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ABSTRACT

Recently, out-of-distribution (OOD) detection has gained traction as a key re-
search area in object detection (OD), aiming to identify incorrect predictions of-
ten linked to unknown objects. In this paper, we reveal critical flaws in the current
OOD-OD evaluation protocol: it fails to account for scenarios where unknown ob-
jects are ignored since the current metrics (AUROC and FPR) do not evaluate the
ability to find unknown objects. Moreover, the current benchmark violates the as-
sumption of non-overlapping objects with respect to in-distribution (ID) classes.
These problems question the validity and relevance of previous evaluations. To
address these shortcomings, first, we manually curate and enhance the existing
benchmark with new evaluation splits—semantically near, far, and farther rela-
tive to ID classes. Then, we integrate established metrics from the open-set object
detection (OSOD) community, which, for the first time, offer deeper insights into
how well OOD-OD methods detect unknown objects, when they overlook them,
and when they misclassify OOD objects as ID—key situations for reliable real-
world deployment of object detectors. Our comprehensive evaluation across sev-
eral OD architectures and OOD-OD methods show that the current metrics do not
necessarily reflect the actual localization of unknown objects, for which OSOD
metrics are necessary. Furthermore, we observe that semantically and visually
similar OOD objects are easier to localize but more likely to be confused with ID
objects, whereas far and farther objects are harder to localize but less prone to
misclassification.

1 INTRODUCTION

In the last decade, the rise of deep learning has introduced prominent breakthroughs and achieve-
ments in object detection (OD) Zou et al. (2023), where models are usually trained under a closed-
world assumption: test-time categories are the same as the training ones. However, during deploy-
ment in the real world, OD models will encounter Out-of-Distribution (OOD) objects Nitsch et al.
(2021), i.e., object categories different than those observed during training. While facing OOD
objects, one of two safety-critical (high-risk) situations can arise: either the unknown objects are
incorrectly classified as one of the In-Distribution (ID) classes, or the OOD objects will be ignored
Dhamija et al. (2020).

In response to these safety challenges, researchers have developed two primary approaches: Out-of-
Distribution Object Detection (OOD-OD) Du et al. (2022b) and Open-Set Object Detection (OSOD)
Dhamija et al. (2020). OOD-OD focuses on identifying predictions that do not belong to the ID cat-
egories, while OSOD actively attempts to detect the unknown objects themselves. Though both
approaches address the fundamental problem of encountering objects from a different semantic
space than the training distribution, they employ significantly different methodologies, evaluation
metrics, and benchmarks. This methodological divergence has led to isolated research communities
and evaluation frameworks that fail to capture the complete picture of model performance when
encountering unknown objects.

Currently, the evaluation of OOD-OD relies on a single benchmark, to the best of our knowledge:
the VOS-benchmark Du et al. (2022b). The fundamental assumption of this benchmark is that none
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Figure 1: Predictions of Faster-RCNN trained on two ID datasets on samples from each ID and the OOD
datasets in blue rectangles. The first row contains predictions of the Faster-RCNN trained on Pascal-VOC. The
second row contains the predictions by the model trained on BDD100k. Ground Truth (GT) labels are shown
in clear green. The base model predictions are the inputs to OOD scoring functions; without predictions,
objects in images will be ignored by OOD scoring functions too. The proposed FMIYC benchmark removes
undesirable semantic overlaps and separates semantically near, far, and farther objects with respect to the ID
dataset. FMIYC uses ground truth bounding boxes to leverage OSOD metrics that measure when unknown
objects are ignored, when they are detected, and when they are confounded with ID objects.

of the images in the OOD datasets include any of the ID classes, implying non-overlapping semantic
spaces. Consequently, any prediction made on the OOD datasets by a model trained on the ID classes
is inherently incorrect, regardless of the accuracy of object localization. The benchmark employs
the area under the ROC curve (AUROC) and the false positive rate at 95% true positive rate (FPR95)
as metrics. However, these metrics can be misleading, as they might suggest that a higher AUROC
or lower FPR95 indicates better localization of unknown objects, which is not necessarily true.
The current benchmark metrics evaluate how well OOD-OD methods identify incorrect predictions,
which may potentially correspond to unknown objects. Yet, they fall short of measuring the actual
identification of unknown objects. This raises a critical question: Are AUROC and FPR95 sufficient
metrics for assessing the deployment of OOD-OD methods in real-world scenarios?

