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Abstract

Common subword tokenization algorithms like001
BPE and UnigramLM assume that text can be002
split into meaningful units by concatenative003
measures alone. This is not true for languages004
such as Hebrew and Arabic, where morphology005
is encoded in root-template patterns, or Malay006
and Georgian, where split affixes are common.007
We present SPLINTER, a pre-processing step008
which rearranges text into a linear form that009
better represents such nonconcatenative mor-010
phologies, enabling meaningful contiguous seg-011
ments to be found by the tokenizer. We demon-012
strate SPLINTER’s merit using both intrinsic013
measures evaluating token vocabularies in He-014
brew, Arabic, and Malay; as well as on down-015
stream tasks using BERT-architecture models016
trained for Hebrew.017

1 Introduction018

Large language models (LLMs) have become piv-019

otal in natural language processing (NLP), offering020

extensive utility across diverse applications. Cen-021

tral to constructing an LLM is producing basic in-022

put units from the text sequence, for which subword023

tokenization is still the standard approach, using024

methods such as byte-pair encoding (BPE) (Sen-025

nrich et al., 2016), WordPiece (Schuster and Naka-026

jima, 2012), and UnigramLM (Kudo, 2018). How-027

ever, subword tokenizers exhibit diminished ef-028

fectiveness in nonconcatenative languages (NCLs)029

such as Hebrew and Arabic (Klein and Tsarfaty,030

2020). While tokenizers assume linear segmen-031

tation of words, NCLs’ units of meaning are typ-032

ically intertwined within words, and cannot be033

separated linearly, as the root letters are not ad-034

jacent (Khaliq and Carroll, 2013). A Hebrew ex-035

ample is provided in Table 1. in the Hebrew word036

לעבוד! ‘to work’, the root letters are ,’ע!‘ ‘ ,’ב! and037

‘ ,’ד! placed in an infinitive morphological template038

manifested by the locations of ‘ ’ל! and .’ו!‘ This039

characteristic forces linear tokenizers to split words040

(a)
המצגת!. על עבדתי

‘I worked on the presentation.’

(b)
השתלמה!. הקשה העבודה

‘The hard work paid off.’

Table 1: Examples of Hebrew text (read from right
to left) exemplifying its nonconcatenative morphology.
The root עבד! ‘work’ appears in both sentences, but in
(a) it comprises a linear segment of the text whereas in
(b) it is broken by the templatic character .ו!

into morphologically-incoherent tokens, losing the 041

downstream models’ ability to generalize across 042

various forms of the same lemma, and eventually 043

reducing model performance when applied to a 044

large variety of tasks such as text generation and 045

translation (Keren et al., 2022; Levi and Tsarfaty, 046

2024; Shmidman et al., 2024). 047

We present SPLINTER, a statistical algorithm for 048

linearizing NCL text through rearranging the text 049

sequence by iteratively pruning characters from 050

words, with the intent of isolating characters repre- 051

senting template forms. The manipulated text can 052

then be input into any ordinary linear tokenizer for 053

processing as usual, adapting the NCL data into the 054

morphologically-concatenative input BPE and its 055

like expect. We show that vocabularies and models 056

trained over SPLINTER-processed text outperform 057

those starting from raw NCL text on both intrin- 058

sic and extrinsic measures in Hebrew, Arabic, and 059

Malay.1 060

2 Tokenizing with Splinters 061

When designing our approach, our goal was to 062

create a relinearized sequence for words in NCL 063

languages, while adhering to several constraints. 064

One constraint is that the transformation must be 065

reversible, ensuring that the new representation can 066

always be converted back to the original text. In 067

1We will release our code upon publication.
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Figure 1: Overview of a Hebrew language model pipeline: standard flow vs. incorporating SPLINTER. Gray boxes
are ordered from right to left.

