

000 FINDMEIFYOUCAN: BRINGING OPEN SET METRICS 001 002 TO *near*, *far* AND *farther* OUT-OF-DISTRIBUTION 003 004 OBJECT DETECTION 005

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Recently, out-of-distribution (OOD) detection has gained traction as a key re-
 014 search area in object detection (OD), aiming to identify incorrect predictions of-
 015 ten linked to unknown objects. In this paper, we reveal critical flaws in the current
 016 OOD-OD evaluation protocol: it fails to account for scenarios where unknown ob-
 017 jects are ignored since the current metrics (AUROC and FPR) do not evaluate the
 018 ability to find unknown objects. Moreover, the current benchmark violates the as-
 019 sumption of non-overlapping objects with respect to in-distribution (ID) classes.
 020 These problems question the validity and relevance of previous evaluations. To
 021 address these shortcomings, first, we manually curate and enhance the existing
 022 benchmark with new evaluation splits—semantically *near*, *far*, and *farther* rela-
 023 tive to ID classes. Then, we integrate established metrics from the open-set object
 024 detection (OSOD) community, which, for the first time, offer deeper insights into
 025 how well OOD-OD methods detect unknown objects, when they overlook them,
 026 and when they misclassify OOD objects as ID—key situations for reliable real-
 027 world deployment of object detectors. Our comprehensive evaluation across sev-
 028 eral OD architectures and OOD-OD methods show that the current metrics do not
 029 necessarily reflect the actual localization of unknown objects, for which OSOD
 030 metrics are necessary. Furthermore, we observe that semantically and visually
 031 similar OOD objects are easier to localize but more likely to be confused with ID
 032 objects, whereas *far* and *farther* objects are harder to localize but less prone to
 033 misclassification.

034 1 INTRODUCTION

036 In the last decade, the rise of deep learning has introduced prominent breakthroughs and achieve-
 037 ments in object detection (OD) (Zou et al., 2023), where models are usually trained under a closed-
 038 world assumption: test-time categories are the same as the training ones. However, during de-
 039 ployment in the real world, OD models will encounter Out-of-Distribution (OOD) objects (Nitsch
 040 et al., 2021), *i.e.*, object categories different than those observed during training. While facing OOD
 041 objects, one of two safety-critical (high-risk) situations can arise: either the unknown objects are
 042 incorrectly classified as one of the In-Distribution (ID) classes, or the OOD objects will be ignored
 043 (Dhamija et al., 2020).

044 In response to these safety challenges, researchers have developed two primary approaches: Out-
 045 of-Distribution Object Detection (OOD-OD) (Du et al., 2022b) and Open-Set Object Detection
 046 (OSOD) (Dhamija et al., 2020). OOD-OD focuses on identifying predictions that do not belong to
 047 the ID categories, while OSOD actively attempts to detect the unknown objects themselves. Though
 048 both approaches address the fundamental problem of encountering objects from a different semantic
 049 space than the training distribution, they employ significantly different methodologies, evaluation
 050 metrics, and benchmarks. This methodological divergence has led to isolated research communities
 051 and evaluation frameworks that fail to capture the complete picture of model performance when
 052 encountering unknown objects.

053 Currently, the evaluation of OOD-OD relies on a single benchmark, to the best of our knowledge:
 the VOS-benchmark Du et al. (2022b). The fundamental assumption of this benchmark is that none

Figure 1: Predictions of Faster-RCNN trained on two ID datasets on samples from each ID and the OOD datasets in blue rectangles. The first row contains predictions of the Faster-RCNN trained on Pascal-VOC. The second row contains the predictions by the model trained on BDD100k. Ground Truth (GT) labels are shown in clear green. The base model predictions are the inputs to OOD scoring functions; without predictions, objects in images will be ignored by OOD scoring functions too. The proposed FMIYC benchmark removes undesirable semantic overlaps and separates semantically *near*, *far*, and *farther* objects with respect to the ID dataset. FMIYC uses ground truth bounding boxes to leverage OSOD metrics that measure when unknown objects are ignored, when they are detected, and when they are confounded with ID objects.

of the images in the OOD datasets include any of the ID classes, implying non-overlapping semantic spaces. Consequently, any prediction made on the OOD datasets by a model trained on the ID classes is inherently incorrect, regardless of the accuracy of object localization. The benchmark employs the area under the ROC curve (AUROC) and the false positive rate at 95% true positive rate (FPR95) as metrics. However, these metrics can be misleading, as they might suggest that a higher AUROC or lower FPR95 indicates better localization of unknown objects, which is not necessarily true. The current benchmark metrics evaluate how well OOD-OD methods identify incorrect predictions, which may potentially correspond to unknown objects. Yet, they fall short of measuring the actual identification of unknown objects. This raises a critical question: *Are AUROC and FPR95 sufficient metrics for assessing the deployment of OOD-OD methods in real-world scenarios?*

In this study, we identify and address fundamental flaws in the existing OOD-OD benchmark and its metrics, while bridging the gap between OOD-OD and OSOD research communities. We demonstrate that the current evaluation violates the fundamental assumption of non-overlap, as the OOD datasets contain ID classes. The benchmark may give the misleading impression of evaluating the identification of unknown objects, fails to penalize unknown objects, and lacks proper assessment of object localization precision—issues that cannot be overlooked for safety-critical applications. To address these challenges, we propose *FindMeIfYouCan* (FMIYC), a comprehensively curated benchmark that: (1) eliminates undesired semantic overlaps between ID and OOD datasets, (2) introduces semantically stratified *near*, *far*, and *farther* OOD splits to evaluate detection robustness across varying levels of semantic similarity, and (3) properly evaluates the actual identification of unknown objects by integrating complementary metrics from the OSOD community, thus providing a robust OOD-OD evaluation framework. By combining strengths from both approaches, our benchmark enables fair comparison across multiple architectures (Faster R-CNN, YOLOv8, RT-, OWLv2) and reveals insights previously obscured in the current standard benchmark. Additionally, we adapt OOD detection methods from image classification and evaluate prominent OOD-OD methods as strong baselines for both OOD-OD and OSOD tasks, establishing a solid foundation for future research that can benefit from both perspectives.

Contributions. In summary, the main contributions of this work are:

- We identify and address fundamental flaws in the existing OOD-OD evaluation methodology, demonstrating how the current approach fails to capture a complete picture of the model’s performance when encountering unknown objects.
- We propose *FindMeIfYouCan*, a benchmark that removes the existing semantic overlaps and introduces stratified *near*, *far*, and *farther* OOD splits for OOD-OD evaluation across varying levels of semantic similarity.
- We reveal the limitations of legacy AUROC and FPR95 metrics and integrate complementary metrics from the OSOD community for a comprehensive OOD-OD evaluation that captures disregarded objects.
- We assess various methods and architectures for OOD-OD. In particular, post-hoc methods from image classification, and prominent OOD-OD methods. Additionally, we expand the range of evaluated architectures, including the YOLOv8, RT-DETR, and OWLv2 architectures alongside the commonly utilized Faster R-CNN, thereby establishing robust baselines for OOD-OD.

2 BACKGROUND & RELATED WORK

2.1 OBJECT DETECTION

An object detector is a model \mathcal{M} that takes as input an image x and generates a bounding box \mathbf{b}_i and classification score \mathbf{c}_i for each i -th detected object from a predefined set of categories \mathbb{C} (Girshick et al., 2014). Such models are trained to localize the objects that belong to the ID classes \mathbb{C} and, simultaneously, ignore the rest of the objects and the background (Dhamija et al., 2020). Consequently, the object detector is usually set to function according to a given confidence threshold t^* that corresponds to the one that maximizes the mAP with respect to the ID test dataset. All objects below such threshold t^* are discarded. The model output is the set of tuples $\mathcal{M}(x; t^*) = \{(\mathbf{b}_i, \mathbf{c}_i)\}$. In the remainder of the paper, the terms “unknown” and “OOD” objects are used interchangeably, and refer to classes that do not belong to \mathbb{C} . Two problems can arise during real-world deployment when the model encounters an unknown object: it can be incorrectly detected as one of the ID classes with confidence above the confidence threshold t^* , or the unknown object may be ignored. Therefore, two approaches exist in the literature to address these problems: OOD-OD and OSOD.

2.2 OOD-OD & OSOD BENCHMARKS

Similar to OOD detection for image classification, OOD-OD is formulated as a binary classification task, that for each detected instance $(\mathbf{b}_i, \mathbf{c}_i)$ leverages a confidence scoring function \mathcal{G} with its own threshold τ to calculate a per-object score $\mathcal{G}(\mathbf{b}_i, \mathbf{c}_i)$ that can distinguish between ID and OOD detections. Du et al. (2022b) introduced a benchmark that has been adopted by subsequent works (Du et al., 2022a; Wilson et al., 2023; Wu & Deng, 2023). This benchmark utilizes BDD100k (Yu et al., 2020) and Pascal-VOC (Everingham et al., 2010) as ID datasets, along with subsets of COCO (Lin et al., 2014) and Open Images (Kuznetsova et al., 2020) as OOD datasets. Trained models on the ID datasets are then set to perform inference on the OOD datasets.

The proposed evaluation method is deemed consistent if it adheres to the critical condition that no ID class appears in any image within the OOD datasets. Consequently, any detection within these OOD datasets is automatically classified as “incorrect”, irrespective of whether the prediction corresponds to a ground truth OOD object. Conversely, all predictions on the test ID dataset are considered “correct”. By employing this approach, the binary classification metrics AUROC and the FPR95 are utilized to assess the efficacy of the OOD detection method. Specifically, these metrics evaluate how effectively $\mathcal{G}(\mathbf{b}_i, \mathbf{c}_i)$ assigns different scores to predictions coming from the ID and the OOD datasets (Du et al., 2022b).

On the other hand, OSOD directly adds an *unknown* class to the object detector, along with the ID classes for the training process. It was first formalized by Dhamija et al. (2020), and their goal was to tackle the fact that “unknown objects end up being incorrectly detected as known objects, often with very high confidence”. Moreover, the authors propose a benchmark and associated metrics, where the goal is to accurately detect known (ID) and unknown objects simultaneously, as measured by the metrics described in Section 4.2.

162 The benchmarking setup of OSOD is quite different from that of OOD-OD since, in this setting, the
 163 goal is to actively and correctly localize OOD and ID objects at the same time. Also, for OSOD,
 164 there is not one commonly accepted benchmark, but many benchmarks have appeared (Ammar
 165 et al., 2024; Miller et al., 2018; Han et al., 2022; Dhamija et al., 2020). The common rule is that
 166 there is one training dataset with a given set of labeled categories of objects (usually VOC, with 20
 167 categories (Everingham et al., 2010)), and there is one or several subsets of an evaluation dataset
 168 that contains the training categories and other labeled classes, semantically different from the ID
 169 ones (usually from COCO (Lin et al., 2014)).

170

171 3 PITFALLS OF THE CURRENT OOD-OD BENCHMARK

172

173 **Metrics.** The current benchmark uses the AU-
 174 ROC and the FPR95 metrics inherited from the im-
 175 age classification task. A misconception that may
 176 be conveyed by these metrics is that a higher AU-
 177 ROC or lower FPR95 means better localization of
 178 OOD objects, which is not necessarily the case.
 179 These metrics measure how well OOD-OD meth-
 180 ods identify incorrect predictions, which may or
 181 may not correspond to ground-truth unknown ob-
 182 jects. Therefore, these metrics do not evaluate the
 183 correct localization of OOD objects, and cannot
 184 measure when OOD objects are ignored. Figure 2
 185 depicts such issues. For more details on the metrics,
 186 see Section C from the Appendix.

187

188 **Semantic overlaps.** The validity of previously re-
 189 ported results is undermined by the presence of se-
 190 mantic overlaps, as the OOD-OD benchmark fun-
 191 damentally assumes that no ID objects appear in
 192 any OOD dataset. Under this assumption, all model predictions on OOD datasets should be consid-
 193 ered incorrect. However, this core assumption is violated, as demonstrated in Figure 1: both labeled
 194 and unlabeled instances of people and parts of people are present in the OOD datasets. To maintain
 195 benchmark consistency, all OOD images containing ID classes must be removed. For a comprehen-
 196 sive list of overlapping categories in each OOD dataset and further examples, refer to Section A
 197 from the Appendix.

198

199 **Ignored objects.** As shown in Figure 1, not all images in
 200 each OOD dataset receive at least one prediction. Table 1 re-
 201 veals that up to 59% of images in one OOD split lack any
 202 prediction above the threshold t^* . Consequently, the AUROC
 203 and FPR95 metrics reported in prior studies, such as Du et al.
 204 (2022b); Wilson et al. (2023); Du et al. (2022a); Wu & Deng
 205 (2023), are computed using only about 40% of the images in
 206 that split. By design, the benchmark’s metrics are not penal-
 207 ized for this omission, effectively ignoring a significant por-
 208 tion of images and objects. To address this limitation, we
 209 advocate for the adoption of the OSOD metrics introduced in Section 4.2.

210

211 **Lack of use of ground truth labels.** Accurate localiza-
 212 tion of ground truth (GT) unknown objects is a critical aspect that current benchmarks overlook. A robust evalua-
 213 tion of a system’s handling of unknown objects must go beyond simply detecting incorrect predictions. While identifying false
 214 positives is important, ignoring unknown objects can be just as risky as misclassifying them (see
 215 Figure 2). The OSOD community has established metrics to assess how well methods localize un-
 216 knowns and to quantify cases where unknowns are either overlooked or confused with in-distribution
 217 (ID) objects. To further refine this evaluation, we advocate for the use of GT labels in conjunction
 218 with the OSOD metrics outlined in Section 4.2, enabling a more granular and insightful analysis.

Figure 2: AUROC and FPR95 do not assess whether the relevant unknown objects, such as camels, are overlooked. They only consider incorrect predictions, such as misidentifying a car.

Table 1: Percentage of images with no pre-
 dictions in the current OOD-OD benchmark.
 OI=OpenImages

Model	ID: VOC	ID: BDD
	OI/COCO	OI/COCO
F-RCNN	27.43/35.81	59.23/45.27
F-RCNN VOS	24.08/32.58	53.72/40.43

216

4 THE FMIYC BENCHMARK

217

4.1 CREATING THE EVALUATION SPLITS

218 Our newly proposed FMIYC benchmark is built on top of the previous one (Du et al., 2022b), by
 219 refining and enriching it in terms of overlap removal, addition of new images, splitting into subsets
 220 according to semantic similarity w.r.t. ID datasets, and the addition of open set metrics. All these
 221 factors enable fine-grained evaluation of OOD-OD. The first step involved removing overlaps. An
 222 automated process first eliminated all labeled instances of overlapping categories. Next, a manual
 223 review ensured that no unlabeled ID category instances remained in the datasets.