In this study, we identify and address fundamental flaws in the existing OOD-OD benchmark and its
metrics, while bridging the gap between OOD-OD and OSOD research communities. We demon-
strate that the current evaluation violates the fundamental assumption of non-overlap, as the OOD
datasets contain ID classes. The benchmark may give the misleading impression of evaluating the
identification of unknown objects, fails to penalize ignored unknown objects, and lacks proper as-
sessment of object localization precision–issues that cannot be overlooked for safety-critical appli-
cations. To address these challenges, we propose FindMeIfYouCan (FMIYC), a comprehensively
curated benchmark that: (1) eliminates undesired semantic overlaps between ID and OOD datasets,
(2) introduces semantically stratified near, far, and farther OOD splits to evaluate detection robust-
ness across varying levels of semantic similarity, and (3) properly evaluates the actual identification
of unknown objects by integrating complementary metrics from the OSOD community, thus provid-
ing a robust OOD-OD evaluation framework. By combining strengths from both approaches, our
benchmark enables fair comparison across multiple architectures (Faster R-CNN, YOLOv8, RT-,
OWLv2) and reveals insights previously obscured in the current standard benchmark. Addition-
ally, we adapt OOD detection methods from image classification and evaluate prominent OOD-OD
methods as strong baselines for both OOD-OD and OSOD tasks, establishing a solid foundation for
future research that can benefit from both perspectives.

Contributions. In summary, the main contributions of this work are:
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• We identify and address fundamental flaws in the existing OOD-OD evaluation method-
ology, demonstrating how the current approach fails to capture a complete picture of the
model’s performance when encountering unknown objects.

• We propose FindMeIfYouCan, a benchmark that removes the existing semantic overlaps
and introduces stratified near, far, and farther OOD splits for OOD-OD evaluation across
varying levels of semantic similarity.

• We reveal the limitations of legacy AUROC and FPR95 metrics and integrate complemen-
tary metrics from the OSOD community for a comprehensive OOD-OD evaluation that
captures disregarded objects.

• We assess various methods and architectures for OOD-OD. In particular, post-hoc methods
from image classification, and prominent OOD-OD methods. Additionally, we expand the
range of evaluated architectures, including the YOLOv8, RT-DETR, and OWLv2 architec-
tures alongside the commonly utilized Faster R-CNN, thereby establishing robust baselines
for OOD-OD.

2 BACKGROUND & RELATED WORK

2.1 OBJECT DETECTION

An object detector is a model M that takes as input an image x and generates a bounding box
bi and classification score ci for each i-th detected object from a predefined set of categories C
Girshick et al. (2014). Such models are trained to localize the objects that belong to the ID classes
C and, simultaneously, ignore the rest of the objects and the background Dhamija et al. (2020).
Consequently, the object detector is usually set to function according to a given confidence threshold
t∗ that corresponds to the one that maximizes the mAP with respect to the ID test dataset. All objects
below such threshold t∗ are discarded. The model output is the set of tuples M(x; t∗) = {(bi, ci)}.
In the remainder of the paper, the terms “unknown” and “OOD” objects are used interchangeably,
and refer to classes that do not belong to C. Two problems can arise during real-world deployment
when the model encounters an unknown object: it can be incorrectly detected as one of the ID
classes with confidence above the confidence threshold t∗, or the unknown object may be ignored.
Therefore, two approaches exist in the literature to address these problems: OOD-OD and OSOD.

