (Lin et al., 2014)).

3 PITFALLS OF THE CURRENT OOD-OD BENCHMARK

Car 64%

Figure 2: AUROC and FPR95 do not assess
whether the relevant unknown objects, such as
camels, are overlooked. They only consider incor-
rect predictions, such as misidentifying a car.

Metrics. The current benchmark uses the AU-
ROC and the FPR95 metrics inherited from the im-
age classification task. A misconception that may
be conveyed by these metrics is that a higher AU-
ROC or lower FPR95 means better localization of
OOD objects, which is not necessarily the case.
These metrics measure how well OOD-OD meth-
ods identify incorrect predictions, which may or
may not correspond to ground-truth unknown ob-
jects. Therefore, these metrics do not evaluate the
correct localization of OOD objects, and cannot
measure when OOD objects are ignored. Figure 2
depicts such issues. For more details on the metrics,
see Section C from the Appendix.

Semantic overlaps. The validity of previously re-
ported results is undermined by the presence of se-
mantic overlaps, as the OOD-OD benchmark fun-
damentally assumes that no ID objects appear in
any OOD dataset. Under this assumption, all model predictions on OOD datasets should be consid-
ered incorrect. However, this core assumption is violated, as demonstrated in Figure 1: both labeled
and unlabeled instances of people and parts of people are present in the OOD datasets. To maintain
benchmark consistency, all OOD images containing ID classes must be removed. For a compre-
hensive list of overlapping categories in each OOD dataset and further examples, refer to Section A
from the Appendix.

Table 1: Percentage of images with no pre-
dictions in the current OOD-OD benchmark.
OI=OpenImages

ID: VOC ID: BDD
Model OI/COCO OI/COCO

F-RCNN 27.43/35.81 59.23/45.27
F-RCNN VOS 24.08/32.58 53.72/40.43

Ignored objects. As shown in Figure 1, not all images in
each OOD dataset receive at least one prediction. Table 1 re-
veals that up to 59% of images in one OOD split lack any
prediction above the threshold t∗. Consequently, the AUROC
and FPR95 metrics reported in prior studies, such as Du et al.
(2022b); Wilson et al. (2023); Du et al. (2022a); Wu & Deng
(2023), are computed using only about 40% of the images in
that split. By design, the benchmark’s metrics are not penal-
ized for this omission, effectively ignoring a significant por-
tion of images and objects. To address this limitation, we
advocate for the adoption of the OSOD metrics introduced in Section 4.2.

Lack of use of ground truth labels. Accurate localization of ground truth (GT) unknown objects
is a critical aspect that current benchmarks overlook. A robust evaluation of a system’s handling
of unknown objects must go beyond simply detecting incorrect predictions. While identifying false
positives is important, ignoring unknown objects can be just as risky as misclassifying them (see
Figure 2). The OSOD community has established metrics to assess how well methods localize un-
knowns and to quantify cases where unknowns are either overlooked or confused with in-distribution
(ID) objects. To further refine this evaluation, we advocate for the use of GT labels in conjunction
with the OSOD metrics outlined in Section 4.2, enabling a more granular and insightful analysis.
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4 THE FMIYC BENCHMARK

4.1 CREATING THE EVALUATION SPLITS

Our newly proposed FMIYC benchmark is built on top of the previous one (Du et al., 2022b), by
refining and enriching it in terms of overlap removal, addition of new images, splitting into subsets
according to semantic similarity w.r.t. ID datasets, and the addition of open set metrics. All these
factors enable fine-grained evaluation of OOD-OD. The first step involved removing overlaps. An
automated process first eliminated all labeled instances of overlapping categories. Next, a manual
review ensured that no unlabeled ID category instances remained in the datasets.

Table 2: Number of images in each
subset of the newly proposed bench-
mark. CC=COCO, OI=OpenImages

ID OOD No. Images

VOC

CC Near 1174
OI Near 908
CC Far 938
OI Far 1179

BDD CC Farther 1873
OI Farther 1695

Then, building on established approaches in OOD detection for image
classification–where OOD datasets are divided into semantically and
visually near and far subsets (Zhang et al., 2024; Yang et al., 2023)–we
partitioned our OOD datasets w.r.t. Pascal-VOC using class names as
the criterion. We matched Pascal-VOC categories (e.g., television, dog,
cat, horse, cow, couch) with semantically and visually similar OOD
classes (e.g., laptop, fox, bear, jaguar, leopard, cheetah, zebra, bed), as-
signing these to the near subset. All remaining OOD images, lacking
a close ID counterpart, were classified as far. The splits were vali-
dated using WordNet (Miller, 1995) and the Wu-Palmer similarity met-
ric (Wu & Palmer, 1994), with results in Table 9 (Appendix Section B)
confirming the stratification. A manual review further ensured that no
near-category instances remained in the far subset, and vice versa. This process was applied to both
COCO and OpenImages, yielding four distinct OOD subsets: COCO-near, COCO-far, OpenImages-
near, and OpenImages-far. A complete list and discussion of the near OOD categories is available
in Appendix Section A.

We selectively incorporated additional images from the original COCO and OpenImages datasets
to enrich the newly created near and far splits. The whole process was documented by recording
image IDs in configuration files for each subset, ensuring full reproducibility. Both the code for
generating these splits and the resulting datasets will be made publicly available.

Figure 3: Perceptual and semantic (cosine) similarity (May-
ilvahanan et al., 2023) between ID and OOD datasets using
CLIP image encoder embeddings.

For BDD100k as the in-distribution (ID)
dataset, only overlapping images were re-
moved, without creating separate far or
near subsets or adding new images. This
decision is justified by the findings in Fig-
ure 9a and Table 9, which demonstrate
that BDD100k is already more distant from
its respective OOD datasets than Pascal-
VOC. Visual examples illustrating the se-
mantic and visual similarity across all ID
and OOD datasets are provided in Ap-
pendix Section A. These observations allow
us to define three degrees of similarity be-
tween ID and OOD datasets: near and far
for OOD datasets relative to Pascal-VOC,
and—based on Table 9, Figure 9b, and our
results—farther for OOD datasets relative to BDD100k. The number of images in each subset of
the new benchmark is detailed in Table 2. Additionally, we assessed the similarity of each new split
with respect to ID datasets in the image space using CLIP vision embeddings, as shown in Figure 3.

4.2 PROPOSED METRICS

OSOD Metrics. The OSOD community uses as metrics the absolute open-set error (AOSE), the
wilderness impact (WI), the unknown precision (PU ), unknown recall (RU ), and the average preci-
sion of the unknowns APU (Gupta et al., 2022; Miller et al., 2018; Maaz et al., 2022). The AOSE
reports the absolute number of unknown objects incorrectly classified as one of the ID classes. WI
evaluates the proportion of AOSE among all the known detections. Unknown recall RU is the ratio
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of unknown detected objects by the number of unknown ones, and the unknown precision PU is
the ratio of true positive detections divided by all the detections (Ammar et al., 2024). The OSOD
metrics are fine-grained in the sense that they assess how well the methods can localize and correctly
classify known and unknown objects in images where both types of objects appear.

In addition to the widely used metrics of AUROC and FPR95, we propose using the following
OSOD metrics: APU , PU , and RU . We omit the WI since our benchmark does not allow both ID
and OOD classes in the OOD datasets. In addition, we propose a new metric that we call normalized
open set error (nOSE), which is the AOSE divided by the total number of labeled unknowns. We
propose this metric since the absolute number of unknowns depends on the dataset, and therefore, the
AOSE is not comparable across datasets, whereas the nOSE is. The nOSE assesses the proportion
of unknown objects detected as one of the ID classes. A summary of the overall metrics used in the
FMIYC benchmark can be found in Appendix Section C.

5 EXPERIMENTS AND RESULTS

5.1 OBJECT DETECTION ARCHITECTURES

Table 3: mAP across architectures
for VOC & BDD ID datasets

Model VOC BDD

F-RCNN 48.7 31.20
F-RCNN VOS 48.9 31.30
Yolov8 54.73 32.15
RT-DETR 70.4 33.30
OWLv2 73.2 30.40

We used the Faster-RCNN (Girshick et al., 2014) in its vanilla and VOS
(regularized) versions, YOLOv8 (Jocher et al., 2023; Sohan et al., 2024)
and RT-DETR (Zhao et al., 2024). As an extension, we include results
from OWLv2 (Minderer et al., 2024), which is a state-of-the-art VLM for
object detection. For YOLOv8 and RT-DETR, the models were trained
on the same ID datasets (Pascal-VOC and BDD100k). The training de-
tails can be found in Appendix Section E. For the Faster-RCNN models,
we used the pre-trained checkpoints provided by Du et al. (2022b). For
OWLv2, we used the original pretrained model (Minderer et al., 2024).
Table 3 shows the architectures mAP for each ID test dataset.

5.2 OUT-OF-DISTRIBUTION OBJECT DETECTION METHODS

We implemented prominent methods from OOD detection literature on image classification. Specif-
ically, we selected post-hoc methods, as they do not require retraining of the base model. Conse-
quently, we adapted the common families of methods from image classification to operate at the
object level, as detailed below.

Output-based post-hoc methods take the logits, or the softmax activations, as inputs to their scor-
ing functions. Here we can find MSP (Hendrycks & Gimpel, 2016), energy score (Liu et al., 2020),
and and GEN (Liu et al., 2023). Feature-space post-hoc methods use the previous-to-last activa-
tions as the input to the scoring functions. To this category belong kNN (Sun et al., 2022), DDU
(Mukhoti et al., 2023) and Mahalanobis (Lee et al., 2018). Mixed output-feature-space post-hoc
methods rely on the previous-to-last activations and the outputs as the input to the scoring functions.
Here we find ViM (Wang et al., 2022), ASH (Djurisic et al., 2022), DICE (Sun & Li, 2022), and
ReAct (Sun et al., 2021). Latent-space post-hoc methods take inspiration from recent works (Yang
et al., 2023; Mukhoti et al., 2023; Arnez et al., 2024) and implement an adapted confidence score,
called LaRD, that uses latent activations of a given intermediate or hidden layer.