addition, we aimed to develop a tool that would068

integrate smoothly with existing tokenizers, ensur-069

ing seamless adoption without requiring modifica-070

tions in their implementation. Additionally, the071

method should be applied only to the intended072

languages, without affecting the entire text. We073

also considered that the method should be adapt-074

able to two distinct use cases: (1) models trained075

primarily in an NCL language, where the major-076

ity of the vocabulary belongs to that language077

(e.g., DictaBERT (Shmidman et al., 2023) has a078

large vocabulary size of 128K); and (2) large-scale079

multilingual LLMs, where most tokens are allo-080

cated to English and only a small portion is left081

for the NCL language (e.g., GPT-4o, which has082

approximately 2.3K tokens allocated for Hebrew).083

Thus, the method should be effective across differ-084

ent vocabulary sizes.085

We present SPLINTER, a pre-tokenization step086

designed to address the challenges of subword tok-087

enization in NCLs. The core idea of the algorithm088

is that in certain NCLs, many words are formed089

by embedding root letters into specific morpho-090

logical templates. For instance, the Hebrew word091

“ ”לעבוד! is derived from the root “ ”עבד! placed in092

the template “ ! ו .”ל Since there are far fewer tem-093

plates than roots, template letters tend to appear in094

specific positions within a word more consistently095

than root letters do (e.g., for “ :”לעבוד! 096.(”ו!:3“,”ל!:0“

Empirically, we observed that in Hebrew and Ara-097

bic, when a word is longer than 3 characters, there098

is always at least one deletion that, when applied,099

transitions the word to a different, existing template100

while preserving the same root.2 For instance, 101

the word “ ”לעבוד! transitions to ”לעבד!“ when the 102

template letter ‘ ’ו! is removed. By repeating this 103

process iteratively, the word eventually reduces to 104

only its root letters. This method can be seen as a 105

way to isolate the root letters from the template. 106

In this method, NCL words are transformed into 107

a sequence of single-letter reductions, with the goal 108

of rearranging them to better align with existing 109

subword tokenizers. This is achieved by expand- 110

ing the language’s alphabet to include not only 111

its original letters but also single-letter reductions, 112

where each reduction consists of a letter paired 113

with the index from which it was removed.3 From 114

another perspective, this method explores the im- 115

pact of expanding a language’s alphabet to enhance 116

word representation. We illustrate the high-level 117

application of SPLINTER into the NLP pipeline in 118

Figure 1. Further low-level details are provided in 119

Appendix A. 120

2.1 SPLINTER Reduction Map Creation 121

As mentioned above, the SPLINTER pre- 122

tokenization step processes a word by iteratively 123

applying single-letter reductions. To achieve this, 124

we must determine which reduction to perform 125

at each iteration. We propose an algorithm that 126

analyzes a given corpus and generates a mapping, 127

2However, not every possible deletion will necessarily
result in a valid template. For example, removing ד! from
לעבוד! would produce the non-word .לעבו!

3In practice, we found that using negative indices for the
latter half of a word’s characters both aligns well with the suf-
fixing nature of certain morphemes and reduces the resulting
alphabet by 15%. Not shown in our examples for simplicity.
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where the keys represent word lengths and the128

values are ordered lists of reductions, ranked from129

most to least frequent.130

The algorithm processes a corpus in the target131

language, constructing a unigram dictionary that132

maps each word to its frequency. Next, words133

are grouped by length, and we examine words of134

length 4 and above (since most Semitic roots are135

three letters long). For each word of length k, we136

identify single-letter reductions that result in an137

existing word of length k−1. Each valid reduction138

is scored by the frequency of the resulting word139

in the corpus, giving lower scores to rare words,140

which are more likely to be typos or unique words141

with no connection to others in the corpus. This142

score is summed for each word length, per each143

reduction, so as we iterate through the words, we144

build a map that tracks, for each word length, which145

reductions produced valid words, along with their146

scores. The resulting map is then sorted so that147

reductions are ranked from most to least frequent.148

Following this step, the map is used as a starting149

point to a second iteration over the corpus. For150

each word of length k, we attempt to apply reduc-151

tions from the map, starting with the most frequent152

one. The first successful reduction that produces153

an existing word is recorded in a new frequency154

counter, using the same scoring method as in the155

previous run, while all other possible reductions for156

that word are ignored. This step ensures that the157

most frequent reduction is prioritized, aligning with158

our goal of removing template letters first, as they159

tend to appear more frequently than root letters.160

Pseudocode for the full map creation algorithm is161

available in Appendix B.162

2.2 Tokenizing with Splinters163

With the list of reductions for each word length164

now sorted from highest to lowest scores, we apply165

it during inference for each word we encounter166

in a corpus or task data, using a simple search167

heuristic to produce high-quality relinearizations.168

We build a scored selection tree where the root is169

the full character sequence of the word scored at170

1.0, and at every node select the b highest-scoring171

applicable reductions according to the list, keeping172

the product of reduction scores so far as scores173

in the next level of nodes. Once either the word174

length reaches the minimum of 3, or the depth of175

the tree reaches d, the reduction that started the176

highest-scoring path is selected and applied, and177

Figure 2: Intersection percent between Vanilla BPE
and BPE + SPLINTER by vocabulary size for Hebrew,
Arabic, and Malay. Vocabulary size is presented on a
logarithmic scale.