2.2 OOD-OD & OSOD BENCHMARKS

Similar to OOD detection for image classification, OOD-OD is formulated as a binary classification
task, that for each detected instance (bi, ci) leverages a confidence scoring function G with its own
threshold τ to calculate a per-object score G(bi, ci) that can distinguish between ID and OOD de-
tections. Du et al. (2022b) introduced a benchmark that has been adopted by subsequent works Du
et al. (2022a); Wilson et al. (2023); Wu & Deng (2023). This benchmark utilizes BDD100k Yu et al.
(2020) and Pascal-VOC Everingham et al. (2010) as ID datasets, along with subsets of COCO Lin
et al. (2014) and Open Images Kuznetsova et al. (2020) as OOD datasets. Trained models on the ID
datasets are then set to perform inference on the OOD datasets.

The proposed evaluation method is deemed consistent if it adheres to the critical condition that no ID
class appears in any image within the OOD datasets. Consequently, any detection within these OOD
datasets is automatically classified as “incorrect”, irrespective of whether the prediction corresponds
to a ground truth OOD object. Conversely, all predictions on the test ID dataset are considered
“correct”. By employing this approach, the binary classification metrics AUROC and the FPR95
are utilized to assess the efficacy of the OOD detection method. Specifically, these metrics evaluate
how effectively G(bi, ci) assigns different scores to predictions coming from the ID and the OOD
datasets Du et al. (2022b).

On the other hand, OSOD directly adds an unknown class to the object detector, along with the ID
classes for the training process. It was first formalized by Dhamija et al. (2020), and their goal was
to tackle the fact that “unknown objects end up being incorrectly detected as known objects, often
with very high confidence”. Moreover, the authors propose a benchmark and associated metrics,
where the goal is to accurately detect known (ID) and unknown objects simultaneously, as measured
by the metrics described in Section 4.2.
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The benchmarking setup of OSOD is quite different from that of OOD-OD since, in this setting, the
goal is to actively and correctly localize OOD and ID objects at the same time. Also, for OSOD,
there is not one commonly accepted benchmark, but many benchmarks have appeared Ammar et al.
(2024); Miller et al. (2018); Han et al. (2022); Dhamija et al. (2020). The common rule is that
there is one training dataset with a given set of labeled categories of objects (usually VOC, with 20
categories Everingham et al. (2010)), and there is one or several subsets of an evaluation dataset that
contains the training categories and other labeled classes, semantically different from the ID ones
(usually from COCO Lin et al. (2014)).

3 PITFALLS OF THE CURRENT OOD-OD BENCHMARK

Car 64%

Figure 2: AUROC and FPR95 do not assess
whether the relevant unknown objects, such as
camels, are overlooked. They only consider incor-
rect predictions, such as misidentifying a car.

Metrics. The current benchmark uses the AU-
ROC and the FPR95 metrics inherited from the im-
age classification task. A misconception that may
be conveyed by these metrics is that a higher AU-
ROC or lower FPR95 means better localization of
OOD objects, which is not necessarily the case.
These metrics measure how well OOD-OD meth-
ods identify incorrect predictions, which may or
may not correspond to ground-truth unknown ob-
jects. Therefore, these metrics do not evaluate the
correct localization of OOD objects, and cannot
measure when OOD objects are ignored. Figure 2
depicts such issues. For more details on the metrics,
see Section C from the Appendix.

Semantic overlaps. The validity of previously re-
ported results is undermined by the presence of se-
mantic overlaps, as the OOD-OD benchmark fun-
damentally assumes that no ID objects appear in
any OOD dataset. Under this assumption, all model predictions on OOD datasets should be consid-
ered incorrect. However, this core assumption is violated, as demonstrated in Figure 1: both labeled
and unlabeled instances of people and parts of people are present in the OOD datasets. To maintain
benchmark consistency, all OOD images containing ID classes must be removed. For a compre-
hensive list of overlapping categories in each OOD dataset and further examples, refer to Section A
from the Appendix.