224 Then, building on established approaches in OOD detection for image
 225 classification—where OOD datasets are divided into semantically and
 226 visually *near* and *far* subsets (Zhang et al., 2024; Yang et al., 2023)—we
 227 partitioned our OOD datasets w.r.t. Pascal-VOC using class names as
 228 the criterion. We matched Pascal-VOC categories (e.g., television, dog,
 229 cat, horse, cow, couch) with semantically and visually similar OOD
 230 classes (e.g., laptop, fox, bear, jaguar, leopard, cheetah, zebra, bed), as-
 231 signing these to the *near* subset. All remaining OOD images, lacking
 232 a close ID counterpart, were classified as *far*. The splits were vali-
 233 dated using WordNet (Miller, 1995) and the Wu-Palmer similarity met-
 234 ric (Wu & Palmer, 1994), with results in Table 9 (Appendix Section B)
 235 confirming the stratification. A manual review further ensured that no
 236 near-category instances remained in the *far* subset, and vice versa. This process was applied to both
 237 COCO and OpenImages, yielding four distinct OOD subsets: COCO-near, COCO-far, OpenImages-
 238 near, and OpenImages-far. A complete list and discussion of the *near* OOD categories is available
 239 in Appendix Section A.

240 We selectively incorporated additional images from the original COCO and OpenImages datasets
 241 to enrich the newly created *near* and *far* splits. The whole process was documented by recording
 242 image IDs in configuration files for each subset, ensuring full reproducibility. Both the code for
 243 generating these splits and the resulting datasets will be made publicly available.

244 For BDD100k as the in-distribution (ID)
 245 dataset, only overlapping images were re-
 246 moved, without creating separate *far* or
 247 *near* subsets or adding new images. This
 248 decision is justified by the findings in Figure
 249 9a and Table 9, which demonstrate that BDD100k is already more distant from
 250 its respective OOD datasets than Pascal-
 251 VOC. Visual examples illustrating the se-
 252 mantic and visual similarity across all ID
 253 and OOD datasets are provided in Ap-
 254 pendix Section A. These observations allow
 255 us to define three degrees of similarity be-
 256 tween ID and OOD datasets: *near* and *far*
 257 for OOD datasets relative to Pascal-VOC,
 258 and—based on Table 9, Figure 9b, and our
 259 results—*farther* for OOD datasets relative to BDD100k. The number of images in each subset of
 260 the new benchmark is detailed in Table 2. Additionally, we assessed the similarity of each new split
 261 with respect to ID datasets in the image space using CLIP vision embeddings, as shown in Figure 3.

262

4.2 PROPOSED METRICS

263 **OSOD Metrics.** The OSOD community uses as metrics the *absolute open-set error* (AOSE), the
 264 *wilderness impact* (WI), the *unknown precision* (P_U), *unknown recall* (R_U), and the *average pre-
 265 cision of the unknowns* AP_U (Gupta et al., 2022; Miller et al., 2018; Maaz et al., 2022). The AOSE
 266 reports the absolute number of unknown objects incorrectly classified as one of the ID classes. WI
 267 evaluates the proportion of AOSE among all the known detections. Unknown recall R_U is the ratio

268 Table 2: Number of images in each
 269 subset of the newly proposed bench-
 270 mark. CC=COCO, OI=OpenImages

ID	OOD	No. Images
VOC	CC Near	1174
	OI Near	908
	CC Far	938
	OI Far	1179
BDD	CC Farther	1873
	OI Farther	1695

271 Figure 3: Perceptual and semantic (cosine) similarity (May-
 272 ilvahanan et al., 2023) between ID and OOD datasets using
 273 CLIP image encoder embeddings.

270 of unknown detected objects by the number of unknown ones, and the unknown precision P_U is
 271 the ratio of true positive detections divided by all the detections (Ammar et al., 2024). The OSOD
 272 metrics are fine-grained in the sense that they assess how well the methods can localize and correctly
 273 classify known and unknown objects in images where both types of objects appear.

274 In addition to the widely used metrics of AUROC and FPR95, we propose using the following
 275 OSOD metrics: AP_U , P_U , and R_U . We omit the WI since our benchmark does not allow both ID
 276 and OOD classes in the OOD datasets. In addition, we propose a new metric that we call *normalized*
 277 *open set error* (nOSE), which is the AOSE divided by the total number of labeled unknowns. We
 278 propose this metric since the absolute number of unknowns depends on the dataset, and therefore, the
 279 AOSE is not comparable across datasets, whereas the nOSE is. The nOSE assesses the proportion
 280 of unknown objects detected as one of the ID classes. A summary of the overall metrics used in the
 281 FMIYC benchmark can be found in Appendix Section C.

284 5 EXPERIMENTS AND RESULTS

285 5.1 OBJECT DETECTION ARCHITECTURES

286 We used the Faster-RCNN (Girshick et al., 2014) in its *vanilla* and VOS
 287 (regularized) versions, YOLOv8 (Jocher et al., 2023; Sohan et al., 2024)
 288 and RT-DETR (Zhao et al., 2024). As an extension, we include results
 289 from OWLv2 (Minderer et al., 2024), which is a state-of-the-art VLM for
 290 object detection. For YOLOv8 and RT-DETR, the models were trained
 291 on the same ID datasets (Pascal-VOC and BDD100k). The training de-
 292 tails can be found in Appendix Section E. For the Faster-RCNN models,
 293 we used the pre-trained checkpoints provided by Du et al. (2022b). For
 294 OWLv2, we used the original pretrained model (Minderer et al., 2024).
 295 Table 3 shows the architectures mAP for each ID test dataset.

296 Table 3: mAP across architectures
 297 for VOC & BDD ID datasets

Model	VOC	BDD
F-RCNN	48.7	31.20
F-RCNN VOS	48.9	31.30
Yolov8	54.73	32.15
RT-DETR	70.4	33.30
OWLv2	73.2	30.40

300 5.2 OUT-OF-DISTRIBUTION OBJECT DETECTION METHODS

301 We implemented prominent methods from OOD detection literature on image classification. Spec-
 302 ifically, we selected *post-hoc* methods, as they do not require retraining of the base model. Conse-
 303 quently, we adapted the common families of methods from image classification to operate at the
 304 object level, as detailed below.

305 **Output-based post-hoc methods** take the logits, or the softmax activations, as inputs to their scor-
 306 ing functions. Here we can find MSP (Hendrycks & Gimpel, 2016), energy score (Liu et al., 2020),
 307 and and GEN (Liu et al., 2023). **Feature-space post-hoc methods** use the previous-to-last activa-
 308 tions as the input to the scoring functions. To this category belong kNN (Sun et al., 2022), DDU
 309 (Mukhoti et al., 2023) and Mahalanobis (Lee et al., 2018). **Mixed output-feature-space post-hoc**
 310 **methods** rely on the previous-to-last activations and the outputs as the input to the scoring functions.
 311 Here we find ViM (Wang et al., 2022), ASH (Djurisic et al., 2022), DICE (Sun & Li, 2022), and
 312 ReAct (Sun et al., 2021). **Latent-space post-hoc methods** take inspiration from recent works (Yang
 313 et al., 2023; Mukhoti et al., 2023; Arnez et al., 2024) and implement an adapted confidence score,
 314 called LaRD, that uses latent activations of a given intermediate or hidden layer.

315 Adapting *post-hoc* methods for object detection is straightforward, leveraging each architecture’s
 316 built-in filtering mechanisms. In YOLOv8, however, only MSP, GEN, and energy-based methods
 317 are applied, as the network lacks a final fully connected layer or object-specific latent features.
 318 In addition to the adapted *post-hoc* OOD detection methods, we evaluated prominent OOD-OD
 319 methods such as VOS (Du et al., 2022b), SAFE (Wilson et al., 2023), and SIREN (Du et al., 2022a).
 320 The confidence score threshold for each OOD detection method was calculated such that 95% of the
 321 ID samples lie above the threshold. Furthermore, as a baseline for OSOD methods in our benchmark,
 322 and to enable a fair comparison with OOD-OD methods, we present results for OpenDet CWA
 323 (Mallick et al., 2024), a state-of-the-art OSOD method based on Faster-RCNN.

Figure 4: Average OOD-OD performance across baseline families and classic metrics (architectures are averaged). OpIm=OpenImages

Figure 5: Average OSOD performance comparison across baseline families and metrics (architectures are averaged). OpIm=OpenImages

5.3 RESULTS

In Figure 4, we present a summarized plot of the AUROC and FPR95 metrics from the new FMIYC benchmark, averaged across architectures for each family of methods and each OOD dataset. Feature-based methods and those utilizing latent representations tend to identify incorrect predictions more effectively in the *farther* split compared to other splits. Conversely, mixed methods exhibit a decline in performance as semantic distance increases. Overall, there is no distinct trend among baseline families indicating whether incorrect detections are more easily identified for *near*, *far*, or *farther* objects. This observation may be surprising; however, the differences among splits will become more apparent when considering the OSOD metrics discussed subsequently.

Figure 5 illustrates the results for the incorporated OSOD metrics, averaged across architectures for each family of methods and each OOD dataset. For the nOSE, there is a clear decreasing trend across method families when transitioning from *near* to *farther* splits. The *near* datasets exhibit the

378

Table 4: Results on the COCO datasets for methods using Faster-RCNN (top) and OWLv2 (bottom). **Bold**: best OOD-OD method

379

380

381

382

383

384

385

386

387

388

389

390

Method	AUROC \uparrow			$R_U \uparrow$			$P_U \uparrow$			nOSE \downarrow		
	Near	Far	Farther	Near	Far	Farther	Near	Far	Farther	Near	Far	Farther
GEN	87.43	84.48	78.82	26.12	10.96	2.99	73.80	65.17	22.89	14.29	8.69	2.04
Energy	86.47	82.31	72.44	24.84	9.95	2.99	75.88	66.33	22.89	15.95	9.80	2.03
VOS	89.98	89.13	84.79	24.62	11.26	4.72	72.10	55.61	26.70	20.49	9.65	1.76
SAFE	83.94	79.73	90.73	16.78	6.31	2.45	54.85	45.78	20.87	35.45	18.73	3.22
SIREN	89.63	88.00	-	27.30	12.17	-	60.52	53.67	-	19.46	9.84	-
OpenDet CWA	-	-	-	37.85	24.59	5.39	77.69	54.72	29.19	25.19	12.57	8.30
OWLv2 Energy	55.02	58.79	59.45	0.0	0.0	0.0	0.0	0.0	0.0	1.18	0.15	0.01
OWLv2 Mahalanobis	61.35	89.49	99.31	0.0	0.05	0.01	0.0	2.94	3.70	1.18	0.10	0.0

388

389

Table 5: Results on the OpenImages datasets for methods using Faster-RCNN (top) and OWLv2 (bottom). **Bold**: best OOD-OD method

390

391

392

393

394

395

396

397

398

399

400

401

highest nOSE, indicating that more objects are mistakenly predicted as one of the in-distribution (ID) classes among the correctly localized objects. Conversely, objects in the *farther* split are less confounded with ID objects. Regarding the AP_U , it is generally observed to be low across OOD datasets, with a trend of decreasing further in the *farther* datasets. This suggests that objects that are semantically *near* are localized more accurately. Feature-based methods and those utilizing latent space representations appear to perform better than other methods for the *farther* objects.

402

403

404

405

406

The P_U exhibits the highest variability across methods and also the highest values among the OSOD metrics. It is particularly elevated for the *near* splits. However, drops drastically for the *farther* objects, indicating that in such splits, more OOD predictions do not correspond to ground truth objects, as illustrated in Figure 2. Finally, the R_U is generally quite low across OOD datasets and methods, with a similar trend showing that objects in *far* and *farther* OOD datasets are harder to detect. The metrics reveal that, on average, most unknown objects are ignored (not found), and this challenge is even more pronounced for *far* and *farther* OOD objects. For the *near* splits, $\sim 14\%$ of unknown objects are correctly identified. This figure drops to approximately 3% in the *farther* splits for output-based and mixed methods. However, feature-based and latent representation methods seem to perform slightly better, identifying $\sim 9\%$ of the unknown objects in the *farther* splits. For a comprehensive presentation of the results for each architecture, method, and metric, please refer to Appendix Section F.

407

408

409

410

411

412

413

414

415

416

417

It is important to note how unrelated the previous OOD-OD benchmark metrics may seem with respect to the OSOD metrics. The AUROC and FPR95 cannot actually tell much difference between *far* and *near* datasets. This difference becomes clear in light of the OSOD metrics, which show that, contrary to the case of image classification, for object detection, the semantically and visually closer objects are easier to identify and localize. But when the unknown objects are too different from the ID ones, they will most likely be ignored by the methods and architectures evaluated. These insights are impossible to obtain using only the AUROC and FPR95.

418

419

420

421

422

423

424

Furthermore, Table 4 and Table 5 show summarized results for COCO/OpenImages with the most widely used architecture for OOD-OD, Faster-RCNN, across the two best post-hoc methods (GEN and Energy) according to our results, and including three OOD-OD training methods: VOS (Du et al., 2022b), SAFE (Wilson et al., 2023), and SIREN (Du et al., 2022a). We include one OSOD method based on Faster-RCNN in order to make a fair comparison, OpenDet CWA (Mallick et al., 2024). The tables show no clear winner in all OOD-OD and OSOD metrics. Across training methods, VOS presents the best AUROC performance in terms of near and far splits, and also shows the best P_U , R_U , and nOSE in the *farther* split. When comparing OOD-OD methods with OpenDet

432 CWA, it is possible to observe that it outperforms all other methods in OSOD metrics, which may
 433 not come as a surprise since it is specifically an OSOD method. It is worth clarifying that AUROC
 434 is not computable for OpenDet CWA (or OSOD methods in general), since OSOD is not a binary
 435 classification task, whereas OOD-OD is.