the process restarts with the new reduced word.4 178

As described above, each reduction is encoded 179

as a new composite character. This transforms the 180

word into a new representation as a sequence of 181

this enriched alphabet, consisting of the original 182

characters with the addition of the composite ones, 183

which is then used as input for standard subword 184

tokenization methods. From the perspective of 185

the tokenizer and the entire language model, both 186

training and inference operate on this relinearized 187

sequence represented by this new alphabet. In gen- 188

eration mode, a character sequence over the new 189

alphabet is decoded back into reductions, which 190

are then applied sequentially to construct a word. 191

3 Intrinsic Evaluation 192

To evaluate the effects of using SPLINTER as a 193

pre-processing step before tokenization, we trained 194

multiple tokenizers on raw text from nonconcate- 195

native languages and their SPLINTER-treated coun- 196

terparts. We examined the performance of both 197

the bottom-up BPE tokenization algorithm, which 198

works on iteratively merging tokens based on cor- 199

pus co-occurrence statistics, and the top-down Uni- 200

gramLM approach, which starts with a very large 201

vocabulary and iteratively removes from it tokens 202

which contribute minimally to the corpus’s like- 203

lihood. We train over a wide range of vocabu- 204

lary sizes in order to assess the utility of SPLIN- 205

4We set b = d = 3.
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Tokenizer Type Cognitive Rényi Tokens 4+ token 1-char Distinct
plausibility efficiency per word words tokens Neighbors

BPE Vanilla 0.157 0.524 1.146 0.53% 6.00% 2674
SPLINTER 0.179 0.527 1.165 0.98% 6.81% 2640

UnigramLM Vanilla 0.151 0.505 1.162 0.56% 9.42% 2440
SPLINTER 0.171 0.485 1.176 1.00% 12.46% 2308

Table 2: Intrinsic benchmark results for Hebrew on a vocab size of 128K. The tokenizers were evaluated using the
HeDC4 corpus. Bold values indicate better performance between Vanilla and SPLINTER.