Table 1: Percentage of images with no pre-
dictions in the current OOD-OD benchmark.
OI=OpenImages

ID: VOC ID: BDD
Model OI/COCO OI/COCO

F-RCNN 27.43/35.81 59.23/45.27
F-RCNN VOS 24.08/32.58 53.72/40.43

Ignored objects. As shown in Figure 1, not all images in
each OOD dataset receive at least one prediction. Table 1 re-
veals that up to 59% of images in one OOD split lack any
prediction above the threshold t∗. Consequently, the AUROC
and FPR95 metrics reported in prior studies, such as Du et al.
(2022b); Wilson et al. (2023); Du et al. (2022a); Wu & Deng
(2023), are computed using only about 40% of the images in
that split. By design, the benchmark’s metrics are not penal-
ized for this omission, effectively ignoring a significant por-
tion of images and objects. To address this limitation, we
advocate for the adoption of the OSOD metrics introduced in Section 4.2.

Lack of use of ground truth labels. Accurate localization of ground truth (GT) unknown objects
is a critical aspect that current benchmarks overlook. A robust evaluation of a system’s handling
of unknown objects must go beyond simply detecting incorrect predictions. While identifying false
positives is important, ignoring unknown objects can be just as risky as misclassifying them (see
Figure 2). The OSOD community has established metrics to assess how well methods localize un-
knowns and to quantify cases where unknowns are either overlooked or confused with in-distribution
(ID) objects. To further refine this evaluation, we advocate for the use of GT labels in conjunction
with the OSOD metrics outlined in Section 4.2, enabling a more granular and insightful analysis.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 THE FMIYC BENCHMARK

4.1 CREATING THE EVALUATION SPLITS

Our newly proposed FMIYC benchmark is built on top of the previous one Du et al. (2022b), by
refining and enriching it in terms of overlap removal, addition of new images, splitting into subsets
according to semantic similarity w.r.t. ID datasets, and the addition of open set metrics. All these
factors enable fine-grained evaluation of OOD-OD. The first step involved removing overlaps. An
automated process first eliminated all labeled instances of overlapping categories. Next, a manual
review ensured that no unlabeled ID category instances remained in the datasets.

Table 2: Number of images in each
subset of the newly proposed bench-
mark. CC=COCO, OI=OpenImages

ID OOD No. Images

VOC

CC Near 1174
OI Near 908
CC Far 938
OI Far 1179

BDD CC Farther 1873
OI Farther 1695

Then, building on established approaches in OOD detection for image
classification–where OOD datasets are divided into semantically and vi-
sually near and far subsets Zhang et al. (2024); Yang et al. (2023)–we
partitioned our OOD datasets w.r.t. Pascal-VOC using class names as
the criterion. We matched Pascal-VOC categories (e.g., television, dog,
cat, horse, cow, couch) with semantically and visually similar OOD
classes (e.g., laptop, fox, bear, jaguar, leopard, cheetah, zebra, bed), as-
signing these to the near subset. All remaining OOD images, lacking
a close ID counterpart, were classified as far. The splits were vali-
dated using WordNet Miller (1995) and the Wu-Palmer similarity met-
ricWu & Palmer (1994), with results in Table 9 (Appendix Section B)
confirming the stratification. A manual review further ensured that no
near-category instances remained in the far subset, and vice versa. This process was applied to both
COCO and OpenImages, yielding four distinct OOD subsets: COCO-near, COCO-far, OpenImages-
near, and OpenImages-far. A complete list and discussion of the near OOD categories is available
in Appendix Section A.

We selectively incorporated additional images from the original COCO and OpenImages datasets
to enrich the newly created near and far splits. The whole process was documented by recording
image IDs in configuration files for each subset, ensuring full reproducibility. Both the code for
generating these splits and the resulting datasets will be made publicly available.

Figure 3: Perceptual and semantic (cosine) similarity May-
ilvahanan et al. (2023) between ID and OOD datasets using
CLIP image encoder embeddings.