Adapting post-hoc methods for object detection is straightforward, leveraging each architecture’s
built-in filtering mechanisms. In YOLOv8, however, only MSP, GEN, and energy-based methods
are applied, as the network lacks a final fully connected layer or object-specific latent features.
In addition to the adapted post-hoc OOD detection methods, we evaluated prominent OOD-OD
methods such as VOS (Du et al., 2022b), SAFE (Wilson et al., 2023), and SIREN (Du et al., 2022a).
The confidence score threshold for each OOD detection method was calculated such that 95% of the
ID samples lie above the threshold. Furthermore, as a baseline for OSOD methods in our benchmark,
and to enable a fair comparison with OOD-OD methods, we present results for OpenDet CWA
(Mallick et al., 2024), a state-of-the-art OSOD method based on Faster-RCNN.
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Figure 4: Average OOD-OD performance across baseline families and classic metrics (architectures are aver-
aged). OpIm=OpenImages
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Figure 5: Average OSOD performance comparison across baseline families and metrics (architectures are
averaged). OpIm=OpenImages

5.3 RESULTS

In Figure 4, we present a summarized plot of the AUROC and FPR95 metrics from the new FMIYC
benchmark, averaged across architectures for each family of methods and each OOD dataset.
Feature-based methods and those utilizing latent representations tend to identify incorrect predic-
tions more effectively in the farther split compared to other splits. Conversely, mixed methods
exhibit a decline in performance as semantic distance increases. Overall, there is no distinct trend
among baseline families indicating whether incorrect detections are more easily identified for near,
far, or farther objects. This observation may be surprising; however, the differences among splits
will become more apparent when considering the OSOD metrics discussed subsequently.

Figure 5 illustrates the results for the incorporated OSOD metrics, averaged across architectures for
each family of methods and each OOD dataset. For the nOSE, there is a clear decreasing trend
across method families when transitioning from near to farther splits. The near datasets exhibit the
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Table 4: Results on the COCO datasets for methods using Faster-RCNN (top) and OWLv2 (bottom). Bold: best OOD-OD method

AUROC ↑ RU ↑ PU ↑ nOSE ↓

Method Near Far Farther Near Far Farther Near Far Farther Near Far Farther

GEN 87.43 84.48 78.82 26.12 10.96 2.99 73.80 65.17 22.89 14.29 8.69 2.04
Energy 86.47 82.31 72.44 24.84 9.95 2.99 75.88 66.33 22.89 15.95 9.80 2.03
VOS 89.98 89.13 84.79 24.62 11.26 4.72 72.10 55.61 26.70 20.49 9.65 1.76
SAFE 83.94 79.73 90.73 16.78 6.31 2.45 54.85 45.78 20.87 35.45 18.73 3.22
SIREN 89.63 88.00 - 27.30 12.17 - 60.52 53.67 - 19.46 9.84 -
OpenDet CWA - - - 37.85 24.59 5.39 77.69 54.72 29.19 25.19 12.57 8.30

OWLv2 Energy 55.02 58.79 59.45 0.0 0.0 0.0 0.0 0.0 0.0 1.18 0.15 0.01
OWLv2 Mahalanobis 61.35 89.49 99.31 0.0 0.05 0.01 0.0 2.94 3.70 1.18 0.10 0.0

Table 5: Results on the OpenImages datasets for methods using Faster-RCNN (top) and OWLv2 (bottom). Bold: best OOD-OD method

AUROC ↑ RU ↑ PU ↑ nOSE ↓

Method Near Far Farther Near Far Farther Near Far Farther Near Far Farther

GEN 82.77 83.70 79.65 16.95 6.92 3.31 72.01 68.04 21.80 15.86 5.37 0.69
Energy 81.49 81.79 73.33 15.22 6.58 3.35 73.59 70.08 22.08 18.07 5.76 0.65
VOS 84.40 86.01 88.08 12.77 7.09 5.63 64.11 67.29 26.24 22.29 6.33 0.63
SAFE 85.18 83.33 95.10 14.9 4.31 3.18 55.70 55.38 17.17 26.86 9.36 1.36
SIREN 88.61 85.22 - 20.88 6.527 - 60.53 59.55 - 16.34 6.15 -
OpenDet CWA - - - 27.51 14.11 5.93 73.42 62.08 32.93 19.67 5.56 8.59

OWLv2 Energy 56.85 59.36 48.14 0.0 0.0 0.0 0.0 0.0 0.0 6.67 0.88 0.0
OWLv2 Mahalanobis 70.84 87.67 99.55 0.68 0.17 0.0 23.28 20.58 0.0 5.98 0.71 0.0

highest nOSE, indicating that more objects are mistakenly predicted as one of the in-distribution
(ID) classes among the correctly localized objects. Conversely, objects in the farther split are less
confounded with ID objects. Regarding the APU , it is generally observed to be low across OOD
datasets, with a trend of decreasing further in the farther datasets. This suggests that objects that are
semantically near are localized more accurately. Feature-based methods and those utilizing latent
space representations appear to perform better than other methods for the farther objects.

The PU exhibits the highest variability across methods and also the highest values among the OSOD
metrics. It is particularly elevated for the near splits. However, drops drastically for the farther
objects, indicating that in such splits, more OOD predictions do not correspond to ground truth
objects, as illustrated in Figure 2. Finally, the RU is generally quite low across OOD datasets and
methods, with a similar trend showing that objects in far and farther OOD datasets are harder to
detect. The metrics reveal that, on average, most unknown objects are ignored (not found), and this
challenge is even more pronounced for far and farther OOD objects. For the near splits, ∼ 14% of
unknown objects are correctly identified. This figure drops to approximately 3% in the farther splits
for output-based and mixed methods. However, feature-based and latent representation methods
seem to perform slightly better, identifying ∼ 9% of the unknown objects in the farther splits. For a
comprehensive presentation of the results for each architecture, method, and metric, please refer to
Appendix Section F.

It is important to note how unrelated the previous OOD-OD benchmark metrics may seem with
respect to the OSOD metrics. The AUROC and FPR95 cannot actually tell much difference between
far and near datasets. This difference becomes clear in light of the OSOD metrics, which show that,
contrary to the case of image classification, for object detection, the semantically and visually closer
objects are easier to identify and localize. But when the unknown objects are too different from the
ID ones, they will most likely be ignored by the methods and architectures evaluated. These insights
are impossible to obtain using only the AUROC and FPR95.

Furthermore, Table 4 and Table 5 show summarized results for COCO/OpenImages with the most
widely used architecture for OOD-OD, Faster-RCNN, across the two best post-hoc methods (GEN
and Energy) according to our results, and including three OOD-OD training methods: VOS (Du
et al., 2022b), SAFE (Wilson et al., 2023), and SIREN (Du et al., 2022a). We include one OSOD
method based on Faster-RCNN in order to make a fair comparison, OpenDet CWA (Mallick et al.,
2024). The tables show no clear winner in all OOD-OD and OSOD metrics. Across training meth-
ods, VOS presents the best AUROC performance in terms of near and far splits, and also shows the
best PU , RU , and nOSE in the farther split. When comparing OOD-OD methods with OpenDet
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CWA, it is possible to observe that it outperforms all other methods in OSOD metrics, which may
not come as a surprise since it is specifically an OSOD method. It is worth clarifying that AUROC
is not computable for OpenDet CWA (or OSOD methods in general), since OSOD is not a binary
classification task, whereas OOD-OD is.

Finally, Table 4 and Table 5 also show the results for OWLv2 using two post-hoc OOD-OD methods.
The results for OWLv2 must be understood considering that, on average, about 93% of the images
in all OOD subsets do not have a single prediction, constraining the AUROC results to only around
7% of the evaluation images. This, along with the nOSE, indicates that the VLM makes many fewer
incorrect predictions than in the case of Faster-RCNN, Yolov8, and RT-DETR. However, AUROC
alone can be misleading. A closer look at RU and PU shows that OOD methods applied to OWLv2
fail to detect almost any unknown objects. While the model may internally recognize these objects,
its output is strictly confined to the queried ID classes. This aligns with recent analysis by Miyai
et al. (2024), which argues that VLMs require specialized OOD approaches that account for their
prompt-based input and extensive semantic space.

6 DISCUSSION

The value of OSOD metrics. We suggest caution to practitioners when relying solely on legacy
metrics (AUROC and FPR95) and the former evaluation approach, as it does not take into account
ignored objects or images without prediction, resulting in fewer ‘valid’ images for evaluation in-
dependently of the architecture for object detection. It is crucial to note that the OSOD metrics
are necessary to quantify the effectiveness of OOD-OD methods in detecting actual OOD objects
(APU and PU ) and accounting for instances when OOD objects are overlooked (RU ) or misclassi-
fied (nOSE). Unlike AUROC and FPR95, the OSOD metrics provide a more nuanced understanding
by addressing confounding unknowns for ID objects, the oversight of OOD objects, and the localiza-
tion of unknowns. The added value of the OSOD metrics is clearer when considering the semantic
stratified splits.

Near, far and farther splits. The partition of the benchmark into near, far, and farther proved
insightful and meaningful since it details that semantic similarity plays an important role in the
detection ability of different methods and architectures. It is especially insightful how the near OOD
objects are more easily detectable than far and farther ones in the case of object detection. This is
the opposite of the case of image classification, where near classes are considered harder than far
ones. However, the near objects are also more easily confounded with ID objects, in agreement with
image classification observations. Moreover, the observation that far and farther objects are more
usually ignored, and therefore are hardly localizable, is demonstrated by the OSOD metrics, as only
around 5% of the unknown farther objects are localized, as opposed to about 20% for some methods
in the near datasets. Our work paves the way for newer detection approaches customized to specific
semantic similarity requirements and provides a stronger foundation for developing OOO-OD and
OSOD methods.

7 CONCLUSION

In this work, we identified and addressed fundamental flaws in the existing de facto out-of-
distribution object detection (OOD-OD) evaluation benchmark and its metrics. To address these
flaws, we introduced the FindMeIfYouCan benchmark, which builds on top of and refines the ex-
isting evaluation framework for OOD-OD. In addition, we propose incorporating open-set object
detection metrics to comprehensively assess OOD-OD methods on their ability to identify unknown
objects. The proposed benchmark approach offers and facilitates a holistic evaluation, measuring
the detection of semantically near, far, and farther objects, instances where objects are overlooked,
and cases where objects are misclassified as in-distribution (ID) objects. We believe our work lays a
solid foundation for a more rigorous and nuanced evaluation of OOD-OD methods towards a more
reliable deployment of object detectors in real-world scenarios.
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REPRODUCIBILITY STATEMENT.