TER in multiple scenarios: from multilingual mod-206

els which can allocate roughly 1,000 tokens for207

a given language to dedicated monolingual mod-208

els with room for two orders of magnitude more209

tokens. We selected three languages for our experi-210

ments: Hebrew and Arabic are Semitic languages211

featuring root-template morphology as discussed212

above, while Malay is an Austronesian language213

rich in circumfixes and infixes—morphemes which214

break either the stem or the affix when forming the215

composite inflection. We computed the SPLINTER216

operations for each language using the reductions217

map generated from the November 2023 Wikipedia218

dump of the respective language. The Wikipedia219

dump sizes were 1.9GB for Hebrew, 3.0GB for Ara-220

bic, and 0.4GB for Malay, and were downloaded221

using the Hugging Face “datasets” library. We222

trained the tokenizers on the same Wikipedia dump223

used for SPLINTER training, using Google’s Sen-224

tencePiece library with default settings, except for225

the tokenizer type (UnigramLM or BPE) and vo-226

cabulary size (800, 1K, 2K, 10K, 32K, 64K, 128K).227

For direct evaluation of the tokenizer vocabu-228

laries, independent of further language model ar-229

chitecture and training, we follow the analytical230

procedures collected in Uzan et al. (2024), adding231

pairwise comparative measures from other sources232

as well.233

Vocabulary overlap First, we validate that234

SPLINTER provides models with vocabularies that235

are different enough from raw-text tokenizers. Hy-236

pothetically, if many common words are learned in237

full as single tokens from raw text, there is no need238

for a special pre-processing step to account for an239

edge case. However, in Figure 2 we show that this240

is not the case. In all three languages, the maximal241

vocabulary size of 128K stays at an intersection242

level below 75%, with the slope of added shared to-243

ken rate declining to near constant. Moreover, even244

if we assume a linear extrapolation rate, the inter-245

section rate would only exceed 85% at a vocabulary246

size of around 780K, which is exceptionally large 247

and is not used even in SOTA English-dominated 248

LLMs like GPT-4o. We note that we used a gener- 249

ous calculation for the intersection rate, as not all 250

tokens in SPLINTER-enhanced tokenizers can be 251

directly compared to those in a regular tokenizer. 252

For instance, a token representing the reduction 253

ל!:0“ ”ו!:3 cannot be linearly converted into a stan- 254

dard token. To make the comparison as permissive 255

as possible, we applied the reductions within the 256

token (e.g., converting ל!:0“ ”ו!:3 into ‘ (’לו! and 257

counted it towards the intersection if the resulting 258

token existed in the raw-text tokenizer’s vocabulary. 259

As a result, the actual intersection percentage may 260

be significantly lower than reported. We conclude 261

that SPLINTER-enhanced tokenizers produce sig- 262

nificantly different vocabularies at all stages of the 263

vocabulary creation process. 264

Cognitive plausibility We use the metric intro- 265

duced in Beinborn and Pinter (2023) to measure 266

the correlation of the tokenizer output with the re- 267

sponse time and accuracy of human performance 268

on a lexical decision task. This metric is based on 269

the hypothesis that an effective tokenizer encoun- 270

ters difficulty with character sequences that are also 271

challenging for humans, and vice versa. We use 272

the Hebrew cognitive plausibility dataset (HeLP; 273

Stein et al., 2024) to evaluate both the BPE and Uni- 274

gramLM tokenizers. Each tokenizer was compared 275

across seven vocabulary sizes, with the Vanilla tok- 276

enizer evaluated against the SPLINTER-enhanced 277

tokenizer. Following Uzan et al. (2024), we report 278

the average of the absolute value correlation scores 279

across the four linguistic setups (word/nonword 280

× accuracy/response time). Higher scores mean 281

better correlation with human performance. 282

As shown in Table 2 and Table 3, SPLINTER- 283

enhanced tokenizers consistently correlate better 284

with human lexical processing patterns, across all 285

vocabulary sizes in both BPE and UnigramLM. 286

These results suggest that downstream language 287
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Vocab Type Cognitive Rényi Tokens 4+ token 1-char Distinct
size plausibility efficiency per word words tokens Neighbors

128K Vanilla 0.157 0.524 1.146 0.53% 6.00% 2674
SPLINTER 0.179 0.527 1.165 0.98% 6.81% 2640

64K Vanilla 0.181 0.565 1.224 0.75% 7.05% 4272
SPLINTER 0.206 0.567 1.248 1.43% 8.35% 4188

32K Vanilla 0.201 0.610 1.336 1.12% 8.76% 5754
SPLINTER 0.223 0.612 1.365 2.04% 10.66% 5631

10K Vanilla 0.196 0.690 1.606 2.28% 13.26% 5652
SPLINTER 0.226 0.687 1.651 3.86% 16.56% 5555

2K Vanilla 0.149 0.760 2.137 7.44% 25.90% 1855
SPLINTER 0.207 0.756 2.270 11.57% 33.32% 1815

1K Vanilla 0.109 0.774 2.436 13.33% 34.47% 925
SPLINTER 0.184 0.763 2.713 22.82% 48.59% 895

800 Vanilla 0.102 0.779 2.543 16.03% 37.70% 734
SPLINTER 0.182 0.762 2.890 28.70% 54.37% 705

Table 3: Intrinsic benchmark results for Hebrew using BPE tokenizer with different vocabulary sizes. The tokenizers
were evaluated using the HeDC4 corpus. Bold values indicate better performance between Vanilla and SPLINTER.

