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ABSTRACT

Despite the widespread use of unsupervised models, very few methods are de-
signed to explain them. Most explanation methods explain a scalar model out-
put. However, unsupervised models output representation vectors, the elements
of which are not good candidates to explain because they lack semantic mean-
ing. To bridge this gap, recent works defined a scalar explanation output: a dot
product-based similarity in the representation space to the sample being explained
(i.e., an explicand). Although this enabled explanations of unsupervised models,
the interpretation of this approach can still be opaque because similarity to the
explicand’s representation may not be meaningful to humans. To address this, we
propose contrastive corpus similarity, a novel and semantically meaningful scalar
explanation output based on a reference corpus and a contrasting foil set of sam-
ples. We demonstrate that contrastive corpus similarity is compatible with many
post-hoc feature attribution methods to generate COntrastive COrpus Attributions
(COCOA) and quantitatively verify that features important to the corpus are iden-
tified. We showcase the utility of COCOA in two ways: (i) we draw insights
by explaining augmentations of the same image in a contrastive learning setting
(SimCLR); and (ii) we perform zero-shot object localization by explaining the
similarity of image representations to jointly learned text representations (CLIP).

1 INTRODUCTION

Machine learning models based on deep neural networks are increasingly used in a diverse set of
tasks including chess (Silver et al., 2018), protein folding (Jumper et al., 2021), and language trans-
lation (Jean et al., 2014). The majority of neural networks have many parameters, which impede
humans from understanding them (Lipton, 2018). To address this, many tools have been developed
to understand supervised models in terms of their prediction (Lundberg & Lee, 2017; Wachter et al.,
2017). In this supervised setting, the model maps features to labels (f : X → Y), and explanations
aim to understand the model’s prediction of a label of interest. These explanations are interpretable,
because the label of interest (e.g., mortality, an image class) is meaningful to humans (Figure 1a).

In contrast, models trained in unsupervised settings map features to representations (f : X → H).
Existing supervised explanation methods can be applied to understand an individual element (hi)
in the representation space, but such explanations are not useful to humans unless hi has a natural
semantic meaning. Unfortunately, the meaning of individual elements in the representation space is
unknown in general. One possible solution is to enforce representations to have semantic meaning as
in Koh et al. (2020), but this approach requires concept labels for every single training sample, which
is typically impractical. Another solution is to enforce learned representations to be disentangled as
in Tran et al. (2017) and then manually identify semantically meaningful elements to explain, but this
approach is not post-hoc and requires potentially undesirable modifications to the training process.

Related work. Rather than explain a single element in the representation, approaches based on
explaining the representation as a whole have recently been proposed, including RELAX (Wick-
strøm et al., 2021) and label-free feature importance (Crabbé & van der Schaar, 2022) (Figure 1b)
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(additional related work in Appendix A). These approaches both aim to identify features in the ex-
plicand (the sample to explain) that, when removed, point the altered representation away from the
explicand’s original representation.

Although RELAX and label-free feature importance successfully extend existing explanation tech-
niques to an unsupervised setting, they have two major limitations. First, they only consider similar-
ity to the explicand’s representation; however, there are a variety of other meaningful questions that
can be asked by examining similarity to other samples’ representations. Examples include asking,
“Why is my explicand similar to dog images?” or “How is my rotation augmented image similar
to my original image?”. Second, RELAX and label-free importance find features which increase
similarity to the explicand in representation space from any direction, but in practice some of these
directions may not be meaningful. Instead, just as human perception often explains by comparing
against a contrastive counterpart (i.e., foil) (Kahneman & Miller, 1986; Lipton, 1990; Miller, 2019),
we may wish to find features that move toward the explicand relative to an explicit “foil”. As an
example, RELAX and label-free importance may identify features which increase similarity to a
dog explicand image relative to other dog images or even cat images; however, they may also iden-
tify features which increase similarity relative to noise in the representation space corresponding
to unmeaningful out-of-distribution samples. In contrast, we can use foil samples to ask specific
questions such as, “What features increase similarity to my explicand relative to cat images?”.

Contribution. (1) To address the limitations of prior works on explaining unsupervised models,
we introduce COntrastive COrpus Attribution (COCOA), which allows users to choose corpus and
foil samples in order to ask, “What features make my explicand’s representation similar to my cor-
pus, but dissimilar to my foil?” (Figure 1c). (2) We apply COCOA to representations learned by a
self-supervised contrastive learning model and observe class-preserving features in image augmen-
tations. (3) We perform object localization by explaining a mixed modality model with COCOA.

Motivation. Unsupervised models are prevalent and can learn effective representations for down-
stream classification tasks. Notable examples include contrastive learning (Chen et al., 2020) and
self-supervised learning (Grill et al., 2020). Despite their widespread use and applicability, unsu-
pervised models are largely opaque. Explaining them can help researchers understand and therefore
better develop and compare representation learning methods (Wickstrøm et al., 2021; Crabbé &
van der Schaar, 2022). In deployment, explanations can help users better monitor and debug these
models (Bhatt et al., 2020).

Moreover, COCOA is beneficial even in a supervised setting. Existing feature attribution methods
only explain the classes the model has been trained to predict, so they can only explain classes
which are fully labeled in the training set. Instead, COCOA only requires a few class labels after the
training process is complete, so it can be used more flexibly. For instance, if we train a supervised
model on CIFAR-10 (Krizhevsky et al., 2009), existing methods can only explain the ten classes the
model was trained on. Instead, we can collect new samples from an unseen class, and apply COCOA
to a representation layer of the trained model to understand this new class.

2 NOTATION

We consider an arbitrary input space X and output space Z . Given a model f : X → Z and an expli-
cand xe ∈ X to be explained, local feature attribution methods assign a score to each input feature
based on the feature’s importance to a scalar explanation target. A model’s intermediate or final out-
put is usually not a scalar. Hence, feature attribution methods require an explanation target function
γf,∗ : X → R that transforms a model’s behavior into an explanation target. The subscript f indi-
cates that a model is considered a fixed parameter of an explanation target function, and ∗ denotes an
arbitrary number of additional parameters. To make this concrete, consider the following example
with a classifier f class : X → [0, 1]C , where C is the number of classes.
Example 2.1. Given an explicand xe ∈ X , let the explanation target be the predicted probability
of the explicand’s predicted class. Then the explanation target function is

γfclass,xe(x) = f classargmaxj=1,...,C fclass
j (xe)(x),

for all x ∈ X , where f classi (·) denotes the ith element of f class(·). Here, the explanation target
function has the additional subscript xe to indicate that the explicand is a fixed parameter.
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Let RX denote the set of functions that map from X to R. Formally, a local feature attribution
method ϕ : RX ×X → R|X | takes an explanation target function γf,∗ and an explicand xe as inputs.
The attribution method returns ϕ(γf,∗,xe) ∈ R|X | as feature importance scores. For k = 1, ..., |X |,
let xe

k denote the kth feature of xe and ϕk(γf,∗,xe) the corresponding feature importance of xe
k.

We demonstrate this definition of local feature attribution methods with the following example.
Example 2.2. Given an explicand xe, the above classifier f class, and the explanation target function
in Example 2.1, consider Vanilla Gradients (Simonyan et al., 2013) as the local feature attribution
method. The feature importance scores of xe are computed as

ϕ(γfclass,xe ,xe) = ∇xγfclass,xe(x)
∣∣∣
x=xe

= ∇xf
class
argmaxj=1,...,C fclass

j (xe)(x)
∣∣∣
x=xe

.
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Figure 1: Illustration of feature attribution approaches in different settings. (a) Feature attribution
for a supervised model (e.g., an X-ray image classifier for bone abnormality) identifies features
that, when removed, decrease the predicted probability of a class of interest (e.g., abnormal). (b)
Explicand-centric feature attribution (i.e., RELAX and label-free feature importance) for an unsu-
pervised model identifies important features that, when removed, make the representation dissimilar
to the explicand’s original representation. (c) Contrastive corpus attribution for an unsupervised
model identifies important features that, when removed, make the representation similar to a foil set
(e.g., normal cases) and dissimilar to a corpus set (e.g., abnormal cases).

3 APPROACH

In this section, we motivate and propose a novel explanation target function for local feature attri-
butions in the setting of explaining representations learned by an encoder model. We also describe
how to combine the proposed explanation target function with existing attribution methods and how
to interpret the obtained attribution scores. All proofs are in Appendix H.

3.1 DEFINING CONTRASTIVE CORPUS SIMILARITY AS AN EXPLANATION TARGET FUNCTION

We first define the notion of similarity between representations. Without loss of generality, suppose
the representation space is Rd for some integer d > 0.
Definition 3.1 (Representation similarity). Let f : X → Rd be a representation encoder. For all
x,x′ ∈ X , the representation similarity between x and x′ based on f is

sf (x,x
′) =

f(x)T f(x′)

∥f(x)∥∥f(x′)∥
, (1)

where ∥·∥ denotes the Euclidean norm of a vector.
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We note that the above representation similarity is the cosine similarity of representations. Motiva-
tions for this choice are in Appendix B.

With Definition 3.1, the explanation target functions for RELAX and label-free feature importance
are γf,xe(·) = sf (·,xe) and γf,xe(·) = sf (·,xe)∥f(·)∥∥f(xe)∥, respectively (Wickstrøm et al.,
2021; Crabbé & van der Schaar, 2022). Intuitively, these explanation target functions identify ex-
plicand features that, when removed or perturbed, point the altered representation away from the
explicand’s original representation.

As mentioned in Section 1, we address the limitations of prior works by (i) relaxing the repre-
sentation reference for feature attribution to any corpus set of samples; and (ii) enabling explicit
specification of a foil to answer contrastive questions. For generality, we define the foil to be a
distribution of inputs, which can also remove the extra burden of identifying particular foil samples.
Nevertheless, we acknowledge that a fixed set of foil samples can indeed be selected for tailored use
cases. Overall, our proposed improvements lead to contrastive corpus similarity as defined below.
Definition 3.2 (Contrastive corpus similarity). Let C ⊂ X be a finite set of corpus samples and
Dfoil be a foil distribution over X . The contrastive corpus similarity of any x ∈ X to C in contrast
to Dfoil is

γf,C,Dfoil
(x) =

1

|C|
∑
xc∈C

sf (x,x
c)− Exv∼Dfoil

[sf (x,x
v)]. (2)

Given a set of foil samples F = {x(1), ...,x(m)}, where x(1), ...,x(m)i.i.d.∼ Dfoil, the empirical esti-
mator for the contrastive corpus similarity is

γ̂f,C,F (x) =
1

|C|
∑
xc∈C

sf (x,x
c)− 1

m

m∑
i=1

sf (x,x
(i)). (3)

The unbiasedness of and a concentration bound for the empirical estimator are stated in Appendix C.
Practically, these analyses allow us to choose an empirical foil set size with theoretical justification.