For BDD100k as the in-distribution (ID)
dataset, only overlapping images were re-
moved, without creating separate far or
near subsets or adding new images. This
decision is justified by the findings in Fig-
ure 9a and Table 9, which demonstrate
that BDD100k is already more distant from
its respective OOD datasets than Pascal-
VOC. Visual examples illustrating the se-
mantic and visual similarity across all ID
and OOD datasets are provided in Ap-
pendix Section A. These observations allow
us to define three degrees of similarity be-
tween ID and OOD datasets: near and far
for OOD datasets relative to Pascal-VOC,
and—based on Table 9, Figure 9b, and our
results—farther for OOD datasets relative to BDD100k. The number of images in each subset of
the new benchmark is detailed in Table 2. Additionally, we assessed the similarity of each new split
with respect to ID datasets in the image space using CLIP vision embeddings, as shown in Figure 3.

4.2 PROPOSED METRICS

OSOD Metrics. The OSOD community uses as metrics the absolute open-set error (AOSE), the
wilderness impact (WI), the unknown precision (PU ), unknown recall (RU ), and the average preci-
sion of the unknowns APU Gupta et al. (2022); Miller et al. (2018); Maaz et al. (2022). The AOSE
reports the absolute number of unknown objects incorrectly classified as one of the ID classes. WI
evaluates the proportion of AOSE among all the known detections. Unknown recall RU is the ratio
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of unknown detected objects by the number of unknown ones, and the unknown precision PU is
the ratio of true positive detections divided by all the detections Ammar et al. (2024). The OSOD
metrics are fine-grained in the sense that they assess how well the methods can localize and correctly
classify known and unknown objects in images where both types of objects appear.

In addition to the widely used metrics of AUROC and FPR95, we propose using the following
OSOD metrics: APU , PU , and RU . We omit the WI since our benchmark does not allow both ID
and OOD classes in the OOD datasets. In addition, we propose a new metric that we call normalized
open set error (nOSE), which is the AOSE divided by the total number of labeled unknowns. We
propose this metric since the absolute number of unknowns depends on the dataset, and therefore, the
AOSE is not comparable across datasets, whereas the nOSE is. The nOSE assesses the proportion
of unknown objects detected as one of the ID classes. A summary of the overall metrics used in the
FMIYC benchmark can be found in Appendix Section C.

5 EXPERIMENTS AND RESULTS

5.1 OBJECT DETECTION ARCHITECTURES

Table 3: mAP across architectures
for VOC & BDD ID datasets

Model VOC BDD

F-RCNN 48.7 31.20
F-RCNN VOS 48.9 31.30
Yolov8 54.73 32.15
RT-DETR 70.4 33.30
OWLv2 73.2 30.40

We used the Faster-RCNN Girshick et al. (2014) in its vanilla and VOS
(regularized) versions, YOLOv8 Jocher et al. (2023); Sohan et al. (2024)
and RT-DETR Zhao et al. (2024). As an extension, we include results
from OWLv2 Minderer et al. (2024), which is a state-of-the-art VLM for
object detection. For YOLOv8 and RT-DETR, the models were trained
on the same ID datasets (Pascal-VOC and BDD100k). The training de-
tails can be found in Appendix Section E. For the Faster-RCNN models,
we used the pre-trained checkpoints provided by Du et al. (2022b). For
OWLv2, we used the original pretrained model Minderer et al. (2024).
Table 3 shows the architectures mAP for each ID test dataset.

5.2 OUT-OF-DISTRIBUTION OBJECT DETECTION METHODS

We implemented prominent methods from OOD detection literature on image classification. Specif-
ically, we selected post-hoc methods, as they do not require retraining of the base model. Conse-
quently, we adapted the common families of methods from image classification to operate at the
object level, as detailed below.

