
LoRA-Mini: Adaptation Matrices Decomposition and Selective Training

Ayush Singh†, Rajdeep Aher†, Shivank Garg
Vision and Language Group, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India - 247667

ayush s@mt.iitr.ac.in , aher rp@ma.iitr.ac.in , shivank g@mfs.iitr.ac.in

Abstract

The rapid advancements in large language models (LLMs)
have revolutionized natural language processing, creating an
increased need for efficient, task-specific fine-tuning meth-
ods. Traditional fine-tuning of LLMs involves updating a
large number of parameters, which is computationally expen-
sive and memory-intensive. Low-Rank Adaptation (LoRA)
has emerged as a promising solution, enabling parameter-
efficient fine-tuning by reducing the number of trainable pa-
rameters. However, while LoRA reduces the number of train-
able parameters, LoRA modules still create significant stor-
age challenges. We propose LoRA-Mini, an optimized adap-
tation of LoRA that improves parameter efficiency by split-
ting low-rank matrices into four parts, with only the two inner
matrices being trainable. This approach achieves upto a 20x
reduction compared to standard LoRA in the number of train-
able parameters while preserving performance levels compa-
rable to standard LoRA, addressing both computational and
storage efficiency in LLM fine-tuning.

Introduction
The rapid growth of large language models (LLMs) such as
GPT-3 (Brown et al. 2020), GPT-4 (OpenAI et al. 2024),
Llama (Dubey, Jauhri, and Pandey 2024), and Mistral (Jiang
et al. 2023) has led to various advancements in the field
of natural language processing, enabling LLMs to achieve
high performance across various benchmarks such as IFEval
(Zhou et al. 2023), SQuAD (Rajpurkar et al. 2016) etc. How-
ever, the computational and memory costs involved in the
training of these models from scratch are substantial, pos-
ing significant challenges. Fine-tuning (Zhang et al. 2024) is
a popular method to adapt pre-trained models for specific
downstream tasks, but requires extensive resources when
tuning all the model parameters, making it impractical for
many applications. To address these limitations, researchers
developed Parameter-Efficient Fine-Tuning (PEFT) (Han
et al. 2024) techniques, which limit the number of adjustable
parameters during fine-tuning, achieving accuracy compara-
ble to full finetuning while significantly reducing both com-
putational and memory costs. Among PEFT approaches,
Low-Rank Adaptation(LoRA) (Hu et al. 2021) has emerged
as a widely adopted technique. The technique adapts large

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

models by adding trainable low-rank matrices to the model’s
layers. It builds on the observation that fine-tuning updates
often have low intrinsic dimensionality. By incorporating
this, LoRA achieves high efficiency without a major com-
promise in model performance, allowing for more scalable
adaptation of LLMs to diverse tasks. These advances high-
light LoRA’s role in balancing efficiency and effectiveness,
enabling widespread application of large-scale models in
resource-constrained environments.

Our approach builds on existing Parameter-Efficient Fine-
Tuning (PEFT) methods by targeting an even lower parame-
ter count, aiming to maintain model performance while fur-
ther minimizing memory usage.

Although deep networks may have a vast number of pa-
rameters, but only a small number of parameters signifi-
cantly impact the learning process. Hence, we refine the in-
trinsic rank within the current LoRA framework by decom-
posing the standard matrices A and B into two sub-matrices
each, with only one matrix from each pair being trainable.

Our experiments cover a range of models, including
BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019), and
T5 (Raffel et al. 2023), with a primary focus on perfor-
mance metrics from the GLUE (Wang et al. 2019) bench-
mark and English-Romanian translation task from WMT16
(Bojar et al. 2016) dataset. Our results show that LoRA-Mini
attains accuracy comparable to full fine-tuning approaches
while significantly reducing memory requirements. Our key
contributions include:

1. Evaluating the effectiveness of selectively freezing pa-
rameters within LoRA layers while maintaining model
quality.

2. Minimizing the number of trainable parameters relative
to earlier PEFT methods, while achieving performance
on par with full fine-tuning and LoRA.

3. Evaluating the scalability of our approach on diverse set
of tasks and models.

Related Work
Parameter-efficient fine-tuning has emerged as an essen-
tial approach for adapting large language models (LLMs)
without incurring high computational and memory costs.
Techniques such as Adapter-based methods (Houlsby et al.



Pretrained 
Weights


Pretrained 
Weights

Trainable

Frozen

LoRA

x

hh

LoRA-Mini(Ours)

x

Figure 1: A visual comparison of the LoRA and LoRA-Mini techniques.

2019), Prefix-tuning (Li and Liang 2021), and Prompt-
tuning (Lester, K., and T. 2021) provide alternatives to
conventional fine-tuning, allowing for task-specific adapta-
tion by inserting trainable parameters at selective layers.
Adapter-based methods introduce small bottleneck layers
to facilitate training while keeping core model parameters
fixed. However, most adapter layers can add inference la-
tency, as they must be processed sequentially due to their
additional depth within each Transformer block. Variants of
adapters attempt to mitigate this, such as by using a sin-
gle adapter layer per block with an additional LayerNorm
(Yang, Z., and M. 2020), or by reducing latency through
layer pruning and multi-task adaptation (Rücklé, H., and Z.
2020; Pfeiffer et al. 2021).