We include details throughout the paper that can be used to recreate the dataset and to reproduce our
results. In particular, Section 4, and Section B from the Appendix. Upon acceptance, we will make
publicly available the code used for dataset creation, the dataset created, and benchmark evaluation
code, to ensure reproducibility and adoption of the benchmark.
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Appendix

A SEMANTIC OVERLAP AND SIMILARITIES IN PREVIOUS BENCHMARK

Table 6: Semantic overlap: Num-
ber of OOD images containing
ID classes

ID class No. Images

Person (or part) 106
Dining table 142
Other 4

As stated in Section 3, the main assumption of the current OOD-
OD benchmark is that no ID category can be present in the OOD
datasets. This is what we call the no-overlap condition. If this con-
dition is met, it is ensured that all predictions done by a model
trained on the ID datasets can be considered “incorrect” predic-
tions. The non-overlap condition can mainly be enforced by man-
ual inspection of OOD datasets, due to the existence of unlabeled
instances of several objects.

A close inspection of the dataset showed that, in fact, the core as-
sumption of no overlap is not met, since there are labeled and unla-
beled instances of ID categories in the OOD datasets. The amount
of images in the OOD datasets that contain ID categories is shown in Table 6.

Figure 6: Examples of images in the OOD datasets that contain humans or parts of humans. There
exists a semantic overlap between ID and OOD datasets. The images must be removed for the
benchmark to have consistency.
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Figure 7: Examples of images in the OOD datasets that contain dining tables. Some of these contain
also humans. There exists a semantic overlap between ID and OOD datasets. The images must be
removed for the benchmark to have consistency.

Some examples of images in the OOD datasets that contain humans or parts of humans are shown in
Figure 6. Similarly, examples of images containing “dining tables” in the OOD datasets w.r.t. VOC
are shown in Figure 7. Table 7 shows the overlapping categories in each OOD dataset.

Table 7: Overlapping categories in each OOD dataset w.r.t. VOC

ID: VOC COCO OpenImages

Person Person

Person, human face, human arm, woman,
human head, human hand, human hair,
human nose, human ear, human mouth,
human nose, human eye, human beard,
body part

Dining table Spoon, fork, pizza, sandwich,
cake, hot dog, wine glass, spoon

Salad, plate, broccoli, tableware, fork,
baked goods, spoon

Boat - Boat
Potted plant - Houseplant, flowerpot
Cat - Cat

All images containing overlapping classes with the ID ones must be removed for the benchmark
to comply with the non-overlap condition. Table 7 presents the detailed list of OOD categories
that overlap with the corresponding ID category in each OOD dataset with respect to VOC cate-
gories. For BDD100k as ID, only the images containing instances of people or parts of people were
removed.

Furthermore, we present a list of OOD categories and their corresponding ID category that are
considered semantically or visually near w.r.t. VOC in Table 8. All the other categories in the OOD
datasets that are not in the near list are considered far categories when VOC is the ID dataset. It
is important to note, as explained in Section 4, that the images were manually checked to ensure
the correct assignment into each new split, or removal. Figure 8 show examples of OOD images
that contain near categories w.r.t. VOC as ID dataset, along with the prediction from Faster-RCNN
trained on VOC.
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Table 8: Semantically and visually near categories in each OOD dataset w.r.t. VOC

VOC category COCO OpenImages

Horse Zebra -
Cat - Jaguar, leopard, cheetah
Chair Bench -
Person - Clothing

Dining table Spoon, fork, carrot,
orange, apple, cup, bowl Zucchini, food, knife

Television Laptop Tablet computer, laptop
Couch Bed -
Dog Bear Fox
Potted plant Vase -

Various - Raccoon, harbor seal,
hedgehog, otter, sea lion

Figure 8: Examples of images in the OOD datasets that contain categories classified as near w.r.t.
Pascal-VOC as ID dataset. The predictions are made by the Faster RCNN model trained on Pascal-
VOC.
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B DETAILS ON THE CONSTRUCTION OF THE FMIYC BENCHMARK

Here we provide more details into how the new benchmark was created, in addition to what is
already presented in Section 4. Following the observations made in Section A with respect to the
semantic overlaps existing in the current OOD-OD benchmark (Du et al., 2022b), the first step was
to remove the images where semantic overlap exists with the ID categories.

Table 9: Wu-Palmer average similarity
scores for the proposed splits. CC=COCO,
OI=OpenImages

ID OOD dataset WuP similarity

VOC

CC Near 0.706 ± 0.225
OI Near 0.642 ± 0.204
CC Far 0.683 ± 0.177
OI Far 0.604 ± 0.193

BDD CC Farther 0.619 ± 0.158
OI Farther 0.508 ± 0.175

The second step consisted of splitting into near and far subsets with
respect to Pascal-VOC using class names as the criterion. The im-
ages containing semantically and visually similar categories from
Table 8 were put into the near split. The rest were put into the far
split. The splits were validated using WordNet (Miller, 1995) and
the Wu-Palmer similarity metric (Wu & Palmer, 1994). For each
class name in the ID and OOD datasets, the WordNet embedding
was obtained. Then, we calculated the highest Wu-Palmer similar-
ity of each OOD class name w.r.t. those of the ID class names. The
results in Table 9 show the average WuP similarity for each pro-
posed split, and confirm the stratification. The images were man-
ually inspected to ensure no unlabeled instances of ID categories
were present, in which case the image was removed from the benchmark. The manual inspection
also ensured the correct assignment of images to each split.

Next, new images were added to each split. Candidate images from the training sets of COCO and
OpenImages were first selected for manual inspection. The candidate images didn’t have labeled ID
categories, and needed to contain labeled instances of either the near or the far categories. Candidate
images for each split were then manually inspected to ensure also that no ID category was present,
and the correct assignment to each split.

For BDD100k as ID, the only modification done to the existing OOD datasets was the removal of
images with people, because of overlap with the ID category “pedestrian”.

(a) Current benchmark: VOC is semantically and visually more sim-
ilar to OOD datasets than BDD.

(b) The FMIYC benchmark distinction of near, far and farther splits
can be appreciated

Figure 9: Perceptual and semantic (cosine) similarity (Mayilvahanan et al., 2023) between ID and OOD datasets using CLIP image encoder
embeddings.

Later, the semantic and visual similarity was assessed using CLIP (Radford et al., 2021) embedding
space. The embeddings for both ID datasets, and for OOD samples in each split were extracted.
Then, following the procedure in Mayilvahanan et al. (2023), we calculated the cosine similarity
between ID and their respective OOD datasets. The obtained results before and after creating the
splits can be seen in Figure 9. It can be observed that three groups are present. This allowed us to
propose the distinction into near, far and farther datasets. Near and far, are splits that are OOD w.r.t.
VOC. Farther are the subsets w.r.t. BDD100k. Each of these subsets exists for COCO and Open-
Images, which means that in total, there are six subsets of OOD datasets: COCO-near, COCO-far,
OpenImages-near, OpenImages-far w.r.t. VOC; along with COCO-farther and OpenImages-farther
w.r.t. BDD100k. The amount of images in each subset is shown in Table 2. In total, there are 7767
images across all splits.
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(a) Most frequent labeled categories in OpenImages-Far (b) Most frequent labeled categories in OpenImages-Near

(c) Most frequent labeled categories in COCO-Far (d) Most frequent labeled categories in COCO-Near

Figure 10: Top 20 category count for OOD datasets w.r.t. Pascal-VOC

(a) Most frequent labeled categories in OpenImages-Farther (b) Most frequent labeled categories in COCO-Farther

Figure 11: Top 20 category count for OOD datasets w.r.t. BDD100k

Finally, Figure 10 and Figure 11 show the top-20 category count for the images in each split of the
new benchmark.
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C DETAILS ON THE METRICS USED

This section provides more details about the previous and the newly incorporated metrics.

Previous OOD-OD metrics AUROC and FPR metrics come from binary classification problems.
The receiver-operating-characteristic (ROC) curve evaluates the performance of a classifier at vary-
ing threshold values. It consists of the plot of the true positive rate (TPR) against the false positive
rate (FPR) at each threshold setting. TPR and FPR are defined as follows:

FPR =
FP

FP + TN
(1)

TPR =
TP

TP + FN
(2)

where FP is the number of false positives, TP is the number of true positives, TN is the number
of true negatives, and FN is the number of false negatives.

The AUROC is the area under the ROC curve. Since both TPR and FPR are bounded to the interval
[0, 1], the AUROC is bounded to the same interval. A perfect classifier would have an AUROC of
1, whereas a random classifier would have an AUROC of 0.5. The value of 0 would mean that the
classifier is a perfect misclassifier (predicts negatives as positives and vice-versa). The FPR95 is
the false positive rate at 95% true positive rate. The lower the FPR95, the fewer false positives the
classifier predicts (Lasko et al., 2005).

For the previous OOD-OD benchmark, the main limitation of these two metrics lies in the fact that
they have no relation with ground truth (GT) bounding boxes, and rely exclusively on the compliance
with the non-overlap assumption, as described in Section 2.2 and Section A. Therefore, AUROC and
FPR95 are unable to measure the actual localization of OOD objects. For an illustration of this, see
Figure 12.

Moreover, a non-negligible amount of images does not have a single prediction at all, as can be seen
in Table 1. AUROC and FPR95 cannot measure that the main objects in Figure 2, Figure 12 and
Figure 13 are ignored. They can only take into account the incorrect predictions as in Figure 12.
Even if the unknown objects are correctly localized, AUROC and FPR95 are not measuring this
since they are unrelated to the GT bounding boxes. For these reasons, we raise the critical question:
are AUROC and FPR95 sufficient metrics to assess the deployment of OOD-OD methods in safety-
critical real-world scenarios?

OSOD metrics The newly proposed metrics for the benchmark exist in the Open Set for object
detection (OSOD) community. The metrics were already introduced in Section 4.2. here we give
a more detailed definition for each one of them. It is important to note that all of the metrics were
calculated using an intersection over union (IoU) threshold of 0.5. This means that one detection
is considered as a true positive (TPU ) if the unknown is classified correctly (as unknown or OOD),
and its predicted bounding box has an IoU≥ 0.5 with a ground truth (GT) unknown object.