models trained on SPLINTER output would reach288

higher scores in morphological segmentation tasks,289

which we evaluate in §4. We note that, unlike the290

following metrics, cognitive plausibility does not291

focus on the tokenizer’s effectiveness as a text com-292

pression tool, offering a different perspective. Addi-293

tional UnigramLM results provided in Appendix C.294

Token distribution statistics We collected dis-295

tributional data for the various tokenizers using the296

following corpora: the HeDC4 corpus (Shalumov297

and Haskey, 2023) was used in Hebrew experi-298

ments looking into vocabulary size and tokenizer299

type (BPE vs UnigramLM), with a 10% shuffled300

sample (seed = 42) taken from its original 45GB301

corpus. For Hebrew’s cross-linguistic comparison302

with Arabic and Malay, we used the respective303

November 2023 Wikipedia dump of each of the304

languages. Based on these corpora, we report the305

Rényi efficiency score (Zouhar et al., 2023), as well306

as several other surface statistics. We report the307

Hebrew-specific results in Table 2 and Table 3, and308

crosslinguistic results in Table 4. Rényi efficiency309

has been proposed as an indicator of downstream310

task performance, such as BLEU scores in machine311

translation. This metric penalizes token distribu-312

tions that are overly skewed toward either very313

high- and/or very low-frequency tokens. However,314

a recent study (Cognetta et al., 2024) suggests that315

this metric can be manipulated to produce higher316

scores while degrading actual performance. This317

highlights the importance of using multiple indi-318

cators from different perspectives to make an in-319

formed assessment of a tokenizer’s potential impact 320

on downstream tasks. 321

Rényi efficiency scores for Hebrew were con- 322

sistent across both the HeDC4 and Wikipedia cor- 323

pora, and in general show minimal differences be- 324

tween SPLINTER tokenizers and Vanilla tokeniz- 325

ers across most tokenization settings. In BPE, the 326

Vanilla tokenizers achieved slightly better results 327

at lower vocabulary sizes (≤2K), while in Uni- 328

gramLM, the trend was reversed, with SPLINTER 329

tokenizers achieving slightly higher scores at lower 330

vocabulary sizes (≤2K), and the Vanilla tokenizers 331

achieving slightly higher scores at larger vocabu- 332

lary sizes (≥10K). In Arabic and Malay, SPLIN- 333

TER’s results were again very close to the Vanilla, 334

with SPLINTER tokenizer scores slightly higher in 335

both large and small vocabulary sizes. The overall 336

Rényi efficiency results suggest minimal impact 337

on token distribution, with SPLINTER sometimes 338

slightly improving it and other times slightly reduc- 339

ing efficiency. 340

For further intrinsic evaluation, we examined 341

three corpus-level indicators of tokenizer compres- 342

sion efficiency: the average number of tokens per 343

word (also known as subword fertility), the percent- 344

age of words tokenized into four or more tokens, 345

and the percentage of single-character tokens. All 346

three serve as indicators of compression efficiency, 347

with lower values generally indicating better com- 348

pression. 349

Across all corpora, tokenizer types, vocabulary 350

sizes, and languages, the results consistently show 351
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Language Vocab Type Rényi Tokens 4+ token 1-char Distinct
size efficiency per word words tokens Neighbors

Hebrew
128K Vanilla 0.509 1.119 0.57% 6.01% 1463

SPLINTER 0.511 1.134 0.92% 6.61% 1460

2K Vanilla 0.779 2.149 9.22% 26.34% 1853
SPLINTER 0.777 2.306 13.65% 33.81% 1805

Arabic
128K Vanilla 0.427 1.134 0.55% 7.54% 1444

SPLINTER 0.430 1.158 1.07% 7.84% 1520

2K Vanilla 0.736 2.117 11.25% 29.37% 1824
SPLINTER 0.744 2.276 16.70% 37.91% 1784

Malay
128K Vanilla 0.471 1.088 0.55% 4.45% 337

SPLINTER 0.479 1.135 1.56% 5.98% 354

2K Vanilla 0.756 2.150 14.65% 29.23% 1215
SPLINTER 0.770 2.724 28.79% 43.37% 1055

Table 4: Intrinsic benchmark results using BPE tokenizer for Hebrew, Arabic and Malay on a vocab sizes of 2K and
128K. The tokenizers were evaluated using the Wikipedia corpus of their respective language. Bold values indicate
better performance between Vanilla and SPLINTER.

