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Abstract

Recent advances in text-to-vision generation excel in visual fidelity but struggle
with compositional generalization and semantic alignment. Existing datasets
are noisy and weakly compositional, limiting models’ understanding of complex
scenes, while scalable solutions for dense, high-quality annotations remain a
challenge. We introduce GENERATE ANY SCENE, a data engine that systematically
enumerates scene graphs representing the combinatorial array of possible visual
scenes. GENERATE ANY SCENE dynamically constructs scene graphs of varying
complexity from a structured taxonomy of objects, attributes, and relations. Given
a sampled scene graph, GENERATE ANY SCENE translates it into a caption for
text-to-image or text-to-video generation; it also translates it into a set of visual
question answers that allow automatic evaluation and reward modeling of semantic
alignment. Using GENERATE ANY SCENE, we first design a self-improving
framework where models iteratively enhance their performance using generated
data. SDv1.5 achieves an average 4% improvement over baselines and surpassing
fine-tuning on CC3M. Second, we also design a distillation algorithm to transfer
specific strengths from proprietary models to their open-source counterparts. Using
fewer than 800 synthetic captions, we fine-tune SDv1.5 and achieve a 10% increase
in TIFA score on compositional and hard concept generation. Third, we create
a reward model to align model generation with semantic accuracy at a low cost.
Using GRPO algorithm, we fine-tune SimpleAR-0.5B-SFT and surpass CLIP-based
methods by +5% on DPG-Bench. Finally, we apply these ideas to the downstream
task of content moderation where we train models to identify challenging cases by
learning from synthetic data.

1 Introduction

Despite the high-fidelity of modern generative models (text-to-image and text-to-video), we are yet
to witness wide-spread adoption [[1} 2} 13} 14} 5]]. Controllability remains out of reach [6]. Generated
content appears realistic but often falls short of semantic alignment [7}18,(9,|10]]. Users prompt models
with a specific concept in mind. For example, when prompted to generate a scene of a “A black dog
chasing after a rabbit that is eating the grass, in Van Gogh’s style, with starlight lightening”, some
models are likely to generate an image of a dog but might miss the rabbit or get the style incorrect.

We hypothesize that these limitations stem not only from architectural bottlenecks but more funda-
mentally from the lack of structured, compositionally rich training data [3]], especially those with
uncommon compositions. Popular datasets such as LAION [[11] and CC3M [12] predominantly
consist of web-crawled image-caption pairs, which are inherently noisy, weakly compositional, and
biased toward single-object, coarse-grained descriptions. Such datasets lack explicit grounding of
object-attribute relations and multi-object interactions, restricting models’ ability to generalize to
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complex visual scenes. Efforts to enhance caption quality [3,|13]] have demonstrated that enhancing
the compositional density and semantic richness of captions can significantly improve generative per-
formance. Nevertheless, manual curation of such dense compositional annotations is labor-intensive,
while automatic annotation methods (e.g., via MLMs) suffer from hallucination and semantic noise.

Constructing a compositional dataset requires that we first define the space of the visual content.
Scene graphs are one such representation of the visual space [14} [15 [16} [17, [18]], grounded in
cognitive science [19]]. A scene graph represents objects in a scene as individual nodes in a graph.
Each object is modified by attributes, which describe its properties. For example, attributes can
describe the material, color, size, and location of the object in the scene. Finally, relationships are
edges that connect the nodes. They define the spatial, functional, social, and interactions between
objects [20]. For example, in a living room scene, a “table” node might have attributes like “wooden”
or “rectangular” and be connected to a “lamp” node through a relation: “on top of”’. This systematic
scene graph structure provides simple yet effective ways to define and model the scene. As such,
scene graphs are an ideal foundation for systematically defining the compositional space of visual
content in text-to-vision generation.