On the other hand, prompt-based methods like Prefix-
tuning face optimization challenges. Optimizing prompt-
based adaptations can be difficult, with performance sensi-
tivity to the number of trainable parameters and prone to
non-monotonic behavior (Li and Liang 2021). Additionally,
reserving part of the sequence length for adaptation may re-
duce the effective input length available for the downstream
task, potentially limiting performance.

Consequently, LoRA (Hu, K., and P. 2021) provides an
efficient approach to fine-tuning large language models by
focusing on low-rank updates to the model weights rather
than modifying the model parameters directly or adjust-
ing input sequences. Unlike adapter-based methods, which
add additional layers that can introduce latency in infer-
ence, or prompt-based methods, which often struggle with
prompt optimization, it preserves the model’s original archi-
tecture and sequence length, ensuring that the models’ struc-
ture remains unchanged during deployment. Nevertheless,
it faces a significant drawback: the large memory overhead
associated with storing low-rank matrices, which presents
challenges for deployment in resource-constrained environ-
ments.

Recent works have tried improving the original LoRA
framework for efficient language model adaptation. Some
significant works include LoRA-FA (Zhang et al. 2023)

which achieves 1.4x memory reduction by freezing the
projection-down matrix and training only the projection-up
matrix. Bayesian-LoRA (Yang et al. 2024) further enhances
efficiency by dynamically allocating ranks to layers based
on data requirements.

Our technique, however, introduces additional parame-
ter reduction from previous methods by decomposing ma-
trices A and B into auxiliary and trainable components
(Aaux, Atrain, Btrain, Baux), with only the middle matri-
ces being trainable. This substantially reduces the parameter
count.

Methodology
LoRA-Mini focuses on the introduction of selective training
within decomposed matrices. We divide each LoRA matrix
into a trainable and frozen part, allowing us to limit the up-
date space and execute controlled updates, where the frozen
outer matrices guide the training process. The mathematical
formulation of our approach can be expressed as follows:
Let AB ∈ Rd×k represent our target weight matrix where d
is input and k is output dimension. We decompose the LoRA
matrices into:

• Outer auxiliary matrices: Aaux ∈ Rd×a, Baux ∈ Rb×k

(frozen)
• Inner trainable matrices: Atrain ∈ Ra×r, Btrain ∈ Rr×b

(trainable)

Let x be the input to a layer. Then the output h from the
layer after applying LoRA-Mini becomes :

h = (W +Aaux ·Atrain ·Btrain ·Baux) · x (1)

In LoRA, given a pre-trained weight matrix W ∈ Rd×k,
the weight update ∆W is through two matrices, A ∈ Rd×r

and B ∈ Rr×k, where r ≪ min(d, k). This parameteriza-
tion leads to ∆W = AB, resulting in r × (d+ k) trainable
parameters, reducing the training overhead.

Our method extends this reduction further by limiting the
trainable parameters to r× (a+ b), where a and b are prede-
fined dimensional constraints, as detailed in later sections.



Method Parameters Rank STSB COLA MRPC RTE
FFT 125M - 90.77 80.54 89.46 74.01
LoRA 0.90M 8 88.49 80.53 87.50 62.81
LoRA 1.80M 16 89.11 80.24 87.50 67.14
LoRA 3.50M 32 89.87 82.35 85.78 68.95

Ours(D) 0.04M 8 89.62 81.00 86.52 69.31
Ours(D) 0.07M 16 89.51 81.50 88.23 72.92
Ours(D) 0.15M 32 89.55 82.17 86.76 74.72
Ours(D+A) 0.08M 8 89.62 82.35 87.01 70.75
Ours(D+A) 0.15M 16 89.67 82.84 86.02 69.31
Ours(D+A) 0.30M 32 90.36 83.00 86.52 68.23

Table 1: In this experiment, we use RoBERTabase. We report Pearson correlation for the STSB task and accuracy for the
remaining tasks. For all metrics, higher values indicate better performance. Green(or bold) entries denote the best and Blue(or
italics) denote the second best entries of a column

Method Parameters Rank STSB COLA MRPC RTE
FFT 110M - 88.74 81.69 82.11 64.98
LoRA 0.90M 8 86.44 81.69 76.47 63.90
LoRA 1.80M 16 87.00 79.96 81.62 61.73
LoRA 3.50M 32 86.96 79.29 80.15 68.95
Ours(D) 0.04M 8 86.21 81.78 82.33 67.87
Ours(D) 0.07M 16 88.35 80.82 83.57 64.26
Ours(D) 0.15M 32 87.13 81.40 82.59 61.01
Ours(D+A) 0.08M 8 88.02 79.29 78.92 67.14
Ours(D+A) 0.15M 16 88.25 79.58 81.37 64.26
Ours(D+A) 0.30M 32 87.98 80.82 84.31 65.70

Table 2: In this experiment, we use BERTbase : We report Pearson correlation for the STSB task and accuracy for the remaining
tasks. For all metrics, higher values indicate better performance. Green(or bold) entries denote the best and Blue(or italics)
denote the second best entries of a column

All matrices are initialized using the Kaiming method,
with a Kaiming coefficient of

√
5, ensuring weight variance

is scaled appropriately for stable gradient propagation. Our
approach yields several advantages. First, by constraining
updates to the inner matrices, while keeping outer matrices
fixed, we achieve substantial memory savings without sac-
rificing the models efficiency. Second, the weight update,
(∆W = AauxAtrainBtrainBaux) operates within a con-
trolled subspace(within inner matrices), enabling efficient
parameter optimization while maintaining model stability.