that adding SPLINTER to the tokenizer reduces its352

compression efficiency. This result is important, as353

in generative LMs, for instance, less efficient com-354

pression requires more iterations to generate the355

same text, leading to higher computational costs.356

Therefore, this trade-off should be considered when357

applying SPLINTER in an LLM tokenizer. That358

being said, Schmidt et al. (2024) found that tok-359

enization should not be viewed principally from the360

compression perspective. Improved compression361

does not always correlate with better downstream362

task performance, and in some cases, it may even363

degrade it. This again emphasizes the importance364

of considering multiple perspectives when assess-365

ing tokenization quality.366

Contextual coherence The next aspect we exam-367

ine is the contextual coherence (Yehezkel and Pin-368

ter, 2023) of the tokens produced by each tokenizer,369

as measured by the number of distinct neighbors370

each token encounters within a window of k tokens371

from each side (we choose k = 2). This mea-372

surement is motivated by the main downstream ap-373

plication scenario of vocabularies—contextualized374

embeddings in language models. The fewer con-375

texts a token appears in, the better a model is likely376

to learn a meaningful embedding for it over a cor-377

pus, as it offers better differentiation between to-378

ken environments. Figure 3 displays the number of379

neighbors for the top 200 tokens in each tokenizer380

as ranked according to this number. We present381

the average number of distinct neighbors across382

the vocabulary in Tables 2, 3, and 4 as a measure383

of efficiency—not for text compression, but for384

downstream LM training. As shown in these tables,385

SPLINTER-based tokenizers consistently produce 386

fewer distinct neighbors than Vanilla in Hebrew, 387

regardless of vocabulary size, tokenization algo- 388

rithm, or corpus. However, when evaluated on 389

Wikipedia corpora, which were also used for train- 390

ing the tokenizers themselves, the differences were 391

less pronounced. SPLINTER achieved a lower av- 392

erage number of distinct neighbors only at the 2K 393

vocabulary size, while at 128K, its results were 394

nearly identical to the baseline in Hebrew, and 395

in Arabic and Malay, the baseline outperformed 396

SPLINTER. These mixed results suggest that the 397

impact of SPLINTER on downstream tasks may de- 398

pend on vocabulary size, with its advantages being 399

more evident in smaller vocabularies dedicated to 400

an NCL language, while in larger vocabulary sizes, 401

the baseline tokenizer may perform better. 402

4 Language Modeling with Splinters 403

As noted above, standard subword tokenizers are 404

suboptimal for nonconcatenative languages such as 405

Hebrew and Arabic. Thus, we proceed now to eval- 406

uate SPLINTER’s impact on downstream NLP tasks 407

for Hebrew. Specifically, we evaluate Prefix Seg- 408

mentation and Syntactic Parsing (Sade et al., 2018; 409

Bareket and Tsarfaty, 2021; Zeldes et al., 2022), 410

and Question Answering (Cohen et al., 2023). 411

We begin with the open DictaBERT BERT-base 412

model (Shmidman et al., 2023), which delivers 413

current SOTA-level performance on the aforemen- 414

tioned tasks (Shmidman et al., 2024) in Hebrew. 415

We then pre-train a new BERT-base model us- 416

ing the same corpus and training parameters as 417

DictaBERT, with the only modification being the 418
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Figure 3: Distinct neighbor counts for top 200 tokens in BPE and SPLINTER + BPE for a window of 2 on each side,
vocabulary size 128K, HeDC4 corpus.

Model QA (F1) QA (EM) Syntax (LAS) Seg (Acc)

DictaBERT 72.9 63.6 89.0 99.1
SPLINTER 74.4 65.4 89.0 99.3

Table 5: Performance comparison of the existing SOTA Hebrew BERT (DictaBERT) with our newly-pretrained
SPLINTER-based Hebrew BERT, across three downstream Hebrew NLP tasks.

SPLINTER-processed tokenization. We then fine-419

tune the new base model for the aforementioned420

tasks, and evaluate performance vis-a-vis fine-421

tuning the original DictaBERT. We follow the same422

task parameters defined by Shmidman et al. (2024)423

and Shmidman et al. (2023) for the three tasks. We424

present the results in Table 5.425

Results Regarding both of the Question-Answer426

benchmarks, we find that the SPLINTER-based427

model provides a substantial boost in performance.428

We believe that this indicates that the SPLINTER-429

based tokenization provides the model with a sub-430

stantially stronger ability to process and under-431

stand the message of a Hebrew text, and thus to432

achieve superior performance on this high-level433

textual challenge. On the sentence-level task of434

syntactic parsing, the performance of the SPLIN-435

TER-based model is essentially the same as the436

existing DictaBERT model, indicating diminished437

advantage for manipulation at the character level.438

However, for the nearly-saturated task of labeling439

prefix segmentation at the character level, SPLIN-440

TER-based tokenization provides over 20% reduc-441

tion in errors, highlighting the effectiveness of the442

data-driven pattern-finding algorithm it employs.443

Example An illustrative example in which 444

SPLINTER’s tokenization architecture allows it to 445

succeed where DictaBERT fails is the following 446

question from the aforementioned QA corpus, re- 447

garding the date of a certain archaeological exca- 448

vation. The relevant part of the input text is com- 449

prised of the following three sentences (cited here 450

in English translation): 451

“In 1913 he purchased the tract of land that cov- 452

ers most of the eastern slope of the City of David 453

in Jerusalem, and persuaded the French Jewish ar- 454

chaeologist Raymond Weill to conduct excavations 455

there. This was done in response to the scandalous 456

excavation of Montagu Parker in the City of David 457

in 1911. Rothschild returned and financed another 458

season of excavations, in 1923–1924, under Weill’s 459

direction.” 460

The following question is then posed to the sys- 461

tem: “In what year were the first excavations con- 462

ducted in the City of David?” 463

DictaBERT incorrectly answers 1923 (as per the 464

third sentence), while SPLINTER correctly answers 465

1911 (as per the second sentence). DictaBERT’s 466

failure to pull the correct answer from the second 467

sentence likely stems from the fact that in the origi- 468
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nal Hebrew of that sentence, the words “excavation469