Output-based post-hoc methods take the logits, or the softmax activations, as inputs to their scor-
ing functions. Here we can find MSP Hendrycks & Gimpel (2016), energy score Liu et al. (2020),
and and GEN Liu et al. (2023). Feature-space post-hoc methods use the previous-to-last activa-
tions as the input to the scoring functions. To this category belong kNN Sun et al. (2022), DDU
Mukhoti et al. (2023) and Mahalanobis Lee et al. (2018). Mixed output-feature-space post-hoc
methods rely on the previous-to-last activations and the outputs as the input to the scoring func-
tions. Here we find ViM Wang et al. (2022), ASH Djurisic et al. (2022), DICE Sun & Li (2022), and
ReAct Sun et al. (2021). Latent-space post-hoc methods take inspiration from recent works Yang
et al. (2023); Mukhoti et al. (2023); Arnez et al. (2024) and implement an adapted confidence score,
called LaRD, that uses latent activations of a given intermediate or hidden layer.

Adapting post-hoc methods for object detection is straightforward, leveraging each architecture’s
built-in filtering mechanisms. In YOLOv8, however, only MSP, GEN, and energy-based methods
are applied, as the network lacks a final fully connected layer or object-specific latent features.
In addition to the adapted post-hoc OOD detection methods, we evaluated prominent OOD-OD
methods such as VOS Du et al. (2022b), SAFE Wilson et al. (2023), and SIREN Du et al. (2022a).
The confidence score threshold for each OOD detection method was calculated such that 95% of the
ID samples lie above the threshold. Furthermore, as a baseline for OSOD methods in our benchmark,
and to enable a fair comparison with OOD-OD methods, we present results for OpenDet CWA
Mallick et al. (2024), a state-of-the-art OSOD method based on Faster-RCNN.
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Figure 4: Average OOD-OD performance across baseline families and classic metrics (architectures are aver-
aged).
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Figure 5: Average OSOD performance comparison across baseline families and metrics (architectures are
averaged).

5.3 RESULTS

In Figure 4, we present a summarized plot of the AUROC and FPR95 metrics from the new FMIYC
benchmark, averaged across architectures for each family of methods and each OOD dataset.
Feature-based methods and those utilizing latent representations tend to identify incorrect predic-
tions more effectively in the farther split compared to other splits. Conversely, mixed methods
exhibit a decline in performance as semantic distance increases. Overall, there is no distinct trend
among baseline families indicating whether incorrect detections are more easily identified for near,
far, or farther objects. This observation may be surprising; however, the differences among splits
will become more apparent when considering the OSOD metrics discussed subsequently.

Figure 5 illustrates the results for the incorporated OSOD metrics, averaged across architectures for
each family of methods and each OOD dataset. For the nOSE, there is a clear decreasing trend
across method families when transitioning from near to farther splits. The near datasets exhibit the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Results on the COCO datasets for methods using Faster-RCNN (top) and OWLv2 (bottom). Bold: best OOD-OD method

AUROC ↑ RU ↑ PU ↑ nOSE ↓

Method Near Far Farther Near Far Farther Near Far Farther Near Far Farther

GEN 87.43 84.48 78.82 26.12 10.96 2.99 73.80 65.17 22.89 14.29 8.69 2.04
Energy 86.47 82.31 72.44 24.84 9.95 2.99 75.88 66.33 22.89 15.95 9.80 2.03
VOS 89.98 89.13 84.79 24.62 11.26 4.72 72.10 55.61 26.70 20.49 9.65 1.76
SAFE 83.94 79.73 90.73 16.78 6.31 2.45 54.85 45.78 20.87 35.45 18.73 3.22
SIREN 89.63 88.00 - 27.30 12.17 - 60.52 53.67 - 19.46 9.84 -
OpenDet CWA - - - 37.85 24.59 5.39 77.69 54.72 29.19 25.19 12.57 8.30

OWLv2 Energy 55.02 58.79 59.45 0.0 0.0 0.0 0.0 0.0 0.0 1.18 0.15 0.01
OWLv2 Mahalanobis 61.35 89.49 99.31 0.0 0.05 0.01 0.0 2.94 3.70 1.18 0.10 0.0