Also, for this case it is important to distinguish two types of false negatives: dismissed or ignored
ones, denoted FND, and misclassified ones, denoted FNM . One prediction is considered as FND

if no predicted bounding box has IoU≥ 0.5 with the GT label. A detection is considered FNM if a
bounding box has IoU≥ 0.5 with a GT unknown but the predicted class is one of the ID categories.
The total false negatives for the unknowns are then:

FNU = FND
U + FNM

U (3)

The precision of the unknowns PU is defined in a similar way as the binary classification metric:

PU =
TPU

TPU + FPU
(4)

where all quantities refer to unknowns: TPU are the true positive predictions, and FPU are the
false positive predictions. Also, let us note that TPU + FPU are the total number of predictions
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Figure 12: Incorrect predictions of Faster-RCNN trained on BDD100k on images from the OOD
datasets in the current benchmark. AUROC and FPR95 cannot measure that the main OOD objects
are ignored. They can only take into account the incorrect predictions. OSOD metrics can quantify
the dismissal of unknown objects

for the unknown class. Therefore, what PU is measuring is the ratio of true positives divided by all
unknown predictions. In other words, PU tells the proportion of predictions for unknowns that were
actually ground-truth unknowns (Powers, 2011).

The recall of the unknowns RU is defined as:

RU =
TPU

TPU + FNU
(5)

where FNU are the false negatives. Let us note that TPU + FNU are the total number of ground-
truth unknowns. In other words, RU tells us the proportion of ground-truth unknowns that were
found by the detector.

For the average precision of the unkowns APU , it is defined as the area under the precision-recall
curve:

AP =

∫ 1

0

p(r)dr (6)

which is usually calculated by the interpolation of rectangles of the sampled values:
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Figure 13: Absense of predictions of Faster-RCNN trained on BDD100k on images from the OOD
datasets in the current benchmark. AUROC and FPR95 cannot measure that all OOD objects in
these images are ignored. Dismissing OOD objects is not measurable using the current metrics.
OSOD metrics can quantify the dismissal of unknown objects

AP =

M∑
m

(rn+1 − rn)pin(rn+1), (7)

pin(rn+1) = max
r̃≥rn+1

p(r̃) (8)

where pin represents the interpolated precision at each detection point, which is obtained by taking
the maximum precision whose recall value is greater or equal than (rn+1) (Padilla et al., 2020).

Next, usually OSOD works report the absolute open set error (AOSE), that is defined as the total
number of unknown objects that are predicted as one of the ID classes (which would correspond to
FNM

U ). Since the absolute number of these is not comparable across datasets (because each dataset
has a different number of unknown objects), we propose using a metric that we call normalized open
set error (nOSE) that is defined as:
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nOSE =
FNM

U

TPU + FNU
(9)

where indeed TPU + FNU is once more the total number of ground-truth unknown objects. The
nOSE is comparable across datasets, and estimates the proportion of OOD objects that are con-
founded with ID objects.

A summary of the purpose, limitations, and advantages of the used metrics can be found in Table 10.

Table 10: Overall metrics summary

Metric Purpose Limitations Advantages

AUROC,
FPR95

Measures the ability of a scoring
function to detect incorrect predictions

Cannot take into account
ignored objects

Does not depend on GT labels, can detect
incorrect predictions that do not overlap
with labeled objects

Precision Measures the percent of correct
predictions over the total of predictions

Need good GT labels. Cannot
measure unlabeled unknowns. Measure localization of GT objects

Recall
Measures the percent of found objects
divided by the total number of labeled
objects

nOSE Measures the percent of unknown
objects confounded with an ID object

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D DETAILS ON EVALUATED OOD DETECTION METHODS

We present further details on the OOD detection methods used in the paper. All of the methods
come from the Image classification literature (Yang et al., 2024), except for VOS (Du et al., 2022b).

D.1 PRELIMINARIES.

Using the notation from Section 2.1, let us recall that a trained object detector M takes as input an
image x, along with a confidence threshold t∗, and for each i-th detected object outputs a bounding
box bi ∈ R4 and a vector of logits ci ∈ R|C|, with dimension equal to the number of ID classes C.
The model output is the set:

M(x; t∗) = {(bi, ci)}Di=1 (10)

where D is the number of detections in each image. Each tuple (bi, ci) corresponds to one detected
object. Note that D = 0 is possible, and in such a case the output is empty. Furthermore, the
so-called softmax activation is given by:

σ(cj) =
ecj∑|C|
m ecm

(11)

which transforms the logits vector into a vector of probabilities for each ID class, such that∑|C|
j σ(cj) = 1. In this notation, the index j denotes the class index, and the index i denotes

the object index. An alternative output is then given by the vector of probabilities after softmax:
M(x; t∗) = {(bi,pi)}Di=1, where pj = σ(cj). The predicted probability of each detected object is
the maximum after softmax, let it be denoted by p̂i = maxj pij . In any case, to have D > 0, there
must be at least one prediction such that p̂i ≥ t∗.

The OOD detection problem. Is formulated as a binary classification task leveraging a (confi-
dence) scoring function G for each detected instance (bi, ci), so that:

G(x, bi, ci) = gi ∈ R (12)

The scoring function aims to distinguish between ID and OOD objects, using a thresholding function
Ω with threshold τ as presented in eq. (13).

Ω
(
gi, τ

)
=

{
1 ID if gi ≥ τ

0 OOD if gi < τ
(13)

For the OOD-OD problem, only those detected objects above the threshold t∗ are considered. There-
fore, if no object is detected in a given image, there is no input for the scoring function G for such
an image. In a general sense, each of the OOD detection methods is a realization of the scoring
functions G. Figure 14 presents a depiction of the workflow of OOD-OD scoring functions.

It is important to avoid possible confusion and it can be useful to reiterate here that t∗ and τ are two
different thresholds. The object detection model M uses a confidence threshold t∗ ∈ R[0,1] that is
usually the one that maximizes the mAP in the ID test set. This threshold filters the output of the
model so that all detected objects satisfy p̂i ≥ t∗. On the other hand, the OOD scoring functions G
use each one its own threshold τ ∈ R, which corresponds to the one that makes that 95% of the gi
of detected ID objects are above the threshold.

D.2 EVALUATED METHODS

For the adaptation of each method from image classification to object detection, in each case, the
score is calculated per each detected object above the threshold t∗. Therefore, there can be zero or
several detections per image. Each of the equations in the following section has been adapted to
match our notation, and all of them explain the adaptation done to work at the object level.
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Input images

Model predictions Corrected predictions

Object detector
OOD scoring function

,

Figure 14: General workflow of OOD-OD scoring functions. The outputs of the base model M are
the inputs to scoring functions G. If the object detector ignores a given object, scoring functions will
ignore it, too. The model predictions not marked as OOD, remain with the predicted class.

D.2.1 OUTPUT-BASED METHODS

Output based methods take either the ci or the pi as input to the scoring functions. This family of
methods is applicable to all of the architectures tested: Faster-RCNN, Yolov8 and RT-DETR.

Maximum softmax probability (MSP). This is perhaps the most classical baseline in OOD de-
tection for image classification (Hendrycks & Gimpel, 2016). It consists of directly choosing the
maximum softmax value:

max
j

pj = max
j

ecj∑|C|
m ecm

(14)

where e is the Euler number.

Energy score. Proposed by Liu et al. (2020), it calculates the energy score using the activation
logits ci as:

E(ci;T ) = −T log

|C|∑
j

ecj/T (15)

where T is the temperature (usually set to T = 1).

Generalized entropy score (GEN). Presented by Liu et al. (2023), the authors propose using the
family of generalized entropies:
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Gλ(pi) =
∑
j

pλj (1− pj)
λ (16)

when λ = 1/2:

G1/2(pi) =
∑
j

√
pj(1− pj) (17)

D.2.2 FEATURE-BASED METHODS

If the model M has L total layers, and its last layer L is a linear one (also called fully connected),
then the activations of the L−1 (penultimate) layer are considered the extracted features zL−1 ∈ Rd,
where d is the dimension of the feature. Then, for a given input image x, and a detection (bi, ci),
the features of each detected object are defined as:

zi
L−1 = ML−1(x; t

∗) (18)

where Ml denotes the latent activation of M at layer l. To simplify notation, let us denote the per-
object feature zi

L−1 by zi. In all cases, z∗
i denotes the features of a detected object (b∗i , c

∗
i ) from a

test image x∗. Feature-based methods considered here need a training phase, and for this phase they
take as input the zi of the training set. At test time, their input is the z∗

i of test samples.

This family of methods is not applicable to Yolov8, since this architecture has no final linear layer: it
is fully convolutional. Therefore, it is not possible to associate a set of features to a specific detected
object. This family of methods can be used with Faster-RCNN and RT-DETR.

k-Nearest neighbors (kNN). Introduced by Sun et al. (2022), first normalizes the feature for each
detected object: zi = zi/∥zi∥2, where ∥·∥2 denotes the L2 norm. Then, the normalized embeddings
of the training data are stored: Z̄N = (z1, ..., zN ), where N are the number of objects detected in
the training set.

During testing, the normalized features z∗i are derived, and the euclidean distances ∥z∗i − zj∥2
are calculated with respect to the train embeddings zj ∈ ZN . Afterward, the embeddings are
reordered according to the increasing distance ∥z∗i − zj∥2. The reordered embedding sequence is
Z̄′
N = (z(1), z(2), ..., z(N)). The scoring function is defined as:

rk(z
∗
i ) = ∥z∗i − z(k)∥2 (19)

which corresponds to the distance to the k-th nearest neighbor in the normalized feature space (Sun
et al., 2022).

Mahalanobis distance. Proposed by Lee et al. (2018), the Mahalanobis score calculates the dis-
tance to the centroids of a class-conditional Gaussian distribution. The predicted class per detected
object is denoted yic and corresponds to the index of the max value of either the ci or the pi. Then
the empirical class mean and covariance matrix of training samples are estimated:

µ̂c =
1

Nc

∑
j:yc

zj , Σ̂ =
1

N

C∑
c

∑
j:yc

(zj − µ̂c)(zj − µ̂c)
⊤ (20)

where Nc denotes the total number of objects of class yc detected in the training set, N is the total
number of detected objects in the training set in all classes, and j are de indexes of detected objects
of class yc. Then the Mahalanobis confidence score is defined as the Mahalanobis distance between
the features z∗i , and the closest class-conditional Gaussian distribution:

M(z∗
i ) = max

c
−(z∗

i − µ̂c)Σ̂
−1(z∗

i − µ̂c)
⊤ (21)
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which corresponds to the log of the probability of the test sample (Lee et al., 2018).