Experiments and Results
To do a robust evaluation of our approach, we broadly di-
vided our experiment into two categories.

First, we evaluate our approach on the NLU and NLI
tasks using the GLUE Benchmark (Wang et al. 2019) on
RoBERTa (Liu et al. 2019) and BERT (Devlin et al. 2019).
We particularly chose four tasks from the GLUE Bench-
mark: STSB (Cer et al. 2017), CoLA (Warstadt, Singh, and
Bowman 2019), MRPC (Dolan and Brockett 2005), and
RTE (Giampiccolo et al. 2007). The experiments were con-
ducted using the following configurations :
• Full fine-tuning of the entire model

• Standard LoRA applied to dense and attention layers
(rank values r = 4, 8, 16)

• LoRA-Mini applied only to dense layers
• LoRA-Mini applied to both dense and attention layers

We tested rank values of 8, 16, and 32, with a and b as
8, 16, 32, and 64. This enabled an effective comparison
of LoRA-Mini’s impact on feed-forward versus attention
mechanisms. We did not experiment with applying our ap-
proach exclusively to attention layers, as previous research
(Geva et al. 2021) has demonstrated that this would not yield
significant improvements in overall accuracy. From our ex-
periments, we observed that the configuration with a and
b as 64 performs consistently well. Thus, we reported re-
sults with varying ranks and keeping a and b constant in the
main paper. From Table 1 and Table 2, we can see that our
approach performs consistently at par or greater than full-
fine-tuning and LoRA. A comparison of rank with accuracy
when LoRA-Mini is applied to both dense and attention lay-
ers of RoBERTa is shown in Figure 2.

We also evaluate the performance of our approach on gen-
erative tasks, with a particular focus on language translation.
It is a significant benchmark for assessing model perfor-
mance in real-world applications, as it involves both under-



standing and generating human language. To better under-
stand how our approach scales with increasing model size,
we select two models with different capacities: T5-Small
and T5-Base. We fine-tuned these models on the English-
Romanian subset of the WMT16 dataset, a widely used re-
source for machine translation tasks.

We then evaluated the generated translations using the
BLEU (Papineni et al. 2002) and ROUGE-L (Lin 2004) met-
rics. The experimental setup closely follows the previous set,
but in this case, we applied LoRA-Mini to both the attention
and dense layers of the models. The detailed results from
these evaluations are presented in Table 3 and Table 4. These
show that LoRA-Mini consistently matches the performance
of both base LoRA and full fine-tuning on both BLEU and
ROUGE-L metrics.

These experiments clearly indicate that LoRA-Mini is a
reliable approach for both language generation and under-
standing tasks. It not only delivers competitive results in
these tasks but also reduces the parameter count consider-
ably compared to previous methods, which can lead to im-
proved efficiency and scalability. Results of all configura-
tions and additional analysis are provided in the Appendix.

8 16 32
60

70

80

90

100

r values

A
cc

ur
ac

y
(%

)

COLA
RTE

MRPC
STSB

Figure 2: Accuracy comparison across different values of r
for four tasks using LoRA-Mini applied to the Attention and
Dense layers of RoBERTa-Base. The graph reports average
of all combinations of a and b in that rank.

Method Params Rank BLEU ROUGEL
FFT 60M - 26.11 45.95
LoRA 0.14M 1 26.17 45.86
LoRA 0.29M 2 26.1 46.04
LoRA 0.59M 4 26.1 46.05
LoRA 1.2M 8 26.11 45.87
LoRA 2.3M 16 26.08 45.91

Ours 0.08M 8 26.01 45.62
Ours 0.16M 16 26.02 45.88
Ours 0.32M 32 25.82 45.54

Table 3: In this experiment, we use T5 Small. We report
BLEU, and ROUGEL. For all metrics, higher values indicate
better performance.

Method Params Rank BLEU ROUGEL
FFT 223M - 27.27 47.20
LoRA 0.38M 1 26.89 47.08
LoRA 0.76M 2 27.12 47.23
LoRA 1.50M 4 27.01 47.21
LoRA 3.0M 8 27.02 47.14
LoRA 6.1M 16 26.90 47.08

Ours 0.16M 8 26.83 46.98
Ours 0.32M 16 26.99 46.77
Ours 0.64M 32 26.92 46.78

Table 4: In this experiment, we use T5 Base. We report
BLEU and ROUGEL. For all metrics, higher values indi-
cate better performance.

