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Abstract

Recent advances in text-to-vision generation excel in visual fidelity but struggle1

with compositional generalization and semantic alignment. Existing datasets2

are noisy and weakly compositional, limiting models’ understanding of complex3

scenes, while scalable solutions for dense, high-quality annotations remain a4

challenge. We introduce GENERATE ANY SCENE, a data engine that systematically5

enumerates scene graphs representing the combinatorial array of possible visual6

scenes. GENERATE ANY SCENE dynamically constructs scene graphs of varying7

complexity from a structured taxonomy of objects, attributes, and relations. Given8

a sampled scene graph, GENERATE ANY SCENE translates it into a caption for9

text-to-image or text-to-video generation; it also translates it into a set of visual10

question answers that allow automatic evaluation and reward modeling of semantic11

alignment. Using GENERATE ANY SCENE, we first design a self-improving12

framework where models iteratively enhance their performance using generated13

data. SDv1.5 achieves an average 4% improvement over baselines and surpassing14

fine-tuning on CC3M. Second, we also design a distillation algorithm to transfer15

specific strengths from proprietary models to their open-source counterparts. Using16

fewer than 800 synthetic captions, we fine-tune SDv1.5 and achieve a 10% increase17

in TIFA score on compositional and hard concept generation. Third, we create18

a reward model to align model generation with semantic accuracy at a low cost.19

Using GRPO algorithm, we fine-tune SimpleAR-0.5B-SFT and surpass CLIP-based20

methods by +5% on DPG-Bench. Finally, we apply these ideas to the downstream21

task of content moderation where we train models to identify challenging cases by22

learning from synthetic data.23

1 Introduction24

Despite the high-fidelity of modern generative models (text-to-image and text-to-video), we are yet25

to witness wide-spread adoption [1, 2, 3, 4, 5]. Controllability remains out of reach [6]. Generated26

content appears realistic but often falls short of semantic alignment [7, 8, 9, 10]. Users prompt models27

with a specific concept in mind. For example, when prompted to generate a scene of a “A black dog28

chasing after a rabbit that is eating the grass, in Van Gogh’s style, with starlight lightening”, some29

models are likely to generate an image of a dog but might miss the rabbit or get the style incorrect.30

We hypothesize that these limitations stem not only from architectural bottlenecks but more funda-31

mentally from the lack of structured, compositionally rich training data [3], especially those with32

uncommon compositions. Popular datasets such as LAION [11] and CC3M [12] predominantly33

consist of web-crawled image-caption pairs, which are inherently noisy, weakly compositional, and34

biased toward single-object, coarse-grained descriptions. Such datasets lack explicit grounding of35

object-attribute relations and multi-object interactions, restricting models’ ability to generalize to36
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complex visual scenes. Efforts to enhance caption quality [3, 13] have demonstrated that enhancing37

the compositional density and semantic richness of captions can significantly improve generative per-38

formance. Nevertheless, manual curation of such dense compositional annotations is labor-intensive,39

while automatic annotation methods (e.g., via MLMs) suffer from hallucination and semantic noise.40

Constructing a compositional dataset requires that we first define the space of the visual content.41

Scene graphs are one such representation of the visual space [14, 15, 16, 17, 18], grounded in42

cognitive science [19]. A scene graph represents objects in a scene as individual nodes in a graph.43

Each object is modified by attributes, which describe its properties. For example, attributes can44

describe the material, color, size, and location of the object in the scene. Finally, relationships are45

edges that connect the nodes. They define the spatial, functional, social, and interactions between46

objects [20]. For example, in a living room scene, a “table” node might have attributes like “wooden”47

or “rectangular” and be connected to a “lamp” node through a relation: “on top of”. This systematic48

scene graph structure provides simple yet effective ways to define and model the scene. As such,49

scene graphs are an ideal foundation for systematically defining the compositional space of visual50

content in text-to-vision generation.51

We introduce GENERATE ANY SCENE, a system capable of efficiently enumerating the space of52

scene graphs representing a wide range of visual scenes. GENERATE ANY SCENE composes scene53

graphs of any structure using a rich taxonomy of visual elements, translating each scene graph into an54

input caption and visual question answers to evaluate the output image or video. In particular, we first55

construct a rich taxonomy of visual concepts consisting of 28, 787 objects, 1, 494 attributes, 10, 49256

relations, 2, 193 scene attributes from various sources. Based on these assets, GENERATE ANY57

SCENE can synthesize an almost infinite number of scene graphs of varying complexity [21]. Besides,58

GENERATE ANY SCENE allows configurable scene graph generation. For example, evaluators can59

specify the complexity level of the scene graph to be generated or provide a seed scene graph to be60

expanded. By automating these steps, our system ensures both scalability and adaptability, providing61

researchers and developers with diverse, richly detailed scene graphs and corresponding captions62

tailored to their specific needs. We also conduct comprehensive text-to-vision evaluations using our63

generated captions, as detailed in Appendix A.64

We show that GENERATE ANY SCENE can allow generation models to self-improve. Our diverse65

captions can facilitate a framework to iteratively improve Text-to-Vision generation models using66

their own generations. Given a model, we generate multiple images, identify the highest-scoring one,67

and use it as new fine-tuning data to improve the model itself. We fine-tune SDv1.5 [22] and achieve68

an average of 4% performance boost compared with original models, and this method is even better69

than fine-tuning with the same amount of real images and captions from the Conceptual Captions70

CC3M over different benchmarks.71

We also use GENERATE ANY SCENE to design targeted distillation algorithms. Using our evaluations,72

we identify limitations in open-sourced models that their proprietary counterparts excel at. Next,73

we distill these specific capabilities from proprietary models. For example, DaLL-E 3 [3] excels74

particularly in generating composite images with multiple parts. We distill this capability into SDv1.5,75

effectively bridging the gap between DaLL-E 3 and SDv1.5. After targeted fine-tuning, SDv1.576

achieves a 10% increase in TIFA score [23] for compositional tasks and hard concept generation.77