Deep deterministic uncertainty (DDU). A work by Mukhoti et al. (2023), fits a Gaussian mix-
ture model (GMM) on the feature space, then computes the density under the GMM. Similar to
Equation (20), the mean per class µ̂c and the covariance matrix Σ̂ are computed for the features zi
of each detected object (b∗i , c

∗
i ). Then the weights of the GMM are computed as:

πc =
1

N

∑
yc (22)

which denotes the proportion of detected objects for each class yc over the total N detected objects
in the training dataset. During inference time, the density under the GMM is computed for the
features z∗

i of a detected object (b∗i , c
∗
i ) from a test image x∗:

q(z∗
i ) =

∑
yc

q(z∗
i |yc)πc, where q(z∗

i |yc) ∼ N (µc;σyc
) (23)

D.2.3 OUTPUT-FEATURE (MIXED) BASED METHODS

This family of methods takes both the outputs (either the ci or the pi) and the features zi for each
detected object (bi, ci) as inputs to the scoring functions. This family of methods was not applicable
to Yolov8 for the same reasons as for the previous family of methods.

Activation shaping (ASH). Showcased by Djurisic et al. (2022), involves a reshaping of the fea-
ture zi, and subsequent use of the energy score from Equation (15). The reshaping is done by first
calculating a threshold t that corresponds to the p-th percentile of the entire set of the detected
objects representations of the training set:

ZN = (z1, ..., zN ) (24)

Afterward, we calculate s1 =
∑

j zj . Then all values below t are set to 0 to obtain a pruned version
of the features Zp

N = (zp1 , ..., z
p
N ). Using the Zp

N , we calculate s2 =
∑

j z
p
j . Finally, all non-zero

values in Zp
N are multiplied with exp(s1/s2), to obtain the pruned and reshaped features:

Zr
N = Zp

N exp(s1/s2)

= (zp1 exp(s1/s2), ..., z
p
N exp(s1/s2))

= (zr1 , ..., z
r
N )

(25)

Finally, the pruned and reshaped features are passed through the final fully connected layer L to ob-
tain the logit activations ci, which are passed to the energy score calculation as in Equation (15). The
authors found that the method works best when using a pruning percentile of about 90% (Djurisic
et al., 2022).

Directed sparsification (DICE). Introduced by Sun & Li (2022), the authors consider the weight
matrix of the final fully connected layer W ∈ Rd×|C|, where d is the dimension of the feature zi,
and |C| is the number of ID categories. This matrix is then subject to sparsification, to preserve the
most important weights in it. The contribution is measured by a matrix V ∈ Rd×|C|, where each
column vc ∈ Rd is given by:

vc = Ezj∈ZN
[wc ⊙ zj ] (26)

where ⊙ represents the element-wise multiplication, vc indicates the weight vector for class yc, and
ZN is as defined in Equation (24). Then the top-k weights are selected from the largest values of V,
to obtain a sparsified matrix W′. This matrix is now used as the final layer weights instead of the
W. Finally, the obtained ci are passed to the energy scoring function from Equation (15) (Sun & Li,
2022).
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Rectified activations (ReAct). Proposed by Sun et al. (2021), it performs a clipping operation on
the features zi, and the calculation of the energy score. The rectification (or clipping) is performed
as:

z̄i = min(zi, t) (27)

where each element of zi is truncated to be at most equal to the threshold t. This threshold is
calculated so that a given percentile of the activations is less than the threshold. For instance, at
percentile p = 90, 90% of ID train activations are below the threshold t. The authors found that a
percentile of 90 works best. Then, the z̄i are passed as inputs to the final layer to obtain the outputs
ci, which are then used to calculate the energy score as in Equation (15) (Sun et al., 2021).

Virtual logit matching (ViM). A method inspired by a thorough geometrical analysis of the space
of the matrix Z, whose rows are the zi for all detected objects in the training set. Let X denote a
centered version of Z, obtained by offsetting the zi by a vector o = −(W⊤)+b, where (·)+ denotes
the Moore-Penrose inverse, W is the final layer weight matrix and b is the final layer bias. The
eigendecomposition of the matrix X⊤X is:

X⊤X = QΛQ−1 (28)

where eigenvalues Λ are ordered decreasingly. The first D columns of Q are called the D-
dimensional principal subspace P . The residual subspace P⊥ is spanned by the remaining D+1 to
the last columns of Q, and is represented by the matrix R ∈ RN×(N−D), where N is the number
of detected objects in the train set. Then zP⊥

i denotes the projection of zi onto R: zP⊥

i = RR⊤zi.
The virtual logit c0 is calculated as:

c0 = α∥zP⊥

i ∥ = α
√
z⊤
i RR⊤zi (29)

which corresponds to the norm of the residual zP
⊥

i rescaled by a constant α. This constant is
calculated as:

α =

∑K
j maxm=1,...,|C|{cjm}∑K

j=1 ∥zP⊥
i ∥

(30)

where z1, z2, ...,zK are uniformly sampled K training examples, and cjm is the m-th logit of cj .
This constant scales the virtual logit to the average maximum of the original logits. Finally, the ViM
score is calculated as:

ViM(zi) = α∥zP
⊥

i ∥ − ln

|C|∑
j=1

ecj (31)

which, in summary, is the virtual logit minus the energy score of the rest of the logits. For the
hyperparameter D, the authors recommend using D = 1000 if the dimension of the feature d >
1000, or use D = 512 otherwise (Wang et al., 2022).

D.2.4 LATENT SPACE METHODS

In this family we find methods that take as input other latent activations inside the network. We took
inspiration from Arnez et al. (2024); Wilson et al. (2023) and built a method based on the latent
space convolutional activations. In our case, we used directly the latent activations without doing
Monte Carlo dropout sampling of entropy estimation as in Arnez et al. (2024), nor using a surrogate
model or the generation of adversarial examples as in Wilson et al. (2023).
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Latent representation density (LaRD). We start by considering a convolutional feature map
zi,l ∈ RNc×W×H , where Nc is the number of channels, W is the width and H is the height of
the latent activation, extracted at layer l. Then it is possible to use the predicted bounding boxes bi
and the feature maps as inputs for the ROIAlign (RA) algorithm (He et al., 2017), which can extract
the corresponding portion of the feature maps per each predicted object:

oi,l = RA(zi,l, bi),where oi,l ∈ RNc×R×R (32)

Where R is the parameter that fixes the size of the output of the RA algorithm, that outputs crops
of the feature map zi,l with a given fixed-sized for all objects, independently of their aspect ratio or
actual size in the image. Then an average per channel is taken to reduce the dimensionality of these
representations:

ōi,l =
1

HW

H∑
h=1

W∑
w=1

oi,l(c, h, w), where ōi,l ∈ RNc (33)

The set Ol = {ōi,l, yi}Dd=1 consists of all the averaged latent representations at layer l of each object
found by the object detector in one image, along with the predicted class yi. Then, we also want
to build a density estimator, by making a forward pass through the training set to obtain the set of
all the ID objects latent representations: Otrain,l = {Ol}Nt

x=1, where Nt is the size of the training
set. Afterward, we use the methodology as in the Mahalanobis distance baseline to obtain a scoring
function for each of the detected objects. We used a hyperparameter of R = 9 for all experiments.
For Faster-RCNN, the chosen latent layer was the RPN intermediate convolutional layer as in Arnez
et al. (2024); for Yolov8, it was the final layer of the backbone, after evaluation of each layer. For
RT-DETR the chosen hidden layer was the first encoder module, similarly, after evaluation of each
layer.

E DETAILS ON THE TRAINING OF ARCHITECTURES

This section provides details on the training of Yolov8 (Sohan et al., 2024) and RTDETR (Zhao
et al., 2024). Both architectures were trained on a single GPU Nvidia A100 40G. The achieved
mAP by both models in each ID dataset is found in Table 3.

E.1 YOLOV8

We trained the nano version of Yolov8 for both ID datasets (BDD100k and Pascal-VOC). We used
the same hyperparameters for both models. Most of them corresponded to the default hyperparam-
eters. They were trained for 100 epochs, using the AdamW optimizer with momentum of 0.937 and
weight decay of 5×10−4. The learning rate was 10−3, and was controlled by a cosine scheduler. The
batch size was 16, and we used the copy-paste augmentation, on top of the mosaic, translate, scale,
erase, and flip-lr default augmentations. For the training, we used the Ultralytics library (Jocher
et al., 2023).

E.2 REAL-TIME DETR

We fine-tuned a version of RT-DETR that was pre-trained on COCO for both ID datasets (BDD100k
and Pascal-VOC). The pretrained version can be found in Huggingface: RT-DETR. Both versions
used early stopping with a patience of 16 epochs. The hyperparameters for both models can be
found in Table 11.
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Table 11: Hyperparameters for training RT-DETR whith ID datasets BDD100k and Pascal-VOC

Parameter ID: BDD ID: VOC

Batch size 8 8
Inference threshold 0.25 0.25
Learning rate backbone 4× 10−6 2× 10−6

Max epochs 60 60
Num queries 100 100
Random seed 40 40
Learning rate 4× 10−5 2× 10−5
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F DETAILED RESULTS PER METHOD AND ARCHITECTURE

This section presents detailed results for each architecture and method, covering all metrics. First,
we present a table showing the number of images without predictions in the proposed benchmark.
Then, the results for previous metrics are presented. Afterwards, the results for the new metrics are
detailed. Finally, a study of the correlations among previous and new metrics is presented.

Table 12: Percentage of images with no predictions in the proposed OOD-OD benchmark. OI=OpenImages.

Near Far Farther
OI/COCO OI/COCO OI/COCO

Faster RCNN 18.28/20.36 49.19/55.01 59.88/45.22
Faster RCNN VOS 15.64/19.34 44.27/51.49 54.28/40.42
Yolov8 14.98/18.48 30.2/42.32 70.15/55.79
RT-DETR 18.06/49.66 38.85/81.66 14.16/8.06
OWLv2 77.75/94.12 94.57/95.31 99.65/98.83

The previous table shows that the object detector models ignore more images when moving to the
farther split. Interestingly, the VLM model OWLv2 is the one that ignores the most of the images.
This indicates that this model mistakes OOD objects less frequently for ID ones. The metrics pre-
sented in Section 5.3 should be interpreted in consideration of this table, as AUROC cannot reflect
the amount of data used to build it, which needs to be reported.

For instance, the results from OWL in the further split indicate an AUROC of about 99%. However,
this metric is built using only 1% of the images, which corresponds to approximately 20 images. The
results of this table illustrate once more the need to quantify how often OOD-OD methods ignore
OOD objects, as is one of the core contributions of our paper.