Conclusion
We present LoRA-Mini as a parameter-efficient fine-tuning
approach, demonstrating significant improvements in mem-
ory efficiency and task performance. Our results indicate
that LoRA-Mini can achieve comparable or superior results
compared to LoRA and full fine-tuning while substantially
reducing the number of trainable parameters across a wide
range of tasks, making it an ideal solution for finetuning
LLMs in resource-constrained environments.

Limitations and Future Works
Due to computational constraints, we were unable to evalu-
ate our LoRA approach on larger tasks of GLUE benchmark
as well as on larger models such as LLaMA3.1-8B (Dubey,
Jauhri, and Pandey 2024), Mistral-7B (Jiang et al. 2023)
etc, or on more extensive benchmarks datasets like MMLU
(Hendrycks et al. 2021), Math10k (Hu et al. 2023), COM-
MONSENSE170K (Hu et al. 2023) etc. Expanding to these
larger models and benchmarks could provide a more com-
prehensive understanding of our method’s scalability and
performance in diverse domains and model sizes.

Future research could explore alternative matrix decom-
position methods, such as partitioning LoRA matrices into
more smaller components and experimenting with various
combinations of trainable and frozen sections. Another ap-
proach might involve freezing randomly selected matrices
(Zhu et al. 2024). Techniques like QR decomposition or sin-
gular value decomposition (SVD) could be used to initialize
these matrices, potentially enhancing performance. Further-
more, this approach could be tested to approximate feedfor-
ward networks (FFNs) (Zeng and Lee 2024). Investigating
a latent representation between LoRA matrices might also
increase parameter efficiency.

References
Bojar, O. r.; Chatterjee, R.; Federmann, C.; Graham, Y.;
Haddow, B.; Huck, M.; Jimeno Yepes, A.; Koehn, P.; Lo-
gacheva, V.; Monz, C.; Negri, M.; Neveol, A.; Neves, M.;
Popel, M.; Post, M.; Rubino, R.; Scarton, C.; Specia, L.;
Turchi, M.; Verspoor, K.; and Zampieri, M. 2016. Findings



of the 2016 Conference on Machine Translation. In Pro-
ceedings of the First Conference on Machine Translation,
131–198. Berlin, Germany: Association for Computational
Linguistics.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. arXiv:2005.14165.

Cer, D.; Diab, M.; Agirre, E.; Lopez-Gazpio, I.; and Spe-
cia, L. 2017. SemEval-2017 Task 1: Semantic Textual Sim-
ilarity Multilingual and Crosslingual Focused Evaluation.
In Bethard, S.; Carpuat, M.; Apidianaki, M.; Mohammad,
S. M.; Cer, D.; and Jurgens, D., eds., Proceedings of the 11th
International Workshop on Semantic Evaluation (SemEval-
2017), 1–14. Vancouver, Canada: Association for Computa-
tional Linguistics.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805.

Dolan, W. B.; and Brockett, C. 2005. Automatically Con-
structing a Corpus of Sentential Paraphrases. In Proceed-
ings of the Third International Workshop on Paraphrasing
(IWP2005).

Dubey, A.; Jauhri, A.; and Pandey, A. 2024. The Llama 3
Herd of Models. arXiv:2407.21783.

Geva, M.; Schuster, R.; Berant, J.; and Levy, O. 2021.
Transformer Feed-Forward Layers Are Key-Value Memo-
ries. arXiv:2012.14913.

Giampiccolo, D.; Magnini, B.; Dagan, I.; and Dolan, B.
2007. The Third PASCAL Recognizing Textual Entailment
Challenge. In Sekine, S.; Inui, K.; Dagan, I.; Dolan, B.;
Giampiccolo, D.; and Magnini, B., eds., Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and Para-
phrasing, 1–9. Prague: Association for Computational Lin-
guistics.

Han, Z.; Gao, C.; Liu, J.; Zhang, J.; and Zhang, S. Q. 2024.
Parameter-Efficient Fine-Tuning for Large Models: A Com-
prehensive Survey. arXiv:2403.14608.

Hendrycks, D.; Burns, C.; Basart, S.; Zou, A.; Mazeika, M.;
Song, D.; and Steinhardt, J. 2021. Measuring Massive Mul-
titask Language Understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR).

Houlsby, N.; Gane, A.; Al-Mamun, R. P. S.; S., E. D. S. D.;
S., J. O. E.; B., D. M.; and C., T. D. 2019. Parameter-
Efficient Transfer Learning for NLP. In Proceedings of
the 36th International Conference on Machine Learning
(ICML), 1720–1731. PMLR.

Hu, E.; K., Y.; and P., J. 2021. LoRA: Low-Rank Adap-
tation of Large Language Models. In Proceedings of the
2021 International Conference on Learning Representations
(ICLR).