Then we propose a low-cost scene graph-based reward model for RLHF [24] in text-to-image78

generation. By leveraging synthetic scene graphs generated by GENERATE ANY SCENE, we generate79

exhaustive question-answer pairs that cover all objects, attributes, and relationships in the caption.80

Our method enables fine-grained, compositional reward modeling without manual annotation or81

heavy LLM inference. With GRPO [25], we fine-tune SimpleAR-0.5B-SFT [26] using a scene graph82

reward model, achieving better compositional alignment than CLIP-based methods [27] (+5% on83

DPG-Bench [28]).84

Finally, we apply GENERATE ANY SCENE to the downstream application of content moderation.85

Content moderation is a vital application, especially as Text-to-Vision generation models improve.86

A key challenge lies in the limited diversity of existing training data. To address this, we leverage87

GENERATE ANY SCENE to generate diverse and compositional captions, creating synthetic training88

data that complements existing datasets. By retraining a ViT-T [29] detector with our enriched dataset,89

we enhance its detection performance, particularly in cross-model and cross-dataset scenarios.90
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2 Generate Any Scene91

In this section, we present GENERATE ANY SCENE (Figure 1), a data engine that systematically92

synthesizes diverse scene graphs in terms of both structure and content and translates them into93

corresponding captions.94

Scene graph. A scene graph is a structured representation of a visual scene, where objects are95

represented as nodes, their attributes (such as color and shape) are properties of those nodes, and the96

relationships between objects (such as spatial or semantic connections) are represented as edges. In97

recent years, scene graphs have played a crucial role in visual understanding tasks, such as those98

found in Visual Genome [14] and GQA [30] for visual question answering (VQA). Their utility99

has expanded to various Text-to-Vision generation tasks. For example, the DSG [31] and DPG [10]100

benchmarks leverage scene graphs to evaluate how well generated images align with captions.101

Taxonomy of visual elements. To construct a scene graph, we use three main metadata types:102

objects, attributes, and relations. We further introduce scene attributes that capture global visual103

contexts, such as art style, to facilitate comprehensive caption synthesis. The statistics and source of104

our metadata are shown in Table 1. Additionally, we build a hierarchical taxonomy that categorizes105

metadata into distinct levels and types, enabling fine-grained analysis. This structure supports precise106

content synthesis, from broad concepts like “flower” to fine-grained instances such as “daisy.”107

Table 1: Summary of the quantities and sources of visual elements.

Metadata Type Number Source

Objects 28,787 WordNet [32]
Attributes 1,494 Wikipedia [33], etc.
Relations 10,492 Synthetic Visual Genome [34]
Scene Attributes 2,193 Places365 [35], etc.

2.1 Generating data with scene graphs108

Step 1: Scene graph structure enumeration and query. Our engine first generates and stores109

a variety of scene graph structures based on a specified level of structural constraints, such as110

complexity [36], average degree and the number of connected components. defined by the total111

number of objects, relationships, and attributes in each graph. The process begins by determining112

the number of object nodes, and then by systematically enumerating different combinations of113

relationships among these objects and their associated attributes. Once all graph structures satisfying114

the given constraints are enumerated, they are stored in a database for later use. This enumeration115

process is executed only once for each combination of structural parameters, allowing us to efficiently116

query the database for suitable templates when needed.117

Step 2: Populate the scene graph structure with metadata. Given a generated scene graph118

structure, the next step involves populating the graph with metadata. For each object node, attribute119

node, and relation edge, we sample the corresponding content from our metadata. This process is120

highly customizable and controllable: users can define the topics and types of metadata to include,121

for instance, by selecting only commonsense metadata or specifying relationships between particular122

objects. By determining the scope of metadata sampling, we can precisely control the final content of123

the captions and easily extend the diversity and richness of scene graphs by adding new metadata.124

Step 3: Sample scene attributes. We also include scene attributes that describe aspects such as the125

art style, viewpoint, time span (for video), and 3D attributes (for 3D content). These scene attributes126

are sampled directly from our metadata, creating a list that provides contextual details to enrich the127

description of the visual content.128

Step 4: Translate scene graph to caption. We introduce an algorithm that converts scene graphs129

and a list of scene attributes into captions. The algorithm processes the scene graph in topological130

order, transforming each object, its attributes, and relational edges into descriptive text. To maintain131

coherence, it tracks each concept’s occurrence, distinguishing objects with identical names using132

terms like “the first” or “the second.” Objects that have been previously referenced without new133
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Figure 1: The generation pipeline of GENERATE ANY SCENE. Step 1: Enumerate diverse scene
graph structures under user-defined constraints. Step 2: Populate structures with sampled objects,
attributes, and relations. Step 3: Sample scene attributes such as style, perspective, or time span.
Step 4: Translate scene graph and attributes into coherent captions. Step 5: Automatically generate
QA pairs covering all elements for evaluation and reward modeling.

relations are skipped to avoid misreferencing. This approach enhances caption clarity by preventing134

repetition and maintaining a logical reference.135

Step 5: Convert scene graph to a series of question-answer pairs. Given a synthetic scene graph,136

GENERATE ANY SCENE supports systematically enumerating exhaustive question-answer (QA)137

pairs that cover every compositional element. For instance, GENERATE ANY SCENE can generate138

questions about object attributes (e.g., What color is the sphere?), spatial relationships (e.g., What is139

to the left of the cube?), and so on, where each answer corresponds to a node (object or attribute)140

or an edge (relationship) in the scene graph. This method ensures comprehensive coverage of all141

objects, attributes, and relationships described in the caption, with negligible computational overhead.142