436 Finally, Table 4 and Table 5 also show the results for OWLv2 using two post-hoc OOD-OD methods.
 437 The results for OWLv2 must be understood considering that, on average, about 93% of the images
 438 in all OOD subsets do not have a single prediction, constraining the AUROC results to only around
 439 7% of the evaluation images. This, along with the nOSE, indicates that the VLM makes many fewer
 440 incorrect predictions than in the case of Faster-RCNN, Yolov8, and RT-DETR. However, AUROC
 441 alone can be misleading. A closer look at R_U and P_U shows that OOD methods applied to OWLv2
 442 fail to detect almost any unknown objects. While the model may internally recognize these objects,
 443 its output is strictly confined to the queried ID classes. This aligns with recent analysis by Miyai
 444 et al. (2024), which argues that VLMs require specialized OOD approaches that account for their
 445 prompt-based input and extensive semantic space.

446 447 6 DISCUSSION

448 **The value of OSOD metrics.** We suggest caution to practitioners when relying solely on legacy
 449 metrics (AUROC and FPR95) and the former evaluation approach, as it does not take into account
 450 ignored objects or images without prediction, resulting in fewer ‘valid’ images for evaluation in-
 451 dependently of the architecture for object detection. It is crucial to note that the OSOD metrics
 452 are necessary to quantify the effectiveness of OOD-OD methods in detecting actual OOD objects
 453 (AP_U and P_U) and accounting for instances when OOD objects are overlooked (R_U) or misclassi-
 454 fied (nOSE). Unlike AUROC and FPR95, the OSOD metrics provide a more nuanced understanding
 455 by addressing confounding unknowns for ID objects, the oversight of OOD objects, and the localiza-
 456 tion of unknowns. The added value of the OSOD metrics is clearer when considering the semantic
 457 stratified splits.

458 **Near, far and farther splits.** The partition of the benchmark into *near*, *far*, and *farther* proved
 459 insightful and meaningful since it details that semantic similarity plays an important role in the
 460 detection ability of different methods and architectures. It is especially insightful how the *near* OOD
 461 objects are more easily detectable than *far* and *farther* ones in the case of object detection. This is
 462 the opposite of the case of image classification, where *near* classes are considered harder than *far*
 463 ones. However, the *near* objects are also more easily confounded with ID objects, in agreement with
 464 image classification observations. Moreover, the observation that *far* and *farther* objects are more
 465 usually ignored, and therefore are hardly localizable, is demonstrated by the OSOD metrics, as only
 466 around 5% of the unknown *farther* objects are localized, as opposed to about 20% for some methods
 467 in the *near* datasets. Our work paves the way for newer detection approaches customized to specific
 468 semantic similarity requirements and provides a stronger foundation for developing OOO-OD and
 469 OSOD methods.

470 7 CONCLUSION

471 In this work, we identified and addressed fundamental flaws in the existing *de facto* out-of-
 472 distribution object detection (OOD-OD) evaluation benchmark and its metrics. To address these
 473 flaws, we introduced the *FindMeIfYouCan* benchmark, which builds on top of and refines the ex-
 474 isting evaluation framework for OOD-OD. In addition, we propose incorporating open-set object
 475 detection metrics to comprehensively assess OOD-OD methods on their ability to identify unknown
 476 objects. The proposed benchmark approach offers and facilitates a holistic evaluation, measuring
 477 the detection of semantically *near*, *far*, and *farther* objects, instances where objects are overlooked,
 478 and cases where objects are misclassified as in-distribution (ID) objects. We believe our work lays a
 479 solid foundation for a more rigorous and nuanced evaluation of OOD-OD methods towards a more
 480 reliable deployment of object detectors in real-world scenarios.

486 REPRODUCIBILITY STATEMENT.
487488 We include details throughout the paper that can be used to recreate the dataset and to reproduce our
489 results. In particular, Section 4, and Section B from the Appendix. Upon acceptance, we will make
490 publicly available the code used for dataset creation, the dataset created, and benchmark evaluation
491 code, to ensure reproducibility and adoption of the benchmark.492
493 REFERENCES
494495 Hejer Ammar, Nikita Kiselov, Guillaume Lapouge, and Romaric Audigier. Open-set object detec-
496 tion: towards unified problem formulation and benchmarking. *arXiv preprint arXiv:2411.05564*,
497 2024.498 Fabio Arnez, Daniel Alfonso Montoya Vasquez, Ansgar Radermacher, and François Terrier. Latent
499 representation entropy density for distribution shift detection. In *Conference on Uncertainty in*
500 *Artificial Intelligence (UAI)*, 2024.502 Akshay Dhamija, Manuel Gunther, Jonathan Ventura, and Terrance Boult. The overlooked elephant
503 of object detection: Open set. In *Proceedings of the IEEE/CVF Winter Conference on Applica-*
504 *tions of Computer Vision*, pp. 1021–1030, 2020.506 Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. Extremely simple activation
507 shaping for out-of-distribution detection. *arXiv preprint arXiv:2209.09858*, 2022.508 Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan Li. Siren: Shaping representations for detect-
509 ing out-of-distribution objects. *Advances in Neural Information Processing Systems*, 35:20434–
510 20449, 2022a.512 Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know by vir-
513 *tual outlier synthesis*. *Proceedings of the International Conference on Learning Representations*,
514 2022b.515 Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
516 The pascal visual object classes (voc) challenge. *International journal of computer vision*, 88:
517 303–338, 2010.519 Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
520 Hal Daumé Iii, and Kate Crawford. Datasheets for datasets. *Communications of the ACM*, 64
521 (12):86–92, 2021.523 Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
524 curate object detection and semantic segmentation. In *Proceedings of the IEEE conference on*
525 *computer vision and pattern recognition*, pp. 580–587, 2014.526 Akshita Gupta, Sanath Narayan, KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Mubarak
527 Shah. Ow-detr: Open-world detection transformer. In *Proceedings of the IEEE/CVF conference*
528 *on computer vision and pattern recognition*, pp. 9235–9244, 2022.530 Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, and Gui-Song Xia. Expanding low-
531 density latent regions for open-set object detection. In *Proceedings of the IEEE/CVF Conference*
532 *on Computer Vision and Pattern Recognition*, pp. 9591–9600, 2022.533 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *Proceedings of the*
534 *IEEE international conference on computer vision*, pp. 2961–2969, 2017.536 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
537 examples in neural networks. *arXiv preprint arXiv:1610.02136*, 2016.538 Glenn Jocher, Jing Qiu, and Ayush Chaurasia. Ultralytics YOLO, January 2023. URL <https://github.com/ultralytics/ultralytics>.

540 KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Vineeth N Balasubramanian. Towards open
 541 world object detection. In *Proceedings of the IEEE/CVF conference on computer vision and*
 542 *pattern recognition*, pp. 5830–5840, 2021.

543

544 Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Sha-
 545 hab Kamali, Stefan Popov, Matteo Mallocci, Alexander Kolesnikov, et al. The open images dataset
 546 v4: Unified image classification, object detection, and visual relationship detection at scale. *In-*
 547 *ternational Journal of Computer Vision*, 128(7):1956–1981, 2020.

548 Thomas A Lasko, Jui G Bhagwat, Kelly H Zou, and Lucila Ohno-Machado. The use of receiver
 549 operating characteristic curves in biomedical informatics. *Journal of biomedical informatics*, 38
 550 (5):404–415, 2005.

551

552 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
 553 out-of-distribution samples and adversarial attacks. *Advances in neural information processing*
 554 *systems*, 31, 2018.

555 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 556 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 557 *Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014,*
 558 *Proceedings, Part V 13*, pp. 740–755. Springer, 2014.

559

560 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
 561 tion. *Advances in neural information processing systems*, 33:21464–21475, 2020.

562

563 Xixi Liu, Yaroslava Lochman, and Christopher Zach. Gen: Pushing the limits of softmax-based
 564 out-of-distribution detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 565 *and Pattern Recognition*, pp. 23946–23955, 2023.

566

567 Muhammad Maaz, Hanoona Rasheed, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad An-
 568 wer, and Ming-Hsuan Yang. Class-agnostic object detection with multi-modal transformer. In *Eu-*
 569 *uropean conference on computer vision*, pp. 512–531. Springer, 2022.

570

571 Prakash Mallick, Feras Dayoub, and Jamie Sherrah. Wasserstein distance-based expansion of low-
 572 density latent regions for unknown class detection. *CoRR*, 2024.

573

574 Prasanna Mayilvahanan, Thaddäus Wiedemer, Evgenia Rusak, Matthias Bethge, and Wieland Bren-
 575 del. Does clip’s generalization performance mainly stem from high train-test similarity? In *NeurIPS 2023 Workshop on Distribution Shifts: New Frontiers with Foundation Models*, 2023.

576

577 Dimitry Miller, Lachlan Nicholson, Feras Dayoub, and Niko Sünderhauf. Dropout sampling for ro-
 578 bust object detection in open-set conditions. In *2018 IEEE International Conference on Robotics*
 579 *and Automation (ICRA)*, pp. 3243–3249. IEEE, 2018.

580

581 George A Miller. Wordnet: a lexical database for english. *Communications of the ACM*, 38(11):
 39–41, 1995.

582

583 Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection.
 584 *Advances in Neural Information Processing Systems*, 36, 2024.

585

586 Atsuyuki Miyai, Jingkang Yang, Jingyang Zhang, Yifei Ming, Yueqian Lin, Qing Yu, Go Irie, Shafiq
 587 Joty, Yixuan Li, Hai Li, et al. Generalized out-of-distribution detection and beyond in vision
 588 language model era: A survey. *arXiv preprint arXiv:2407.21794*, 2024.

589

590 Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip HS Torr, and Yarin Gal. Deep de-
 591 terministic uncertainty: A new simple baseline. In *Proceedings of the IEEE/CVF Conference on*
 592 *Computer Vision and Pattern Recognition*, pp. 24384–24394, 2023.

593

594 Julia Nitsch, Masha Itkina, Ransalu Senanayake, Juan Nieto, Max Schmidt, Roland Siegwart,
 595 Mykel J Kochenderfer, and Cesar Cadena. Out-of-distribution detection for automotive per-
 596 ception. In *2021 IEEE International Intelligent Transportation Systems Conference (ITSC)*, pp.
 597 2938–2943. IEEE, 2021.

594 Rafael Padilla, Sergio L Netto, and Eduardo AB Da Silva. A survey on performance metrics for
 595 object-detection algorithms. In *2020 international conference on systems, signals and image*
 596 *processing (IWSSIP)*, pp. 237–242. IEEE, 2020.

597

598 David Powers. Evaluation: From precision, recall and f-measure to roc, informedness, markedness
 599 & correlation. *Journal of Machine Learning Technologies*, 2(1):37–63, 2011.

600 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 601 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 602 models from natural language supervision. In *International conference on machine learning*, pp.
 603 8748–8763. PMLR, 2021.

604

605 Mupparaju Sohan, Thotakura Sai Ram, Rami Reddy, and Ch Venkata. A review on yolov8 and its
 606 advancements. In *International Conference on Data Intelligence and Cognitive Informatics*, pp.
 607 529–545. Springer, 2024.

608

609 Yiyou Sun and Yixuan Li. Dice: Leveraging sparsification for out-of-distribution detection. In
 610 *European Conference on Computer Vision*, pp. 691–708. Springer, 2022.

611

612 Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activations.
 613 *Advances in Neural Information Processing Systems*, 34:144–157, 2021.

614

615 Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
 616 neighbors. *arXiv preprint arXiv:2204.06507*, 2022.

617

618 Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
 619 logit matching. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 620 *recognition*, pp. 4921–4930, 2022.

621

622 Samuel Wilson, Tobias Fischer, Feras Dayoub, Dimity Miller, and Niko Sünderhauf. Safe:
 623 Sensitivity-aware features for out-of-distribution object detection. In *Proceedings of the*
 624 *IEEE/CVF International Conference on Computer Vision*, pp. 23565–23576, 2023.

625

626 Aming Wu and Cheng Deng. Tib: Detecting unknown objects via two-stream information bottle-
 627 neck. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023.

628

629 Z Wu and M Palmer. Verbs semantics and lexical selection. inproceedings of the 32nd annual meet-
 630 ing on association for computational linguistics (pp. 133–138). In *Association for Computational*
 631 *Linguistics*, volume 2, 1994.

632

633 Jingkang Yang, Kaiyang Zhou, and Ziwei Liu. Full-spectrum out-of-distribution detection. *Inter-
 634 national Journal of Computer Vision*, pp. 1–16, 2023.

635

636 Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
 637 A survey. *International Journal of Computer Vision*, 132(12):5635–5662, 2024.

638

639 Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madha-
 640 van, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learn-
 641 ing. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 642 2636–2645, 2020.

643

644 Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou
 645 Sun, Xuefeng Du, Yixuan Li, Ziwei Liu, et al. Openood v1. 5: Enhanced benchmark for out-
 646 of-distribution detection. In *NeurIPS 2023 Workshop on Distribution Shifts: New Frontiers with*
 647 *Foundation Models*, 2024.

648

649 Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu,
 650 and Jie Chen. Detrs beat yolos on real-time object detection. In *Proceedings of the IEEE/CVF*
 651 *conference on computer vision and pattern recognition*, pp. 16965–16974, 2024.

652

653 Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20
 654 years: A survey. *Proceedings of the IEEE*, 111(3):257–276, 2023.

655

648
649
650
651
652
653
654
655
656
Appendix

A SEMANTIC OVERLAP AND SIMILARITIES IN PREVIOUS BENCHMARK

657 As stated in Section 3, the main assumption of the current OOD-
 658 OD benchmark is that no ID category can be present in the OOD-
 659 datasets. This is what we call the no-overlap condition. If this con-
 660 dition is met, it is ensured that all predictions done by a model
 661 trained on the ID datasets can be considered “incorrect” pre-
 662 dictions. The non-overlap condition can mainly be enforced by man-
 663 ual inspection of OOD datasets, due to the existence of unlabeled
 664 instances of several objects.

665 A close inspection of the dataset showed that, in fact, the core as-
 666 sumption of no overlap is not met, since there are labeled and unla-
 667 beled instances of ID categories in the OOD datasets. The amount
 668 of images in the OOD datasets that contain ID categories is shown in Table 6.

669
670
671
Table 6: Semantic overlap: Number
672 of OOD images containing
673 ID classes
674
675

ID class	No. Images
Person (or part)	106
Dining table	142
Other	4

699
700 Figure 6: Examples of images in the OOD datasets that contain humans or parts of humans. There
 701 exists a semantic overlap between ID and OOD datasets. The images must be removed for the
 benchmark to have consistency.

Figure 7: Examples of images in the OOD datasets that contain dining tables. Some of these contain also humans. There exists a semantic overlap between ID and OOD datasets. The images must be removed for the benchmark to have consistency.