3.2 GENERATING AND INTERPRETING FEATURE ATTRIBUTIONS

As in Example 2.2, given a feature attribution method ϕ : RX × X → R|X | which takes an
explanation target function γf,∗ and an explicand xe as inputs, COCOA computes attributions by
explaining the empirical contrastive corpus similarity:

ϕ(γ̂f,C,F ,x
e) (4)

In practice, this amounts to wrapping the representation encoder f with the empirical estimator for
contrastive corpus similarity and applying a feature attribution method. In particular, there are two
classes of feature attribution methods which can be used to explain contrastive corpus similarity
and other similarity-based explanation target functions. The first are removal-based methods (e.g.,
RISE, KernelSHAP) and the second are gradient-based methods (e.g., Vanilla Gradients, Integrated
Gradients). Since the explanation target functions we consider in this paper can always be evaluated
and are differentiable with respect to the inputs, we can directly apply these methods without mod-
ification. Finally, it is worth noting that methods which satisfy desirable properties (Sundararajan
et al., 2017; Sundararajan & Najmi, 2020) in the supervised feature attribution setting also satisfy
analogous properties for similarity-based explanation targets (Appendix D).

To interpret feature attribution results from COCOA, consider the contrastive direction toward the
corpus representation mean and away from the foil representation mean. Features with high COCOA
scores have a large impact on the explicand’s representation direction pointing along this contrastive
direction. This interpretation of COCOA is formalized in the following proposition.
Proposition 3.3. The empirical estimator of contrastive corpus similarity is the dot product of the
input’s representation direction and the empirical contrastive direction. That is,

γ̂f,C,F (x) =

(
f(x)

∥f(x)∥

)T(
1

|C|
∑
xc∈C

f(xc)

∥f(xc)∥
− 1

m

m∑
i=1

f(x(i))

∥f(x(i))∥

)
. (5)

Proposition E.1 is an analogous statement for contrastive corpus similarity. An extension of Propo-
sition 3.3 and Proposition E.1to general kernel functions is in Appendix F. This extension implies
that the directional interpretation of COCOA generally holds for kernel-based similarity functions.
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4 EXPERIMENTS

In this section, we quantitatively evaluate whether important features identified by COCOA are in-
deed related to the corpus and foil, using multiple datasets, encoders, and feature attribution methods
(Section 4.1). Furthermore, we demonstrate the utility of COCOA by its application to understand-
ing image data augmentations (Section 4.2) and to mixed modality object localization (Section 4.3).

4.1 QUANTITATIVE EVALUATION

To evaluate COCOA across different representation learning models and datasets, we apply them
to (i) SimCLR, a contrastive self-supervised model (Chen et al., 2020), trained on ImageNet (Rus-
sakovsky et al., 2015); (ii) SimSiam, a non-contrastive self-supervised model (Chen & He, 2021),
trained on CIFAR-10 (Krizhevsky et al., 2009); and (iii) representations extracted from the penul-
timate layer of a ResNet18 (He et al., 2016), trained on the abnormal-vs.-normal musculoskeletal
X-ray dataset MURA (Rajpurkar et al., 2017).

Setup. We consider four explanation targets: representation similiarity, contrastive similarity, corpus
similarity, and contrastive corpus similarity; in our tables, these correspond to the methods: label-
free, contrastive label-free, corpus, and COCOA, respectively. To conduct ablation studies for the
components of COCOA, we introduce contrastive similarity, which is contrastive corpus similarity
when the corpus similarity term is replaced with similarity to an explicand; and corpus similarity,
which is contrastive corpus similarity without a foil similarity term. We use cosine similarity in all
methods for the main text results (analogous results with dot product similarity are in Appendix M).

To evaluate the feature attributions for a given explicand image xe ∈ Rh,w,c and explanation tar-
get, we compute feature attributions using either Integrated Gradients (Sundararajan et al., 2017),
GradientSHAP (Smilkov et al., 2017; Erion et al., 2021), or RISE (Petsiuk et al., 2018). Then, we
average the attributions across the channel dimension in order to use insertion and deletion metrics
(Petsiuk et al., 2018). For deletion, we start with the original explicand and “remove” the M most
important pixels by masking1 them with a mask m ∈ {0, 1}h,w,c and a blurred version of the expli-
cand xm ∈ Rh,w,c. We then evaluate the impact of each masked image with an evaluation measure
η(m⊙ xe + (1−m)⊙ xm). In the supervised setting, this evaluation measure is typically the pre-
dicted probability of a class of interest. If we plot the number of removed features on the x-axis and
the evaluation measure on the y-axis, we would expect the curve to drop sharply initially, leading to
a low area under the curve. For insertion, which “adds” important features, we would expect a high
area under the curve. In the setting of explaining representations, we measure (i) the contrastive
corpus similarity, which is calculated with the same corpus and foil sets used for explanations; and
(ii) the corpus majority prediction, which is the predicted probability of the majority class based on
each corpus sample’s prediction, where the prediction is from a downstream linear classifier trained
to predict classes based on representations2.

We evaluate and average our insertion and deletion metrics for 250 explicands drawn for ImageNet
and CIFAR-10 and 50 explicands for MURA, all from held-out sets. We consider both scenarios in
which explicands and the corpus are in the same class and from different classes. For our experi-
ments, 100 training samples are randomly selected to be the corpus set for each class in CIFAR-10
and MURA. For ImageNet, 100 corpus samples are drawn from each of the 10 classes from Ima-
geNette (Howard, 2019) instead of all 1,000 classes for computational feasibility. Foil samples are
randomly drawn from each training set. Because ResNets output non-negative representations from
ReLU activations, we can apply Equation (C.3) and set the foil size to 1,500 based on a δ = 0.01
and ε = 0.05 in Proposition C.2. We find that, even with a corpus size = 1, COCOA can have
good performance, and results with corpus size ≥ 20 are similar to each other (Appendix J). Varying
the foil size does not seem to impact COCOA performance (Appendix K). Additional experiment
details are in Appendix I.

Results. First, our evaluations show that COCOA consistently has the strongest performance in
contrastive corpus similarity insertion and deletion metrics across all feature attribution methods,
models, and datasets (Appendix L). These metrics imply that COCOA generates feature attributions
that successfully describe whether pixels in the explicand make it more similar to the corpus and

1We always mask out all channels for a given pixel together.
2Except for MURA, where we use the final layer of the jointly trained network.
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Table 1: Insertion and deletion metrics of corpus majority probability when explicands belong to
the corpus class. Means (95% confidence intervals) across 5 experiment runs are reported. Higher
insertion and lower deletion values indicate better performance, respectively. Each method is a
combination of a feature attribution method and an explanation target function (e.g., COCOA under
RISE corresponds to feature attributions computed by RISE for the contrastive corpus similarity).
Performance results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

Label-Free 0.362 (0.005) 0.136 (0.004) 0.403 (0.010) 0.249 (0.007) 0.631 (0.040) 0.513 (0.027)
Contrastive Label-Free 0.377 (0.005) 0.125 (0.003) 0.401 (0.011) 0.243 (0.007) 0.690 (0.019) 0.453 (0.025)
Corpus 0.377 (0.005) 0.147 (0.002) 0.355 (0.014) 0.249 (0.010) 0.653 (0.014) 0.500 (0.039)
COCOA 0.422 (0.006) 0.119 (0.003) 0.386 (0.012) 0.230 (0.011) 0.807 (0.013) 0.330 (0.030)
Gradient SHAP

Label-Free 0.409 (0.004) 0.131 (0.001) 0.500 (0.008) 0.244 (0.013) 0.691 (0.038) 0.523 (0.033)
Contrastive Label-Free 0.411 (0.003) 0.127 (0.002) 0.500 (0.009) 0.238 (0.012) 0.697 (0.037) 0.510 (0.018)
Corpus 0.421 (0.006) 0.136 (0.001) 0.478 (0.008) 0.242 (0.009) 0.729 (0.024) 0.494 (0.037)
COCOA 0.445 (0.003) 0.123 (0.002) 0.508 (0.007) 0.211 (0.008) 0.788 (0.030) 0.419 (0.013)
RISE

Label-Free (RELAX) 0.396 (0.005) 0.160 (0.005) 0.630 (0.005) 0.283 (0.004) 0.704 (0.022) 0.600 (0.012)
Contrastive Label-Free 0.424 (0.008) 0.141 (0.005) 0.632 (0.008) 0.279 (0.004) 0.730 (0.019) 0.534 (0.015)
Corpus 0.394 (0.010) 0.166 (0.003) 0.588 (0.005) 0.314 (0.006) 0.701 (0.019) 0.617 (0.026)
COCOA 0.456 (0.009) 0.126 (0.001) 0.663 (0.006) 0.256 (0.006) 0.840 (0.009) 0.415 (0.025)
Random 0.269 (0.003) 0.268 (0.002) 0.329 (0.013) 0.329 (0.010) 0.624 (0.018) 0.629 (0.018)

Table 2: Insertion and deletion metrics of corpus majority probability when explicands do not belong
to the corpus class. Means (95% confidence intervals) across 5 experiment runs are reported. Higher
insertion and lower deletion values indicate better performance, respectively. Each method is a
combination of a feature attribution method and an explanation target function (e.g., COCOA under
RISE corresponds to feature attributions computed by RISE for the contrastive corpus similarity).
Performance results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

Label-Free 3.53e-04 ± 1.06e-04 4.44e-04 ± 1.01e-04 0.061 (0.004) 0.079 (0.004) 0.394 (0.028) 0.481 (0.031)
Contrastive Label-Free 3.36e-04 ± 1.13e-04 4.44e-04 ± 1.00e-04 0.062 (0.004) 0.082 (0.004) 0.354 (0.022) 0.518 (0.027)
Corpus 1.09e-03 ± 2.85e-04 2.26e-04 ± 5.31e-05 0.094 (0.003) 0.066 (0.003) 0.609 (0.017) 0.262 (0.029)
COCOA 1.69e-03 ± 5.07e-04 1.55e-04 ± 2.21e-05 0.099 (0.004) 0.059 (0.005) 0.647 (0.017) 0.213 (0.030)
Gradient SHAP