By automating this process, one can not only leverage VQA-based metrics [37, 31] to evaluate the143

generated images, but also construct a fine-grained, compositional reward model without requiring144

manual annotations or costly LLM inference.145

3 Self-Improving models with synthetic captions146

With GENERATE ANY SCENE, we develop a self-improvement framework to improve generative147

capabilities. By generating scalable compositional captions from scene graphs, GENERATE ANY148

SCENE expands the textual and visual space, allowing for a diversity of synthetic images that extend149

beyond real-world scenes. Our goal is to utilize these richly varied synthetic images to further boost150

model performance.151

Iterative self-improving framework. Inspired by DreamSync [39], we designed an iterative self-152

improving framework using GENERATE ANY SCENE with SDv1.5 as the baseline model. With153

VQA Score, which shows strong correlation with human evaluations on compositional images [37],154

we guide the model’s improvement throughout the process. Specifically, GENERATE ANY SCENE155

generates 3 → 10K captions across three epochs. For each caption, SDv1.5 generates 8 images, and156

the image with the highest VQA Score is selected. From each set of 10K optimal images, we then157

select the top 25% (2.5K image-caption pairs) as the training data for each epoch. In subsequent158
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Figure 2: Results for Self-Improving Models. Average VQA score of SDv1.5 fine-tuned on different
data across 1K GENERATE ANY SCENE image/video evaluation set and GenAI-Bench image/video
benchmark [38].

epochs, we use the fine-tuned model from the prior iteration to generate new images. We employ159

LoRA [40] for parameter-efficient fine-tuning.160

Baselines. We conduct comparative experiments with the CC3M dataset, which comprises high-161

quality and diverse real-world image-caption pairs [12]. We randomly sample 3 → 10K captions from162

CC3M, applying the same top-score selection strategy for iterative fine-tuning of SDv1.5. Additionally,163

we include a baseline using random-sample fine-tuning strategy to validate the advantage of our164

highest-scoring selection-based strategy. We evaluate our self-improving pipeline on Text-to-Vision165

generation benchmarks, including GenAI Bench [38]. For the Text-to-Video generation task, we use166

Text2Video-Zero as the baseline model, substituting its backbone with the original SDv1.5 and our167

fine-tuned SDv1.5 models.168

Fine-tuning with our synthetic captions can surpass high-quality real-world image-caption169

data. Our results show that fine-tuning with GENERATE ANY SCENE-generated synthetic data170

consistently outperforms CC3M-based fine-tuning across Text-to-Vision generation tasks (Figure 2),171

achieving the highest gains with our highest-scoring selection strategy. This highlights GENERATE172

ANY SCENE’s scalability and compositional diversity, enabling models to effectively capture complex173

scene structures. Additional experiment settings and results are in Appendix C.174

4 Distilling targeted capabilities175

Although self-improving with GENERATE ANY SCENE shows clear advantages over high-quality176

real-world datasets, its efficiency is inherently limited by the model’s own generation capabilities. To177

address this, we leverage the taxonomy and systematical generation capabilities within GENERATE178

ANY SCENE to identify specific strengths of proprietary models (DaLL-E 3), and distill these179

capabilities into open-source models. More details are in Appendix D.180

We evaluate multiple models using GENERATE ANY SCENE controllably generated captions and181

observe that DaLL-E 3 achieves TIFA Score 1.5 to 2 times higher than those of other models. As182

shown in Figure 4a, when comparing TIFA Score across captions with varying numbers of elements183

(objects, relations, and attributes), DaLL-E 3 counterintuitively maintains consistent performance184

regardless of element count. The performance of other models declines as the element count increases,185

which aligns with expected compositional challenges. We suspect that these differences are primarily186

due to DaLL-E 3’s advanced capabilities in compositionality and understanding hard concepts,187

which ensures high faithfulness across diverse combinations of element types and counts.188

Distilling compositionality from DaLL-E 3. When analyzing model outputs from our synthetic189

captions, we find that DaLL-E 3 tends to produce straightforward combinations of multiple objects190

(Figure 3). In contrast, open-source models like SDv1.5 often omit objects from the captions, despite191

being capable of generating each one individually. This difference suggests that DaLL-E 3 may192

benefit from training data emphasizing multi-object presence, even without detailed layout or object193

interaction. Such training likely underpins DaLL-E 3’s stronger performance on metrics like TIFA194

Score and VQA Score that prioritize object inclusion. To effectively distill these compositional195
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Figure 3: Examples for Distilling Capabilities. Examples of images generated by DaLL-E 3, the
original SDv1.5, and the fine-tuned versions. The left four captions demonstrate fine-tuning with
multi-object captions generated by GENERATE ANY SCENE for better compositionality, while the
right two columns focus on understanding hard concepts.

abilities into SDv1.5, we employ GENERATE ANY SCENE for targeted synthesis of 778 multi-object196

captions, paired with images generated by DaLL-E 3, for finetuning SDv1.5.197

Distilling hard concepts understanding from DaLL-E 3. Figure 3 shows that DaLL-E 3 is capable198

not only of handling multi-object generation but also of understanding and generating rare and hard199

concepts, such as a specific species of flower. We attribute this to its training with proprietary real-200

world data. Using the taxonomy of GENERATE ANY SCENE, we compute model performance on each201

concept by averaging generation scores across captions containing that concept. Accumulating results202

through the taxonomy, we identify the 100 concepts where SDv1.5 shows the largest performance203

gap relative to DaLL-E 3. For distilling, we generate 778 captions incorporating these hard concepts204

with other elements, and use DaLL-E 3 to produce corresponding images.205

Baselines. For the baseline, we randomly synthesize 778 captions using GENERATE ANY SCENE206

paired with DaLL-E 3-generated images to fine-tune the model. To evaluate model improvements,207

we generate another 1K multi-object captions and 1K hard-concept captions separately.208

(a) Distilling compositionality
from DaLL-E 3: Model results on
TIFA vs. total element numbers in
captions in 10K general GENERATE
ANY SCENE captions.