Some examples of images in the OOD datasets that contain humans or parts of humans are shown in Figure 6. Similarly, examples of images containing “dining tables” in the OOD datasets w.r.t. VOC are shown in Figure 7. Table 7 shows the overlapping categories in each OOD dataset.

Table 7: Overlapping categories in each OOD dataset w.r.t. VOC

ID: VOC	COCO	OpenImages
Person	Person	Person, human face, human arm, woman, human head, human hand, human hair, human nose, human ear, human mouth, human nose, human eye, human beard, body part
Dining table	Spoon, fork, pizza, sandwich, cake, hot dog, wine glass, spoon	Salad, plate, broccoli, tableware, fork, baked goods, spoon
Boat	-	Boat
Potted plant	-	Houseplant, flowerpot
Cat	-	Cat

All images containing overlapping classes with the ID ones must be removed for the benchmark to comply with the non-overlap condition. Table 7 presents the detailed list of OOD categories that overlap with the corresponding ID category in each OOD dataset with respect to VOC categories. For BDD100k as ID, only the images containing instances of people or parts of people were removed.

Furthermore, we present a list of OOD categories and their corresponding ID category that are considered semantically or visually *near* w.r.t. VOC in Table 8. All the other categories in the OOD datasets that are not in the *near* list are considered *far* categories when VOC is the ID dataset. It is important to note, as explained in Section 4, that the images were manually checked to ensure the correct assignment into each new split, or removal. Figure 8 show examples of OOD images that contain *near* categories w.r.t. VOC as ID dataset, along with the prediction from Faster-RCNN trained on VOC.

756
757
758
759
760
761
762
763
764
765
766
767
768Table 8: Semantically and visually *near* categories in each OOD dataset w.r.t. VOC

VOC category	COCO	OpenImages
Horse	Zebra	-
Cat	-	Jaguar, leopard, cheetah
Chair	Bench	-
Person	-	Clothing
Dining table	Spoon, fork, carrot, orange, apple, cup, bowl	Zucchini, food, knife
Television	Laptop	Tablet computer, laptop
Couch	Bed	-
Dog	Bear	Fox
Potted plant	Vase	-
Various	-	Raccoon, harbor seal, hedgehog, otter, sea lion

Figure 8: Examples of images in the OOD datasets that contain categories classified as *near* w.r.t. Pascal-VOC as ID dataset. The predictions are made by the Faster RCNN model trained on Pascal-VOC.803
804
805
806
807
808
809

810 B DETAILS ON THE CONSTRUCTION OF THE FMIYC BENCHMARK

811
812
813 Here we provide more details into how the new benchmark was created, in addition to what is
814 already presented in Section 4. Following the observations made in Section A with respect to the
815 semantic overlaps existing in the current OOD-OD benchmark (Du et al., 2022b), the first step was
816 to remove the images where semantic overlap exists with the ID categories.

817 The second step consisted of splitting into *near* and *far* subsets with
818 respect to Pascal-VOC using class names as the criterion. The im-
819 ages containing semantically and visually similar categories from
820 Table 8 were put into the *near* split. The rest were put into the *far*
821 split. The splits were validated using WordNet (Miller, 1995) and
822 the Wu-Palmer similarity metric (Wu & Palmer, 1994). For each
823 class name in the ID and OOD datasets, the WordNet embedding
824 was obtained. Then, we calculated the highest Wu-Palmer simi-
825 larity of each OOD class name w.r.t. those of the ID class names. The
826 results in Table 9 show the average WuP similarity for each pro-
827 posed split, and confirm the stratification. The images were man-
828 ually inspected to ensure no unlabeled instances of ID categories
829 were present, in which case the image was removed from the benchmark. The manual inspection
830 also ensured the correct assignment of images to each split.

831 Next, new images were added to each split. Candidate images from the training sets of COCO and
832 OpenImages were first selected for manual inspection. The candidate images didn't have labeled ID
833 categories, and needed to contain labeled instances of either the *near* or the *far* categories. Candidate
834 images for each split were then manually inspected to ensure also that no ID category was present,
835 and the correct assignment to each split.

836 For BDD100k as ID, the only modification done to the existing OOD datasets was the removal of
837 images with people, because of overlap with the ID category "pedestrian".

Table 9: Wu-Palmer average similarity scores for the proposed splits. CC=COCO,
OI=OpenImages

ID	OOD dataset	WuP similarity
VOC	CC Near	0.706 ± 0.225
	OI Near	0.642 ± 0.204
	CC Far	0.683 ± 0.177
	OI Far	0.604 ± 0.193
BDD	CC Farther	0.619 ± 0.158
	OI Farther	0.508 ± 0.175

840
841 (a) Current benchmark: VOC is semantically and visually more sim-
842 ilar to OOD datasets than BDD.
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Later, the semantic and visual similarity was assessed using CLIP (Radford et al., 2021) embedding
854 space. The embeddings for both ID datasets, and for OOD samples in each split were extracted.
855 Then, following the procedure in Mayilvahanan et al. (2023), we calculated the cosine similarity
856 between ID and their respective OOD datasets. The obtained results before and after creating the
857 splits can be seen in Figure 9. It can be observed that three groups are present. This allowed us to
858 propose the distinction into *near*, *far* and *farther* datasets. *Near* and *far*, are splits that are OOD w.r.t.
859 VOC. *Farther* are the subsets w.r.t. BDD100k. Each of these subsets exists for COCO and Open-
860 Images, which means that in total, there are six subsets of OOD datasets: COCO-near, COCO-far,
861 OpenImages-near, OpenImages-far w.r.t. VOC; along with COCO-farther and OpenImages-farther
862 w.r.t. BDD100k. The amount of images in each subset is shown in Table 2. In total, there are 7767
863 images across all splits.

Figure 10: Top 20 category count for OOD datasets w.r.t. Pascal-VOC

Figure 11: Top 20 category count for OOD datasets w.r.t. BDD100k

918 **C DETAILS ON THE METRICS USED**
 919

920 This section provides more details about the previous and the newly incorporated metrics.
 921

922 **Previous OOD-OD metrics** AUROC and FPR metrics come from binary classification problems.
 923 The receiver-operating-characteristic (ROC) curve evaluates the performance of a classifier at vary-
 924 ing threshold values. It consists of the plot of the true positive rate (TPR) against the false positive
 925 rate (FPR) at each threshold setting. TPR and FPR are defined as follows:
 926

$$\text{FPR} = \frac{FP}{FP + TN} \quad (1)$$

$$\text{TPR} = \frac{TP}{TP + FN} \quad (2)$$

931 where FP is the number of false positives, TP is the number of true positives, TN is the number
 932 of true negatives, and FN is the number of false negatives.
 933

934 The AUROC is the area under the ROC curve. Since both TPR and FPR are bounded to the interval
 935 $[0, 1]$, the AUROC is bounded to the same interval. A perfect classifier would have an AUROC of
 936 1, whereas a random classifier would have an AUROC of 0.5. The value of 0 would mean that the
 937 classifier is a perfect misclassifier (predicts negatives as positives and vice-versa). The FPR95 is
 938 the false positive rate at 95% true positive rate. The lower the FPR95, the fewer false positives the
 939 classifier predicts (Lasko et al., 2005).

940 For the previous OOD-OD benchmark, the main limitation of these two metrics lies in the fact that
 941 they have no relation with ground truth (GT) bounding boxes, and rely exclusively on the compliance
 942 with the non-overlap assumption, as described in Section 2.2 and Section A. Therefore, AUROC and
 943 FPR95 are unable to measure the actual localization of OOD objects. For an illustration of this, see
 944 Figure 12.

945 Moreover, a non-negligible amount of images does not have a single prediction at all, as can be seen
 946 in Table 1. AUROC and FPR95 cannot measure that the main objects in Figure 2, Figure 12 and
 947 Figure 13 are ignored. They can only take into account the incorrect predictions as in Figure 12.
 948 Even if the unknown objects are correctly localized, AUROC and FPR95 are not measuring this
 949 since they are unrelated to the GT bounding boxes. For these reasons, we raise the critical question:
 950 *are AUROC and FPR95 sufficient metrics to assess the deployment of OOD-OD methods in safety-
 951 critical real-world scenarios?*

952 **OSOD metrics** The newly proposed metrics for the benchmark exist in the Open Set for object
 953 detection (OSOD) community. The metrics were already introduced in Section 4.2. here we give
 954 a more detailed definition for each one of them. It is important to note that all of the metrics were
 955 calculated using an intersection over union (IoU) threshold of 0.5. This means that one detection
 956 is considered as a true positive (TP_U) if the unknown is classified correctly (as unknown or OOD),
 957 and its predicted bounding box has an $\text{IoU} \geq 0.5$ with a ground truth (GT) unknown object.
 958

959 Also, for this case it is important to distinguish two types of false negatives: dismissed or ignored
 960 ones, denoted FN_U^D , and misclassified ones, denoted FN_U^M . One prediction is considered as FN_U^D
 961 if no predicted bounding box has $\text{IoU} \geq 0.5$ with the GT label. A detection is considered FN_U^M if a
 962 bounding box has $\text{IoU} \geq 0.5$ with a GT unknown but the predicted class is one of the ID categories.
 963 The total false negatives for the unknowns are then:

$$FN_U = FN_U^D + FN_U^M \quad (3)$$

964 The precision of the unknowns P_U is defined in a similar way as the binary classification metric:
 965

$$P_U = \frac{TP_U}{TP_U + FP_U} \quad (4)$$

966 where all quantities refer to unknowns: TP_U are the true positive predictions, and FP_U are the
 967 false positive predictions. Also, let us note that $TP_U + FP_U$ are the total number of predictions
 968

Figure 12: Incorrect predictions of Faster-RCNN trained on BDD100k on images from the OOD datasets in the current benchmark. AUROC and FPR95 cannot measure that the main OOD objects are ignored. They can only take into account the incorrect predictions. OSOD metrics can quantify the dismissal of unknown objects

for the unknown class. Therefore, what P_U is measuring is the ratio of true positives divided by all unknown predictions. In other words, P_U tells the proportion of predictions for unknowns that were actually ground-truth unknowns (Powers, 2011).

The recall of the unknowns R_U is defined as:

$$R_U = \frac{TP_U}{TP_U + FN_U} \quad (5)$$

where FN_U are the false negatives. Let us note that $TP_U + FN_U$ are the total number of ground-truth unknowns. In other words, R_U tells us the proportion of ground-truth unknowns that were found by the detector.

For the average precision of the unknowns AP_U , it is defined as the area under the precision-recall curve:

$$AP = \int_0^1 p(r)dr \quad (6)$$

which is usually calculated by the interpolation of rectangles of the sampled values:

Figure 13: Absense of predictions of Faster-RCNN trained on BDD100k on images from the OOD datasets in the current benchmark. AUROC and FPR95 cannot measure that all OOD objects in these images are ignored. Dismissing OOD objects is not measurable using the current metrics. OSOD metrics can quantify the dismissal of unknown objects

$$AP = \sum_m^M (r_{n+1} - r_n) p_{in}(r_{n+1}), \quad (7)$$

$$p_{in}(r_{n+1}) = \max_{\tilde{r} \geq r_{n+1}} p(\tilde{r}) \quad (8)$$

where p_{in} represents the interpolated precision at each detection point, which is obtained by taking the maximum precision whose recall value is greater or equal than (r_{n+1}) (Padilla et al., 2020).

Next, usually OSOD works report the absolute open set error (AOSE), that is defined as the total number of unknown objects that are predicted as one of the ID classes (which would correspond to FN_U^M). Since the absolute number of these is not comparable across datasets (because each dataset has a different number of unknown objects), we propose using a metric that we call normalized open set error (nOSE) that is defined as:

1080

1081

1082

1083

$$\text{nOSE} = \frac{FN_U^M}{TP_U + FN_U} \quad (9)$$

1084

1085

1086

where indeed $TP_U + FN_U$ is once more the total number of ground-truth unknown objects. The nOSE is comparable across datasets, and estimates the proportion of OOD objects that are confounded with ID objects.

1087

A summary of the purpose, limitations, and advantages of the used metrics can be found in Table 10.

1088

1089

Table 10: Overall metrics summary

1090

1091

Metric	Purpose	Limitations	Advantages
AUROC, FPR95	Measures the ability of a scoring function to detect incorrect predictions	Cannot take into account ignored objects	Does not depend on GT labels, can detect incorrect predictions that do not overlap with labeled objects
Precision	Measures the percent of correct predictions over the total of predictions		
Recall	Measures the percent of found objects divided by the total number of labeled objects	Need good GT labels. Cannot measure unlabeled unknowns.	Measure localization of GT objects
nOSE	Measures the percent of unknown objects confounded with an ID object		

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 **D DETAILS ON EVALUATED OOD DETECTION METHODS**
 1135

1136 We present further details on the OOD detection methods used in the paper. All of the methods
 1137 come from the Image classification literature (Yang et al., 2024), except for VOS (Du et al., 2022b).
 1138

1139 **D.1 PRELIMINARIES.**
 1140

1141 Using the notation from Section 2.1, let us recall that a trained object detector \mathcal{M} takes as input an
 1142 image x , along with a confidence threshold t^* , and for each i -th detected object outputs a bounding
 1143 box $\mathbf{b}_i \in \mathbb{R}^4$ and a vector of logits $\mathbf{c}_i \in \mathbb{R}^{|\mathcal{C}|}$, with dimension equal to the number of ID classes \mathcal{C} .
 1144 The model output is the set:

1145
$$\mathcal{M}(x; t^*) = \{(\mathbf{b}_i, \mathbf{c}_i)\}_{i=1}^D \quad (10)$$

 1146

1147 where D is the number of detections in each image. Each tuple $(\mathbf{b}_i, \mathbf{c}_i)$ corresponds to one detected
 1148 object. Note that $D = 0$ is possible, and in such a case the output is empty. Furthermore, the
 1149 so-called softmax activation is given by:

1150
$$\sigma(c_j) = \frac{e^{c_j}}{\sum_m^{|\mathcal{C}|} e^{c_m}} \quad (11)$$

 1151

1152 which transforms the logits vector into a vector of probabilities for each ID class, such that
 1153 $\sum_j^{|\mathcal{C}|} \sigma(c_j) = 1$. In this notation, the index j denotes the class index, and the index i denotes
 1154 the object index. An alternative output is then given by the vector of probabilities after softmax:
 1155 $\mathcal{M}(x; t^*) = \{(\mathbf{b}_i, \mathbf{p}_i)\}_{i=1}^D$, where $p_j = \sigma(c_j)$. The predicted probability of each detected object is
 1156 the maximum after softmax, let it be denoted by $\hat{p}_i = \max_j p_{ij}$. In any case, to have $D > 0$, there
 1157 must be at least one prediction such that $\hat{p}_i \geq t^*$.
 1158