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. LoRA: Low-Rank Adap-
tation of Large Language Models. arXiv:2106.09685.
Hu, Z.; Lan, Y.; Wang, L.; Xu, W.; Lim, E.-P.; Lee, R. K.-W.;
Bing, L.; and Poria, S. 2023. LLM-Adapters: An Adapter
Family for Parameter-Efficient Fine-Tuning of Large Lan-
guage Models. arXiv preprint arXiv:2304.01933.
Jiang, A. Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.;
Chaplot, D. S.; de las Casas, D.; Bressand, F.; Lengyel, G.;
Lample, G.; Saulnier, L.; Lavaud, L. R.; Lachaux, M.-A.;
Stock, P.; Scao, T. L.; Lavril, T.; Wang, T.; Lacroix, T.; and
Sayed, W. E. 2023. Mistral 7B. arXiv:2310.06825.
Lester, B.; K., R. B.; and T., J. 2021. The Power of Scale for
Parameter-Efficient Prompt Tuning. In Proceedings of the
59th Annual Meeting of the Association for Computational
Linguistics (ACL), 190–200. ACL.
Li, H.; and Liang, P. 2021. Prefix-Tuning: Optimizing Con-
tinuous Prompts for Generation. In Proceedings of the 38th
International Conference on Machine Learning (ICML),
5457–5467. PMLR.
Lin, C.-Y. 2004. ROUGE: A Package for Automatic Evalu-
ation of Summaries. In Text Summarization Branches Out,
74–81. Barcelona, Spain: Association for Computational
Linguistics.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. RoBERTa: A Robustly Optimized BERT Pretraining
Approach. arXiv:1907.11692.
OpenAI; Achiam, J.; Adler, S.; Agarwal, S.; and Ahmad, L.
2024. GPT-4 Technical Report. arXiv:2303.08774.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a Method for Automatic Evaluation of Machine Trans-
lation. In Isabelle, P.; Charniak, E.; and Lin, D., eds., Pro-
ceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, 311–318. Philadelphia, Pennsyl-
vania, USA: Association for Computational Linguistics.
Pfeiffer, J.; K., T.; A., R.; and B., J. 2021. Multi-Task Prompt
Tuning for Natural Language Processing. In Proceedings
of the 2021 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 7450–7461. ACL.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2023. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv:1910.10683.
Rajpurkar, P.; Zhang, J.; Lopyrev, K.; and Liang, P. 2016.
SQuAD: 100,000+ Questions for Machine Comprehension
of Text. In Su, J.; Duh, K.; and Carreras, X., eds., Pro-
ceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, 2383–2392. Austin, Texas:
Association for Computational Linguistics.
Rücklé, M.; H., T.; and Z., V. 2020. Parameter-Efficient
Multi-Task Learning for NLP. In Proceedings of the 58th
Annual Meeting of the Association for Computational Lin-
guistics (ACL), 2155–2163. ACL.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2019. GLUE: A Multi-Task Benchmark



and Analysis Platform for Natural Language Understanding.
arXiv:1804.07461.
Warstadt, A.; Singh, A.; and Bowman, S. R. 2019. Neural
Network Acceptability Judgments. arXiv:1805.12471.
Yang, A. X.; Robeyns, M.; Wang, X.; and Aitchison, L.
2024. Bayesian Low-rank Adaptation for Large Language
Models. arXiv:2308.13111.
Yang, Z.; Z., Z.; and M., K. 2020. LayerNorm is All You
Need. In Proceedings of the 8th International Conference
on Learning Representations (ICLR).
Zeng, Y.; and Lee, K. 2024. The Expressive Power of Low-
Rank Adaptation. arXiv:2310.17513.
Zhang, L.; Zhang, L.; Shi, S.; Chu, X.; and Li, B.
2023. LoRA-FA: Memory-efficient Low-rank Adaptation
for Large Language Models Fine-tuning. arXiv:2308.03303.
Zhang, S.; Dong, L.; Li, X.; Zhang, S.; Sun, X.; Wang,
S.; Li, J.; Hu, R.; Zhang, T.; Wu, F.; and Wang, G. 2024.
Instruction Tuning for Large Language Models: A Survey.
arXiv:2308.10792.
Zhou, J.; Lu, T.; Mishra, S.; Brahma, S.; Basu, S.; Luan, Y.;
Zhou, D.; and Hou, L. 2023. Instruction-Following Evalua-
tion for Large Language Models. arXiv:2311.07911.
Zhu, J.; Greenewald, K.; Nadjahi, K.; de Ocáriz Borde,
H. S.; Gabrielsson, R. B.; Choshen, L.; Ghassemi, M.;
Yurochkin, M.; and Solomon, J. 2024. Asymmetry in Low-
Rank Adapters of Foundation Models. arXiv:2402.16842.



Experimental Setup Details
Models :
• BERT 1- A bidirectional transformer model with 110 mil-

lion parameters, pre-trained on masked language model-
ing and designed for natural language understanding tasks.

• RoBERTa Base 2- An optimized version of BERT with
125 million parameters, featuring more extensive pre-
training, improving performance on a wide range of lan-
guage tasks.

• T5-Small 3- A smaller version of the Text-To-Text Trans-
fer Transformer (T5) with 60 million parameters, opti-
mized for efficiency on generative tasks.

• T5-Base 4- The base variant of T5 with 223 million pa-
rameters.