Label-Free 2.05e-04 ± 5.96e-05 5.55e-04 ± 1.11e-04 0.054 (0.004) 0.080 (0.004) 0.362 (0.031) 0.469 (0.021)
Contrastive Label-Free 2.02e-04 ± 5.06e-05 5.10e-04 ± 9.65e-05 0.053 (0.002) 0.080 (0.004) 0.361 (0.022) 0.477 (0.018)
Corpus 8.03e-04 ± 1.64e-04 2.65e-04 ± 5.44e-05 0.106 (0.006) 0.055 (0.003) 0.549 (0.020) 0.325 (0.019)
COCOA 1.56e-03 ± 4.32e-04 1.67e-04 ± 5.66e-05 0.122 (0.008) 0.045 (0.003) 0.592 (0.025) 0.236 (0.012)
RISE

Label-Free (RELAX) 3.70e-04 ± 7.34e-05 5.37e-04 ± 1.23e-04 0.039 (0.003) 0.080 (0.005) 0.330 (0.016) 0.433 (0.030)
Contrastive Label-Free 3.32e-04 ± 1.14e-04 5.84e-04 ± 8.24e-05 0.040 (0.003) 0.081 (0.005) 0.307 (0.018) 0.472 (0.027)
Corpus 4.79e-04 ± 9.68e-05 3.87e-04 ± 8.41e-05 0.086 (0.005) 0.043 (0.003) 0.497 (0.031) 0.269 (0.020)
COCOA 9.51e-04 ± 2.58e-04 3.60e-04 ± 1.40e-04 0.107 (0.007) 0.031 (0.002) 0.590 (0.027) 0.181 (0.014)
Random 4.87e-04 ± 9.50e-05 5.03e-04 ± 9.73e-05 0.070 (0.003) 0.070 (0.004) 0.406 (0.013) 0.407 (0.016)

dissimilar to the foil based on cosine similarity. Although this is an important sanity check, it is
perhaps unsurprising that COCOA performs strongly in this evaluation metric, because COCOA’s
explanation target is exactly the same as this evaluation metric.

Next, in Tables 1 and 2, COCOA has the strongest performance in corpus majority probability inser-
tion and deletion metrics across nearly all feature attribution methods, models, and datasets. This is
arguably a more interesting evaluation compared to contrastive corpus similarity, given that COCOA
is not explicitly designed to perform this task. Evaluation using the corpus majority predicted prob-
ability is semantically meaningful, because it tests whether features with high attributions move an
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explicand representation closer to the corpus as opposed to other classes across a decision boundary.
Furthermore, evaluation with a linear classifier has direct implications for downstream classification
tasks and follows the widely used linear evaluation protocol for representation learning (Bachman
et al., 2019; Kolesnikov et al., 2019; Chen et al., 2020). In Table 1, we evaluate each method in
the setting where explicands are from the same class as the corpus. This enables us to compare
to label-free attribution methods, which can still perform strongly on these metrics, because large
changes in the explicand representation likely correlate with changes in the predicted probability of
the explicand’s class. Here, we can see that COCOA consistently outperforms label-free attribution
methods and also benefits from the combination of a corpus and foil set. Importantly, in Table 2,
corpus-based attribution methods perform strongly especially when the corpus is from a different
class compared to the explicand. This is significant, because it implies that we can use COCOA to
generate explanations that answer questions such as, ”What pixels in my dog image make my rep-
resentation similar to cat images?”, which was previously impossible using label-free approaches.

4.2 UNDERSTANDING DATA AUGMENTATIONS IN SIMCLR

In this section, we aim to visualize augmentation-invariant features that preserve class labels in
SimCLR. Because class labels are associated with original images, we use COCOA to find features
that make the representation of an augmented image similar to that of the original image.

SimCLR is a self-supervised contrastive learning method that pushes images from the same class
close together and images from different classes far apart. This is achieved by its contrastive objec-
tive, which maximizes the similarity between representations from two augmentations of the same
image and minimizes the similarity between representations from different images. Empirically,
linear classifiers trained on representations learned by SimCLR perform comparably to strong su-
pervised baselines (Chen et al., 2020). Theoretical analyses of SimCLR performance rely on the
idea that data augmentations preserve the class label of an image (Arora et al., 2019; HaoChen et al.,
2021). Here, we show which input features are associated with label preservation, which has not
been previously shown.

Setup. The same SimCLR model and its downstream classifier for ImageNet from Section 4.1 are
used here. For each image, we investigate augmentations used to train SimCLR including flipping,
cropping, flipping with cropping, grayscaling, and color jittering. We also consider cutout and 90◦

rotation, which are not included in SimCLR training. Class prediction based on the linear classifier is
computed for the original version and all augmentations of each image to check class preservation.
With each original and augmented image as the explicand, the original image as the corpus, and
1,500 random images from the ImageNet training set as the foil, COCOA is paired with RISE to
visually identify class-preserving features. The RISE parameters are the same as in Section 4.1.

Results. We first note that the original images and the augmented images after flipping, cropping,
flipping with cropping, grayscaling, and color jittering yield correct class predictions (Figure 2).
However, cutout and rotated images, which are not part of SimCLR training, are less robust and can
result in misclassifications. Because class labels are generated based on the original images, impor-
tant features identified by COCOA with each original image as the corpus are class-preserving for
correctly classified augmentations. Qualitatively, the class-preserving region of the English springer
seems to be its face, as the face is highlighted in all augmentations with the correct classification and
the original image (Figure 2a). Contrarily, in the rotated image, which is misclassified as a llama,
COCOA highlights the body of the English springer instead of its face. Similarly, the piping in the
French horn is the class-preserving region (Figure 2b). When the piping is cut out, the image is
misclassified, and COCOA highlights only the face of the performer. Finally, the co-occurrence of
the parachute and parachuter is the important feature for an augmented image to have the correct
classification of parachute (Figure 2c). Additional results are in Appendix O.

4.3 MIXED MODALITY OBJECT LOCALIZATION

Here, we showcase the utility of COCOA by performing zero-shot object localization based on
mixed modality representations as in Gadre et al. (2022). In this experiment, we work with CLIP
which trains a text and image encoder on paired data: images with associated captions (Radford
et al., 2021). To apply COCOA, a necessary prerequisite is a set of corpus examples. These examples
are not necessarily hard to gather, since small sets of corpus examples can be sufficient (Appendix J).
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(a)

(b)

(c)

Original Flip Crop Flip Crop Grayscale Color Jitter Cutout Rotation

Figure 2: Original version and augmentations of images with their class predictions (top row), along
with the corresponding COCOA attributions (red for higher values and blue for lower values) with
each original image as the corpus and random images as the foil (bottom row); for (a) an English
springer, (b) a French horn, and (c) a parachute. Cutout and rotation are not included in SimCLR
training.

However, if our image representations are generated via the CLIP image encoder, we can circumvent
the need to gather a set of corpus images by instead explaining similarity of our explicand image to
a corpus caption of interest. This enables us to easily ask semantically meaningful questions such
as, ”What in this image makes its representation similar to a woman?”.

Setup. In this experiment, we have two CLIP representation encoders f text : X text → Rd and
f image : X image → Rd. Both encoders map their respective input domains into a common repre-
sentation space such that the representations of a caption and image pair have high cosine similarity
when the caption is descriptive of the paired image. We use the original implementation of CLIP3

and model ViT-B/32. The feature attributions are computed using RISE with the same parameters
as in Section 4.1, except with 20,000 masks.

Here, we aim to explain an explicand image xe ∈ X image. For label-free importance, the
explanation target is the representation similarity based on the image encoder: γfimage,xe(·).
Then, we use an adapted version of the COCOA explanation target, which uses a text corpus set
Ctext ⊂ X text and a text foil set F text ⊂ X text and maps from images to contrastive corpus
similarity γ̂fimage,ftext,Ctext,Ftext(x) : X image → R, defined as follows:

1

|Ctext|
∑

xc∈Ctext

f image(x)T f text(xc)

∥f image(x)∥∥f text(xc)∥
− 1

|F text|
∑

xf∈Ftext

f image(x)T f text(xf )

∥f image(x)∥∥f text(xf )∥
. (6)

In particular, the corpus set consists of a single caption C = {xc} of the following form, xc =“This
is a photo of a P ”, where P is manually chosen. Then, the foil set is either (i) a single caption
F = {xf} of the form, xf =“This is a photo of a Q”, where Q is manually chosen or (ii) many
captions F = {xf

i } of the forms, xf
i =“This is a photo of a Qi” where Qi ∈ Ccifar100 \ P is each

of the 100 classes in CIFAR-100 excluding the corpus class P . Each explicand image is a public
domain image from https://www.pexels.com/ that the CLIP model is unlikely to have been
trained on4.

3https://github.com/openai/CLIP
4With the exception of the astronaut image, which is available in the scikit-image package.
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(a) (b)

Figure 3: Visualization of feature attributions. (a) Importance of a corpus text compared to many
foil texts (based on CIFAR-100 classes). (b) Importance of a corpus text compared to a foil text.
(a)-(b) The leftmost column is the original explicand, the second column is label-free attributions,
and the third and fourth columns are COCOA attributions using P vs. Q as the notation for the
corpus and foil text sets (details in Section 4.3). Each feature attribution is overlaid on the original
image such that blue is the minimum value and red is the maximum value in given attribution.

Results. We visualize the label-free and COCOA attributions for several explicands in Figure 3.
First, we find that label-free attributions highlight a variety of regions in the explicand image. Al-
though these pixels contribute to similarity to the explicand’s representation, with the exception of
the astronaut image, the important pixels are largely not localized and therefore hard to interpret. For
instance, in the mountain image we cannot say whether the mountain or cloud is the most important
to the explicand’s representation, because the most positively and negatively important pixels are
distributed across both objects.

Instead, we find that using COCOA, we can ask specific questions. For instance, we may ask,
“Compared to many other classes, what pixels in this image look like P ?” (Figure 3a). We evaluate
a number of these questions in the first three images. In the astronaut image, we can see the woman’s
face and the rocket are localized. Likewise in the image with both a bicycle and a car, we can localize
either the bicycle or the car. In the zebra image, we are able to localize the zebras by using corpus
texts that aim to identify a “zebra” or “stripes”. Finally, in the last three images we find that we can
formulate specific contrastive questions that ask, “What pixels in this image look like P rather than
Q?” (Figure 3b). Doing so we successfully identify a bee rather than a flower, a dog rather than a
cat, and a mountain rather than clouds (and vice versa respectively).

5 DISCUSSION

In this work, we introduce COCOA, a method to explain unsupervised models based on similarity
in a representation space. We theoretically analyze our method and demonstrate its compatibility
with many feature attribution methods. We quantitatively validate COCOA in several datasets and
on contrastive self-supervised, non-contrastive self-supervised, and supervised models. Then, we
use COCOA to better understand data augmentations in a self-supervised setting and to perform
zero-shot object localization.