1159 **The OOD detection problem.** Is formulated as a binary classification task leveraging a (confi-
 1160 dence) scoring function \mathcal{G} for each detected instance $(\mathbf{b}_i, \mathbf{c}_i)$, so that:

1161
$$\mathcal{G}(x, \mathbf{b}_i, \mathbf{c}_i) = g_i \in \mathbb{R} \quad (12)$$

 1162

1163 The scoring function aims to distinguish between ID and OOD objects, using a thresholding function
 1164 Ω with threshold τ as presented in eq. (13).
 1165

1166
$$\Omega(g_i, \tau) = \begin{cases} 1 & ID \quad \text{if } g_i \geq \tau \\ 0 & OOD \quad \text{if } g_i < \tau \end{cases} \quad (13)$$

 1167

1168 For the OOD-OD problem, only those detected objects above the threshold t^* are considered. There-
 1169 fore, if no object is detected in a given image, there is no input for the scoring function \mathcal{G} for such
 1170 an image. In a general sense, each of the OOD detection methods is a realization of the scoring
 1171 functions \mathcal{G} . Figure 14 presents a depiction of the workflow of OOD-OD scoring functions.
 1172

1173 It is important to avoid possible confusion and it can be useful to reiterate here that t^* and τ are two
 1174 different thresholds. The object detection model \mathcal{M} uses a confidence threshold $t^* \in \mathbb{R}^{[0,1]}$ that is
 1175 usually the one that maximizes the mAP in the ID test set. This threshold filters the output of the
 1176 model so that all detected objects satisfy $\hat{p}_i \geq t^*$. On the other hand, the OOD scoring functions \mathcal{G}
 1177 use each one its own threshold $\tau \in \mathbb{R}$, which corresponds to the one that makes that 95% of the g_i
 1178 of detected ID objects are above the threshold.
 1179

1180 **D.2 EVALUATED METHODS**
 1181

1182 For the adaptation of each method from image classification to object detection, in each case, the
 1183 score is calculated per each detected object above the threshold t^* . Therefore, there can be zero or
 1184 several detections per image. Each of the equations in the following section has been adapted to
 1185 match our notation, and all of them explain the adaptation done to work at the object level.
 1186

Figure 14: General workflow of OOD-OD scoring functions. The outputs of the base model \mathcal{M} are the inputs to scoring functions \mathcal{G} . If the object detector ignores a given object, scoring functions will ignore it, too. The model predictions not marked as OOD, remain with the predicted class.

D.2.1 OUTPUT-BASED METHODS

Output based methods take either the c_i or the p_i as input to the scoring functions. This family of methods is applicable to all of the architectures tested: Faster-RCNN, Yolov8 and RT-DETR.

Maximum softmax probability (MSP). This is perhaps the most classical baseline in OOD detection for image classification (Hendrycks & Gimpel, 2016). It consists of directly choosing the maximum softmax value:

$$\max_j p_j = \max_j \frac{e^{c_j}}{\sum_m^{|C|} e^{c_m}} \quad (14)$$

where e is the Euler number.

Energy score. Proposed by Liu et al. (2020), it calculates the energy score using the activation logits c_i as:

$$E(c_i; T) = -T \log \sum_j^{|C|} e^{c_j/T} \quad (15)$$

where T is the temperature (usually set to $T = 1$).

Generalized entropy score (GEN). Presented by Liu et al. (2023), the authors propose using the family of generalized entropies:

1242

$$G_\lambda(\mathbf{p}_i) = \sum_j p_j^\lambda (1-p_j)^\lambda \quad (16)$$

1246 when $\lambda = 1/2$:

1247

$$G_{1/2}(\mathbf{p}_i) = \sum_j \sqrt{p_j(1-p_j)} \quad (17)$$

1251 D.2.2 FEATURE-BASED METHODS

If the model \mathcal{M} has L total layers, and its last layer L is a linear one (also called fully connected), then the activations of the $L-1$ (penultimate) layer are considered the extracted features $\mathbf{z}_{L-1} \in \mathbb{R}^d$, where d is the dimension of the feature. Then, for a given input image x , and a detection $(\mathbf{b}_i, \mathbf{c}_i)$, the features of each detected object are defined as:

1257

$$z_{L-1}^i = \mathcal{M}_{L-1}(x; t^*) \quad (18)$$

1259

where \mathcal{M}_l denotes the latent activation of \mathcal{M} at layer l . To simplify notation, let us denote the per-object feature \mathbf{z}_{L-1}^i by \mathbf{z}_i . In all cases, \mathbf{z}_i^* denotes the features of a detected object $(\mathbf{b}_i^*, \mathbf{c}_i^*)$ from a test image x^* . Feature-based methods considered here need a training phase, and for this phase they take as input the \mathbf{z}_i of the training set. At test time, their input is the \mathbf{z}_i^* of test samples.

1264 This family of methods is not applicable to Yolov8, since this architecture has no final linear layer: it
1265 is fully convolutional. Therefore, it is not possible to associate a set of features to a specific detected
1266 object. This family of methods can be used with Faster-RCNN and RT-DETR.

1267

k-Nearest neighbors (kNN). Introduced by Sun et al. (2022), first normalizes the feature for each detected object: $\mathbf{z}_i = \mathbf{z}_i / \|\mathbf{z}_i\|_2$, where $\|\cdot\|_2$ denotes the L2 norm. Then, the normalized embeddings of the training data are stored: $\mathbb{Z}_N = (\mathbf{z}_1, \dots, \mathbf{z}_N)$, where N are the number of objects detected in the training set.

1272

During testing, the normalized features \mathbf{z}_i^* are derived, and the euclidean distances $\|\mathbf{z}_i^* - \mathbf{z}_j\|_2$ are calculated with respect to the train embeddings $\mathbf{z}_j \in \mathbb{Z}_N$. Afterward, the embeddings are reordered according to the increasing distance $\|\mathbf{z}_i^* - \mathbf{z}_j\|_2$. The reordered embedding sequence is $\bar{\mathbb{Z}}'_N = (\mathbf{z}_{(1)}, \mathbf{z}_{(2)}, \dots, \mathbf{z}_{(N)})$. The scoring function is defined as:

1276

$$r_k(\mathbf{z}_i^*) = \|\mathbf{z}_i^* - \mathbf{z}_{(k)}\|_2 \quad (19)$$

1278

which corresponds to the distance to the k -th nearest neighbor in the normalized feature space (Sun et al. 2022).

1291

Mahalanobis distance. Proposed by Lee et al. (2018), the Mahalanobis score calculates the distance to the centroids of a class-conditional Gaussian distribution. The predicted class per detected object is denoted y_c^i and corresponds to the index of the max value of either the c_i or the p_i . Then the empirical class mean and covariance matrix of training samples are estimated:

1286

$$\hat{\mu}_c = \frac{1}{N_c} \sum_{j:u_c} \mathbf{z}_j, \quad \hat{\Sigma} = \frac{1}{N} \sum_c^c \sum_{j:u_c} (\mathbf{z}_j - \hat{\mu}_c)(\mathbf{z}_j - \hat{\mu}_c)^\top \quad (20)$$

1290

where N_c denotes the total number of objects of class y_c detected in the training set, N is the total number of detected objects in the training set in all classes, and j are indexes of detected objects of class y_c . Then the Mahalanobis confidence score is defined as the Mahalanobis distance between the features z^* and the closest class-conditional Gaussian distribution:

1294

$$M(\mathbf{z}_i^*) = \max - (\mathbf{z}_i^* - \hat{\mu}_c) \hat{\Sigma}^{-1} (\mathbf{z}_i^* - \hat{\mu}_c)^\top \quad (21)$$

1296 which corresponds to the log of the probability of the test sample (Lee et al., 2018).
 1297

1298 **Deep deterministic uncertainty (DDU).** A work by Mukhoti et al. (2023), fits a Gaussian mix-
 1299 ture model (GMM) on the feature space, then computes the density under the GMM. Similar to
 1300 Equation (20), the mean per class $\hat{\mu}_c$ and the covariance matrix $\hat{\Sigma}$ are computed for the features z_i
 1301 of each detected object (b_i^*, c_i^*) . Then the weights of the GMM are computed as:
 1302

$$\pi_c = \frac{1}{N} \sum y_c \quad (22)$$

1303 which denotes the proportion of detected objects for each class y_c over the total N detected objects
 1304 in the training dataset. During inference time, the density under the GMM is computed for the
 1305 features z_i^* of a detected object (b_i^*, c_i^*) from a test image x^* :
 1306

$$q(z_i^*) = \sum_{y_c} q(z_i^*|y_c) \pi_c, \quad \text{where } q(z_i^*|y_c) \sim \mathcal{N}(\mu_c; \sigma_{y_c}) \quad (23)$$

1312 D.2.3 OUTPUT-FEATURE (MIXED) BASED METHODS

1314 This family of methods takes both the outputs (either the c_i or the p_i) and the features z_i for each
 1315 detected object (b_i, c_i) as inputs to the scoring functions. This family of methods was not applicable
 1316 to Yolov8 for the same reasons as for the previous family of methods.
 1317

1318 **Activation shaping (ASH).** Showcased by Djurisic et al. (2022), involves a reshaping of the fea-
 1319 ture z_i , and subsequent use of the energy score from Equation (15). The reshaping is done by first
 1320 calculating a threshold t that corresponds to the p -th percentile of the entire set of the detected
 1321 objects representations of the training set:
 1322

$$\mathbb{Z}_N = (z_1, \dots, z_N) \quad (24)$$

1323 Afterward, we calculate $s_1 = \sum_j z_j$. Then all values below t are set to 0 to obtain a pruned version
 1324 of the features $\mathbb{Z}_N^p = (z_1^p, \dots, z_N^p)$. Using the \mathbb{Z}_N^p , we calculate $s_2 = \sum_j z_j^p$. Finally, all non-zero
 1325 values in \mathbb{Z}_N^p are multiplied with $\exp(s_1/s_2)$, to obtain the pruned and reshaped features:
 1326

$$\begin{aligned} \mathbb{Z}_N^r &= \mathbb{Z}_N^p \exp(s_1/s_2) \\ &= (z_1^p \exp(s_1/s_2), \dots, z_N^p \exp(s_1/s_2)) \\ &= (z_1^r, \dots, z_N^r) \end{aligned} \quad (25)$$

1327 Finally, the pruned and reshaped features are passed through the final fully connected layer L to ob-
 1328 tain the logit activations c_i , which are passed to the energy score calculation as in Equation (15). The
 1329 authors found that the method works best when using a pruning percentile of about 90% (Djurisic
 1330 et al., 2022).
 1331

1332 **Directed sparsification (DICE).** Introduced by Sun & Li (2022), the authors consider the weight
 1333 matrix of the final fully connected layer $\mathbf{W} \in \mathbb{R}^{d \times |\mathcal{C}|}$, where d is the dimension of the feature z_i ,
 1334 and $|\mathcal{C}|$ is the number of ID categories. This matrix is then subject to sparsification, to preserve the
 1335 most important weights in it. The contribution is measured by a matrix $\mathbf{V} \in \mathbb{R}^{d \times |\mathcal{C}|}$, where each
 1336 column $\mathbf{v}_c \in \mathbb{R}^d$ is given by:
 1337

$$\mathbf{v}_c = \mathbb{E}_{z_j \in \mathbb{Z}_N} [\mathbf{w}_c \odot z_j] \quad (26)$$

1338 where \odot represents the element-wise multiplication, \mathbf{v}_c indicates the weight vector for class y_c , and
 1339 \mathbb{Z}_N is as defined in Equation (24). Then the top- k weights are selected from the largest values of \mathbf{V} ,
 1340 to obtain a sparsified matrix \mathbf{W}' . This matrix is now used as the final layer weights instead of the
 1341 \mathbf{W} . Finally, the obtained c_i are passed to the energy scoring function from Equation (15) (Sun & Li,
 1342 2022).
 1343

1350
 1351 **Rectified activations (ReAct).** Proposed by Sun et al. (2021), it performs a clipping operation on
 1352 the features z_i , and the calculation of the energy score. The rectification (or clipping) is performed
 1353 as:

$$\bar{z}_i = \min(z_i, t) \quad (27)$$

1354 where each element of z_i is truncated to be at most equal to the threshold t . This threshold is
 1355 calculated so that a given percentile of the activations is less than the threshold. For instance, at
 1356 percentile $p = 90$, 90% of ID train activations are below the threshold t . The authors found that a
 1357 percentile of 90 works best. Then, the \bar{z}_i are passed as inputs to the final layer to obtain the outputs
 1358 c_i , which are then used to calculate the energy score as in Equation (15) (Sun et al., 2021).

1359
 1360 **Virtual logit matching (ViM).** A method inspired by a thorough geometrical analysis of the space
 1361 of the matrix Z , whose rows are the z_i for all detected objects in the training set. Let \mathbf{X} denote a
 1362 centered version of Z , obtained by offsetting the z_i by a vector $\mathbf{o} = -(\mathbf{W}^\top)^+ \mathbf{b}$, where $(\cdot)^+$ denotes
 1363 the Moore-Penrose inverse, \mathbf{W} is the final layer weight matrix and \mathbf{b} is the final layer bias. The
 1364 eigendecomposition of the matrix $\mathbf{X}^\top \mathbf{X}$ is:

$$\mathbf{X}^\top \mathbf{X} = \mathbf{Q} \Lambda \mathbf{Q}^{-1} \quad (28)$$

1365 where eigenvalues Λ are ordered decreasingly. The first D columns of \mathbf{Q} are called the D -
 1366 dimensional principal subspace P . The residual subspace P^\perp is spanned by the remaining $D + 1$ to
 1367 the last columns of \mathbf{Q} , and is represented by the matrix $\mathbf{R} \in \mathbb{R}^{N \times (N-D)}$, where N is the number
 1368 of detected objects in the train set. Then $z_i^{P^\perp}$ denotes the projection of z_i onto \mathbf{R} : $z_i^{P^\perp} = \mathbf{R} \mathbf{R}^\top z_i$.
 1369 The virtual logit c_0 is calculated as:

$$c_0 = \alpha \|z_i^{P^\perp}\| = \alpha \sqrt{z_i^\top \mathbf{R} \mathbf{R}^\top z_i} \quad (29)$$

1370 which corresponds to the norm of the residual $z_i^{P^\perp}$ rescaled by a constant α . This constant is
 1371 calculated as:

$$\alpha = \frac{\sum_j^K \max_{m=1, \dots, |\mathcal{C}|} \{c_m^j\}}{\sum_{j=1}^K \|z_i^{P^\perp}\|} \quad (30)$$

1372 where z_1, z_2, \dots, z_K are uniformly sampled K training examples, and c_m^j is the m -th logit of c_j .
 1373 This constant scales the virtual logit to the average maximum of the original logits. Finally, the ViM
 1374 score is calculated as:

$$\text{ViM}(z_i) = \alpha \|z_i^{P^\perp}\| - \ln \sum_{j=1}^{|\mathcal{C}|} e^{c_j} \quad (31)$$

1375 which, in summary, is the virtual logit minus the energy score of the rest of the logits. For the
 1376 hyperparameter D , the authors recommend using $D = 1000$ if the dimension of the feature $d >$
 1377 1000, or use $D = 512$ otherwise (Wang et al., 2022).