Benchmarks and Datasets :
• GLUE Dataset 5: GLUE, or General Language Un-

derstanding Evaluation, is a benchmark designed to as-
sess language understanding models across diverse NLP
tasks, including CoLA (Corpus of Linguistic Acceptabil-
ity), SST-2 (Stanford Sentiment Treebank), MRPC (Mi-
crosoft Research Paraphrase Corpus), STS-B (Seman-
tic Textual Similarity Benchmark), QQP (Quora Ques-
tion Pairs), MNLI (Multi-Genre Natural Language Infer-
ence), QNLI (Question Natural Language Inference), RTE
(Recognizing Textual Entailment), and WNLI (Winograd
NLI). Of these, we only train on 4 tasks, namely STSB,
COLA, MRPC, and RTE.

• WMT Dataset 6: The WMT-16 (Workshop on Machine
Translation 2016) benchmark is a standardized evaluation
framework for comparing translation models across mul-
tiple language pairs using reliable metrics like BLEU. In
this research, we use the Romanian-to-English subset of
WMT-16 to evaluate our model’s translation accuracy and
generalization across linguistic structures.

1huggingface.co/google-bert/bert-base-uncased
2huggingface.co/FacebookAI/roberta-base
3huggingface.co/google-t5/t5-small
4huggingface.co/google-t5/t5-base
5huggingface.co/datasets/nyu-mll/glue
6huggingface.co/datasets/wmt/wmt16



r a b Accuracy(D) Parameters(D) Percentage(D) Accuracy(D+A) Parameters(A+D) Percentage(A+D)
8 16 16 77.661% 11010 0.009% 80.058% 20226 0.016%
8 16 32 79.866% 15746 0.013% 81.016% 29570 0.024%
8 16 64 81.687% 25218 0.020% 81.592% 48258 0.039%
8 32 16 80.058% 15746 0.013% 80.345% 29570 0.024%
8 32 32 80.729% 20482 0.016% 80.345% 38914 0.031%
8 32 64 80.633% 29954 0.024% 82.934% 57602 0.046%
8 64 16 78.428% 25218 0.020% 79.866% 48258 0.039%
8 64 32 81.016% 29954 0.024% 82.646% 57602 0.046%
8 64 64 81.016% 39426 0.032% 82.359% 76290 0.061%

16 32 32 81.496% 39426 0.032% 82.359% 76290 0.061%
16 32 64 82.071% 58370 0.047% 83.317% 113666 0.091%
16 64 32 80.825% 58370 0.047% 81.975% 113666 0.091%
16 64 64 81.496% 77314 0.062% 82.838% 151042 0.121%
32 64 64 82.167% 153090 0.122% 82.934% 300546 0.240%

Table 5: RoBERTa-CoLA

r a b Accuracy(D) Parameters(D) Percentage(D) Accuracy(A+D) Parameters(A+D) Percentage(A+D)
8 16 16 67.148% 11010 0.009% 71.480% 20226 0.016%
8 16 32 67.870% 15746 0.013% 70.036% 29570 0.024%
8 16 64 70.036% 25218 0.020% 70.036% 48258 0.039%
8 32 16 64.982% 15746 0.013% 68.592% 29570 0.024%
8 32 32 67.148% 20482 0.016% 68.592% 38914 0.031%
8 32 64 75.090% 29954 0.024% 64.982% 57602 0.046%
8 64 16 65.704% 25218 0.020% 63.899% 48258 0.039%
8 64 32 67.870% 29954 0.024% 69.314% 57602 0.046%
8 64 64 69.314% 39426 0.032% 70.758% 76290 0.061%

16 32 32 68.953% 39426 0.032% 68.592% 76290 0.061%
16 32 64 71.119% 58370 0.047% 71.480% 113666 0.091%
16 64 32 71.119% 58370 0.047% 67.509% 113666 0.091%
16 64 64 72.924% 77314 0.062% 69.314% 151042 0.121%
32 64 64 74.729% 153090 0.122% 68.231% 300546 0.240%

Table 6: RoBERTa-RTE

r a b Accuracy(D) Parameters(D) Percentage(D) Accuracy(D+A) Parameters(A+D) Percentage(A+D)
8 16 16 84.069% 11010 0.009% 86.029% 20226 0.016%
8 16 32 84.804% 15746 0.013% 85.784% 29570 0.024%
8 16 64 87.255% 25218 0.020% 85.539% 48258 0.039%
8 32 16 83.578% 15746 0.013% 85.294% 29570 0.024%
8 32 32 86.029% 20482 0.016% 87.500% 38914 0.031%
8 32 64 87.500% 29954 0.024% 86.765% 57602 0.046%
8 64 16 84.804% 25218 0.020% 86.275% 48258 0.039%
8 64 32 85.539% 29954 0.024% 87.010% 57602 0.046%
8 64 64 86.520% 39426 0.032% 87.010% 76290 0.061%