of Montague Parker” are phrased using the singu-470

lar form “excavation”, with a suffixed possessive471

pronoun ( חפירתו! xafirato). This word differs from472

the non-suffixed plural term “excavations” used in473

the question חפירות!) xafirot). Crucially, the dif-474

ference between the terms is not just the suffixed475

ו! o at the end, but also a letter from the middle of476

the base term. It is precisely discrepancies such477

as these that SPLINTER aims to solve. It stands478

to reason that DictaBERT’s incorrect answer stems479

from its inability to see the connection between480

these two terms; thus, it was unable to understand481

the relevance of the second sentence, and instead482

took its incorrect answer from the subsequent sen-483

tence, which includes an exact match for the term484

“excavations”. In contrast, thanks to its new tok-485

enization architecture, SPLINTER recognizes the486

connection between the two disparate terms and487

correctly answers “1911”.488

5 Conclusion489

In this work, we introduced SPLINTER, a novel490

pre-processing method for subword tokenizers de-491

signed to improve downstream performance on492

nonconcatenative languages (NCLs). By apply-493

ing an iterative reduction process, SPLINTER re-494

structures words in a way that better aligns with495

existing subword tokenizers. Our approach was de-496

signed with key constraints in mind: ensuring loss-497

less transformation, compatibility with existing tok-498

enization frameworks, and applicability across dif-499

ferent vocabulary sizes and model types, whether500

for an NCL, a single-language LM, or a multilin-501

gual model based on English with a limited number502

of tokens allocated for NCL languages.503

Through intrinsic evaluations, we demonstrated504

that SPLINTER-enhanced tokenizers exhibit dis-505

tinct vocabulary distributions compared to Vanilla506

tokenizers. Cognitive plausibility metrics indi-507

cated that SPLINTER improves alignment with508

human-like lexical processing, while our analy-509

sis of compression-related metrics revealed that510

SPLINTER trades off slight reductions in compres-511

sion efficiency for potentially better linguistic rep-512

resentation.513

Our downstream evaluation highlights SPLIN-514

TER’s impact, particularly on higher-level NLP515

tasks such as question answering and on character-516

critical tasks such as prefix segmentation. The inter-517

mediate syntactic level appears to be less affected518

by the nonconcatenativity of Hebrew text. 519

In future work, we will extend the downstream 520

evaluation to Arabic and other Semitic languages, 521

as well as more languages exhibiting non-templatic 522

nonconcatenative phenomena. Additionally, we 523

plan to evaluate the performance of a large mul- 524

tilingual generative model on various tasks after 525

incorporating SPLINTER, examining its effective- 526

ness in a broader linguistic context. 527

Limitations 528

Rearranging text in order to improve representation 529

of nonconcatenative features is a hard high-level 530

problem, and we believe our work is a first step to- 531

wards remedying this inherent mismatch between 532

modeling and language data. However, our con- 533

crete algorithm is still not universally-applicable, as 534

shown by the difference between results on Semitic 535

languages and on Malay. Primarily, we attribute 536

this to the property where each single-character 537

pruning action must result in a valid corpus word, 538

mostly limiting the scope of linearization to tem- 539

platic morphology rather than also including infix- 540

ation and circumfixation. 541

In addition, the increase in performance comes at 542

the cost of less efficient token sequences, as found 543

in our fertility analysis. Overcoming this tradeoff is 544

important for lowering the costs of running LLMs 545

on low-resource languages, already lagging behind 546

their high-resource counterparts. 547
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A Implementation Details665