1378 D.2.4 LATENT SPACE METHODS

1379 In this family we find methods that take as input other latent activations inside the network. We took
 1380 inspiration from Arnez et al. (2024); Wilson et al. (2023) and built a method based on the latent
 1381 space convolutional activations. In our case, we used directly the latent activations without doing
 1382 Monte Carlo dropout sampling of entropy estimation as in Arnez et al. (2024), nor using a surrogate
 1383 model or the generation of adversarial examples as in Wilson et al. (2023).

1404
 1405 **Latent representation density (LaRD).** We start by considering a convolutional feature map
 1406 $z_{i,l} \in \mathbb{R}^{N_c \times W \times H}$, where N_c is the number of channels, W is the width and H is the height of
 1407 the latent activation, extracted at layer l . Then it is possible to use the predicted bounding boxes b_i
 1408 and the feature maps as inputs for the ROIAlign (RA) algorithm (He et al., 2017), which can extract
 1409 the corresponding portion of the feature maps per each predicted object:
 1410

$$1411 \quad o_{i,l} = \text{RA}(z_{i,l}, b_i), \text{ where } o_{i,l} \in \mathbb{R}^{N_c \times R \times R} \quad (32)$$

1412
 1413 Where R is the parameter that fixes the size of the output of the RA algorithm, that outputs crops
 1414 of the feature map $z_{i,l}$ with a given fixed-sized for all objects, independently of their aspect ratio or
 1415 actual size in the image. Then an average per channel is taken to reduce the dimensionality of these
 1416 representations:
 1417

$$1418 \quad \bar{o}_{i,l} = \frac{1}{HW} \sum_{h=1}^H \sum_{w=1}^W o_{i,l}(c, h, w), \text{ where } \bar{o}_{i,l} \in \mathbb{R}^{N_c} \quad (33)$$

1419
 1420 The set $O_l = \{\bar{o}_{i,l}, y_i\}_{d=1}^D$ consists of all the averaged latent representations at layer l of each object
 1421 found by the object detector in one image, along with the predicted class y_i . Then, we also want
 1422 to build a density estimator, by making a forward pass through the training set to obtain the set of
 1423 all the ID objects latent representations: $\mathcal{O}_{train,l} = \{O_l\}_{x=1}^{N_t}$, where N_t is the size of the training
 1424 set. Afterward, we use the methodology as in the Mahalanobis distance baseline to obtain a scoring
 1425 function for each of the detected objects. We used a hyperparameter of $R = 9$ for all experiments.
 1426 For Faster-RCNN, the chosen latent layer was the RPN intermediate convolutional layer as in Arnez
 1427 et al. (2024); for Yolov8, it was the final layer of the backbone, after evaluation of each layer. For
 1428 RT-DETR the chosen hidden layer was the first encoder module, similarly, after evaluation of each
 1429 layer.
 1430

1434 1435 E DETAILS ON THE TRAINING OF ARCHITECTURES

1436 This section provides details on the training of Yolov8 (Sohan et al., 2024) and RTDETR (Zhao
 1437 et al., 2024). Both architectures were trained on a single GPU Nvidia A100 40G. The achieved
 1438 mAP by both models in each ID dataset is found in Table 3.

1441 1442 E.1 YOLOV8

1443 We trained the nano version of Yolov8 for both ID datasets (BDD100k and Pascal-VOC). We used
 1444 the same hyperparameters for both models. Most of them corresponded to the default hyperparam-
 1445 eters. They were trained for 100 epochs, using the AdamW optimizer with momentum of 0.937 and
 1446 weight decay of 5×10^{-4} . The learning rate was 10^{-3} , and was controlled by a cosine scheduler. The
 1447 batch size was 16, and we used the copy-paste augmentation, on top of the mosaic, translate, scale,
 1448 erase, and flip-lr default augmentations. For the training, we used the Ultralytics library (Jocher
 1449 et al., 2023).
 1450

1452 1453 E.2 REAL-TIME DETR

1454 We fine-tuned a version of RT-DETR that was pre-trained on COCO for both ID datasets (BDD100k
 1455 and Pascal-VOC). The pretrained version can be found in Huggingface: RT-DETR. Both versions
 1456 used early stopping with a patience of 16 epochs. The hyperparameters for both models can be
 1457 found in Table 11.

1458 Table 11: Hyperparameters for training RT-DETR with ID datasets BDD100k and Pascal-VOC
1459

1460	Parameter	ID: BDD	ID: VOC
1461	Batch size	8	8
1462	Inference threshold	0.25	0.25
1463	Learning rate backbone	4×10^{-6}	2×10^{-6}
1464	Max epochs	60	60
1465	Num queries	100	100
1466	Random seed	40	40
1467	Learning rate	4×10^{-5}	2×10^{-5}

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512 **F DETAILED RESULTS PER METHOD AND ARCHITECTURE**

1513
1514
1515 This section presents detailed results for each architecture and method, covering all metrics. First,
1516 we present a table showing the number of images without predictions in the proposed benchmark.
1517 Then, the results for previous metrics are presented. Afterwards, the results for the new metrics are
1518 detailed. Finally, a study of the correlations among previous and new metrics is presented.
1519
1520
1521 Table 12: Percentage of images with no predictions in the proposed OOD-OD benchmark. OI=OpenImages.
1522
1523

	Near OI/COCO	Far OI/COCO	Farther OI/COCO
Faster RCNN	18.28/20.36	49.19/55.01	59.88/45.22
Faster RCNN VOS	15.64/19.34	44.27/51.49	54.28/40.42
Yolov8	14.98/18.48	30.2/42.32	70.15/55.79
RT-DETR	18.06/49.66	38.85/81.66	14.16/8.06
OWLv2	77.75/94.12	94.57/95.31	99.65/98.83

1529
1530
1531 The previous table shows that the object detector models ignore more images when moving to the
1532 *farther* split. Interestingly, the VLM model OWLv2 is the one that ignores the most of the images.
1533 This indicates that this model mistakes OOD objects less frequently for ID ones. The metrics pre-
1534 sented in Section 5.3 should be interpreted in consideration of this table, as AUROC cannot reflect
1535 the amount of data used to build it, which needs to be reported.
1536

1537 For instance, the results from OWL in the further split indicate an AUROC of about 99%. However,
1538 this metric is built using only 1% of the images, which corresponds to approximately 20 images. The
1539 results of this table illustrate once more the need to quantify how often OOD-OD methods ignore
1540 OOD objects, as is one of the core contributions of our paper.
1541
1542

1543 **F.1 DETAILED RESULTS ON THE PREVIOUS OOD-OD METRICS**

1544
1545
1546
1547 Table 13: OOD detection performance for FasterRCNN (Vanilla) on various OOD splits (ID: Pas-
1548 calVOC). Metrics are $AUC\uparrow$ (%) and $FPR95\downarrow$ (%). LaRD represents best of (Mahalanobis PCA,
1549 KNN PCA, GMM PCA). Best result per metric column is in **bold**. ^BIndicates the primary scoring
1550 method of the VOS (Virtual Outlier Synthesis).
1551
1552

1553

Method	FasterRCNN (Vanilla) — PascalVOC							
	COCO-Near (OOD)		COCO-Far (OOD)		OpImg-Near (OOD)		OpImg-Far (OOD)	
	AUC \uparrow	FPR95 \downarrow	AUC \uparrow	FPR95 \downarrow	AUC \uparrow	FPR95 \downarrow	AUC \uparrow	FPR95 \downarrow
ViM	75.7	85.5	77.8	87.4	73.0	87.1	74.9	91.6
Mahalanobis	59.8	95.9	64.9	95.5	59.7	94.6	60.3	95.9
MSP	73.8	88.3	77.3	88.0	70.5	90.4	75.4	87.9
Energy	86.5	45.5	82.3	56.2	81.5	57.9	81.8	52.6
ASH	82.9	49.9	74.5	66.6	78.7	59.9	74.8	60.8
DICE	82.7	62.0	78.2	76.7	79.1	67.3	76.7	71.6
ReAct	85.1	58.1	75.2	82.5	83.1	66.0	73.4	83.0
GEN	87.4	44.8	84.5	55.0	82.8	56.2	83.7	52.1
DICE+ReAct	66.3	89.8	56.0	94.8	71.4	88.9	48.3	99.0
DDU	64.0	97.6	68.3	97.0	70.4	97.2	66.3	98.3
VOS ^B (Energy)	90.0	44.6	89.1	44.9	84.4	60.0	86.0	49.1
LaRD	73.8	81.7	68.6	88.0	70.0	88.4	70.0	89.2

1566 Table 14: OOD detection performance for FasterRCNN enhanced with VOS (Virtual Outlier Syn-
 1567 thesis) on various OOD splits (ID: PascalVOC). Metrics are $AUC\uparrow$ (%) and $FPR95\downarrow$ (%). LaRD
 1568 represents best of (Mahalanobis PCA, KNN PCA, GMM PCA). Best result per metric column is in
 1569 **bold**. ^BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

1570

1571

1572	1573	FasterRCNN (VOS) — PascalVOC							
		COCO-Near (OOD)		COCO-Far (OOD)		OpImg-Near (OOD)		OpImg-Far (OOD)	
1574	Method	AUC \uparrow	FPR95 \downarrow	AUC \uparrow	FPR95 \downarrow	AUC \uparrow	FPR95 \downarrow	AUC \uparrow	FPR95 \downarrow
1575	ViM	77.4	87.7	80.3	85.9	73.4	89.8	77.2	92.2
1576	Mahalanobis	60.9	95.9	65.5	94.9	60.3	95.5	64.8	95.5
1577	MSP	69.1	91.5	75.1	89.2	65.6	91.1	72.6	88.2
1578	ASH	90.2	44.1	87.4	51.4	84.8	59.8	82.5	56.2
1579	DICE	88.0	56.5	88.3	53.4	82.7	67.8	80.8	59.0
1580	ReAct	87.1	57.1	79.9	72.2	85.6	64.5	77.1	76.3
1581	GEN	89.7	42.9	89.3	45.7	85.3	58.2	86.0	50.7
1582	DICE+ReAct	74.9	84.8	67.3	88.1	74.8	88.5	58.6	98.9
1583	DDU	67.5	99.2	70.0	96.9	72.5	99.3	72.7	98.3
1584	VOS ^B (Energy)	90.0	44.6	89.1	44.9	84.4	60.0	86.0	49.1
1585	LaRD	75.1	77.5	68.1	87.8	67.8	87.2	67.8	89.2

1586

1586 Table 15: OOD detection performance for FasterRCNN variants on Farther OOD splits (ID: BDD).
 1587 LaRD represents best of (Mahalanobis PCA, KNN PCA, GMM PCA). Higher AUC is better (\uparrow),
 1588 lower FPR95 is better (\downarrow). Best result per metric column is in **bold**. ^BFor the FasterRCNN (VOS)
 1589 architecture, this indicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

1590

1591

1592	1593	FasterRCNN (Vanilla) — ID: BDD				FasterRCNN (VOS) — ID: BDD			
		COCO-Farther (OOD)		OpImg-Farther (OOD)		COCO-Farther (OOD)		OpImg-Farther (OOD)	
		Method	AUC \uparrow (%)	FPR95 \downarrow (%)	AUC \uparrow (%)	FPR95 \downarrow (%)	AUC \uparrow (%)	FPR95 \downarrow (%)	AUC \uparrow (%)
1596	ViM	91.4	39.3	91.6	39.3	92.9	32.3	93.1	31.5
1597	Mahalanobis	89.5	48.8	89.0	51.5	91.1	43.3	90.6	46.7
1598	MSP	80.0	77.7	81.2	76.8	79.1	79.4	80.0	76.6
1599	Energy	72.4	64.4	73.3	60.3	—	—	—	—
1600	ASH	48.9	81.0	49.0	77.3	67.6	70.6	71.7	61.4
1601	DICE	68.3	69.2	69.3	65.0	77.7	57.9	71.6	49.0
1602	ReAct	65.7	95.1	58.8	97.4	79.6	71.2	77.0	76.4
1603	GEN	78.8	62.7	79.6	58.9	86.6	52.7	89.5	47.8
1604	DICE+ReAct	57.9	97.7	48.5	98.9	66.8	90.5	59.4	95.5
1605	DDU	90.8	41.6	91.5	42.6	92.2	37.2	92.9	40.1
1606	VOS ^B (Energy)	84.8	49.1	88.1	38.5	84.8	49.1	88.1	38.5
1607	LaRD	96.6	15.8	97.7	8.6	96.6	15.8	97.4	10.9

1608

1609

1607 Table 16: OOD detection performance for YOLOv8 (ID: PascalVOC). LaRD represents results
 1608 from available PCA methods (KNN PCA 32 only in provided data). Higher AUC is better (\uparrow), lower
 1609 FPR95 is better (\downarrow). Best result per metric column is in **bold**.