Although COCOA is already a powerful technique to understand representations, there are many
interesting future research directions. First, we can adapt automatic concept discovery methods
(Ghorbani et al., 2019; Yeh et al., 2020) to automatically identify homogeneous corpus sets. Second,
we can use other explanation methods for our novel contrastive corpus similarity explanation target.
This includes counterfactual explanation methods (Verma et al., 2020), which only require gradients
to optimize a counterfactual objective. Finally, a fundamental limitation of COCOA is that it cannot
explain corpus sets if the model has not learned anything about the given corpus. Therefore, a
valuable future direction is to investigate complementary methods to detect whether the model’s
representation contains information about a corpus prior to application of COCOA.
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A ADDITIONAL RELATED WORK

Representation learning. COCOA can be used to explain any representation learning model. Rep-
resentation learning aims to automatically discover latent dimensions that are valuable to down-
stream tasks (e.g., classification) (Bengio et al., 2013). It has been applied to great effect within
natural language processing (Deng et al., 2013; Van Den Oord et al., 2017) and computer vision
(Ciregan et al., 2012; Gidaris et al., 2018) and encompasses both supervised and unsupervised mod-
els (f : X → Z). For supervised models the output space corresponds to known labels (Z = Y),
whereas for unsupervised models the outputs are latent representations (Z = H). Within unsu-
pervised representation learning, self-supervised learning leverages unlabelled data to formulate
learning tasks (Grill et al., 2020; Misra & Maaten, 2020). One particularly successful instantiation
of self-supervised learning is contrastive learning, which optimizes the similarity between different
views of the same sample and dissimilarity to random samples (Chen et al., 2020; Radford et al.,
2021).

Representation-space explanations. COCOA explains a representation (latent) space. An early
post-hoc explanation method based on representation spaces is TCAV (Kim et al., 2018) which
defines concepts based on the representation space and produces a global explanation of whether a
given class depends on a concept of interest. A number of approaches similarly define concepts in
the representation space and build upon TCAV with automatic concept discovery (Ghorbani et al.,
2019; Yeh et al., 2020). Finally, Basaj et al. (2021) build upon TCAV to define visual probes to
validate whether a representation encodes a property of interest. These approaches detect whether
a given concept is important to the model, whereas our approach aims to understand which features
make a representation similar to a given concept captured by a corpus.

Supervised explanations. COCOA builds upon existing supervised explanation methods to explain
an unsupervised setting. The majority of explanation methods operate on supervised models and
aim to explain a scalar output, often the model’s predicted probability for a specific class. These
methods vary in the unit of explanation (i.e., the way in which they describe what was important)
and the explanation target (i.e., the model behavior they aim to explain). The unit of explanation
for example attributions and counterfactual attributions are samples which are either important to
or modify the explanation target (Koh & Liang, 2017; Wachter et al., 2017). In contrast, the unit
of explanation of feature attributions or concept attributions are importances which quantify how
features or concepts contribute to the explanation target (Lundberg & Lee, 2017; Kim et al., 2018).

In this paper, we focus on feature attribution methods, which are the most widely-used explanation
technique, but note that it is possible to apply many other explanation techniques to understand our
new explanation target. It has been shown that different feature attribution methods can generate
disagreeing results (Krishna et al., 2022), so we empirically evaluate contrastive corpus similarity
and other explanation target functions with a number of varied attribution methods. In particular,
we compute local feature attributions using three popular methods. The first is Integrated Gradi-
ents (Sundararajan et al., 2017), a gradient-based feature attribution method, which accumulates
gradients between a baseline and an explicand. The second is GradientSHAP5, which is a SHAP-
related method that combines SmoothGrad (Smilkov et al., 2017) and Expected Gradients (Erion
et al., 2021), a generalization of Integrated Gradients. Third, we use RISE (Petsiuk et al., 2018),
a removal-based explanation method (Covert et al., 2021), which computes feature attributions by
randomly masking portions of an explicand.

Unsupervised explanations. COCOA explicitly aims to provide explanations for unsupervised
models. There is largely a deficit of explanation methods suitable to this task and we are aware
of only two recent methods that address this problem: RELAX (Wickstrøm et al., 2021) and
label-free explainability (Crabbé & van der Schaar, 2022). Both methods define an explana-
tion target function based on similarity to the explicand, where RELAX uses the cosine kernel
(γf,xe(x) = (f(x)T f(xe))/(∥f(x)∥∥f(xe)∥)) and label-free explainability uses the dot prod-
uct (γf,xe(x) = f(x)T f(xe)). Then, both approaches utilize pre-existing local feature attribution
methods to explain their respective explanation targets, where RELAX specfically utilizes RISE, and
label-free explainability is an agnostic wrapper function. A final distinction between the two papers
is that label-free explainability additionally provides example attributions which aim to identify im-
portant training examples. While COCOA, RELAX, and label-free explainability are motivated to

5https://captum.ai/api/gradient_shap.html
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explain unsupervised models, they all can be applied to explain representations in general, whether
obtained through unsupervised or supervised learning.

Contrastive explanations. COCOA makes unsupervised explanations more interpretable by mak-
ing them contrastive. Contrastive explanations aim to understand an event P (the fact) by contrasting
it to another event Q (the foil) (Jacovi et al., 2021). Social science studies recognize that contrastive
explanations align with human intuition and reduce an explanation’s complexity by ignoring factors
common to both the fact and the foil (Kahneman & Miller, 1986; Lipton, 1990; Miller, 2019). One
strategy to obtain contrastive explanations is to simply define an explanation target function which
describes a contrastive model behavior (e.g., the difference between the model’s prediction for the
fact and the foil) (Jacovi et al., 2021).

B MOTIVATIONS FOR COSINE SIMILARITY AS THE REPRESENTATION
SIMILARITY

The representation similarity defined in Definition 3.1 is the cosine similarity of representations.
There are multiple motivations for this choice. First, this representation similarity is used in RELAX
as the explanation target function (Wickstrøm et al., 2021). Similarly, label-free feature importance
uses the dot product without normalization (Crabbé & van der Schaar, 2022). Hence, the choice
of cosine similarity facilitates comparisons with prior works. Second, many self-supervised models
are trained with the cosine similarity or the related cross-correlation in their loss functions (Chen
et al., 2020; Grill et al., 2020; Chen & He, 2021; Radford et al., 2021; Zbontar et al., 2021), so
cosine similarity is a natural choice for measuring similarity between representations learned by
these models. Finally, other similarity measures, such as the Gaussian kernel function, may contain
parameters that impact explanation outcomes, but to our knowledge there are no principled ways of
tuning these parameters for the purpose of generating explanations.

C SOME PROPERTIES OF THE EMPIRICAL ESTIMATOR OF CONTRASTIVE
CORPUS SIMILARITY

Proposition C.1. The estimator γ̂f,C,F (x) is an unbiased estimator of γf,C,Dfoil
(x).

Proposition C.2. For any δ ∈ (0, 1) and ε > 0, if the sample size m in γ̂f,C,F (x) satisfies

m ≥ 2 log(2/δ)

ε2
, (C.1)

then
P (|γ̂f,C,F (x)− γf,C,Dfoil

(x)| ≥ ε) ≤ δ. (C.2)

If it is further assumed that f maps from X to the set of non-negative vectors Rd
+ (e.g., a neural

network with a ReLU output layer), then the same concentration bound is achieved with

m ≥ log(2/δ)

2ε2
. (C.3)

Proposition C.2 allows us to choose an empirical foil sample size with theoretical justification.

D FEATURE ATTRIBUTION PROPERTIES

There are a multitude of feature attribution methods. In order to compare these methods, researchers
have debated their respective merits in terms of the properties they satisfy (Sundararajan & Najmi,
2020). Most feature attribution methods satisfy certain properties with respect to the model output
(explanation target) they explain. Methods which satisfy a property when the explanation target is
the predicted probability of a particular class will also satisfy a related property for other explanation
targets such as representation similarity or contrastive corpus similarity.

As an example, we may consider the property of completeness, which is satisfied by Integrated
Gradients, KernelSHAP, DeepLIFT, and a number of other explanation methods. Methods which
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satisfy completeness generate feature attributions which sum up to the explanation target function
applied to the explicand minus a baseline value b0:

d∑
i=1

ϕi(γf,∗,x
e) = γf,∗(x

e)− b0. (D.1)

For attribution methods that use a single baseline (e.g., Integrated Gradients, DeepLIFT), the base-
line value is equal to the explanation target function applied to a baseline of the user’s choosing (i.e.,
b0 = γf,∗(x

b)). Therefore, supervised feature attributions sum up to the difference between the
predicted probability of a class of interest for the explicand xe and baseline xb:

d∑
i=1

ϕi(γfclass ,xe) = γfclass(xe)− γfclass(xb). (D.2)

Analogously, in the unsupervised explanation setting, COCOA feature attributions will sum up to
the difference in the contrastive corpus similarity between the explicand and the baseline:

d∑
i=1

ϕi(γ̂f,C,F ,x
e) = γ̂f,C,F (x

e)− γ̂f,C,F (x
b). (D.3)

Note that analogous completeness properties may be shown for representation similarity, contrastive
similarity, and corpus similarity.

E PROPOSITION FOR INTERPRETING COCOA WITH RESPECT TO THE
CONTRASTIVE CORPUS SIMILARITY

Proposition E.1. Contrastive corpus similarity is the dot product of the input’s representation di-
rection and the contrastive direction. That is,

γf,C,Dfoil
(x) =

(
f(x)

∥f(x)∥

)T(
1

|C|
∑
xc∈C

f(xc)

∥f(xc)∥
− Exv∼Dfoil

[
f(xv)

∥f(xv∥)

])
. (E.1)

F EXTENSION OF PROPOSITION 3.3 AND PROPOSITION E.1 TO GENERAL
KERNEL FUNCTIONS

Let another kernel function s : Rd × Rd → R, such that sf (·, ·) = s(f(·), f(·)), be the represen-
tation similarity measure instead of the cosine similarity. Then, in another latent feature space, the
contrastive direction points toward the corpus’s mean representation and away from the foil’s mean
representation. Formally, we have the following proposition.
Proposition F.1. Suppose the function s(·, ·) is a continuous positive semi-definite kernel on a
compact set Z ⊂ Rd, and f maps from X to Z . Let L2(Z) denote the set of functions over
Z that are square integrable. Additionally, suppose that the integral operator Ts, defined as
(Tsg)(·) =

∫
Z s(·, z̃)g(z̃)dz̃ for all g ∈ L2(Z), is positive semi-definite:∫

Z

∫
Z
s(z, z̃)g(z̃)dzdz̃ ≥ 0. (F.1)

Let
γf,C,Dfoil

(x) =
1

|C|
∑
xc∈C

s(f(x), f(xc))− Exv∼Dfoil
[s(f(x), f(xv))] (F.2)

and

γ̂f,C,F (x) =
1

|C|
∑
xc∈C

s(f(x), f(xc))− 1

m

m∑
i

s(f(x), f(x(i))). (F.3)

Then

γf,C,Dfoil
(x) = ψ(f(x))T

(
1

|C|
∑
xc∈C

ψ(f(xc))− Exv∼Dfoil
[ψ(f(xv))]

)
(F.4)
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and

γ̂f,C,F (x) = ψ(f(x))T
(

1

|C|
∑
xc∈C

ψ(f(xc))− 1

m

m∑
i=1

ψ(f(x(i)))

)
, (F.5)

where ψ : Z → D is a feature map from the representation space to the feature space D induced by
the kernel function.