(b) Distilling compositionality
from DaLL-E 3: Model results on
TIFA vs. total element numbers
in captions in 1K multi-object
GENERATE ANY SCENE captions.

(c) Distilling hard concepts under-
standing from DALL-E 3: Models’
average TIFA Score performance
over captions and hard concepts in
1K hard concepts GENERATE ANY
SCENE captions.

Figure 4: Results for Distilling Capabilities. The left two figures show the results for Distilling
compositionality, while the rightmost figure shows the results for Distilling hard concepts under-
standing from DALL-E 3.
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Figure 5: Comparison of generated images. Our reward model enables image generation with
better semantic alignment, realism, and visual quality than baselines.

Targeted caption synthesis via GENERATE ANY SCENE enables effective distillation of composi-209

tional abilities and hard concept understanding. We analyze images generated by SDv1.5 before210

and after fine-tuning on high-complexity captions (Figure 3). Surprisingly, with fewer than 1K LoRA211

fine-tuning steps, SDv1.5 effectively learns DaLL-E 3 ’s capability to arrange and compose multiple212

objects within a single image. Quantitatively, Figure 4b shows a 10% improvement in TIFA Score213

after targeted fine-tuning, surpassing the performance of the randomly fine-tuned model. On a broader214

set of 10K GENERATE ANY SCENE-generated captions, the targeted fine-tuned model consistently215

outperforms randomly fine-tuned and original counterparts across complex scenes (Figure 4a). These216

results confirm not only the effectiveness but also the scalability and efficiency of GENERATE ANY217

SCENE. Also, the results in Figure 4c show that our targeted fine-tuning with hard concepts leads to218

improved model performance, reflected in higher average scores across captions and increased scores219

for each challenging concept.220

5 Reinforcement learning with a synthetic reward function221

Reinforcement Learning with Human Feedback (RLHF) has become an increasingly popular fine-222

tuning strategy in text-to-image generation [41, 42, 26]. However, defining an effective reward model223

that accurately captures semantic alignment for text-to-image generation remains an open challenge.224

Existing reward models like CLIP offer only coarse-grained image-text similarity signals, which fall225

short in assessing compositional correctness and lack interpretability. Alternative approaches have226

explored using visual question answering (VQA) as a proxy for evaluating semantic alignment, aiming227

for finer-grained assessments, yet require either labor-intensive datasets with dense annotations or228

large volumes of contextually relevant questions via advanced LLMs. Leveraging its structured scene229

graph synthesis capabilities, GENERATE ANY SCENE offers a scalable alternative by producing230

exhaustive semantic queries with negligible overhead, enabling low-cost, compositional reward231

modeling (Sec 2.1).232

Experiment setup. Building on this scene graph-based reward modeling strategy, we adopt Group233

Relative Policy Optimization (GRPO) as our reinforcement learning algorithm. We fine-tune the234

SimpleAR-0.5B-SFT model for one epoch using 10K captions generated by GENERATE ANY SCENE,235

each paired with their scene graph-derived QA sets. For reward evaluation, we use Qwen2.5-VL-3B, a236

lightweight open-source vision-language model, to answer these QA pairs given the model-generated237

images. The reward is computed as the accuracy across all questions. This fine-grained, scene238

graph-aligned reward provides precise feedback on compositional faithfulness. As a baseline, we239

compare against SimpleAR-0.5B-RL, trained with CLIP-based rewards on 11K captions from real240

world datasets for one epoch. We evaluate our scene graph-based reward model on three benchmarks:241

DPG-Bench [10], GenEval [9], and GenAI-Bench [38]. More details are in Appendix E.242

GENERATE ANY SCENE rewards outperform CLIP. As shown in Table 2, our method outperforms243

both SFT and CLIP-RL models and achieves a significant improvement, demonstrating superior244
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compositional faithfulness driven by explicit scene graph rewards. Importantly, this performance gain245

is directly enabled by the GENERATE ANY SCENE engine, which constructs explicit scene graphs246

to generate compositional captions. GENERATE ANY SCENE provides a structured and cognitively247

aligned visual representation, from which we derive exhaustive QA pairs with minimal additional248

cost. Combined with lightweight VLM judge, this approach offers a scalable, low-cost solution for249

semantic-level reward modeling.250

Table 2: Evaluation on the DPG, GenEval and GenAI benchmark. GRPO training with our reward
model outperforms both SFT baseline and CLIP-RL models. TO: two objects, P: position, CA: color
attribute.