We introduce GENERATE ANY SCENE, a system capable of efficiently enumerating the space of
scene graphs representing a wide range of visual scenes. GENERATE ANY SCENE composes scene
graphs of any structure using a rich taxonomy of visual elements, translating each scene graph into an
input caption and visual question answers to evaluate the output image or video. In particular, we first
construct a rich taxonomy of visual concepts consisting of 28, 787 objects, 1,494 attributes, 10, 492
relations, 2, 193 scene attributes from various sources. Based on these assets, GENERATE ANY
SCENE can synthesize an almost infinite number of scene graphs of varying complexity [21]]. Besides,
GENERATE ANY SCENE allows configurable scene graph generation. For example, evaluators can
specify the complexity level of the scene graph to be generated or provide a seed scene graph to be
expanded. By automating these steps, our system ensures both scalability and adaptability, providing
researchers and developers with diverse, richly detailed scene graphs and corresponding captions
tailored to their specific needs. We also conduct comprehensive text-to-vision evaluations using our
generated captions, as detailed in Appendix [A!

We show that GENERATE ANY SCENE can allow generation models to self-improve. Our diverse
captions can facilitate a framework to iteratively improve Text-to-Vision generation models using
their own generations. Given a model, we generate multiple images, identify the highest-scoring one,
and use it as new fine-tuning data to improve the model itself. We fine-tune SDv1.5 [22] and achieve
an average of 4% performance boost compared with original models, and this method is even better
than fine-tuning with the same amount of real images and captions from the Conceptual Captions
CC3M over different benchmarks.

We also use GENERATE ANY SCENE to design targeted distillation algorithms. Using our evaluations,
we identify limitations in open-sourced models that their proprietary counterparts excel at. Next,
we distill these specific capabilities from proprietary models. For example, DaLL-E 3 [3] excels
particularly in generating composite images with multiple parts. We distill this capability into SDv1.5,
effectively bridging the gap between DaLL-E 3 and SDv1.5. After targeted fine-tuning, SDv1.5
achieves a 10% increase in TIFA score [23] for compositional tasks and hard concept generation.

Then we propose a low-cost scene graph-based reward model for RLHF [24] in text-to-image
generation. By leveraging synthetic scene graphs generated by GENERATE ANY SCENE, we generate
exhaustive question-answer pairs that cover all objects, attributes, and relationships in the caption.
Our method enables fine-grained, compositional reward modeling without manual annotation or
heavy LLM inference. With GRPO [25], we fine-tune SimpleAR-0.5B-SFT [26] using a scene graph
reward model, achieving better compositional alignment than CLIP-based methods [27] (+5% on
DPG-Bench [28])).

Finally, we apply GENERATE ANY SCENE to the downstream application of content moderation.
Content moderation is a vital application, especially as Text-fo-Vision generation models improve.
A key challenge lies in the limited diversity of existing training data. To address this, we leverage
GENERATE ANY SCENE to generate diverse and compositional captions, creating synthetic training
data that complements existing datasets. By retraining a ViT-T [29] detector with our enriched dataset,
we enhance its detection performance, particularly in cross-model and cross-dataset scenarios.
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2 Generate Any Scene

In this section, we present GENERATE ANY SCENE (Figure[I), a data engine that systematically
synthesizes diverse scene graphs in terms of both structure and content and translates them into
corresponding captions.

Scene graph. A scene graph is a structured representation of a visual scene, where objects are
represented as nodes, their attributes (such as color and shape) are properties of those nodes, and the
relationships between objects (such as spatial or semantic connections) are represented as edges. In
recent years, scene graphs have played a crucial role in visual understanding tasks, such as those
found in Visual Genome [14]] and GQA [30] for visual question answering (VQA). Their utility
has expanded to various Text-to-Vision generation tasks. For example, the DSG [31]] and DPG [10]]
benchmarks leverage scene graphs to evaluate how well generated images align with captions.

Taxonomy of visual elements. To construct a scene graph, we use three main metadata types:
objects, attributes, and relations. We further introduce scene attributes that capture global visual
contexts, such as art style, to facilitate comprehensive caption synthesis. The statistics and source of
our metadata are shown in Table|l} Additionally, we build a hierarchical taxonomy that categorizes
metadata into distinct levels and types, enabling fine-grained analysis. This structure supports precise
content synthesis, from broad concepts like “flower” to fine-grained instances such as “daisy.”