G CONTRASTIVE CORPUS SIMILARITY WHEN THE CORPUS CONSISTS OF
MULTIPLE SUB-CORPORA

Here, we consider the scenario where a corpus consists of multiple groups (i.e., sub-corpora) with
different characteristics. In this setting, the contrastive corpus similarity and its empirical estima-
tor are a weighted average of the contrastive sub-corpus similarities and a weighted average of the
empirical estimators of contrastive sub-corpus similarities, respectively. Importantly, the weight cor-
responding to each sub-corpus is proportional to its size. This insight is formalized in the following
proposition.

Proposition G.1. Suppose a corpus C consists of disjoint sub-corpora Ck for k = 1, ...,K, for some
integer K > 0. That is, C =

⋃K
k=1 Ck, and Ci ∩ Cj = ∅ for all i ̸= j. Then the contrastive corpus

similarity with respect to the corpus C is a weighted average of contrastive corpus similarities with
respect to the sub-corpora:

γf,C,Dfoil
(x) =

K∑
k=1

|Ck|
|C|

γf,Ck,Dfoil
(x). (G.1)

Furthermore, the empirical estimator of contrastive corpus similarity with respect to the corpus C
is a weighted average of empirical estimators of contrastive corpus similarity with respect to the
sub-corpora:

γ̂f,C,F (x) =

K∑
k=1

|Ck|
|C|

γ̂f,Ck,F (x). (G.2)

H PROOFS

H.1 PROOF OF PROPOSITION C.1

Proof. We have

E
x(1),...,x(m) i.i.d.∼Dfoil

[γ̂f,C,F (x)] =
1

|C|
∑
xc∈C

sf (x,x
c)− 1

m

m∑
i=1

E
x(1),...,x(m) i.i.d.∼Dfoil

[sf (x,x
(i))]

(H.1)

=
1

|C|
∑
xc∈C

sf (x,x
c)− Exv∼Dfoil

[sf (x,x
v)] = γf,C,Dfoil

(x),

(H.2)

where (H.1) follows from the linearity of expectation, and (H.2) from the fact that x(1), ...,x(m) are
identically distributed from Dfoil.

H.2 PROOF OF PROPOSITION C.2

We first state Hoeffding’s inequality.

Lemma H.1. Let X1, ..., Xn be independent random variables such that ai ≤ Xi ≤ bi almost
surely. Consider Sn = X1 + · · ·+Xn, then

P (|Sn − E[Sn]| ≥ ε) ≤ 2 exp

(
− 2ε2∑n

i=1(bi − ai)2

)
. (H.3)
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Proof. See Hoeffding (1963).

We now proceed to prove Proposition C.2.

Proof. First, we have

P (|γ̂f,C,F (x)−γf,C,Dfoil
(x)| ≥ ε) = P

(∣∣∣∣∣
m∑
i=1

sf (x,x
(i))

m
−Exv∼Dfoil

[sf (x,x
v)]

∣∣∣∣∣ ≥ ϵ

)
(H.4)

and note that

Exv∼Dfoil
[sf (x,x

v)] = E
x(1),...,x(m) i.i.d.∼Dfoil

[
m∑
i=1

sf (x,x
(i))

m

]
. (H.5)

Because the cosine similarity is bounded: −1 ≤ sf (·, ·) ≤ 1, it follows that −1/m ≤ sf (·, ·)/m ≤
1/m. Applying the Hoeffding’s inequality, we obtain

P (|γ̂f,C,F (x)− γf,C,Dfoil
(x)| ≥ ε) ≤ 2 exp

(
− 2ε2∑m

i=1(2/m)2

)
(H.6)

= 2 exp

(
− ε2

2
·m
)

(H.7)

≤ 2 exp

(
− ε2

2
· 2 log(2/δ)

ε2

)
= δ. (H.8)

If it is further assumed that f maps from X to Rd
+, then 0 ≤ sf (·, ·) ≤ 1 and hence 0 ≤ sf (·, ·)/m ≤

1/m. Applying the Hoeffding’s inequality with m ≥ log(2/δ)
2ε2 yields

P (|γ̂f,C,F (x)− γf,C,Dfoil
(x)| ≥ ε) ≤ 2 exp

(
− 2ε2∑m

i=1(1/m)2

)
(H.9)

= 2 exp(−2ε2 ·m) (H.10)

≤ 2 exp

(
− 2ε2 · log(2/δ)

2ε2

)
= δ. (H.11)

H.3 PROOF OF PROPOSITION 3.3 AND PROPOSITION E.1

Proof. By the definition of γ̂f,C,F (x) and linear algebra, we have

γ̂f,C,F (x) =
1

|C|
∑
xc∈C

(
f(x)

∥f(x)∥

)T
f(xc)

∥f(xc)∥
− 1

m

m∑
i=1

(
f(x)

∥f(x)∥

)T
f(x(i))

∥f(x(i))∥
(H.12)

=

(
f(x)

∥f(x)∥

)T(
1

|C|
∑
xx∈C

f(xc)

∥f(xc)∥

)
−
(

f(x)

∥f(x)∥

)T(
1

m

m∑
i=1

f(x(i))

∥f(x(i))∥

)
(H.13)

=

(
f(x)

∥f(x)∥

)T(
1

|C|
∑
xc∈C

f(xc)

∥f(xc)∥
− 1

m

m∑
i=1

f(x(i))

∥f(x(i))∥

)
. (H.14)

By the definition of γf,C,Dfoil
(x), linear algebra, and the linearity of expectation, we have

γf,C,Dfoil
(x) =

1

|C|
∑
xc∈C

(
f(x)

∥f(x)∥

)T
f(xc)

∥f(xc)∥
− Exv∼Dfoil

[(
f(x)

∥f(x)∥

)T
f(xv)

∥f(xv)∥

]
(H.15)

=

(
f(x)

∥f(x)∥

)T(
1

|C|
∑
xc∈C

f(xc)

∥f(xc)∥

)
−
(

f(x)

∥f(x)∥

)T

Exv∼Dfoil

[
f(xv)

∥xv∥

]
(H.16)

=

(
f(x)

∥f(x)∥

)T(
1

|C|
∑
xc∈C

f(xc)

∥f(xc)∥
− Exv∼Dfoil

[
f(xv)

∥f(xv)∥

])
. (H.17)
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H.4 PROOF OF PROPOSITION F.1

Proof. By Mercer’s Theorem (Mercer, 1909) (see Ghojogh et al. (2021) for an accessible survey
relevant to machine learning), we have

γf,C,Dfoil
(x) =

1

|C|
∑
xc∈C

ψ(f(x))Tψ(f(xc))− Exv∼Dfoil
[ψ(f(x))Tψ(f(xv))] (H.18)

= ψ(f(x))T
(

1

|C|
∑
xc∈C

ψ(f(xc))

)
− ψ(f(x))TExv∼Dfoil

[ψ(f(xv))] (H.19)

= ψ(f(x))T
(

1

|C|
∑
xc∈C

ψ(f(xc))− Exv∼Dfoil
[ψ(f(xv))]

)
, (H.20)

Similarly, we have

γ̂f,C,F (x) =
1

|C|
∑
xc∈C

ψ(f(x))Tψ(f(xc))− 1

m

m∑
i=1

ψ(f(x))Tψ(f(x(i))) (H.21)

= ψ(f(x))T
(

1

|C|
∑
xc∈C

ψ(f(xc))

)
− ψ(f(x))T

1

m

( m∑
i=1

ψ(f(x(i)))

)
(H.22)

= ψ(f(x))T
(

1

|C|
∑
xc∈C

ψ(f(xc))− 1

m

m∑
i=1

ψ(f(x(i)))

)
. (H.23)

H.5 PROOF OF PROPOSITION G.1

Proof. Because the sub-corpora are disjoint sets, we have

γf,C,Dfoil
(x) =

1

|C|

K∑
k=1

∑
xc∈Ck

sf (x,x
c)− Exv∼Dfoil

[sf (x,x
v)] (H.24)

=

K∑
k=1

|Ck|
|C|

1

|Ck|
∑

xc∈Ck

sf (x,x
c)− Exv∼Dfoil

[sf (x,x
v)] (H.25)

=

K∑
k=1

|Ck|
|C|

1

|Ck|
∑

xc∈Ck

sf (x,x
c)−

K∑
k=1

|Ck|
|C|

Exv∼Dfoil
[sf (x,x

v)] (H.26)

=

K∑
k=1

|Ck|
|C|

(
1

|Ck|
∑

xc∈Ck

sf (x,x
c)− Exv∼Dfoil

[sf (x,x
v)]

)
(H.27)

=

K∑
k=1

|Ck|
|C|

γf,Ck,Dfoil
(x). (H.28)
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Similarly,

γ̂f,C,F (x) =
1

|C|

K∑
k=1

∑
xc∈Ck

sf (x,x
c)− 1

m

m∑
i=1

sf (x,x
(i)) (H.29)

=

K∑
k=1

|Ck|
|C|

1

|Ck|
∑

xc∈Ck

sf (x,x
c)− 1

m

m∑
i=1

sf (x,x
(i)) (H.30)

=

K∑
k=1

|Ck|
|C|

1

|Ck|
∑

xc∈Ck

sf (x,x
c)−

K∑
k=1

|Ck|
|C|

(
1

m

m∑
i=1

sf (x,x
(i))

)
(H.31)

=

K∑
k=1

|Ck|
|C|

(
1

|Ck|
∑

xc∈Ck

sf (x,x
c)− 1

m

m∑
i=1

sf (x,x
(i))

)
(H.32)

=

K∑
k=1

|Ck|
|C|

γ̂f,Ck,F (x). (H.33)

I EXPERIMENT DETAILS

Code is available at https://github.com/suinleelab/cl-explainability.