Method DPG-Bench GenEval GenAI-Bench

Global Relation Overall TO P CA Overall Basic Advanced All

SimpleAR-0.5B-SFT 85.02 86.59 78.48 0.73 0.22 0.23 0.53 0.74 0.60 0.66
SimpleAR-0.5B-RL (Clip) 86.64 88.51 79.66 0.82 0.26 0.38 0.59 0.75 0.60 0.67
SimpleAR-0.5B-RL (Ours) 88.46 90.13 80.50 0.81 0.31 0.38 0.61 0.75 0.61 0.68

6 Improving generated-content detection251

Advances in Text-to-Vision generation underscore the need for effective content moderation [43].252

Major challenges include the lack of high-quality and diverse datasets and the difficulty of generalizing253

detection across models Text-to-Vision generation [44, 45]. GENERATE ANY SCENE addresses these254

issues by enabling scalable, systematical generation of compositional captions, increasing the diversity255

and volume of synthetic data. This approach enhances existing datasets by compensating for their256

limited scope-from realistic to imaginative-and variability.257

Experiment setup. To demonstrate GENERATE ANY SCENE’s effectiveness in training generated258

content detectors, we used the D3 dataset [46] as a baseline. We sampled 5K captioned real and259

SDv1.4-generated image pairs from D3 and generated 5K additional images with GENERATE ANY260

SCENE captions. We trained a ViT–T [47] model with a single-layer linear classifier, and compared261

models trained with samples solely from D3 against those trained with samples GENERATE ANY262

SCENE and D3.263

GENERATE ANY SCENE improves generated content detectors. We evaluate the detector’s264

generalization on the GenImage [48] validation set and images generated using GENERATE ANY265

SCENE captions. Figure 6 demonstrates that combining GENERATE ANY SCENE-generated images266

with real-world captioned images consistently enhances detection performance, particularly across267

cross-model scenarios and diverse visual scenes. More details are in Appendix F.268

(a) In-domain testing (Same
Model - SD v1.4): Detection results
on images generated by SD v1.4
using the GenImage dataset.

(b) In domain testing (cross-
model):Average detection results on
images generated by multiple mod-
els using our captions.

(c) Out of domain: Average de-
tection results on images generated
by multiple models using captions
from the GenImage dataset.

Figure 6: Results for Application 4: Generated content detector. Comparison of detection
performance across different data scales using D3 alone versus the combined D3 + GENERATE ANY
SCENE training set in cross-model and cross-dataset scenarios.

7 Comprehensive evaluation with GENERATE ANY SCENE269

We conduct extensive evaluations of text-to-vision models using GENERATE ANY SCENE. Specifi-270

cally, we synthesize 10K captions for text-to-image, 10K for text-to-video, and 1K for text-to-3D,271
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covering diverse scene structures and content topics. We evaluate 12 text-to-image, 9 text-to-video,272

and 5 text-to-3D models. Evaluations combine GENERATE ANY SCENE synthetic scene graphs with273

existing metrics (e.g., CLIP Score [49], VQA Score [37], TIFA Score [23, 31]) to assess semantic274

similarity, faithfulness, and human preference alignment. Our key findings include: (1) DiT-backbone275

text-to-image models align more closely with input captions than UNet-backbone models. (2) Text-276

to-video models struggle with balancing dynamics and consistency, while both text-to-video and277

text-to-3D models show notable gaps in human preference alignment. Additionally, we leverage278

GENERATE ANY SCENE’s controllable caption generation to conduct fine-grained evaluations. These279

analyses cover varying levels of perplexity, scene complexity, and commonsense reasoning, as well280

as performance across different content categories. Details are in Appendix A.281

8 Related work282

Text-to-Vision generation models. Text-to-Image generation advances are driven by diffusion283

models and LLMs. Some open-source models [22, 50, 51, 52, 53, 54] use UNet backbones to284

refine images iteratively. In parallel, Diffusion Transformers (DiTs) architectures[55, 56, 57, 58]285

have emerged as a better alternative in capturing long-range dependencies and improving coherence.286

Proprietary models like DALL-E 3 [3] and Imagen 3 [59] still set the state-of-the-art. Based on Text-to-287

Image generation method, Text-to-Video generation models typically utilize time-aware architectures288

to ensure temporal coherence across frames [60, 61, 62, 63, 64, 65, 66, 67]. In Text-to-3D generation,289

recent proposed models [4, 68, 69, 70, 71] integrate the diffusion models with Neural Radiance Fields290

(NeRF) rendering to generate diverse 3D objects. Recent studies [26, 42, 72, 73] have also explored291

the integration of image generation into a unified multimodal language model (MLM) framework292

based on auto-regressive transformer architectures, demonstrating promising improvements in both293

performance and efficiency.294

Synthetic captions for Text-to-Vision generation. Captions for Text-to-Vision generation models295

vary greatly in diversity, complexity, and compositionality. This variation makes it challenging296

and costly to collect large-scale and diverse captions written by humans. Consequently, synthetic297

captions have been widely used for both training [74, 39, 75, 76, 8, 77, 78, 79] and evaluation298

purposes [7]. For example, training methods like LLM-Grounded Diffusion [74] leverage LLM-299

generated captions to enhance the model’s understanding and alignment with human instruction. For300

evaluation, benchmarks such as T2I-CompBench [7] and T2V-CompBench [8] utilize benchmarks301

generated by LLMs. However, LLMs are hard to control and may introduce exhibit systematic bias.302

In this work, we propose a programmatic scene graph-based data engine that can generate infinitely303

diverse captions for improving Text-to-Vision generation models.304

Finetuning techniques for Text-to-Vision generation. To accommodate the diverse applications305

and personalization needs in text-to-vision models, numerous fine-tuning techniques have been306

developed. LoRA [40] reduces fine-tuning costs via low-rank weight updates, while Textual Inver-307

sion [80, 81] introduces new word embeddings for novel concepts without altering core parameters.308

DreamBooth [82] adapts models to specific subjects or styles using a few personalized images, and309

DreamSync [39] enables models to self-improve by learning from their own high-quality outputs.310

Recently, RLHF [26, 41, 42] in Text-to-Vision generation has shown promise as an efficient fine-311

tuning strategy. In this work, we use several fine-tuning techniques with GENERATE ANY SCENE to312

improve Text-to-Vision generation models.313

9 Conclusion314

We present GENERATE ANY SCENE, a system leveraging scene graph programming to generate315

diverse and compositional synthetic captions for Text-to-Vision generation tasks. It extends beyond316

existing real-world caption datasets to include comprehensive scenes and even implausible scenarios.317