A.1 Alphabet Encoding666

To support the expanded set of characters intro-667

duced by SPLINTER, which includes the original668

alphabet along with symbols representing single-669

letter reductions, we needed an alphabet capable670

of handling a large number of unique symbols. In671

Hebrew, this expanded alphabet comprised 252672

characters, while for Arabic and Malay, it grew to673

400 and 460 characters, respectively. Since the Uni-674

code character sets for these languages do not offer675

enough distinct symbols, we mapped each new676

character to a unique Chinese letter, leveraging the677

large character set available in the Chinese writing678

system. This was done as a workaround, as at-679

tempts to use the Unicode Private Use Areas (PUA)680

with the SentencePiece library were unsuccessful.681

This approach allowed the tokenization process to682

remain seamless from the language model’s per-683

spective, as it processed the input as Chinese text,684

effectively encoding the original text.685

A.2 Converting the Corpus to Unigram686

Frequencies687

The corpus undergoes several preprocessing steps688

before generating the unigram frequency counts.689

First, all diacritics are removed from the text (in690

Hebrew only). Next, the text is split into words691

using the following regex pattern:692

\.|\s|\n|-|,|:|"|\(|\)693

Words that appear fewer than 10 times in the corpus694

are then discarded, along with any words contain-695

ing letters from other languages. Additionally, we696

normalized final and non-final Hebrew letters to697

maintain consistency in root-based word connec-698

tions. Specifically, all final letters were replaced699

with their non-final forms, and vice versa when700

applicable (e.g., in a case of a non-final form in701

a final position of the word. Mostly in borrowed702

words like “ ”קטשופ|! “ketchup”). This adjustment703

helps preserve morphological relationships, such704

as between “!Kהול” (“he is walking”) and “ !M705”הולכי

(“they are walking”), both derived from the root706

“ .”הלכ|! After this transformation, these words be-707

come ”הולכ|!“ and ,”הולכימ|!“ both clearly retaining708

the root “ .”הלכ|! The reverse transformation ensures709

that distinctions between different word groups are710

still maintained. It’s worth noting that Arabic also711

has final and non-final letter forms, but their selec-712

tion occurs automatically based on context. From a713

Unicode perspective, both forms share the same un- 714

derlying character, eliminating the need for manual 715

conversion. 716

B SPLINTER Algorithm 717

Pseudocode for the SPLINTER map creation algo- 718

rithm is presented in Algorithm 1. 719

C SPLINTER UnigramLM results 720

Intrinsic benchmark results for Hebrew using Uni- 721

gramLM tokenizer on HeDC4 corpus are presented 722

in Table 6. 723
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Algorithm 1 High-level algorithm for training SPLINTER.

1: function TRAINSPLINTER(corpus)
2: freqMap ← GetWordFrequenciesFromCorpus(corpus)
3: reductions ← InitializeEmptyReductionsMap()
4: for length ← 4 to maxWordLength do
5: for word in freqMap[length] do
6: for position in word do
7: permutation ← GetWordWithoutLetter(word,position)
8: if permutation ∈ freqMap[length - 1].keys then
9: reduction ← Reduction(position,word[position])

10: frequency ← freqMap[length - 1][permutation]
11: reductions[length][reduction] + = frequency
12: end if
13: end for
14: end for
15: end for
16: sortedReductions ← sortReductionsByScoreDesc(reductions)
17: selectedReductions ← InitializeEmptyReductionsMap()
18: for length ← 4 to maxWordLength do
19: for word in freqMap[length] do
20: for reduction in sortedReductions[length] do
21: Extract (position, letter) from reduction
22: if word[position] == letter then
23: permutation ← GetWordWithoutLetter(word,position)
24: if permutation ∈ freqMap[length−1].keys then
25: frequency ← freqMap[length − 1][permutation]
26: selectedReductions[length][reduction] + = frequency
27: Break
28: end if
29: end if
30: end for
31: end for
32: end for
33: Return selectedReductions
34: end function
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Vocab Type Cognitive Rényi Tokens 4+ token 1-char Distinct
size plausibility efficiency per word words tokens Neighbors

128K Vanilla 0.151 0.505 1.162 1.00% 9.42% 2440
SPLINTER 0.171 0.485 1.176 0.56% 12.46% 2308

64K Vanilla 0.180 0.522 1.243 0.88% 11.50% 3907
SPLINTER 0.194 0.495 1.261 1.65% 16.21% 3640

32K Vanilla 0.191 0.526 1.363 1.46% 14.41% 5322
SPLINTER 0.208 0.496 1.391 2.74% 21.48% 4931

10K Vanilla 0.177 0.536 1.663 3.62% 21.26% 5267
SPLINTER 0.213 0.517 1.713 6.53% 31.63% 5064

2K Vanilla 0.136 0.590 2.250 11.65% 33.40% 1824
SPLINTER 0.196 0.618 2.424 20.70% 51.04% 1776

1K Vanilla 0.127 0.618 2.604 21.22% 43.92% 917
SPLINTER 0.185 0.659 2.877 32.48% 63.21% 881

800 Vanilla 0.126 0.629 2.730 25.33% 47.98% 726
SPLINTER 0.177 0.673 3.060 37.71% 68.34% 693

Table 6: Intrinsic benchmark results for Hebrew using UnigramLM tokenizer with different vocabulary sizes. The
tokenizers were evaluated using the HeDC4 corpus. Bold values indicate better performance between Vanilla and
SPLINTER.
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