I.1 DATASETS

ImageNet. The ImageNet ILSVRC dataset contains 1.2 million labeled training images and 50,000
labeled validation images over 1,000 object classes (Russakovsky et al., 2015). Since the SimCLR
model and its downstream linear classifier are trained and tuned with only the training set, we use
the validation set as a held-out set for quantitative evaluation (Section 4.1) and understanding data
augmentations (Section 4.2). For computational feasibility, a subset of 10 easily classified classes
called ImageNette (including tench, English springer, cassette player, chainsaw, church, French
horn, garbage truck, gas pump, golf ball, and parachute) (Howard, 2019) are used for quantitative
evaluation.

CIFAR-10. The CIFAR-10 dataset consists of 50,000 labeled training images and 10,000 labeled
test images of size 32× 32 over 10 classes. The test set is used for quantitative evaluation.

MURA. The MURA (MUsculoskeletal RAdiographs) dataset contains 36,808 training radiograph
images from 13,457 musculoskeletal studies and 3,197 validation images from 1,199 studies. Each
study and its associated images are labeled by radiologists as either normal or abnormal. We further
split the official training images into an 80% subset for our model training and a 20% subset for
hyperparameter tuning. The official validation set is held out and used for quantitative evaluation.

I.2 MODELS

SimCLR. We obtained the weights of SimCLRv1 (with a ResNet50 backbone) and its
downstream linear classifier, pre-trained with ImageNet, from https://github.com/
google-research/simclr by Chen et al. (2020). The pre-trained SimCLR model and linear
classifier were converted to the PyTorch format following the conversion in https://github.
com/tonylins/simclr-converter, as recommended in the SimCLR authors’ official doc-
umentation.

SimSiam. We trained a SimSiam model (with a ResNet18 backbone) for CIFAR-
10 following the training procedure and hyperparameters outlined in Chen & He (2021),
using the implementation in https://github.com/Reza-Safdari/SimSiam-91.
9-top1-acc-on-CIFAR10. The downstream linear classifier was trained with stochastic gra-
dient descent with a learning rate of 30.0 and a batch size of 256 to achieve a top-1 accuracy of
92.06% on the CIFAR-10 test set.
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ResNet classifier. We trained a ResNet18 classifier for normal vs. abnormal radiograph images with
an 80% training subset and tuned hyperparameters with the other 20%. We randomly augmented
the data during training by horizontal flipping, vertical flipping, and rotation between −30◦ and 30◦.
The classifier was trained with an Adam optimizer (Kingma & Ba, 2014), with a batch size of 256,
a learning rate decay of 0.1 every 10 steps, and a weight decay of 0.001. The initial learning rate
was tuned over {0.1, 0.01, 0.001, 0.0001} to identify the optimal initial learning rate of 0.001. The
trained ResNet18 classifier achieves an accuracy of 80.54% on the held-out official validation set.

I.3 FEATURE ATTRIBUTION METHODS

Integrated Gradients. Integrated Gradients (Sundararajan et al., 2017) with 50 steps for the Riem-
man approximation of integral were run in this work. The implementation in the Captum package
was used (Kokhlikyan et al., 2020). The baseline values correspond to the explicand image with
blurring.

GradientSHAP. GradientSHAP with 50 random Gaussian noise samples having a standard devi-
ation of 0.2 for the gradient expectation estimation was run. The implementation in the Captum
package was used (Kokhlikyan et al., 2020). The baseline values correspond to the explicand image
with blurring.

RISE. RISE (Petsiuk et al., 2018) with 5000 random masks generated with a masking probability
of 0.5 was run. For CIFAR-10, each binary mask before upsampling had size 4× 4. For ImageNet
and MURA, each initial binary mask was 7 × 7. The baseline values for replacing masked pixels
correspond to the explicand image with blurring.

J CORPUS SIZE SENSITIVITY ANALYSIS

Figure 4: Insertion and deletion metrics of contrastive corpus similarity for COCOA with corpus size
= 1, 5, 20, 50, 100, 200. The foil size is fixed at 1500. Performance results of random attributions
are plotted as benchmarks. Means and 95% confidence intervals across 5 experiment runs are shown.
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Figure 5: Insertion and deletion metrics of corpus majority probability for COCOA with corpus size
= 1, 5, 20, 50, 100, 200. The foil size is fixed at 1500. Performance results of random attributions
are plotted as benchmarks. Means and 95% confidence intervals across 5 experiment runs are shown.

K FOIL SIZE SENSITIVITY ANALYSIS

Figure 6: Insertion and deletion metrics of contrastive corpus similarity for COCOA with foil size
= 100, 500, 1500, 2500, 5000. The corpus size is fixed at 100. Performance results of random
attributions are plotted as benchmarks. Means and 95% confidence intervals across 5 experiment
runs are shown.
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Figure 7: Insertion and deletion metrics of corpus majority probability for COCOA with foil size
= 100, 500, 1500, 2500, 5000. The corpus size is fixed at 100. Performance results of random
attributions are plotted as benchmarks. Means and 95% confidence intervals across 5 experiment
runs are shown.

L SANITY CHECK RESULTS

Table 3: Insertion and deletion metrics of contrastive corpus similarity when explicands belong to
the corpus class. Means (95% confidence intervals) across 5 experiment runs are reported. Higher
insertion and lower deletion values indicate better performance, respectively. Each method is a
combination of a feature attribution method and an explanation target function (e.g., COCOA under
RISE corresponds to feature attributions computed by RISE for the contrastive corpus similarity).
Performance results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

Label-Free 0.154 (0.003) 0.076 (0.001) 0.037 (0.002) 0.021 (0.002) 0.046 (0.010) 9.77e-03 ± 1.15e-02
Contrastive Label-Free 0.161 (0.003) 0.071 (0.002) 0.036 (0.003) 0.020 (0.002) 0.058 (0.007) -4.26e-03 ± 1.20e-02
Corpus 0.157 (0.002) 0.081 (0.002) 0.033 (0.002) 0.020 (0.002) 0.051 (0.007) 9.39e-03 ± 1.30e-02
COCOA 0.172 (0.002) 0.067 (0.002) 0.037 (0.002) 0.018 (0.002) 0.091 (0.006) -0.036 (0.013)
Gradient SHAP

Label-Free 0.171 (0.004) 0.067 (0.001) 0.048 (0.002) 0.019 (0.002) 0.053 (0.013) 0.017 (0.010)
Contrastive Label-Free 0.173 (0.004) 0.064 (0.001) 0.048 (0.002) 0.019 (0.002) 0.056 (0.013) 0.011 (0.007)
Corpus 0.172 (0.004) 0.071 (0.001) 0.047 (0.002) 0.019 (0.002) 0.064 (0.011) 9.77e-03 ± 1.26e-02
COCOA 0.181 (0.004) 0.062 (0.001) 0.051 (0.002) 0.015 (0.002) 0.081 (0.010) -0.014 (0.007)
RISE

Label-Free (RELAX) 0.175 (0.003) 0.091 (0.002) 0.061 (0.002) 0.023 (0.002) 0.049 (0.008) 0.017 (0.002)
Contrastive Label-Free 0.184 (0.003) 0.085 (0.002) 0.062 (0.002) 0.023 (0.002) 0.055 (0.006) -1.08e-03 ± 3.02e-03
Corpus 0.173 (0.003) 0.094 (0.003) 0.059 (0.002) 0.025 (0.002) 0.044 (0.010) 0.026 (0.006)
COCOA 0.195 (0.003) 0.080 (0.002) 0.068 (0.002) 0.019 (0.002) 0.083 (0.006) -0.028 (0.008)
Random 0.115 (0.002) 0.114 (0.002) 0.028 (0.002) 0.029 (0.002) 0.038 (0.009) 0.039 (0.009)
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Table 4: Insertion and deletion metrics of contrastive corpus similarity when explicands do not
belong to the corpus class. Means (95% confidence intervals) across 5 experiment runs are reported.
Higher insertion and lower deletion values indicate better performance, respectively. Each method is
a combination of a feature attribution method and an explanation target function (e.g., COCOA under
RISE corresponds to feature attributions computed by RISE for the contrastive corpus similarity).
Performance results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

Label-Free -0.011 (0.001) -0.017 (0.001) -5.34e-03 ± 1.46e-03 -3.32e-03 ± 1.36e-03 -0.020 (0.009) -1.50e-04 ± 8.78e-03
Contrastive Label-Free -0.011 (0.001) -0.017 (0.001) -5.37e-03 ± 1.50e-03 -3.21e-03 ± 1.36e-03 -0.035 (0.005) 0.012 (0.009)
Corpus -4.94e-03 ± 1.38e-03 -0.020 (0.001) -2.94e-04 ± 1.78e-03 -6.37e-03 ± 1.47e-03 0.040 (0.008) -0.062 (0.009)
COCOA 5.24e-03 ± 1.50e-03 -0.028 (0.001) 1.47e-03 ± 1.74e-03 -8.79e-03 ± 1.50e-03 0.048 (0.006) -0.076 (0.009)
Gradient SHAP

Label-Free -9.20e-03 ± 1.33e-03 -0.016 (0.001) -6.27e-03 ± 1.62e-03 -3.13e-03 ± 1.57e-03 -0.037 (0.008) 3.50e-03 ± 1.03e-02
Contrastive Label-Free -8.87e-03 ± 1.35e-03 -0.017 (0.001) -6.34e-03 ± 1.46e-03 -3.06e-03 ± 1.56e-03 -0.035 (0.006) 3.08e-03 ± 9.38e-03
Corpus -4.00e-03 ± 1.60e-03 -0.019 (0.001) 2.29e-03 ± 1.91e-03 -8.20e-03 ± 1.39e-03 0.018 (0.009) -0.041 (0.007)
COCOA 3.86e-03 ± 1.76e-03 -0.027 (0.001) 5.65e-03 ± 2.02e-03 -0.012 (0.002) 0.032 (0.010) -0.067 (0.005)
RISE

Label-Free (RELAX) -2.87e-03 ± 1.52e-03 -4.05e-03 ± 1.44e-03 -6.14e-03 ± 1.31e-03 -2.18e-03 ± 1.53e-03 -0.047 (0.006) -0.024 (0.005)
Contrastive Label-Free -2.87e-03 ± 1.32e-03 -4.16e-03 ± 1.54e-03 -6.20e-03 ± 1.38e-03 -2.16e-03 ± 1.57e-03 -0.054 (0.006) -0.017 (0.003)
Corpus -1.08e-03 ± 1.72e-03 -5.33e-03 ± 1.25e-03 1.32e-03 ± 1.73e-03 -8.70e-03 ± 1.11e-03 -8.82e-03 ± 6.31e-03 -0.063 (0.005)
COCOA 8.26e-03 ± 2.17e-03 -0.015 (0.001) 7.19e-03 ± 1.43e-03 -0.014 (0.001) 0.015 (0.007) -0.089 (0.003)
Random -0.013 (0.001) -0.013 (0.001) -4.10e-03 ± 1.59e-03 -4.07e-03 ± 1.46e-03 -0.021 (0.007) -0.021 (0.007)