To demonstrate the effectiveness of GENERATE ANY SCENE, we explore four applications: (1)318

self-improvement by iteratively optimizing models, (2) distillation of proprietary model strengths into319

open-source models, (3) a scene-graph-based efficient reward model within the GRPO, and (4) robust320

content moderation with diverse synthetic data. GENERATE ANY SCENE highlights the importance321

of synthetic data in improving Text-to-Vision generation, and addresses the need to systematically322

define and scalably produce the space of visual scenes.323
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NeurIPS Paper Checklist975

The checklist is designed to encourage best practices for responsible machine learning research,976

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove977

the checklist: The papers not including the checklist will be desk rejected. The checklist should978

follow the references and follow the (optional) supplemental material. The checklist does NOT count979

towards the page limit.980

Please read the checklist guidelines carefully for information on how to answer these questions. For981

each question in the checklist:982

1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.• You should answer [Yes] , [No] , or [NA] .983

• [NA] means either that the question is Not Applicable for that particular paper or the984

relevant information is Not Available.985

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).986

The checklist answers are an integral part of your paper submission. They are visible to the987

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it988

(after eventual revisions) with the final version of your paper, and its final version will be published989

with the paper.990

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.991

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a992

proper justification is given (e.g., "error bars are not reported because it would be too computationally993

expensive" or "we were unable to find the license for the dataset we used"). In general, answering994

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we995

acknowledge that the true answer is often more nuanced, so please just use your best judgment and996

write a justification to elaborate. All supporting evidence can appear either in the main paper or the997

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification998

please point to the section(s) where related material for the question can be found.999

IMPORTANT, please:1000

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",1001

• Keep the checklist subsection headings, questions/answers and guidelines below.1002

• Do not modify the questions and only use the provided macros for your answers.1003

1. Claims1004

Question: Do the main claims made in the abstract and introduction accurately reflect the1005

paper’s contributions and scope?1006

Answer: [Yes]1007

Justification: Abstract and introduction accurately reflect the paper’s contributions and scope1008

Guidelines:1009

• The answer NA means that the abstract and introduction do not include the claims1010

made in the paper.1011

• The abstract and/or introduction should clearly state the claims made, including the1012

contributions made in the paper and important assumptions and limitations. A No or1013

NA answer to this question will not be perceived well by the reviewers.1014

• The claims made should match theoretical and experimental results, and reflect how1015

much the results can be expected to generalize to other settings.1016

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1017

are not attained by the paper.1018

2. Limitations1019

Question: Does the paper discuss the limitations of the work performed by the authors?1020

Answer: [Yes]1021

Justification: In the limitation section1022
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Guidelines:1023

• The answer NA means that the paper has no limitation while the answer No means that1024

the paper has limitations, but those are not discussed in the paper.1025

• The authors are encouraged to create a separate "Limitations" section in their paper.1026

• The paper should point out any strong assumptions and how robust the results are to1027

violations of these assumptions (e.g., independence assumptions, noiseless settings,1028

model well-specification, asymptotic approximations only holding locally). The authors1029

should reflect on how these assumptions might be violated in practice and what the1030

implications would be.1031

• The authors should reflect on the scope of the claims made, e.g., if the approach was1032

only tested on a few datasets or with a few runs. In general, empirical results often1033

depend on implicit assumptions, which should be articulated.1034

• The authors should reflect on the factors that influence the performance of the approach.1035

For example, a facial recognition algorithm may perform poorly when image resolution1036

is low or images are taken in low lighting. Or a speech-to-text system might not be1037

used reliably to provide closed captions for online lectures because it fails to handle1038

technical jargon.1039

• The authors should discuss the computational efficiency of the proposed algorithms1040

and how they scale with dataset size.1041

• If applicable, the authors should discuss possible limitations of their approach to1042

address problems of privacy and fairness.1043

• While the authors might fear that complete honesty about limitations might be used by1044

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1045

limitations that aren’t acknowledged in the paper. The authors should use their best1046

judgment and recognize that individual actions in favor of transparency play an impor-1047

tant role in developing norms that preserve the integrity of the community. Reviewers1048

will be specifically instructed to not penalize honesty concerning limitations.1049

3. Theory assumptions and proofs1050

Question: For each theoretical result, does the paper provide the full set of assumptions and1051

a complete (and correct) proof?1052

Answer: [NA]1053

Justification: [NA]1054

Guidelines:1055

• The answer NA means that the paper does not include theoretical results.1056

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1057

referenced.1058

• All assumptions should be clearly stated or referenced in the statement of any theorems.1059

• The proofs can either appear in the main paper or the supplemental material, but if1060

they appear in the supplemental material, the authors are encouraged to provide a short1061

proof sketch to provide intuition.1062

• Inversely, any informal proof provided in the core of the paper should be complemented1063

by formal proofs provided in appendix or supplemental material.1064

• Theorems and Lemmas that the proof relies upon should be properly referenced.1065

4. Experimental result reproducibility1066

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1067

perimental results of the paper to the extent that it affects the main claims and/or conclusions1068

of the paper (regardless of whether the code and data are provided or not)?1069

Answer: [Yes]1070

Justification: Our paper describes the pipeline in detail. We also open-sourced the code and1071

the data for reproducing.1072

Guidelines:1073

• The answer NA means that the paper does not include experiments.1074
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• If the paper includes experiments, a No answer to this question will not be perceived1075

well by the reviewers: Making the paper reproducible is important, regardless of1076

whether the code and data are provided or not.1077

• If the contribution is a dataset and/or model, the authors should describe the steps taken1078

to make their results reproducible or verifiable.1079

• Depending on the contribution, reproducibility can be accomplished in various ways.1080