1610

1611

1612

1613	1614	YOLOv8 — PascalVOC							
		COCO-Near (OOD)		COCO-Far (OOD)		OpImg-Near (OOD)		OpImg-Far (OOD)	
		Method	AUC \uparrow (%)	FPR95 \downarrow (%)	AUC \uparrow (%)	FPR95 \downarrow (%)	AUC \uparrow (%)	FPR95 \downarrow (%)	AUC \uparrow (%)
1615	MSP	85.2	64.0	81.4	73.7	85.1	67.4	82.0	74.4
1616	Energy	57.0	95.2	66.1	91.3	51.6	96.1	65.6	92.4
1617	GEN	81.3	65.0	79.5	67.2	81.0	68.9	82.3	59.1
1618	LaRD	78.6	76.4	82.0	68.8	71.4	85.7	80.9	75.7

1619

1620 Table 17: OOD detection performance on Farther OOD splits (ID: BDD). LaRD for RT-DETR
 1621 represents best of (Mahalanobis PCA, KNN PCA, GMM PCA). Higher AUC is better (\uparrow), lower
 1622 FPR95 is better (\downarrow). Best result for each metric column is in **bold**. ‘—’ indicates data not available.
 1623

Method	YOLOv8 — ID: BDD				RT-DETR — ID: BDD			
	COCO-Farther (OOD)		OI-Farther (OOD)		COCO-Farther (OOD)		OI-Farther (OOD)	
	AUC \uparrow (%)	FPR95 \downarrow (%)						
ViM	—	—	—	—	89.5	30.7	95.2	15.2
Mahalanobis	98.2	7.8	99.6	1.3	99.1	5.0	99.7	1.1
MSP	69.4	77.1	69.4	75.4	79.4	60.9	85.1	57.2
Energy	64.8	91.1	62.8	91.5	57.9	97.4	64.4	96.2
ASH	—	—	—	—	33.1	98.6	35.4	99.2
DICE	—	—	—	—	60.7	90.8	58.1	96.4
ReAct	—	—	—	—	56.5	96.8	63.2	95.0
GEN	63.8	71.9	66.8	68.8	77.1	67.9	83.8	63.3
DICE+ReAct	—	—	—	—	59.3	92.7	57.0	97.3
DDU	—	—	—	—	99.1	3.5	99.6	0.6
LaRD	—	—	—	—	98.8	5.3	99.4	1.4

1638
 1639
 1640
 1641 Table 18: OOD detection performance for RT-DETR (ID: PascalVOC). LaRD represents best of
 1642 (Mahalanobis PCA, KNN PCA, GMM PCA). Higher AUC is better (\uparrow), lower FPR95 is better (\downarrow).
 1643 Best result per metric column is in **bold**.
 1644

Method	RT-DETR — PascalVOC							
	COCO-Near (OOD)		COCO-Far (OOD)		OpenImages-Near (OOD)		OpenImages-Far (OOD)	
	AUC \uparrow (%)	FPR95 \downarrow (%)						
ViM	96.8	10.9	90.0	35.7	74.1	59.7	87.7	39.7
Mahalanobis	96.6	10.8	87.2	42.4	91.7	32.6	92.0	29.9
MSP	94.2	21.7	84.5	58.3	62.7	79.0	76.7	67.3
Energy	68.1	97.7	70.8	92.6	50.1	96.3	62.8	96.7
ASH	64.7	86.2	57.5	92.9	46.8	96.6	49.3	94.3
DICE	63.4	89.7	70.7	83.0	81.9	73.7	81.3	78.2
ReAct	66.3	96.0	71.5	90.8	50.9	97.5	61.9	98.1
GEN	74.9	97.7	75.6	94.7	53.2	96.0	69.9	90.1
DICE+ReAct	68.0	90.0	70.1	84.1	81.5	75.4	79.0	83.0
DDU	96.4	11.9	86.7	45.2	91.2	32.2	91.4	31.5
LaRD	91.8	26.6	83.3	48.8	77.8	76.2	81.2	76.0

1659
 1660
 1661 The evaluation using traditional OOD metrics (AUC/FPR95) reveals a significant method-
 1662 architecture interaction effect on OOD discrimination performance. While certain methods like
 1663 GEN demonstrate robust OOD separation on specific architectures (e.g., FasterRCNN), their ef-
 1664 ficacy is not universally transferable. Conversely, density-based methods like Mahalanobis show
 1665 high sensitivity to the feature space, achieving exceptional discrimination in some contexts (e.g.,
 1666 YOLOv8/RT-DETR on BDD) but underperforming in others. This variability underscores that cur-
 1667 rent OOD scoring functions often exploit specific architectural properties or data distributions rather
 1668 than embodying a generalizable principle of OOD detection.

1669 Across the presented experiments, traditional OOD detection metrics like AUC and FPR95 generally
 1670 indicated that distinguishing out-of-distribution objects becomes less challenging as their semantic
 1671 distance from the in-distribution data increases. This broad trend falsely suggests that greater dissim-
 1672 ilarity simplifies the OOD object detection task. However, these metrics, while useful for gauging
 1673 overall separability, offer limited insight into if these unknown objects are actually found, or the
 precision of their identification within an object detection framework.

1674 F.2 DETAILED RESULTS ON THE NEWLY INCORPORATED OSOD METRICS
1675
1676
1677
1678
1679
16801681 Table 19: OOD detection performance comparison on COCO splits (ID: PascalVOC). Lower nOSE
1682 is better (\downarrow), higher $AP_U/P_U/R_U$ is better (\uparrow). Best result per metric column is in **bold**.
1683

Method	YOLOv8 — PascalVOC							
	COCO-Near (OOD)				COCO-Far (OOD)			
	nOSE \downarrow	AP $U\uparrow$	P $U\uparrow$	R $U\uparrow$	nOSE \downarrow	AP $U\uparrow$	P $U\uparrow$	R $U\uparrow$
MSP	32.3	8.5	62.0	11.0	18.7	4.5	61.1	5.7
Energy	43.6	1.3	44.3	3.0	23.2	1.0	34.8	2.7
GEN	27.2	11.7	64.7	16.5	14.2	6.3	59.3	10.1
LaRD	24.9	13.7	67.8	18.8	11.4	7.0	52.5	12.7

1691
1692
1693
1694
1695
1696
1697
1698
1699
1700 Table 20: OOD detection performance comparison on OpenImages splits (ID: PascalVOC). Lower
1701 nOSE is better (\downarrow), higher $AP_U/P_U/R_U$ is better (\uparrow). Best result per metric column is in **bold**.
1702

Method	YOLOv8 — PascalVOC							
	OpenImages-Near (OOD)				OpenImages-Far (OOD)			
	nOSE \downarrow	AP $U\uparrow$	P $U\uparrow$	R $U\uparrow$	nOSE \downarrow	AP $U\uparrow$	P $U\uparrow$	R $U\uparrow$
MSP	26.2	6.2	62.6	7.6	13.8	2.1	52.3	3.1
Energy	34.3	0.9	41.2	2.0	15.9	0.8	42.0	1.8
GEN	23.4	7.5	62.2	11.0	9.5	4.0	52.1	6.9
LaRD	26.9	5.5	60.1	8.2	9.8	4.1	52.8	7.0

1710
1711
1712
1713
1714
1715
1716
1717
1718 Table 21: OOD detection performance comparison on Far OOD sets (ID: BDD). Lower nOSE is
1719 better (\downarrow), higher $AP_U/P_U/R_U$ is better (\uparrow). Best result per metric column is in **bold**.
1720

Method	YOLOv8 — BDD							
	COCO-Farther (OOD)				OpenImages-Farther (OOD)			
	nOSE \downarrow	AP $U\uparrow$	P $U\uparrow$	R $U\uparrow$	nOSE \downarrow	AP $U\uparrow$	P $U\uparrow$	R $U\uparrow$
MSP	4.6	0.3	31.4	1.0	4.0	0.6	36.5	1.2
Energy	5.3	0.1	26.0	0.4	5.0	0.1	22.6	0.3
GEN	3.9	0.6	34.3	1.7	3.2	0.8	36.0	2.0
LaRD	0.1	1.6	31.1	4.8	0.0	1.4	28.3	4.7

Table 22: OOD detection performance for FasterRCNN (Vanilla) on COCO splits (ID: PascalVOC). Lower nOSE is better (\downarrow), higher AP_U/P_U/R_U is better (\uparrow). Best result per metric column is in **bold**. ^BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

Method	FasterRCNN (Vanilla) — PascalVOC							
	COCO-Near (OOD)				COCO-Far (OOD)			
	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow
ViM	38.3	5.0	69.0	6.3	17.9	1.9	56.5	2.6
Mahalanobis	44.6	0.2	85.7	0.2	20.6	0.1	100.0	0.1
MSP	33.5	7.4	65.4	10.2	15.2	2.8	49.5	5.2
KNN	39.6	4.2	77.0	5.0	18.9	1.0	53.2	1.7
Energy	16.0	22.3	75.9	24.8	9.8	8.0	66.3	9.9
ASH	21.0	18.1	76.4	20.5	13.5	5.6	71.2	6.6
DICE	26.7	14.2	77.4	16.2	15.3	3.9	66.2	4.9
ReAct	33.3	10.0	86.5	10.8	19.0	1.3	83.3	1.5
GEN	14.3	23.2	73.8	26.1	8.7	8.6	65.2	11.0
DICE+ReAct	43.0	1.3	69.6	1.8	20.2	0.3	72.7	0.4
DDU	44.3	0.3	40.5	0.5	20.2	0.3	40.0	0.4
VOS ^B (Energy)	20.5	21.5	72.1	24.6	9.6	8.3	55.6	11.3
LaRD	39.9	3.3	65.5	4.3	17.5	2.6	71.8	3.1

Table 23: OOD detection performance for FasterRCNN (Vanilla) on OpenImages splits (ID: PascalVOC). Lower nOSE is better (\downarrow), higher AP_U/P_U/R_U is better (\uparrow). Best result per metric column is in **bold**. ^BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

Method	FasterRCNN (Vanilla) — PascalVOC							
	OpenImages-Near (OOD)				OpenImages-Far (OOD)			
	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow
ViM	30.6	3.1	66.0	4.1	11.7	0.8	59.7	1.1
Mahalanobis	35.0	0.2	100.0	0.2	12.7	0.0	0.0	0.0
MSP	28.4	4.1	59.9	6.1	9.7	1.7	53.0	2.9
KNN	33.5	1.0	57.5	1.7	11.7	0.9	62.0	1.1
Energy	18.1	12.9	73.6	15.2	5.8	5.3	70.1	6.6
ASH	21.1	10.7	75.3	12.5	7.8	3.8	69.9	4.6
DICE	23.0	9.7	75.8	11.0	9.0	2.9	70.0	3.5
ReAct	28.4	5.7	86.4	6.1	11.8	0.8	78.7	0.9
GEN	15.9	14.1	72.0	16.9	5.4	5.4	68.0	6.9
DICE+ReAct	33.4	1.5	82.4	1.7	12.7	0.0	50.0	0.0
DDU	34.5	0.5	51.6	0.6	12.6	0.1	46.2	0.1
VOS ^B (Energy)	22.3	10.3	64.1	12.8	6.3	5.5	67.3	7.1
LaRD	31.1	3.4	74.6	3.7	10.0	2.2	68.8	2.6

Table 24: OOD detection performance for FasterRCNN (Vanilla) on Far OOD sets (ID: BDD). Lower nOSE is better (\downarrow), higher AP_U/P_U/R_U is better (\uparrow). Best result per metric column is in **bold**. ^BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

Method	FasterRCNN (Vanilla) — BDD							
	COCO-Farther (OOD)				OpenImages-Farther (OOD)			
	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow
ViM	1.1	1.2	22.9	3.9	0.7	0.9	18.3	3.3
Mahalanobis	2.0	1.0	21.4	3.1	2.4	0.4	11.8	1.8
MSP	3.3	0.3	17.8	1.9	2.4	0.3	14.9	1.7
KNN	1.9	1.0	23.3	3.2	0.7	1.1	20.5	3.3
Energy	2.0	0.9	22.9	3.0	0.6	1.2	22.1	3.4
ASH	3.3	0.5	20.5	1.8	2.1	0.6	19.0	2.1
DICE	2.3	0.8	22.7	2.8	1.0	1.0	21.4	3.0
ReAct	4.0	0.4	17.9	1.2	3.6	0.1	7.7	0.6
GEN	2.0	1.0	22.9	3.0	0.7	1.2	21.8	3.3
DICE+ReAct	4.3	0.1	14.4	0.9	3.7	0.0	7.3	0.5
DDU	3.2	0.6	19.7	2.0	3.2	0.1	9.4	1.0
VOS ^B (Energy)	1.8	1.8	26.7	4.7	0.6	2.2	26.2	5.6
LaRD	0.7	1.3	21.0	4.2	0.6	0.8	16.5	3.4

Table 25: OOD detection performance for FasterRCNN (VOS) on COCO splits (ID: PascalVOC). Lower nOSE is better (\downarrow), higher AP_U/P_U/R_U is better (\uparrow). Best result per metric column is in **bold**. ^BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

Method	FasterRCNN (VOS) — PascalVOC							
	COCO-Near (OOD)				COCO-Far (OOD)			
	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow
ViM	45.5	3.1	64.0	4.3	20.3	1.3	48.9	2.2
Mahalanobis	50.0	0.0	0.0	0.0	22.6	0.0	0.0	0.0
MSP	39.6	7.0	66.6	9.6	17.6	2.6	44.5	4.7
KNN	36.3	10.3	73.9	12.2	14.9	4.7	55.7	6.9
ASH	17.6	23.3	71.3	26.5	9.5	8.7	60.4	11.4
DICE	33.0	12.4	73.6	15.2	14.1	5.1	56.6	7.4
ReAct	42.4	6.6	83.6	6.8	20.7	1.3	66.0	1.7
GEN	15.9	24.1	69.4	27.8	8.0	9.1	54.9	12.7
DICE+ReAct	50.0	0.0	0.0	0.0	22.6	0.0	0.0	0.0
DDU	49.8	0.2	46.7	0.2	22.3	0.2	25.0	0.3
VOS ^B (Energy)	20.5	21.5	72.1	24.6	9.6	8.3	55.6	11.3
LaRD	42.1	6.0	70.7	7.1	19.9	2.1	64.5	2.5

Table 26: OOD detection performance for FasterRCNN (VOS) on OpenImages splits (ID: PascalVOC). Lower nOSE is better (\downarrow), higher AP_U/P_U/R_U is better (\uparrow). Best result per metric column is in **bold**. ^BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

Method	FasterRCNN (VOS) — PascalVOC							
	OpenImages-Near (OOD)				OpenImages-Far (OOD)			
	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow
ViM	34.9	1.5	49.1	2.2	13.2	0.4	46.3	0.6
Mahalanobis	37.3	0.0	0.0	0.0	13.8	0.0	0.0	0.0
MSP	31.7	3.0	53.2	5.4	10.9	1.4	49.1	2.7
KNN	31.6	3.7	58.7	5.3	8.9	3.5	63.5	4.6
ASH	20.7	11.9	65.5	14.1	7.1	4.8	65.5	6.3
DICE	28.9	6.0	62.9	7.6	9.4	3.1	63.3	4.2
ReAct	32.2	4.4	84.2	4.7	12.7	0.9	72.1	1.1
GEN	18.4	12.9	63.3	15.9	5.9	5.7	66.1	7.5
DICE+ReAct	37.3	0.0	0.0	0.0	13.8	0.0	0.0	0.0
DDU	37.3	0.0	0.0	0.0	13.7	0.0	21.4	0.1
VOS ^B (Energy)	22.3	10.3	64.1	12.8	6.3	5.5	67.3	7.1
LaRD	32.8	3.7	75.0	4.1	11.3	1.9	73.1	2.3

Table 27: OOD detection performance for FasterRCNN (VOS) on Far OOD sets (ID: BDD). Lower nOSE is better (\downarrow), higher $AP_U/P_U/R_U$ is better (\uparrow). Best result per metric column is in **bold**.
^BIndicates the primary scoring method of the VOS (Virtual Outlier Synthesis).