M ADDITIONAL QUANTITATIVE EVALUATION RESULTS WITH DOT PRODUCT
SIMILARITY

Table 5: Insertion and deletion metrics of contrastive corpus similarity when explicands belong to the
corpus class. All explanation target functions are based on dot product instead of cosine sim-
ilarity. Means (95% confidence intervals) across 5 experiment runs are reported. Higher insertion
and lower deletion values indicate better performance, respectively. Each method is a combination
of a feature attribution method and an explanation target function (e.g., COCOA under RISE corre-
sponds to feature attributions computed by RISE for the contrastive corpus similarity). Performance
results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

Label-Free 0.153 (0.002) 0.076 (0.002) 0.031 (0.002) 0.020 (0.002) 0.058 (0.008) -1.40e-03 ± 1.08e-02
Contrastive Label-Free 0.157 (0.002) 0.072 (0.002) 0.032 (0.003) 0.019 (0.002) 0.058 (0.007) -3.08e-03 ± 1.29e-02
Corpus 0.157 (0.002) 0.076 (0.002) 0.031 (0.002) 0.020 (0.002) 0.079 (0.008) -0.018 (0.010)
COCOA 0.168 (0.002) 0.068 (0.002) 0.036 (0.002) 0.017 (0.002) 0.091 (0.006) -0.038 (0.013)
Gradient SHAP

Label-Free 0.170 (0.003) 0.067 (0.001) 0.045 (0.002) 0.019 (0.002) 0.055 (0.013) 0.013 (0.006)
Contrastive Label-Free 0.174 (0.004) 0.064 (0.001) 0.046 (0.002) 0.018 (0.002) 0.056 (0.013) 0.011 (0.006)
Corpus 0.172 (0.003) 0.068 (0.001) 0.042 (0.002) 0.019 (0.002) 0.073 (0.012) -2.12e-04 ± 5.80e-03
COCOA 0.181 (0.003) 0.061 (0.001) 0.050 (0.002) 0.015 (0.002) 0.082 (0.010) -0.014 (0.007)
RISE

Label-Free 0.180 (0.003) 0.087 (0.002) 0.061 (0.002) 0.024 (0.002) 0.053 (0.006) 7.95e-03 ± 4.51e-03
Contrastive Label-Free 0.187 (0.004) 0.083 (0.002) 0.062 (0.002) 0.023 (0.002) 0.056 (0.006) -3.16e-04 ± 2.35e-03
Corpus 0.181 (0.003) 0.088 (0.002) 0.058 (0.002) 0.027 (0.002) 0.062 (0.006) 4.62e-03 ± 6.23e-03
COCOA 0.196 (0.004) 0.078 (0.002) 0.067 (0.002) 0.020 (0.002) 0.084 (0.006) -0.028 (0.007)
Random 0.115 (0.002) 0.114 (0.002) 0.028 (0.002) 0.029 (0.002) 0.038 (0.009) 0.039 (0.009)
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Table 6: Insertion and deletion metrics of contrastive corpus similarity when explicands do not
belong to the corpus class. All explanation target functions are based on dot product instead of
cosine similarity. Means (95% confidence intervals) across 5 experiment runs are reported. Higher
insertion and lower deletion values indicate better performance, respectively. Each method is a
combination of a feature attribution method and an explanation target function (e.g., COCOA under
RISE corresponds to feature attributions computed by RISE for the contrastive corpus similarity).
Performance results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

Label-Free -0.012 (0.001) -0.015 (0.001) -4.88e-03 ± 1.26e-03 -3.48e-03 ± 1.48e-03 -0.039 (0.007) 0.017 (0.011)
Contrastive Label-Free -0.012 (0.001) -0.016 (0.001) -5.11e-03 ± 1.39e-03 -3.49e-03 ± 1.40e-03 -0.037 (0.005) 0.015 (0.008)
Corpus -7.35e-03 ± 1.28e-03 -0.018 (0.001) -2.53e-03 ± 1.46e-03 -5.20e-03 ± 1.41e-03 0.013 (0.008) -0.027 (0.007)
COCOA 4.98e-03 ± 1.51e-03 -0.028 (0.001) 1.39e-03 ± 1.90e-03 -8.65e-03 ± 1.54e-03 0.051 (0.006) -0.076 (0.007)
Gradient SHAP

Label-Free -9.41e-03 ± 1.33e-03 -0.016 (0.001) -6.11e-03 ± 1.40e-03 -3.20e-03 ± 1.62e-03 -0.040 (0.005) 5.79e-03 ± 1.02e-02
Contrastive Label-Free -8.91e-03 ± 1.35e-03 -0.017 (0.001) -6.23e-03 ± 1.37e-03 -3.07e-03 ± 1.50e-03 -0.036 (0.007) 2.10e-03 ± 9.37e-03
Corpus -5.25e-03 ± 1.44e-03 -0.019 (0.001) -1.79e-03 ± 1.60e-03 -6.33e-03 ± 1.31e-03 0.019 (0.012) -0.050 (0.003)
COCOA 3.70e-03 ± 1.77e-03 -0.026 (0.001) 5.13e-03 ± 1.72e-03 -0.012 (0.002) 0.032 (0.011) -0.068 (0.005)
RISE

Label-Free -3.08e-03 ± 1.44e-03 -4.03e-03 ± 1.43e-03 -6.13e-03 ± 1.37e-03 -2.31e-03 ± 1.55e-03 -0.053 (0.006) -0.019 (0.005)
Contrastive Label-Free -2.86e-03 ± 1.30e-03 -4.44e-03 ± 1.56e-03 -6.16e-03 ± 1.33e-03 -2.22e-03 ± 1.56e-03 -0.055 (0.007) -0.018 (0.002)
Corpus -8.76e-04 ± 1.64e-03 -5.55e-03 ± 1.44e-03 -1.02e-03 ± 1.34e-03 -6.85e-03 ± 1.14e-03 -0.018 (0.007) -0.057 (0.005)
COCOA 8.57e-03 ± 2.10e-03 -0.015 (0.001) 7.07e-03 ± 1.31e-03 -0.014 (0.001) 0.015 (0.006) -0.088 (0.005)
Random -0.013 (0.001) -0.013 (0.001) -4.10e-03 ± 1.59e-03 -4.07e-03 ± 1.46e-03 -0.021 (0.007) -0.021 (0.007)

Table 7: Insertion and deletion metrics of corpus majority probability when explicands belong to the
corpus class. All explanation target functions are based on dot product instead of cosine sim-
ilarity. Means (95% confidence intervals) across 5 experiment runs are reported. Higher insertion
and lower deletion values indicate better performance, respectively. Each method is a combination
of a feature attribution method and an explanation target function (e.g., COCOA under RISE corre-
sponds to feature attributions computed by RISE for the contrastive corpus similarity). Performance
results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

Label-Free 0.364 (0.004) 0.125 (0.003) 0.343 (0.014) 0.237 (0.012) 0.696 (0.020) 0.451 (0.018)
Contrastive Label-Free 0.372 (0.005) 0.119 (0.003) 0.354 (0.017) 0.234 (0.012) 0.690 (0.022) 0.452 (0.029)
Corpus 0.384 (0.004) 0.126 (0.002) 0.346 (0.012) 0.240 (0.010) 0.767 (0.010) 0.392 (0.018)
COCOA 0.415 (0.006) 0.113 (0.002) 0.379 (0.012) 0.222 (0.009) 0.806 (0.012) 0.325 (0.031)
Gradient SHAP

Label-Free 0.408 (0.004) 0.130 (0.002) 0.475 (0.011) 0.235 (0.013) 0.699 (0.040) 0.515 (0.018)
Contrastive Label-Free 0.413 (0.003) 0.126 (0.002) 0.487 (0.011) 0.229 (0.012) 0.700 (0.041) 0.510 (0.019)
Corpus 0.423 (0.004) 0.130 (0.002) 0.444 (0.011) 0.234 (0.008) 0.762 (0.035) 0.468 (0.016)
COCOA 0.444 (0.006) 0.122 (0.002) 0.502 (0.008) 0.207 (0.008) 0.789 (0.031) 0.417 (0.013)
RISE

Label-Free 0.414 (0.007) 0.145 (0.003) 0.627 (0.007) 0.288 (0.004) 0.724 (0.019) 0.562 (0.010)
Contrastive Label-Free 0.434 (0.008) 0.134 (0.004) 0.633 (0.008) 0.280 (0.005) 0.737 (0.021) 0.533 (0.011)
Corpus 0.417 (0.010) 0.145 (0.005) 0.592 (0.005) 0.315 (0.006) 0.765 (0.011) 0.542 (0.019)
COCOA 0.465 (0.009) 0.120 (0.004) 0.664 (0.007) 0.257 (0.006) 0.844 (0.006) 0.412 (0.025)
Random 0.269 (0.003) 0.268 (0.002) 0.329 (0.013) 0.329 (0.010) 0.624 (0.018) 0.629 (0.018)
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Table 8: Insertion and deletion metrics of corpus majority probability when explicands do not be-
long to the corpus class. All explanation target functions are based on dot product instead of
cosine similarity. Means (95% confidence intervals) across 5 experiment runs are reported. Higher
insertion and lower deletion values indicate better performance, respectively. Each method is a
combination of a feature attribution method and an explanation target function (e.g., COCOA under
RISE corresponds to feature attributions computed by RISE for the contrastive corpus similarity).
Performance results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

Label-Free 2.74e-04 ± 9.69e-05 5.42e-04 ± 1.12e-04 0.066 (0.003) 0.078 (0.004) 0.352 (0.024) 0.522 (0.029)
Contrastive Label-Free 2.75e-04 ± 1.00e-04 5.00e-04 ± 1.07e-04 0.064 (0.004) 0.078 (0.004) 0.347 (0.024) 0.529 (0.023)
Corpus 5.60e-04 ± 2.54e-04 4.13e-04 ± 8.00e-05 0.079 (0.004) 0.070 (0.004) 0.529 (0.018) 0.381 (0.026)
COCOA 1.58e-03 ± 4.99e-04 1.64e-04 ± 2.97e-05 0.100 (0.005) 0.060 (0.005) 0.657 (0.017) 0.210 (0.024)
Gradient SHAP