For example, if the contribution is a novel architecture, describing the architecture fully1081

might suffice, or if the contribution is a specific model and empirical evaluation, it may1082

be necessary to either make it possible for others to replicate the model with the same1083

dataset, or provide access to the model. In general. releasing code and data is often1084

one good way to accomplish this, but reproducibility can also be provided via detailed1085

instructions for how to replicate the results, access to a hosted model (e.g., in the case1086

of a large language model), releasing of a model checkpoint, or other means that are1087

appropriate to the research performed.1088

• While NeurIPS does not require releasing code, the conference does require all submis-1089

sions to provide some reasonable avenue for reproducibility, which may depend on the1090

nature of the contribution. For example1091

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1092

to reproduce that algorithm.1093

(b) If the contribution is primarily a new model architecture, the paper should describe1094

the architecture clearly and fully.1095

(c) If the contribution is a new model (e.g., a large language model), then there should1096

either be a way to access this model for reproducing the results or a way to reproduce1097

the model (e.g., with an open-source dataset or instructions for how to construct1098

the dataset).1099

(d) We recognize that reproducibility may be tricky in some cases, in which case1100

authors are welcome to describe the particular way they provide for reproducibility.1101

In the case of closed-source models, it may be that access to the model is limited in1102

some way (e.g., to registered users), but it should be possible for other researchers1103

to have some path to reproducing or verifying the results.1104

5. Open access to data and code1105

Question: Does the paper provide open access to the data and code, with sufficient instruc-1106

tions to faithfully reproduce the main experimental results, as described in supplemental1107

material?1108

Answer: [Yes]1109

Justification: We fully open-sourced our codebase and datasets as described in the beginning.1110

Guidelines:1111

• The answer NA means that paper does not include experiments requiring code.1112

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1113

public/guides/CodeSubmissionPolicy) for more details.1114

• While we encourage the release of code and data, we understand that this might not be1115

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1116

including code, unless this is central to the contribution (e.g., for a new open-source1117

benchmark).1118

• The instructions should contain the exact command and environment needed to run to1119

reproduce the results. See the NeurIPS code and data submission guidelines (https:1120

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1121

• The authors should provide instructions on data access and preparation, including how1122

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1123

• The authors should provide scripts to reproduce all experimental results for the new1124

proposed method and baselines. If only a subset of experiments are reproducible, they1125

should state which ones are omitted from the script and why.1126

• At submission time, to preserve anonymity, the authors should release anonymized1127

versions (if applicable).1128
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• Providing as much information as possible in supplemental material (appended to the1129

paper) is recommended, but including URLs to data and code is permitted.1130

6. Experimental setting/details1131

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1132

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1133

results?1134

Answer: [Yes]1135

Justification: Our paper specifies training settings, the dataset used, and the model across1136

experiments. More details are in the Appendix.1137

Guidelines:1138

• The answer NA means that the paper does not include experiments.1139

• The experimental setting should be presented in the core of the paper to a level of detail1140

that is necessary to appreciate the results and make sense of them.1141

• The full details can be provided either with the code, in appendix, or as supplemental1142

material.1143

7. Experiment statistical significance1144

Question: Does the paper report error bars suitably and correctly defined or other appropriate1145

information about the statistical significance of the experiments?1146

Answer: [Yes]1147

Justification: In experiment section.1148

Guidelines:1149

• The answer NA means that the paper does not include experiments.1150

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1151

dence intervals, or statistical significance tests, at least for the experiments that support1152

the main claims of the paper.1153

• The factors of variability that the error bars are capturing should be clearly stated (for1154

example, train/test split, initialization, random drawing of some parameter, or overall1155

run with given experimental conditions).1156

• The method for calculating the error bars should be explained (closed form formula,1157

call to a library function, bootstrap, etc.)1158

• The assumptions made should be given (e.g., Normally distributed errors).1159

• It should be clear whether the error bar is the standard deviation or the standard error1160

of the mean.1161

• It is OK to report 1-sigma error bars, but one should state it. The authors should1162

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1163

of Normality of errors is not verified.1164

• For asymmetric distributions, the authors should be careful not to show in tables or1165

figures symmetric error bars that would yield results that are out of range (e.g. negative1166

error rates).1167

• If error bars are reported in tables or plots, The authors should explain in the text how1168

they were calculated and reference the corresponding figures or tables in the text.1169

8. Experiments compute resources1170

Question: For each experiment, does the paper provide sufficient information on the com-1171

puter resources (type of compute workers, memory, time of execution) needed to reproduce1172

the experiments?1173

Answer: [Yes]1174

Justification: In the Appendix.1175

Guidelines:1176

• The answer NA means that the paper does not include experiments.1177

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1178

or cloud provider, including relevant memory and storage.1179
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• The paper should provide the amount of compute required for each of the individual1180

experimental runs as well as estimate the total compute.1181

• The paper should disclose whether the full research project required more compute1182

than the experiments reported in the paper (e.g., preliminary or failed experiments that1183

didn’t make it into the paper).1184

9. Code of ethics1185

Question: Does the research conducted in the paper conform, in every respect, with the1186

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1187

Answer: [Yes]1188

Justification: [NA]1189

Guidelines:1190

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1191

• If the authors answer No, they should explain the special circumstances that require a1192

deviation from the Code of Ethics.1193

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1194

eration due to laws or regulations in their jurisdiction).1195

10. Broader impacts1196

Question: Does the paper discuss both potential positive societal impacts and negative1197

societal impacts of the work performed?1198

Answer: [Yes]1199

Justification: We discuss broader impacts in the Appendix and limitations.1200

Guidelines:1201

• The answer NA means that there is no societal impact of the work performed.1202