Method	FasterRCNN (VOS) — BDD							
	COCO-Farther (OOD)				OpenImages-Farther (OOD)			
	nOSE \downarrow	$AP_U\uparrow$	$P_U\uparrow$	$R_U\uparrow$	nOSE \downarrow	$AP_U\uparrow$	$P_U\uparrow$	$R_U\uparrow$
ViM	1.1	1.7	24.1	5.3	0.8	1.7	23.1	5.5
Mahalanobis	2.3	1.3	22.1	4.3	3.3	0.8	17.8	3.4
MSP	4.4	0.5	19.9	2.4	3.9	0.6	21.9	2.9
KNN	2.3	1.5	24.8	4.2	0.8	2.0	26.6	5.5
ASH	3.6	1.0	23.7	3.0	2.4	1.6	26.7	4.1
DICE	2.8	1.4	25.9	3.8	1.1	2.3	29.1	5.2
ReAct	3.6	1.1	24.0	3.1	4.7	0.5	17.6	2.1
GEN	1.6	1.8	26.3	4.8	0.6	2.1	25.5	5.6
DICE+ReAct	5.4	0.3	16.7	1.4	5.9	0.1	13.4	1.0
DDU	3.8	0.7	20.6	2.9	4.8	0.3	14.9	2.1
VOS ^B (Energy)	1.8	1.8	26.7	4.7	0.6	2.2	26.2	5.6
LaRD	0.4	2.0	23.5	6.0	0.0	1.8	21.8	6.3

Table 28: OOD detection performance for RT-DETR on COCO splits (ID: PascalVOC). Lower nOSE is better (\downarrow), higher $AP_U/P_U/R_U$ is better (\uparrow). Best result per metric column is in **bold**.

Method	RT-DETR — PascalVOC							
	COCO-Near (OOD)				COCO-Far (OOD)			
	nOSE \downarrow	$AP_U\uparrow$	$P_U\uparrow$	$R_U\uparrow$	nOSE \downarrow	$AP_U\uparrow$	$P_U\uparrow$	$R_U\uparrow$
MSP	2.9	20.0	96.4	20.8	2.3	4.4	87.7	5.1
ViM	4.2	18.9	96.4	19.6	1.5	5.5	92.1	5.9
Mahalanobis	0.9	21.3	93.6	22.8	0.7	5.5	83.9	6.6
KNN	0.8	21.4	93.0	23.0	0.4	5.6	80.8	6.8
Energy	23.8	0.0	0.0	0.0	7.5	0.0	0.0	0.0
ASH	22.2	1.5	89.5	1.6	7.4	0.0	16.7	0.1
DICE	23.7	0.1	100.0	0.1	7.2	0.3	100.0	0.3
ReAct	23.8	0.0	0.0	0.0	7.4	0.1	100.0	0.1
GEN	23.8	0.0	0.0	0.0	7.5	0.0	0.0	0.0
DICE+ReAct	23.6	0.2	100.0	0.2	6.9	0.5	90.9	0.5
DDU	1.2	21.2	94.1	22.5	1.0	5.5	86.3	6.4
LaRD	5.7	17.1	95.4	17.9	3.2	3.2	75.7	4.2

Table 29: OOD detection performance for RT-DETR on OpenImages splits (ID: PascalVOC). Lower nOSE is better (\downarrow), higher $AP_U/P_U/R_U$ is better (\uparrow). Best result per metric column is in **bold**.

Method	RT-DETR — PascalVOC							
	OpenImages-Near (OOD)				OpenImages-Far (OOD)			
	nOSE \downarrow	$AP_U\uparrow$	$P_U\uparrow$	$R_U\uparrow$	nOSE \downarrow	$AP_U\uparrow$	$P_U\uparrow$	$R_U\uparrow$
MSP	24.6	4.8	69.6	6.9	10.8	3.1	58.0	5.3
ViM	23.1	6.7	77.9	8.5	8.8	5.7	72.0	7.3
Mahalanobis	6.0	21.8	78.5	24.8	2.9	9.6	66.3	12.6
KNN	7.8	19.7	76.7	23.0	3.3	9.0	62.9	12.2
Energy	31.7	0.0	0.0	0.0	16.4	0.0	0.0	0.0
ASH	31.6	0.0	8.7	0.1	16.1	0.1	31.6	0.3
DICE	29.5	2.1	91.5	2.2	15.1	1.1	81.0	1.3
ReAct	31.7	0.0	0.0	0.0	16.4	0.0	0.0	0.0
GEN	31.7	0.0	0.0	0.0	16.4	0.0	0.0	0.0
DICE+ReAct	28.5	3.1	90.9	3.2	15.1	1.0	76.9	1.2
DDU	7.3	20.3	77.2	23.5	3.9	9.0	66.2	11.7
LaRD	27.3	3.0	66.5	4.2	13.2	1.6	47.9	3.0

1890 Table 30: OOD detection performance for RT-DETR on Far OOD sets (ID: BDD). Lower nOSE is
 1891 better (\downarrow), higher AP_U/P_U/R_U is better (\uparrow). Best result per metric column is in **bold**.
 1892

Method	RT-DETR — BDD							
	COCO-Farther (OOD)				OpenImages-Farther (OOD)			
	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow	nOSE \downarrow	AP _U \uparrow	P _U \uparrow	R _U \uparrow
MSP	15.4	4.2	35.6	11.8	7.2	1.9	18.3	10.1
ViM	14.1	4.8	34.5	12.8	5.4	1.7	14.4	11.6
Mahalanobis	0.2	11.2	33.0	25.0	0.0	2.3	12.4	14.9
KNN	0.4	11.4	33.0	24.8	0.0	2.4	12.5	14.9
Energy	28.6	0.0	0.0	0.0	20.6	0.0	0.0	0.0
ASH	28.5	0.0	19.1	0.1	20.6	0.0	10.5	0.0
DICE	27.9	0.5	77.5	0.7	20.5	0.0	36.4	0.1
ReAct	28.6	0.0	7.1	0.0	20.6	0.0	25.0	0.0
GEN	27.9	0.4	54.2	0.7	20.0	0.2	33.9	0.4
DICE+ReAct	27.7	0.7	70.9	0.9	20.6	0.0	25.0	0.1
DDU	0.6	11.5	34.1	24.7	0.0	2.4	12.6	14.9
LaRD	0.8	10.7	32.3	24.4	0.0	2.3	12.4	14.9

1906
 1907 Looking at the results, we don't find a universally best method, neither across architecture nor across
 1908 semantic distance, e.g: GEN frequently demonstrates strong performance on FasterRCNN (Vanilla
 1909 and VOS) and YOLOv8 when PascalVOC is the ID, often achieving leading nOSE, AP_U, and R_U
 1910 values. However, its efficacy sharply declines on the RT-DETR architecture with PascalVOC as the
 1911 ID. Energy, particularly its VOS variant on FasterRCNN and for Far OOD scenarios on BDD, shows
 1912 competitive results but generally struggles on YOLOv8 and RT-DETR (ID: PascalVOC), character-
 1913 ized by high nOSE and poor recall of unknowns (R_U). LaRD's performance is more varied; it excels
 1914 on YOLOv8 (especially for Far OOD BDD splits) and demonstrates strength on FasterRCNN for
 1915 BDD Far OOD detection tasks, often leading in nOSE, AP_U, and R_U. Conversely, its effectiveness
 1916 is less prominent on FasterRCNN and RT-DETR architectures when trained on PascalVOC. This
 1917 work also highlights the performance volatility of OOD-OD methods and offers a comprehensive
 1918 comparative analysis across architectures and semantic similarity.

1919 The introduction of OSOD metrics (nOSE, AP_U, P_U, R_U) provides a much more nuanced under-
 1920 standing of performance related to semantic distance. These metrics reveal that even if general
 1921 OOD discrimination (AUC/FPR95) seems satisfactory, the actual ability to comprehensively find
 1922 OOD objects remains unknown. This challenges the intuition that greater dissimilarity inherently
 1923 makes all aspects of OOD object detection easier.

1924 F.3 CORRELATIONS AMONG METRICS

1925 Additionally, in Figure 15 it is possible to find the empirical matrix of correlations among all (old
 1926 and new) metrics. This matrix is calculated from the overall results previously presented. It shows
 1927 correlations among metrics across all methods, architectures, and OOD datasets. The figure indi-
 1928 cates in general significant but moderate correlations between old metrics and new ones, meaning
 1929 that the AUROC and FPR95 can be indicative of the performance of OOD-OD methods for finding
 1930 unknown objects. However the correlations don't have a high absolute value (minimum 0.56 an
 1931 maximum 0.70), which means that new information is added by the new metrics.

1932 Moreover the results indicate that there is no correlation found between old metrics (AUC & FPR95)
 1933 and P_U. This means the P_U is orthogonal to the previous metrics, and therefore the information
 1934 measured by P_U is invisible to the old metrics. This reinforces the utility of adding OSOD metrics
 1935 to the benchmark.

1936 G FURTHER DISCUSSION ON THE SIMILARITIES AND DIFFERENCES 1937 BETWEEN OOD-OD AND OSOD METHODS

1938 Building upon the detailed presentation of how Out-of-Distribution Object Detection (OOD-OD)
 1939 methods operate in Section 2 and Section D, which draws from previous works (Du et al., 2022b;
 1940 Wilson et al., 2023; Ammar et al., 2024; Han et al., 2022), we can conclude that the two approaches

Figure 15: Empirical correlations among old and new metrics.

for handling unknown objects in object detectors are distinct yet they are like two sides of the same coin.

In simpler terms, the current formulation of OOD-OD serves as a monitoring function for the base object detector. It aims to verify that the detected objects are indeed In-Distribution (ID) categories, rather than actively seeking out unknown objects in images. Nevertheless, it *can* identify unknown objects and label them as Out-of-Distribution (OOD). The ability of OOD-OD methods to detect objects was not assessable in the previous benchmark, but it can now be quantified precisely using the new FMIYC benchmark, which employs OSOD metrics calculated with respect to the ground truth labels.

Conversely, open set object detection (OSOD) methods do not rely on monitoring functions. Instead, they incorporate an "unknown" class directly into the object detector, adding specific loss terms and usually training with labeled or pseudo-labeled examples of "unknowns" (Joseph et al., 2021; Dhamija et al., 2020; Gupta et al., 2022). OSOD has developed several metrics, already presented in Section 4.2 and Section C, to measure how well OSOD methods can identify and localize both unknown and known objects simultaneously. The OOD-OD community lacks this type of evaluation, which we believe can significantly enrich the field and is provided by the present benchmark.

We believe the OOD-OD field has substantial potential for future developments, particularly in enhancing a method's ability to localize unknown objects. The main bottleneck is perhaps the filtering of predictions by the confidence threshold in the base model \mathcal{M} because the model is trained to ignore unknown objects. Therefore, finding ways to encourage models to retrieve more predictions that will be post-processed anyway by OOD scoring functions can be an interesting research direction. This could be done perhaps by adjusting the confidence threshold t^* so that a model can retrieve more objects, rather than just maximizing the mAP of the ID test dataset.

1998 Another research direction that may impact the field is the development of OOD-Od or OSOD
1999 methods for VLMs, which have broader semantic knowledge and, therefore, may be able to localize
2000 several categories of objects beyond a definite set of ID classes. In any case, precise detection of
2001 unknown objects must be rigorously evaluated, since this capability is crucial for applications be-
2002 yond identifying incorrect predictions. Without proper evaluation, OOD-OD methods lack a realistic
2003 assessment of their performance for real-world scenarios.

2004

2005 H SOCIETAL IMPACT

2006

2007 This work fosters positive societal impacts by enhancing the safety and trustworthiness of object
2008 detection systems in safety-critical applications like autonomous driving and medical imaging. By
2009 providing a more rigorous benchmark and nuanced metrics for evaluating how well systems de-
2010 tect out-of-distribution objects, it helps prevent overconfidence in deployed models and pushes the
2011 field towards developing AI that is more trustworthy and reliable. However, as systems improve in
2012 identifying “unknown” or “novel” entities through enhanced evaluations like this, there are several
2013 potential downsides to consider. Enhanced capabilities in detecting unspecified “unknowns” could
2014 inadvertently enable more pervasive or intrusive surveillance systems, potentially tracking atypical
2015 (though not necessarily illicit) activities or objects without clear justification. Furthermore, if the
2016 definition of “known” within the training data or benchmark inherently contains biases, such as cu-
2017 ration biases, objects or individuals deviating from these biased norms might be disproportionately
2018 flagged as “unknown,” leading to unfair scrutiny or misclassification for certain groups. There’s also
2019 a risk that an over-reliance on these improved systems, even with better benchmarking, could lead
2020 to a false sense of safety & security, potentially delaying human intervention when truly critical and
2021 unanticipated failures occur, or encouraging the deployment of systems in environments where the
2022 range of true “unknowns” far exceeds what any benchmark can capture *i.e.*, existence of *unknown-unknowns*
2023 in the wild real-word that cannot be foreseen by any evaluation benchmark.

2024

2025 I DATASHEET FOR DATASETS

2026 Upon acceptance, we will provide the dataset datasheet as suggested by Gebru et al. (2021).

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051