F.1 DETAILED RESULTS ON THE PREVIOUS OOD-OD METRICS

Table 13: OOD detection performance for FasterRCNN (Vanilla) on various OOD splits (ID: Pas-
calVOC). Metrics are AUC↑ (%) and FPR95↓ (%). LaRD represents best of (Mahalanobis PCA,
KNN PCA, GMM PCA). Best result per metric column is in bold. BIndicates the primary scoring
method of the VOS (Virtual Outlier Synthesis).

FasterRCNN (Vanilla) — PascalVOC

COCO-Near (OOD) COCO-Far (OOD) OpImg-Near (OOD) OpImg-Far (OOD)

Method AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓
ViM 75.7 85.5 77.8 87.4 73.0 87.1 74.9 91.6
Mahalanobis 59.8 95.9 64.9 95.5 59.7 94.6 60.3 95.9
MSP 73.8 88.3 77.3 88.0 70.5 90.4 75.4 87.9
Energy 86.5 45.5 82.3 56.2 81.5 57.9 81.8 52.6
ASH 82.9 49.9 74.5 66.6 78.7 59.9 74.8 60.8
DICE 82.7 62.0 78.2 76.7 79.1 67.3 76.7 71.6
ReAct 85.1 58.1 75.2 82.5 83.1 66.0 73.4 83.0
GEN 87.4 44.8 84.5 55.0 82.8 56.2 83.7 52.1
DICE+ReAct 66.3 89.8 56.0 94.8 71.4 88.9 48.3 99.0
DDU 64.0 97.6 68.3 97.0 70.4 97.2 66.3 98.3
VOSB(Energy) 90.0 44.6 89.1 44.9 84.4 60.0 86.0 49.1
LaRD 73.8 81.7 68.6 88.0 70.0 88.4 70.0 89.2
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Table 14: OOD detection performance for FasterRCNN enhanced with VOS (Virtual Outlier Syn-
thesis) on various OOD splits (ID: PascalVOC). Metrics are AUC↑ (%) and FPR95↓ (%). LaRD
represents best of (Mahalanobis PCA, KNN PCA, GMM PCA). Best result per metric column is in
bold. BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

FasterRCNN (VOS) — PascalVOC

COCO-Near (OOD) COCO-Far (OOD) OpImg-Near (OOD) OpImg-Far (OOD)

Method AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓
ViM 77.4 87.7 80.3 85.9 73.4 89.8 77.2 92.2
Mahalanobis 60.9 95.9 65.5 94.9 60.3 95.5 64.8 95.5
MSP 69.1 91.5 75.1 89.2 65.6 91.1 72.6 88.2
ASH 90.2 44.1 87.4 51.4 84.8 59.8 82.5 56.2
DICE 88.0 56.5 88.3 53.4 82.7 67.8 80.8 59.0
ReAct 87.1 57.1 79.9 72.2 85.6 64.5 77.1 76.3
GEN 89.7 42.9 89.3 45.7 85.3 58.2 86.0 50.7
DICE+ReAct 74.9 84.8 67.3 88.1 74.8 88.5 58.6 98.9
DDU 67.5 99.2 70.0 96.9 72.5 99.3 72.7 98.3
VOSB(Energy) 90.0 44.6 89.1 44.9 84.4 60.0 86.0 49.1
LaRD 75.1 77.5 68.1 87.8 67.8 87.2 67.8 89.2

Table 15: OOD detection performance for FasterRCNN variants on Farther OOD splits (ID: BDD).
LaRD represents best of (Mahalanobis PCA, KNN PCA, GMM PCA). Higher AUC is better (↑),
lower FPR95 is better (↓). Best result per metric column is in bold. BFor the FasterRCNN (VOS)
architecture, this indicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

FasterRCNN (Vanilla) — ID: BDD FasterRCNN (VOS) — ID: BDD

COCO-Farther (OOD) OpImg-Farther (OOD) COCO-Farther (OOD) OpImg-Farther (OOD)

Method AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

ViM 91.4 39.3 91.6 39.3 92.9 32.3 93.1 31.5
Mahalanobis 89.5 48.8 89.0 51.5 91.1 43.3 90.6 46.7
MSP 80.0 77.7 81.2 76.8 79.1 79.4 80.0 76.6
Energy 72.4 64.4 73.3 60.3 — — — —
ASH 48.9 81.0 49.0 77.3 67.6 70.6 71.7 61.4
DICE 68.3 69.2 69.3 65.0 77.7 57.9 71.6 49.0
ReAct 65.7 95.1 58.8 97.4 79.6 71.2 77.0 76.4
GEN 78.8 62.7 79.6 58.9 86.6 52.7 89.5 47.8
DICE+ReAct 57.9 97.7 48.5 98.9 66.8 90.5 59.4 95.5
DDU 90.8 41.6 91.5 42.6 92.2 37.2 92.9 40.1
VOSB(Energy) 84.8 49.1 88.1 38.5 84.8 49.1 88.1 38.5
LaRD 96.6 15.8 97.7 8.6 96.6 15.8 97.4 10.9

Table 16: OOD detection performance for YOLOv8 (ID: PascalVOC). LaRD represents results
from available PCA methods (KNN PCA 32 only in provided data). Higher AUC is better (↑), lower
FPR95 is better (↓). Best result per metric column is in bold.

YOLOv8 — PascalVOC

COCO-Near (OOD) COCO-Far (OOD) OpImg-Near (OOD) OpImg-Far (OOD)

Method AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

MSP 85.2 64.0 81.4 73.7 85.1 67.4 82.0 74.4
Energy 57.0 95.2 66.1 91.3 51.6 96.1 65.6 92.4
GEN 81.3 65.0 79.5 67.2 81.0 68.9 82.3 59.1
LaRD 78.6 76.4 82.0 68.8 71.4 85.7 80.9 75.7
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Table 17: OOD detection performance on Farther OOD splits (ID: BDD). LaRD for RT-DETR
represents best of (Mahalanobis PCA, KNN PCA, GMM PCA). Higher AUC is better (↑), lower
FPR95 is better (↓). Best result for each metric column is in bold. ‘—‘ indicates data not available.

YOLOv8 — ID: BDD RT-DETR — ID: BDD

COCO-Farther (OOD) OI-Farther (OOD) COCO-Farther (OOD) OI-Farther (OOD)

Method AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

ViM — — — — 89.5 30.7 95.2 15.2
Mahalanobis 98.2 7.8 99.6 1.3 99.1 5.0 99.7 1.1
MSP 69.4 77.1 69.4 75.4 79.4 60.9 85.1 57.2
Energy 64.8 91.1 62.8 91.5 57.9 97.4 64.4 96.2
ASH — — — — 33.1 98.6 35.4 99.2
DICE — — — — 60.7 90.8 58.1 96.4
ReAct — — — — 56.5 96.8 63.2 95.0
GEN 63.8 71.9 66.8 68.8 77.1 67.9 83.8 63.3
DICE+ReAct — — — — 59.3 92.7 57.0 97.3
DDU — — — — 99.1 3.5 99.6 0.6
LaRD — — — — 98.8 5.3 99.4 1.4

Table 18: OOD detection performance for RT-DETR (ID: PascalVOC). LaRD represents best of
(Mahalanobis PCA, KNN PCA, GMM PCA). Higher AUC is better (↑), lower FPR95 is better (↓).
Best result per metric column is in bold.

RT-DETR — PascalVOC

COCO-Near (OOD) COCO-Far (OOD) OpenImages-Near (OOD) OpenImages-Far (OOD)

Method AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

AUC↑
(%)

FPR95↓
(%)

ViM 96.8 10.9 90.0 35.7 74.1 59.7 87.7 39.7
Mahalanobis 96.6 10.8 87.2 42.4 91.7 32.6 92.0 29.9
MSP 94.2 21.7 84.5 58.3 62.7 79.0 76.7 67.3
Energy 68.1 97.7 70.8 92.6 50.1 96.3 62.8 96.7
ASH 64.7 86.2 57.5 92.9 46.8 96.6 49.3 94.3
DICE 63.4 89.7 70.7 83.0 81.9 73.7 81.3 78.2
ReAct 66.3 96.0 71.5 90.8 50.9 97.5 61.9 98.1
GEN 74.9 97.7 75.6 94.7 53.2 96.0 69.9 90.1
DICE+ReAct 68.0 90.0 70.1 84.1 81.5 75.4 79.0 83.0
DDU 96.4 11.9 86.7 45.2 91.2 32.2 91.4 31.5
LaRD 91.8 26.6 83.3 48.8 77.8 76.2 81.2 76.0

The evaluation using traditional OOD metrics (AUC/FPR95) reveals a significant method-
architecture interaction effect on OOD discrimination performance. While certain methods like
GEN demonstrate robust OOD separation on specific architectures (e.g., FasterRCNN), their ef-
ficacy is not universally transferable. Conversely, density-based methods like Mahalanobis show
high sensitivity to the feature space, achieving exceptional discrimination in some contexts (e.g.,
YOLOv8/RT-DETR on BDD) but underperforming in others. This variability underscores that cur-
rent OOD scoring functions often exploit specific architectural properties or data distributions rather
than embodying a generalizable principle of OOD detection.

Across the presented experiments, traditional OOD detection metrics like AUC and FPR95 generally
indicated that distinguishing out-of-distribution objects becomes less challenging as their semantic
distance from the in-distribution data increases. This broad trend falsely suggests that greater dissim-
ilarity simplifies the OOD object detection task. However, these metrics, while useful for gauging
overall separability, offer limited insight into if these unknown objects are actually found, or the
precision of their identification within an object detection framework.
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F.2 DETAILED RESULTS ON THE NEWLY INCORPORATED OSOD METRICS

Table 19: OOD detection performance comparison on COCO splits (ID: PascalVOC). Lower nOSE
is better (↓), higher APU/PU/RU is better (↑). Best result per metric column is in bold.

YOLOv8 — PascalVOC

COCO-Near (OOD) COCO-Far (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
MSP 32.3 8.5 62.0 11.0 18.7 4.5 61.1 5.7
Energy 43.6 1.3 44.3 3.0 23.2 1.0 34.8 2.7
GEN 27.2 11.7 64.7 16.5 14.2 6.3 59.3 10.1
LaRD 24.9 13.7 67.8 18.8 11.4 7.0 52.5 12.7

Table 20: OOD detection performance comparison on OpenImages splits (ID: PascalVOC). Lower
nOSE is better (↓), higher APU/PU/RU is better (↑). Best result per metric column is in bold.