Label-Free 1.88e-04 ± 4.25e-05 6.01e-04 ± 1.13e-04 0.055 (0.005) 0.082 (0.006) 0.343 (0.016) 0.488 (0.020)
Contrastive Label-Free 2.03e-04 ± 3.73e-05 5.30e-04 ± 7.78e-05 0.053 (0.004) 0.082 (0.005) 0.353 (0.019) 0.478 (0.019)
Corpus 4.31e-04 ± 1.08e-04 4.56e-04 ± 9.36e-05 0.081 (0.008) 0.065 (0.006) 0.548 (0.036) 0.303 (0.012)
COCOA 1.43e-03 ± 3.30e-04 1.70e-04 ± 6.64e-05 0.119 (0.006) 0.047 (0.002) 0.592 (0.025) 0.234 (0.014)
RISE

Label-Free 3.64e-04 ± 8.02e-05 5.40e-04 ± 1.11e-04 0.040 (0.003) 0.079 (0.006) 0.311 (0.022) 0.450 (0.033)
Contrastive Label-Free 3.23e-04 ± 4.88e-05 6.25e-04 ± 1.01e-04 0.040 (0.003) 0.080 (0.005) 0.303 (0.026) 0.466 (0.024)
Corpus 5.19e-04 ± 1.06e-04 5.69e-04 ± 2.08e-04 0.070 (0.004) 0.056 (0.003) 0.452 (0.029) 0.294 (0.020)
COCOA 8.65e-04 ± 1.57e-04 3.06e-04 ± 5.43e-05 0.105 (0.005) 0.032 (0.002) 0.593 (0.028) 0.177 (0.016)
Random 4.87e-04 ± 9.50e-05 5.03e-04 ± 9.73e-05 0.070 (0.003) 0.070 (0.004) 0.406 (0.013) 0.407 (0.016)

N QUANTITATIVE EVALUATION RESULTS WITH MODEL PARAMETER
RANDOMIZATION.

It has been shown that feature attribution methods, especially those based on gradients, can be
undesirably invariant to model parameter randomization, suggesting that the attributions are not
related to the trained models (Adebayo et al., 2018). We performed additional experiments to show
that our empirical evaluation results do not suffer from this issue. We generated COCOA scores
with randomized models, where the parameters are randomized by sampling from truncated normal
distributions (as in Adebayo et al. (2018)), and then evaluated the performance of these COCOA
scores. As shown in Tables 9-12, the performance results of COCOA with randomized models
are different from and worse than the performance of COCOA with trained models. These results
suggest that COCOA performance is indeed sensitive to model parameter randomization and is
related to model parameters.

Table 9: COCOA Insertion and deletion metrics of contrastive corpus similarity when explicands
belong to the corpus class. Model parameters of randomized models were randomly sampled from
truncated normal distributions. Means (95% confidence intervals) across 5 experiment runs are
reported. Higher insertion and lower deletion values indicate better performance, respectively. Per-
formance results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

COCOA (trained model) 0.172 (0.002) 0.067 (0.002) 0.037 (0.002) 0.018 (0.002) 0.091 (0.006) -0.036 (0.013)
COCOA (randomized model) 0.148 (0.003) 0.147 (0.002) 0.025 (0.003) 0.026 (0.003) 0.040 (0.009) 0.038 (0.010)

Gradient SHAP

COCOA (trained model) 0.181 (0.004) 0.062 (0.001) 0.051 (0.002) 0.015 (0.002) 0.081 (0.010) -0.014 (0.007)
COCOA (randomized model) 0.148 (0.003) 0.147 (0.002) 0.026 (0.002) 0.026 (0.003) 0.041 (0.008) 0.039 (0.011)

RISE

COCOA (trained model) 0.195 (0.003) 0.080 (0.002) 0.068 (0.002) 0.019 (0.002) 0.083 (0.006) -0.028 (0.008)
COCOA (randomized model) 0.147 (0.004) 0.149 (0.003) 0.042 (0.002) 0.041 (0.002) 0.033 (0.006) 0.036 (0.005)

Random 0.115 (0.002) 0.114 (0.002) 0.028 (0.002) 0.029 (0.002) 0.038 (0.009) 0.039 (0.009)
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Table 10: COCOA Insertion and deletion metrics of contrastive corpus similarity when explicands
do not belong to the corpus class. Model parameters of randomized models were randomly sampled
from truncated normal distributions. Means (95% confidence intervals) across 5 experiment runs
are reported. Higher insertion and lower deletion values indicate better performance, respectively.
Performance results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

COCOA (trained model) 5.24e-03 ± 1.50e-03 -0.028 (0.001) 1.47e-03 ± 1.74e-03 -8.79e-03 ± 1.50e-03 0.048 (0.006) -0.076 (0.009)
COCOA (randomized model) -1.98e-03 ± 1.42e-03 -4.53e-03 ± 1.62e-03 -4.01e-03 ± 1.64e-03 -3.95e-03 ± 1.70e-03 -0.010 (0.010) -0.013 (0.008)

Gradient SHAP

COCOA (trained model) 3.86e-03 ± 1.76e-03 -0.027 (0.001) 5.65e-03 ± 2.02e-03 -0.012 (0.002) 0.032 (0.010) -0.067 (0.005)
COCOA (randomized model) -1.99e-03 ± 1.37e-03 -4.42e-03 ± 1.75e-03 -3.91e-03 ± 1.56e-03 -3.82e-03 ± 1.70e-03 -0.014 (0.009) -0.017 (0.009)

RISE

COCOA (trained model) 8.26e-03 ± 2.17e-03 -0.015 (0.001) 7.19e-03 ± 1.43e-03 -0.014 (0.001) 0.015 (0.007) -0.089 (0.003)
COCOA (randomized model) -2.08e-03 ± 1.43e-03 -4.42e-03 ± 1.64e-03 -3.57e-03 ± 1.40e-03 -4.61e-03 ± 1.61e-03 -0.040 (0.008) -0.036 (0.005)

Random -0.013 (0.001) -0.013 (0.001) -4.10e-03 ± 1.59e-03 -4.07e-03 ± 1.46e-03 -0.021 (0.007) -0.021 (0.007)

Table 11: COCOA Insertion and deletion metrics of corpus majority probability when explicands
belong to the corpus class. Model parameters of randomized models were randomly sampled from
truncated normal distributions. Means (95% confidence intervals) across 5 experiment runs are
reported. Higher insertion and lower deletion values indicate better performance, respectively. Per-
formance results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

COCOA (trained model) 0.422 (0.006) 0.119 (0.003) 0.386 (0.012) 0.230 (0.011) 0.807 (0.013) 0.330 (0.030)
COCOA (randomized model) 0.321 (0.005) 0.317 (0.007) 0.299 (0.011) 0.303 (0.009) 0.603 (0.017) 0.598 (0.019)

Gradient SHAP

COCOA (trained model) 0.445 (0.003) 0.123 (0.002) 0.508 (0.007) 0.211 (0.008) 0.788 (0.030) 0.419 (0.013)
COCOA (randomized model) 0.321 (0.005) 0.315 (0.007) 0.299 (0.008) 0.305 (0.009) 0.622 (0.021) 0.613 (0.019)

RISE

COCOA (trained model) 0.456 (0.009) 0.126 (0.001) 0.663 (0.006) 0.256 (0.006) 0.840 (0.009) 0.415 (0.025)
COCOA (randomized model) 0.321 (0.008) 0.322 (0.005) 0.455 (0.008) 0.433 (0.015) 0.649 (0.025) 0.662 (0.007)

Random 0.269 (0.003) 0.268 (0.002) 0.329 (0.013) 0.329 (0.010) 0.624 (0.018) 0.629 (0.018)

Table 12: COCOA Insertion and deletion metrics of corpus majority probability when explicands
do not belong to the corpus class. Model parameters of randomized models were randomly sampled
from truncated normal distributions. Means (95% confidence intervals) across 5 experiment runs
are reported. Higher insertion and lower deletion values indicate better performance, respectively.
Performance results of random attributions (last row) are included as benchmarks.

Attribution Method Imagenet & SimCLR CIFAR-10 & SimSiam MURA & ResNet

Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Integrated Gradients

COCOA (trained model) 1.69e-03 ± 5.07e-04 1.55e-04 ± 2.21e-05 0.099 (0.004) 0.059 (0.005) 0.647 (0.017) 0.213 (0.030)
COCOA (randomized model) 5.52e-04 ± 9.43e-05 4.54e-04 ± 3.29e-05 0.072 (0.004) 0.072 (0.005) 0.434 (0.018) 0.424 (0.006)

Gradient SHAP

COCOA (trained model) 1.56e-03 ± 4.32e-04 1.67e-04 ± 5.66e-05 0.122 (0.008) 0.045 (0.003) 0.592 (0.025) 0.236 (0.012)
COCOA (randomized model) 5.38e-04 ± 9.44e-05 4.58e-04 ± 4.48e-05 0.071 (0.004) 0.073 (0.005) 0.427 (0.022) 0.415 (0.016)

RISE

COCOA (trained model) 9.51e-04 ± 2.58e-04 3.60e-04 ± 1.40e-04 0.107 (0.007) 0.031 (0.002) 0.590 (0.027) 0.181 (0.014)
COCOA (randomized model) 5.30e-04 ± 1.14e-04 4.59e-04 ± 4.66e-05 0.070 (0.003) 0.057 (0.004) 0.364 (0.035) 0.375 (0.015)

Random 4.87e-04 ± 9.50e-05 5.03e-04 ± 9.73e-05 0.070 (0.003) 0.070 (0.004) 0.406 (0.013) 0.407 (0.016)
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O ADDITIONAL RESULTS FOR UNDERSTANDING DATA AUGMENTATIONS IN
SIMCLR

Original Flip Crop Flip Crop Grayscale Color Jitter Cutout Rotation

Figure 8: Original version and augmentations of English springer images with their class predictions
(top rows), along with the corresponding COCOA attributions (red for higher values and blue for
lower values) with each original image as the corpus and random images as the foil (bottom rows).
Cutout and rotation are not included in SimCLR training.
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Original Flip Crop Flip Crop Grayscale Color Jitter Cutout Rotation

Figure 9: Original version and augmentations of French horn images with their class predictions
(top rows), along with the corresponding COCOA attributions (red for higher values and blue for
lower values) with each original image as the corpus and random images as the foil (bottom rows).
Cutout and rotation are not included in SimCLR training.
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Original Flip Crop Flip Crop Grayscale Color Jitter Cutout Rotation

Figure 10: Original version and augmentations of parachute images with their class predictions (top
rows), along with the corresponding COCOA attributions (red for higher values and blue for lower
values) with each original image as the corpus and random images as the foil (bottom rows). Cutout
and rotation are not included in SimCLR training.
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