• If the authors answer NA or No, they should explain why their work has no societal1203

impact or why the paper does not address societal impact.1204

• Examples of negative societal impacts include potential malicious or unintended uses1205

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1206

(e.g., deployment of technologies that could make decisions that unfairly impact specific1207

groups), privacy considerations, and security considerations.1208

• The conference expects that many papers will be foundational research and not tied1209

to particular applications, let alone deployments. However, if there is a direct path to1210

any negative applications, the authors should point it out. For example, it is legitimate1211

to point out that an improvement in the quality of generative models could be used to1212

generate deepfakes for disinformation. On the other hand, it is not needed to point out1213

that a generic algorithm for optimizing neural networks could enable people to train1214

models that generate Deepfakes faster.1215

• The authors should consider possible harms that could arise when the technology is1216

being used as intended and functioning correctly, harms that could arise when the1217

technology is being used as intended but gives incorrect results, and harms following1218

from (intentional or unintentional) misuse of the technology.1219

• If there are negative societal impacts, the authors could also discuss possible mitigation1220

strategies (e.g., gated release of models, providing defenses in addition to attacks,1221

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1222

feedback over time, improving the efficiency and accessibility of ML).1223

11. Safeguards1224

Question: Does the paper describe safeguards that have been put in place for responsible1225

release of data or models that have a high risk for misuse (e.g., pretrained language models,1226

image generators, or scraped datasets)?1227

Answer: [NA]1228

Justification: [NA]1229

Guidelines:1230

• The answer NA means that the paper poses no such risks.1231
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• Released models that have a high risk for misuse or dual-use should be released with1232

necessary safeguards to allow for controlled use of the model, for example by requiring1233

that users adhere to usage guidelines or restrictions to access the model or implementing1234

safety filters.1235

• Datasets that have been scraped from the Internet could pose safety risks. The authors1236

should describe how they avoided releasing unsafe images.1237

• We recognize that providing effective safeguards is challenging, and many papers do1238

not require this, but we encourage authors to take this into account and make a best1239

faith effort.1240

12. Licenses for existing assets1241

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1242

the paper, properly credited and are the license and terms of use explicitly mentioned and1243

properly respected?1244

Answer: [Yes]1245

Justification: all the used assets are properly cited.1246

Guidelines:1247

• The answer NA means that the paper does not use existing assets.1248

• The authors should cite the original paper that produced the code package or dataset.1249

• The authors should state which version of the asset is used and, if possible, include a1250

URL.1251

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1252

• For scraped data from a particular source (e.g., website), the copyright and terms of1253

service of that source should be provided.1254

• If assets are released, the license, copyright information, and terms of use in the1255

package should be provided. For popular datasets, paperswithcode.com/datasets1256

has curated licenses for some datasets. Their licensing guide can help determine the1257

license of a dataset.1258

• For existing datasets that are re-packaged, both the original license and the license of1259

the derived asset (if it has changed) should be provided.1260

• If this information is not available online, the authors are encouraged to reach out to1261

the asset’s creators.1262

13. New assets1263

Question: Are new assets introduced in the paper well documented and is the documentation1264

provided alongside the assets?1265

Answer: [Yes]1266

Justification: Please check the dataset host URL for documentation.1267

Guidelines:1268

• The answer NA means that the paper does not release new assets.1269

• Researchers should communicate the details of the dataset/code/model as part of their1270

submissions via structured templates. This includes details about training, license,1271

limitations, etc.1272

• The paper should discuss whether and how consent was obtained from people whose1273

asset is used.1274

• At submission time, remember to anonymize your assets (if applicable). You can either1275

create an anonymized URL or include an anonymized zip file.1276

14. Crowdsourcing and research with human subjects1277

Question: For crowdsourcing experiments and research with human subjects, does the paper1278

include the full text of instructions given to participants and screenshots, if applicable, as1279

well as details about compensation (if any)?1280

Answer: [NA]1281

Justification: [NA]1282
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Guidelines:1283

• The answer NA means that the paper does not involve crowdsourcing nor research with1284

human subjects.1285

• Including this information in the supplemental material is fine, but if the main contribu-1286

tion of the paper involves human subjects, then as much detail as possible should be1287

included in the main paper.1288

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1289

or other labor should be paid at least the minimum wage in the country of the data1290

collector.1291

15. Institutional review board (IRB) approvals or equivalent for research with human1292

subjects1293

Question: Does the paper describe potential risks incurred by study participants, whether1294

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1295

approvals (or an equivalent approval/review based on the requirements of your country or1296

institution) were obtained?1297

Answer: [NA]1298

Justification: [NA]1299

Guidelines:1300

• The answer NA means that the paper does not involve crowdsourcing nor research with1301

human subjects.1302

• Depending on the country in which research is conducted, IRB approval (or equivalent)1303

may be required for any human subjects research. If you obtained IRB approval, you1304

should clearly state this in the paper.1305

• We recognize that the procedures for this may vary significantly between institutions1306

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1307

guidelines for their institution.1308

• For initial submissions, do not include any information that would break anonymity (if1309

applicable), such as the institution conducting the review.1310

16. Declaration of LLM usage1311

Question: Does the paper describe the usage of LLMs if it is an important, original, or1312

non-standard component of the core methods in this research? Note that if the LLM is used1313

only for writing, editing, or formatting purposes and does not impact the core methodology,1314

scientific rigorousness, or originality of the research, declaration is not required.1315

Answer: [NA]1316

Justification: [NA]1317

Guidelines:1318

• The answer NA means that the core method development in this research does not1319

involve LLMs as any important, original, or non-standard components.1320

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1321

for what should or should not be described.1322
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