YOLOv8 — PascalVOC

OpenImages-Near (OOD) OpenImages-Far (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
MSP 26.2 6.2 62.6 7.6 13.8 2.1 52.3 3.1
Energy 34.3 0.9 41.2 2.0 15.9 0.8 42.0 1.8
GEN 23.4 7.5 62.2 11.0 9.5 4.0 52.1 6.9
LaRD 26.9 5.5 60.1 8.2 9.8 4.1 52.8 7.0

Table 21: OOD detection performance comparison on Far OOD sets (ID: BDD). Lower nOSE is
better (↓), higher APU/PU/RU is better (↑). Best result per metric column is in bold.

YOLOv8 — BDD

COCO-Farther (OOD) OpenImages-Farther (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
MSP 4.6 0.3 31.4 1.0 4.0 0.6 36.5 1.2
Energy 5.3 0.1 26.0 0.4 5.0 0.1 22.6 0.3
GEN 3.9 0.6 34.3 1.7 3.2 0.8 36.0 2.0
LaRD 0.1 1.6 31.1 4.8 0.0 1.4 28.3 4.7
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Table 22: OOD detection performance for FasterRCNN (Vanilla) on COCO splits (ID: PascalVOC).
Lower nOSE is better (↓), higher APU/PU/RU is better (↑). Best result per metric column is in bold.
BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

FasterRCNN (Vanilla) — PascalVOC

COCO-Near (OOD) COCO-Far (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
ViM 38.3 5.0 69.0 6.3 17.9 1.9 56.5 2.6
Mahalanobis 44.6 0.2 85.7 0.2 20.6 0.1 100.0 0.1
MSP 33.5 7.4 65.4 10.2 15.2 2.8 49.5 5.2
KNN 39.6 4.2 77.0 5.0 18.9 1.0 53.2 1.7
Energy 16.0 22.3 75.9 24.8 9.8 8.0 66.3 9.9
ASH 21.0 18.1 76.4 20.5 13.5 5.6 71.2 6.6
DICE 26.7 14.2 77.4 16.2 15.3 3.9 66.2 4.9
ReAct 33.3 10.0 86.5 10.8 19.0 1.3 83.3 1.5
GEN 14.3 23.2 73.8 26.1 8.7 8.6 65.2 11.0
DICE+ReAct 43.0 1.3 69.6 1.8 20.2 0.3 72.7 0.4
DDU 44.3 0.3 40.5 0.5 20.2 0.3 40.0 0.4
VOSB(Energy) 20.5 21.5 72.1 24.6 9.6 8.3 55.6 11.3
LaRD 39.9 3.3 65.5 4.3 17.5 2.6 71.8 3.1

Table 23: OOD detection performance for FasterRCNN (Vanilla) on OpenImages splits (ID: Pas-
calVOC). Lower nOSE is better (↓), higher APU/PU/RU is better (↑). Best result per metric column
is in bold. BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

FasterRCNN (Vanilla) — PascalVOC

OpenImages-Near (OOD) OpenImages-Far (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
ViM 30.6 3.1 66.0 4.1 11.7 0.8 59.7 1.1
Mahalanobis 35.0 0.2 100.0 0.2 12.7 0.0 0.0 0.0
MSP 28.4 4.1 59.9 6.1 9.7 1.7 53.0 2.9
KNN 33.5 1.0 57.5 1.7 11.7 0.9 62.0 1.1
Energy 18.1 12.9 73.6 15.2 5.8 5.3 70.1 6.6
ASH 21.1 10.7 75.3 12.5 7.8 3.8 69.9 4.6
DICE 23.0 9.7 75.8 11.0 9.0 2.9 70.0 3.5
ReAct 28.4 5.7 86.4 6.1 11.8 0.8 78.7 0.9
GEN 15.9 14.1 72.0 16.9 5.4 5.4 68.0 6.9
DICE+ReAct 33.4 1.5 82.4 1.7 12.7 0.0 50.0 0.0
DDU 34.5 0.5 51.6 0.6 12.6 0.1 46.2 0.1
VOSB(Energy) 22.3 10.3 64.1 12.8 6.3 5.5 67.3 7.1
LaRD 31.1 3.4 74.6 3.7 10.0 2.2 68.8 2.6
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Table 24: OOD detection performance for FasterRCNN (Vanilla) on Far OOD sets (ID: BDD).
Lower nOSE is better (↓), higher APU/PU/RU is better (↑). Best result per metric column is in bold.
BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

FasterRCNN (Vanilla) — BDD

COCO-Farther (OOD) OpenImages-Farther (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
ViM 1.1 1.2 22.9 3.9 0.7 0.9 18.3 3.3
Mahalanobis 2.0 1.0 21.4 3.1 2.4 0.4 11.8 1.8
MSP 3.3 0.3 17.8 1.9 2.4 0.3 14.9 1.7
KNN 1.9 1.0 23.3 3.2 0.7 1.1 20.5 3.3
Energy 2.0 0.9 22.9 3.0 0.6 1.2 22.1 3.4
ASH 3.3 0.5 20.5 1.8 2.1 0.6 19.0 2.1
DICE 2.3 0.8 22.7 2.8 1.0 1.0 21.4 3.0
ReAct 4.0 0.4 17.9 1.2 3.6 0.1 7.7 0.6
GEN 2.0 1.0 22.9 3.0 0.7 1.2 21.8 3.3
DICE+ReAct 4.3 0.1 14.4 0.9 3.7 0.0 7.3 0.5
DDU 3.2 0.6 19.7 2.0 3.2 0.1 9.4 1.0
VOSB(Energy) 1.8 1.8 26.7 4.7 0.6 2.2 26.2 5.6
LaRD 0.7 1.3 21.0 4.2 0.6 0.8 16.5 3.4

Table 25: OOD detection performance for FasterRCNN (VOS) on COCO splits (ID: PascalVOC).
Lower nOSE is better (↓), higher APU/PU/RU is better (↑). Best result per metric column is in bold.
BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

FasterRCNN (VOS) — PascalVOC

COCO-Near (OOD) COCO-Far (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
ViM 45.5 3.1 64.0 4.3 20.3 1.3 48.9 2.2
Mahalanobis 50.0 0.0 0.0 0.0 22.6 0.0 0.0 0.0
MSP 39.6 7.0 66.6 9.6 17.6 2.6 44.5 4.7
KNN 36.3 10.3 73.9 12.2 14.9 4.7 55.7 6.9
ASH 17.6 23.3 71.3 26.5 9.5 8.7 60.4 11.4
DICE 33.0 12.4 73.6 15.2 14.1 5.1 56.6 7.4
ReAct 42.4 6.6 83.6 6.8 20.7 1.3 66.0 1.7
GEN 15.9 24.1 69.4 27.8 8.0 9.1 54.9 12.7
DICE+ReAct 50.0 0.0 0.0 0.0 22.6 0.0 0.0 0.0
DDU 49.8 0.2 46.7 0.2 22.3 0.2 25.0 0.3
VOSB(Energy) 20.5 21.5 72.1 24.6 9.6 8.3 55.6 11.3
LaRD 42.1 6.0 70.7 7.1 19.9 2.1 64.5 2.5

Table 26: OOD detection performance for FasterRCNN (VOS) on OpenImages splits (ID: Pas-
calVOC). Lower nOSE is better (↓), higher APU/PU/RU is better (↑). Best result per metric column
is in bold. BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

FasterRCNN (VOS) — PascalVOC

OpenImages-Near (OOD) OpenImages-Far (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
ViM 34.9 1.5 49.1 2.2 13.2 0.4 46.3 0.6
Mahalanobis 37.3 0.0 0.0 0.0 13.8 0.0 0.0 0.0
MSP 31.7 3.0 53.2 5.4 10.9 1.4 49.1 2.7
KNN 31.6 3.7 58.7 5.3 8.9 3.5 63.5 4.6
ASH 20.7 11.9 65.5 14.1 7.1 4.8 65.5 6.3
DICE 28.9 6.0 62.9 7.6 9.4 3.1 63.3 4.2
ReAct 32.2 4.4 84.2 4.7 12.7 0.9 72.1 1.1
GEN 18.4 12.9 63.3 15.9 5.9 5.7 66.1 7.5
DICE+ReAct 37.3 0.0 0.0 0.0 13.8 0.0 0.0 0.0
DDU 37.3 0.0 0.0 0.0 13.7 0.0 21.4 0.1
VOSB(Energy) 22.3 10.3 64.1 12.8 6.3 5.5 67.3 7.1
LaRD 32.8 3.7 75.0 4.1 11.3 1.9 73.1 2.3
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Table 27: OOD detection performance for FasterRCNN (VOS) on Far OOD sets (ID: BDD). Lower
nOSE is better (↓), higher APU/PU/RU is better (↑). Best result per metric column is in bold.
BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

FasterRCNN (VOS) — BDD

COCO-Farther (OOD) OpenImages-Farther (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
ViM 1.1 1.7 24.1 5.3 0.8 1.7 23.1 5.5
Mahalanobis 2.3 1.3 22.1 4.3 3.3 0.8 17.8 3.4
MSP 4.4 0.5 19.9 2.4 3.9 0.6 21.9 2.9
KNN 2.3 1.5 24.8 4.2 0.8 2.0 26.6 5.5
ASH 3.6 1.0 23.7 3.0 2.4 1.6 26.7 4.1
DICE 2.8 1.4 25.9 3.8 1.1 2.3 29.1 5.2
ReAct 3.6 1.1 24.0 3.1 4.7 0.5 17.6 2.1
GEN 1.6 1.8 26.3 4.8 0.6 2.1 25.5 5.6
DICE+ReAct 5.4 0.3 16.7 1.4 5.9 0.1 13.4 1.0
DDU 3.8 0.7 20.6 2.9 4.8 0.3 14.9 2.1
VOSB(Energy) 1.8 1.8 26.7 4.7 0.6 2.2 26.2 5.6
LaRD 0.4 2.0 23.5 6.0 0.0 1.8 21.8 6.3

Table 28: OOD detection performance for RT-DETR on COCO splits (ID: PascalVOC). Lower
nOSE is better (↓), higher APU/PU/RU is better (↑). Best result per metric column is in bold.