Table 5: Results on the OpenImages datasets for methods using Faster-RCNN (top) and OWLv2 (bottom). Bold: best OOD-OD method

AUROC ↑ RU ↑ PU ↑ nOSE ↓

Method Near Far Farther Near Far Farther Near Far Farther Near Far Farther

GEN 82.77 83.70 79.65 16.95 6.92 3.31 72.01 68.04 21.80 15.86 5.37 0.69
Energy 81.49 81.79 73.33 15.22 6.58 3.35 73.59 70.08 22.08 18.07 5.76 0.65
VOS 84.40 86.01 88.08 12.77 7.09 5.63 64.11 67.29 26.24 22.29 6.33 0.63
SAFE 85.18 83.33 95.10 14.9 4.31 3.18 55.70 55.38 17.17 26.86 9.36 1.36
SIREN 88.61 85.22 - 20.88 6.527 - 60.53 59.55 - 16.34 6.15 -
OpenDet CWA - - - 27.51 14.11 5.93 73.42 62.08 32.93 19.67 5.56 8.59

OWLv2 Energy 56.85 59.36 48.14 0.0 0.0 0.0 0.0 0.0 0.0 6.67 0.88 0.0
OWLv2 Mahalanobis 70.84 87.67 99.55 0.68 0.17 0.0 23.28 20.58 0.0 5.98 0.71 0.0

highest nOSE, indicating that more objects are mistakenly predicted as one of the in-distribution
(ID) classes among the correctly localized objects. Conversely, objects in the farther split are less
confounded with ID objects. Regarding the APU , it is generally observed to be low across OOD
datasets, with a trend of decreasing further in the farther datasets. This suggests that objects that are
semantically near are localized more accurately. Feature-based methods and those utilizing latent
space representations appear to perform better than other methods for the farther objects.

The PU exhibits the highest variability across methods and also the highest values among the OSOD
metrics. It is particularly elevated for the near splits. However, drops drastically for the farther
objects, indicating that in such splits, more OOD predictions do not correspond to ground truth
objects, as illustrated in Figure 2. Finally, the RU is generally quite low across OOD datasets and
methods, with a similar trend showing that objects in far and farther OOD datasets are harder to
detect. The metrics reveal that, on average, most unknown objects are ignored (not found), and this
challenge is even more pronounced for far and farther OOD objects. For the near splits, ∼ 14% of
unknown objects are correctly identified. This figure drops to approximately 3% in the farther splits
for output-based and mixed methods. However, feature-based and latent representation methods
seem to perform slightly better, identifying ∼ 9% of the unknown objects in the farther splits. For a
comprehensive presentation of the results for each architecture, method, and metric, please refer to
Appendix Section F.

It is important to note how unrelated the previous OOD-OD benchmark metrics may seem with
respect to the OSOD metrics. The AUROC and FPR95 cannot actually tell much difference between
far and near datasets. This difference becomes clear in light of the OSOD metrics, which show that,
contrary to the case of image classification, for object detection, the semantically and visually closer
objects are easier to identify and localize. But when the unknown objects are too different from the
ID ones, they will most likely be ignored by the methods and architectures evaluated. These insights
are impossible to obtain using only the AUROC and FPR95.

Furthermore, Table 4 and Table 5 show summarized results for COCO/OpenImages with the most
widely used architecture for OOD-OD, Faster-RCNN, across the two best post-hoc methods (GEN
and Energy) according to our results, and including three OOD-OD training methods: VOS Du et al.
(2022b), SAFE Wilson et al. (2023), and SIREN Du et al. (2022a). We include one OSOD method
based on Faster-RCNN in order to make a fair comparison, OpenDet CWA Mallick et al. (2024).
The tables show no clear winner in all OOD-OD and OSOD metrics. Across training methods,
VOS presents the best AUROC performance in terms of near and far splits, and also shows the best
PU , RU , and nOSE in the farther split. When comparing OOD-OD methods with OpenDet CWA,
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it is possible to observe that it outperforms all other methods in OSOD metrics, which may not
come as a surprise since it is specifically an OSOD method. It is worth clarifying that AUROC
is not computable for OpenDet CWA (or OSOD methods in general), since OSOD is not a binary
classification task, whereas OOD-OD is.