16 32 32 87.745% 39426 0.032% 87.255% 76290 0.061%
16 32 64 85.294% 58370 0.047% 88.480% 113666 0.091%
16 64 32 85.784% 58370 0.047% 87.010% 113666 0.091%
16 64 64 88.235% 77314 0.062% 86.029% 151042 0.121%
32 64 64 86.765% 153090 0.122% 86.520% 300546 0.240%

Table 7: RoBERTa-MRPC



r a b Pearson (D) Parameters (D) Percentage (D) Pearson (A+D) Parameters (A+D) Percentage (A+D)
8 16 16 86.598% 10241 0.008% 87.252% 19457 0.016%
8 16 32 88.103% 14977 0.012% 89.141% 28801 0.023%
8 16 64 89.513% 24449 0.020% 89.820% 47489 0.038%
8 32 16 87.523% 14977 0.012% 87.731% 28801 0.023%
8 32 32 88.570% 19713 0.016% 88.505% 38145 0.031%
8 32 64 89.677% 29185 0.023% 89.779% 56833 0.045%
8 64 16 87.221% 24449 0.020% 88.249% 47489 0.038%
8 64 32 88.112% 29185 0.023% 89.606% 56833 0.045%
8 64 64 89.652% 38657 0.031% 89.629% 75521 0.060%

16 32 32 89.326% 38657 0.031% 89.611% 75521 0.060%
16 32 64 89.731% 57601 0.046% 89.761% 112897 0.090%
16 64 32 88.807% 57601 0.046% 89.179% 112897 0.090%
16 64 64 89.517% 76545 0.061% 89.677% 150273 0.120%
32 64 64 89.559% 152321 0.122% 90.369% 299777 0.240%

Table 8: RoBERTa-STSB

r a b Accuracy(D) Parameters(D) Percentage(D) Accuracy(D+A) Parameters(D+A) Percentage(D+A)
8 16 16 78.619% 11010 0.010% 80.35% 20226 0.018%
8 16 32 81.112% 15746 0.014% 79.58% 29570 0.027%
8 16 64 80.633% 25218 0.023% 79.67% 48258 0.044%
8 32 16 78.715% 15746 0.014% 81.21% 29570 0.027%
8 32 32 80.633% 20482 0.019% 81.21% 38914 0.035%
8 32 64 81.016% 29954 0.027% 79.67% 57602 0.052%
8 64 16 77.661% 25218 0.023% 79.77% 48258 0.044%
8 64 32 80.153% 29954 0.027% 81.59% 57602 0.052%
8 64 64 81.783% 39426 0.036% 79.29% 76290 0.069%

16 32 32 79.195% 39426 0.036% 82.26% 76290 0.069%
16 32 64 81.208% 58370 0.053% 82.45% 113666 0.103%
16 64 32 80.345% 58370 0.053% 80.54% 113666 0.103%
16 64 64 80.825% 77314 0.070% 79.58% 151042 0.137%
32 64 64 81.400% 153090 0.139% 80.82% 300546 0.273%

Table 9: BERT-CoLA

r a b Accuracy(D) Parameters(D) Percentage(D) Accuracy(D+A) Parameters(D+A) Percentage(D+A)
8 16 16 64.260% 11010 0.010% 64.982% 20226 0.018%
8 16 32 58.123% 15746 0.014% 65.343% 29570 0.027%
8 16 64 66.426% 25218 0.023% 64.621% 48258 0.044%
8 32 16 61.733% 15746 0.014% 64.621% 29570 0.027%
8 32 32 63.899% 20482 0.019% 67.148% 38914 0.035%
8 32 64 61.733% 29954 0.027% 67.870% 57602 0.052%
8 64 16 62.816% 25218 0.023% 64.260% 48258 0.044%
8 64 32 63.538% 29954 0.027% 64.982% 57602 0.052%
8 64 64 67.870% 39426 0.036% 67.148% 76290 0.069%

16 32 32 62.455% 39426 0.036% 67.870% 76290 0.069%
16 32 64 61.372% 58370 0.053% 66.065% 113666 0.103%
16 64 32 64.260% 58370 0.053% 67.870% 113666 0.103%
16 64 64 64.260% 77314 0.070% 64.260% 151042 0.137%
32 64 64 61.011% 153090 0.139% 65.704% 300546 0.273%

Table 10: BERT-RTE



r a b Accuracy(D) Parameters(D) Percentage(D) Accuracy(D+A) Parameters(D+A) Percentage(D+A)
8 16 16 81.127% 11010 0.010% 84.559% 20226 0.018%
8 16 32 81.373% 15746 0.014% 82.598% 29570 0.027%
8 16 64 82.843% 25218 0.023% 81.127% 48258 0.044%
8 32 16 79.167% 15746 0.014% 80.637% 29570 0.027%
8 32 32 83.088% 20482 0.019% 82.353% 38914 0.035%
8 32 64 82.598% 29954 0.027% 81.373% 57602 0.052%
8 64 16 79.167% 25218 0.023% 84.559% 48258 0.044%
8 64 32 81.863% 29954 0.027% 80.882% 57602 0.052%
8 64 64 83.333% 39426 0.036% 78.922% 76290 0.069%