RT-DETR — PascalVOC

COCO-Near (OOD) COCO-Far (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
MSP 2.9 20.0 96.4 20.8 2.3 4.4 87.7 5.1
ViM 4.2 18.9 96.4 19.6 1.5 5.5 92.1 5.9
Mahalanobis 0.9 21.3 93.6 22.8 0.7 5.5 83.9 6.6
KNN 0.8 21.4 93.0 23.0 0.4 5.6 80.8 6.8
Energy 23.8 0.0 0.0 0.0 7.5 0.0 0.0 0.0
ASH 22.2 1.5 89.5 1.6 7.4 0.0 16.7 0.1
DICE 23.7 0.1 100.0 0.1 7.2 0.3 100.0 0.3
ReAct 23.8 0.0 0.0 0.0 7.4 0.1 100.0 0.1
GEN 23.8 0.0 0.0 0.0 7.5 0.0 0.0 0.0
DICE+ReAct 23.6 0.2 100.0 0.2 6.9 0.5 90.9 0.5
DDU 1.2 21.2 94.1 22.5 1.0 5.5 86.3 6.4
LaRD 5.7 17.1 95.4 17.9 3.2 3.2 75.7 4.2

Table 29: OOD detection performance for RT-DETR on OpenImages splits (ID: PascalVOC). Lower
nOSE is better (↓), higher APU/PU/RU is better (↑). Best result per metric column is in bold.

RT-DETR — PascalVOC

OpenImages-Near (OOD) OpenImages-Far (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
MSP 24.6 4.8 69.6 6.9 10.8 3.1 58.0 5.3
ViM 23.1 6.7 77.9 8.5 8.8 5.7 72.0 7.3
Mahalanobis 6.0 21.8 78.5 24.8 2.9 9.6 66.3 12.6
KNN 7.8 19.7 76.7 23.0 3.3 9.0 62.9 12.2
Energy 31.7 0.0 0.0 0.0 16.4 0.0 0.0 0.0
ASH 31.6 0.0 8.7 0.1 16.1 0.1 31.6 0.3
DICE 29.5 2.1 91.5 2.2 15.1 1.1 81.0 1.3
ReAct 31.7 0.0 0.0 0.0 16.4 0.0 0.0 0.0
GEN 31.7 0.0 0.0 0.0 16.4 0.0 0.0 0.0
DICE+ReAct 28.5 3.1 90.9 3.2 15.1 1.0 76.9 1.2
DDU 7.3 20.3 77.2 23.5 3.9 9.0 66.2 11.7
LaRD 27.3 3.0 66.5 4.2 13.2 1.6 47.9 3.0
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Table 30: OOD detection performance for RT-DETR on Far OOD sets (ID: BDD). Lower nOSE is
better (↓), higher APU/PU/RU is better (↑). Best result per metric column is in bold.

RT-DETR — BDD

COCO-Farther (OOD) OpenImages-Farther (OOD)

Method nOSE↓ APU↑ PU↑ RU↑ nOSE↓ APU↑ PU↑ RU↑
MSP 15.4 4.2 35.6 11.8 7.2 1.9 18.3 10.1
ViM 14.1 4.8 34.5 12.8 5.4 1.7 14.4 11.6
Mahalanobis 0.2 11.2 33.0 25.0 0.0 2.3 12.4 14.9
KNN 0.4 11.4 33.0 24.8 0.0 2.4 12.5 14.9
Energy 28.6 0.0 0.0 0.0 20.6 0.0 0.0 0.0
ASH 28.5 0.0 19.1 0.1 20.6 0.0 10.5 0.0
DICE 27.9 0.5 77.5 0.7 20.5 0.0 36.4 0.1
ReAct 28.6 0.0 7.1 0.0 20.6 0.0 25.0 0.0
GEN 27.9 0.4 54.2 0.7 20.0 0.2 33.9 0.4
DICE+ReAct 27.7 0.7 70.9 0.9 20.6 0.0 25.0 0.1
DDU 0.6 11.5 34.1 24.7 0.0 2.4 12.6 14.9
LaRD 0.8 10.7 32.3 24.4 0.0 2.3 12.4 14.9

Looking at the results, we don’t find a universally best method, neither across architecture nor across
semantic distance, e.g: GEN frequently demonstrates strong performance on FasterRCNN (Vanilla
and VOS) and YOLOv8 when PascalVOC is the ID, often achieving leading nOSE, APU, and RU
values. However, its efficacy sharply declines on the RT-DETR architecture with PascalVOC as the
ID. Energy, particularly its VOS variant on FasterRCNN and for Far OOD scenarios on BDD, shows
competitive results but generally struggles on YOLOv8 and RT-DETR (ID: PascalVOC), character-
ized by high nOSE and poor recall of unknowns (RU). LaRD’s performance is more varied; it excels
on YOLOv8 (especially for Far OOD BDD splits) and demonstrates strength on FasterRCNN for
BDD Far OOD detection tasks, often leading in nOSE, APU, and RU. Conversely, its effectiveness
is less prominent on FasterRCNN and RT-DETR architectures when trained on PascalVOC. This
work also highlights the performance volatility of OOD-OD methods and offers a comprehensive
comparative analysis across architectures and semantic similarity.

The introduction of OSOD metrics (nOSE, APU, PU, RU) provides a much more nuanced under-
standing of performance related to semantic distance. These metrics reveal that even if general
OOD discrimination (AUC/FPR95) seems satisfactory, the actual ability to comprehensively find
OOD objects remains unknown. This challenges the intuition that greater dissimilarity inherently
makes all aspects of OOD object detection easier.

F.3 CORRELATIONS AMONG METRICS

Additionally, in Figure 15 it is possible to find the empirical matrix of correlations among all (old
and new) metrics. This matrix is calculated from the overall results previously presented. It shows
correlations among metrics across all methods, architectures, and OOD datasets. The figure indi-
cates in general significant but moderate correlations between old metrics and new ones, meaning
that the AUROC and FPR95 can be indicative of the performance of OOD-OD methods for finding
unknown objects. However the correlations don’t have a high absolute value (minimum 0.56 an
maximum 0.70), which means that new information is added by the new metrics.

Moreover the results indicate that there is no correlation found between old metrics (AUC & FPR95)
and PU . This means the PU is orthogonal to the previous metrics, and therefore the information
measured by PU is invisible to the old metrics. This reinforces the utility of adding OSOD metrics
to the benchmark.

G FURTHER DISCUSSION ON THE SIMILARITIES AND DIFFERENCES
BETWEEN OOD-OD AND OSOD METHODS

Building upon the detailed presentation of how Out-of-Distribution Object Detection (OOD-OD)
methods operate in Section 2 and Section D, which draws from previous works (Du et al., 2022b;
Wilson et al., 2023; Ammar et al., 2024; Han et al., 2022), we can conclude that the two approaches
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Figure 15: Empirical correlations among old and new metrics.

for handling unknown objects in object detectors are distinct yet they are like two sides of the same
coin.

In simpler terms, the current formulation of OOD-OD serves as a monitoring function for the base
object detector. It aims to verify that the detected objects are indeed In-Distribution (ID) categories,
rather than actively seeking out unknown objects in images. Nevertheless, it can identify unknown
objects and label them as Out-of-Distribution (OOD). The ability of OOD-OD methods to detect
objects was not assessable in the previous benchmark, but it can now be quantified precisely using
the new FMIYC benchmark, which employs OSOD metrics calculated with respect to the ground
truth labels.

Conversely, open set object detection (OSOD) methods do not rely on monitoring functions. In-
stead, they incorporate an ”unknown” class directly into the object detector, adding specific loss
terms and usually training with labeled or pseudo-labeled examples of ”unknowns” (Joseph et al.,
2021; Dhamija et al., 2020; Gupta et al., 2022). OSOD has developed several metrics, already pre-
sented in Section 4.2 and Section C, to measure how well OSOD methods can identify and localize
both unknown and known objects simultaneously. The OOD-OD community lacks this type of eval-
uation, which we believe can significantly enrich the field and is provided by the present benchmark.

We believe the OOD-OD field has substantial potential for future developments, particularly in en-
hancing a method’s ability to localize unknown objects. The main bottleneck is perhaps the filtering
of predictions by the confidence threshold in the base model M because the model is trained to
ignore unknown objects. Therefore, finding ways to encourage models to retrieve more predictions
that will be post-processed anyway by OOD scoring functions can be an interesting research di-
rection. This could be done perhaps by adjusting the confidence threshold t∗ so that a model can
retrieve more objects, rather than just maximizing the mAP of the ID test dataset.
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Another research direction that may impact the field is the development of OOD-Od or OSOD
methods for VLMs, which have broader semantic knowledge and, therefore, may be able to localize
several categories of objects beyond a definite set of ID classes. In any case, precise detection of
unknown objects must be rigorously evaluated, since this capability is crucial for applications be-
yond identifying incorrect predictions. Without proper evaluation, OOD-OD methods lack a realistic
assessment of their performance for real-world scenarios.

H SOCIETAL IMPACT

This work fosters positive societal impacts by enhancing the safety and trustworthiness of object
detection systems in safety-critical applications like autonomous driving and medical imaging. By
providing a more rigorous benchmark and nuanced metrics for evaluating how well systems de-
tect out-of-distribution objects, it helps prevent overconfidence in deployed models and pushes the
field towards developing AI that is more trustworthy and reliable. However, as systems improve in
identifying “unknown” or “novel” entities through enhanced evaluations like this, there are several
potential downsides to consider. Enhanced capabilities in detecting unspecified “unknowns” could
inadvertently enable more pervasive or intrusive surveillance systems, potentially tracking atypical
(though not necessarily illicit) activities or objects without clear justification. Furthermore, if the
definition of “known” within the training data or benchmark inherently contains biases, such as cu-
ration biases, objects or individuals deviating from these biased norms might be disproportionately
flagged as“unknown,” leading to unfair scrutiny or misclassification for certain groups. There’s also
a risk that an over-reliance on these improved systems, even with better benchmarking, could lead
to a false sense of safety & security, potentially delaying human intervention when truly critical and
unanticipated failures occur, or encouraging the deployment of systems in environments where the
range of true “unknowns” far exceeds what any benchmark can capture i.e., existence of unknown-
unknowns in the wild real-word that cannot be foreseeing by any evaluation benchmark.

I DATASHEET FOR DATASETS

Upon acceptance, we will provide the dataset datasheet as suggested by Gebru et al. (2021).
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