Finally, Table 4 and Table 5 also show the results for OWLv2 using two post-hoc OOD-OD methods.
The results for OWLv2 must be understood considering that, on average, about 93% of the images
in all OOD subsets do not have a single prediction, constraining the AUROC results to only around
7% of the evaluation images. This, along with the nOSE, indicates that the VLM makes many fewer
incorrect predictions than in the case of Faster-RCNN, Yolov8, and RT-DETR. However, AUROC
alone can be misleading. A closer look at RU and PU shows that OOD methods applied to OWLv2
fail to detect almost any unknown objects. While the model may internally recognize these objects,
its output is strictly confined to the queried ID classes. This aligns with recent analysis by Miyai
et al. (2024), which argues that VLMs require specialized OOD approaches that account for their
prompt-based input and extensive semantic space.

6 DISCUSSION

The value of OSOD metrics. We suggest caution to practitioners when relying solely on legacy
metrics (AUROC and FPR95) and the former evaluation approach, as it does not take into account
ignored objects or images without prediction, resulting in fewer ‘valid’ images for evaluation in-
dependently of the architecture for object detection. It is crucial to note that the OSOD metrics
are necessary to quantify the effectiveness of OOD-OD methods in detecting actual OOD objects
(APU and PU ) and accounting for instances when OOD objects are overlooked (RU ) or misclassi-
fied (nOSE). Unlike AUROC and FPR95, the OSOD metrics provide a more nuanced understanding
by addressing confounding unknowns for ID objects, the oversight of OOD objects, and the localiza-
tion of unknowns. The added value of the OSOD metrics is clearer when considering the semantic
stratified splits.

Near, far and farther splits. The partition of the benchmark into near, far, and farther proved
insightful and meaningful since it details that semantic similarity plays an important role in the
detection ability of different methods and architectures. It is especially insightful how the near OOD
objects are more easily detectable than far and farther ones in the case of object detection. This is
the opposite of the case of image classification, where near classes are considered harder than far
ones. However, the near objects are also more easily confounded with ID objects, in agreement with
image classification observations. Moreover, the observation that far and farther objects are more
usually ignored, and therefore are hardly localizable, is demonstrated by the OSOD metrics, as only
around 5% of the unknown farther objects are localized, as opposed to about 20% for some methods
in the near datasets. Our work paves the way for newer detection approaches customized to specific
semantic similarity requirements and provides a stronger foundation for developing OOO-OD and
OSOD methods.

7 CONCLUSION

In this work, we identified and addressed fundamental flaws in the existing de facto out-of-
distribution object detection (OOD-OD) evaluation benchmark and its metrics. To address these
flaws, we introduced the FindMeIfYouCan benchmark, which builds on top of and refines the ex-
isting evaluation framework for OOD-OD. In addition, we propose incorporating open-set object
detection metrics to comprehensively assess OOD-OD methods on their ability to identify unknown
objects. The proposed benchmark approach offers and facilitates a holistic evaluation, measuring
the detection of semantically near, far, and farther objects, instances where objects are overlooked,
and cases where objects are misclassified as in-distribution (ID) objects. We believe our work lays a
solid foundation for a more rigorous and nuanced evaluation of OOD-OD methods towards a more
reliable deployment of object detectors in real-world scenarios.
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REPRODUCIBILITY STATEMENT.

We include details throughout the paper that can be used to recreate the dataset and to reproduce our
results. In particular, Section 4, and Section B from the Appendix. Upon acceptance, we will make
publicly available the code used for dataset creation, the dataset created, and benchmark evaluation
code, to ensure reproducibility and adoption of the benchmark.
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