16 32 32 83.088% 39426 0.036% 83.578% 76290 0.069%
16 32 64 83.088% 58370 0.053% 79.902% 113666 0.103%
16 64 32 84.804% 58370 0.053% 80.637% 113666 0.103%
16 64 64 83.578% 77314 0.070% 81.373% 151042 0.137%
32 64 64 82.598% 153090 0.139% 84.314% 300546 0.273%

Table 11: BERT-MRPC

r a b Pearson(D) Parameters(D) Percentage(D) Pearson(D+A) Parameters(D+A) Percentage(D+A)
8 16 16 85.75% 10241 0.009% 86.14% 19457 0.018%
8 16 32 86.88% 14977 0.014% 87.53% 28801 0.026%
8 16 64 87.75% 24449 0.022% 87.41% 47489 0.043%
8 32 16 85.36% 14977 0.014% 86.58% 28801 0.026%
8 32 32 86.71% 19713 0.018% 87.05% 38145 0.035%
8 32 64 86.94% 29185 0.027% 87.86% 56833 0.052%
8 64 16 85.86% 24449 0.022% 86.91% 47489 0.043%
8 64 32 86.64% 29185 0.027% 87.34% 56833 0.052%
8 64 64 86.21% 38657 0.035% 88.02% 75521 0.069%

16 32 32 87.26% 38657 0.035% 87.64% 75521 0.069%
16 32 64 86.63% 57601 0.052% 87.06% 112897 0.103%
16 64 32 87.37% 57601 0.052% 87.36% 113666 0.103%
16 64 64 88.35% 76545 0.070% 88.25% 150273 0.137%
32 64 64 87.13% 152321 0.138% 87.98% 299777 0.273%

Table 12: BERT-STSB

r a b Parameters Percentage bleu-1 bleu-2 bleu-3 rouge-1 rouge-2 rouge-L
8 16 16 20224 0.034% 31.90% 23.81% 18.17% 44.54% 26.57% 42.26%
8 16 32 30336 0.051% 33.63% 25.39% 19.57% 46.95% 28.60% 44.69%
8 16 64 50560 0.084% 34.23% 25.89% 20.01% 47.88% 29.42% 45.60%
8 32 16 30336 0.051% 32.66% 24.53% 18.84% 46.01% 27.81% 43.62%
8 32 32 40448 0.067% 34.03% 25.79% 19.94% 47.61% 29.31% 45.31%
8 32 64 60672 0.101% 34.36% 26.13% 20.29% 48.22% 29.92% 45.88%
8 64 16 50560 0.084% 33.19% 24.94% 19.12% 46.21% 27.83% 43.74%
8 64 32 60672 0.101% 34.15% 25.77% 19.88% 47.80% 29.31% 45.41%
8 64 64 80896 0.135% 34.27% 26.01% 20.15% 47.88% 29.56% 45.62%
16 32 32 80896 0.135% 33.92% 25.60% 19.75% 47.25% 28.95% 45.00%
16 32 64 121344 0.202% 34.54% 26.25% 20.34% 48.14% 29.77% 45.87%
16 64 32 121344 0.202% 34.07% 25.75% 19.89% 47.66% 29.36% 45.38%
16 64 64 161792 0.270% 34.27% 26.02% 20.19% 48.03% 29.89% 45.88%
32 64 64 323584 0.539% 34.09% 25.82% 19.98% 47.75% 29.52% 45.54%

Table 13: T5-Small



r a b Parameters Percentage bleu-1 bleu-2 bleu-3 rouge-1 rouge-2 rouge-L
8 16 16 40192 0.018% 34.63% 26.32% 20.42% 48.22% 29.76% 45.87%
8 16 32 60288 0.027% 34.85% 26.70% 20.80% 48.79% 30.70% 46.52%
8 16 64 100480 0.045% 34.96% 26.80% 20.89% 49.07% 30.99% 46.76%
8 32 16 60288 0.027% 34.46% 26.11% 20.22% 48.26% 30.02% 45.93%
8 32 32 80384 0.036% 35.04% 26.81% 20.97% 49.07% 31.08% 46.77%
8 32 64 120576 0.054% 34.84% 26.62% 20.75% 49.10% 30.93% 46.79%
8 64 16 100480 0.045% 34.78% 26.53% 20.63% 48.71% 30.50% 46.35%
8 64 32 120576 0.054% 34.91% 26.73% 20.88% 48.92% 30.91% 46.69%
8 64 64 160768 0.072% 35.16% 26.83% 20.88% 49.20% 30.94% 46.98%
16 32 32 160768 0.072% 35.01% 26.84% 21.00% 48.95% 30.97% 46.72%
16 32 64 241152 0.108% 34.82% 26.62% 20.77% 48.91% 30.67% 46.59%
16 64 32 241152 0.108% 35.21% 27.05% 21.17% 49.21% 31.14% 46.98%
16 64 64 321536 0.144% 35.18% 26.99% 21.12% 49.07% 30.98% 46.77%
32 64 64 643072 0.288% 35.09% 26.92% 21.08% 48.96% 31.04% 46.78%

Table 14: T5-Base