Table 1: Summary of the quantities and sources of visual elements.

Metadata Type Number Source

Objects 28,787 ‘WordNet [32]

Attributes 1,494 Wikipedia [33]], etc.

Relations 10,492 Synthetic Visual Genome [34]
Scene Attributes 2,193 Places365 [33], etc.

2.1 Generating data with scene graphs

Step 1: Scene graph structure enumeration and query. Our engine first generates and stores
a variety of scene graph structures based on a specified level of structural constraints, such as
complexity [36], average degree and the number of connected components. defined by the total
number of objects, relationships, and attributes in each graph. The process begins by determining
the number of object nodes, and then by systematically enumerating different combinations of
relationships among these objects and their associated attributes. Once all graph structures satisfying
the given constraints are enumerated, they are stored in a database for later use. This enumeration
process is executed only once for each combination of structural parameters, allowing us to efficiently
query the database for suitable templates when needed.

Step 2: Populate the scene graph structure with metadata. Given a generated scene graph
structure, the next step involves populating the graph with metadata. For each object node, attribute
node, and relation edge, we sample the corresponding content from our metadata. This process is
highly customizable and controllable: users can define the topics and types of metadata to include,
for instance, by selecting only commonsense metadata or specifying relationships between particular
objects. By determining the scope of metadata sampling, we can precisely control the final content of
the captions and easily extend the diversity and richness of scene graphs by adding new metadata.

Step 3: Sample scene attributes. We also include scene attributes that describe aspects such as the
art style, viewpoint, time span (for video), and 3D attributes (for 3D content). These scene attributes
are sampled directly from our metadata, creating a list that provides contextual details to enrich the
description of the visual content.

Step 4: Translate scene graph to caption. We introduce an algorithm that converts scene graphs
and a list of scene attributes into captions. The algorithm processes the scene graph in topological
order, transforming each object, its attributes, and relational edges into descriptive text. To maintain
coherence, it tracks each concept’s occurrence, distinguishing objects with identical names using
terms like “the first” or “the second.” Objects that have been previously referenced without new
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Step 1: Scene graph structure enumeration and query Step 2: Populate the scene graph structure with metadata Step 3: Sampling scene attributes
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degree < 0.9) Attribute © Object  Relation Step 5: Convert scene graph to a series of question-answer pairs

Figure 1: The generation pipeline of GENERATE ANY SCENE. Step 1: Enumerate diverse scene
graph structures under user-defined constraints. Step 2: Populate structures with sampled objects,
attributes, and relations. Step 3: Sample scene attributes such as style, perspective, or time span.
Step 4: Translate scene graph and attributes into coherent captions. Step 5: Automatically generate
QA pairs covering all elements for evaluation and reward modeling.

relations are skipped to avoid misreferencing. This approach enhances caption clarity by preventing
repetition and maintaining a logical reference.

Step 5: Convert scene graph to a series of question-answer pairs. Given a synthetic scene graph,
GENERATE ANY SCENE supports systematically enumerating exhaustive question-answer (QA)
pairs that cover every compositional element. For instance, GENERATE ANY SCENE can generate
questions about object attributes (e.g., What color is the sphere?), spatial relationships (e.g., What is
to the left of the cube?), and so on, where each answer corresponds to a node (object or attribute)
or an edge (relationship) in the scene graph. This method ensures comprehensive coverage of all
objects, attributes, and relationships described in the caption, with negligible computational overhead.
By automating this process, one can not only leverage VQA-based metrics [37,131] to evaluate the
generated images, but also construct a fine-grained, compositional reward model without requiring
manual annotations or costly LLM inference.

3 Self-Improving models with synthetic captions

With GENERATE ANY SCENE, we develop a self-improvement framework to improve generative
capabilities. By generating scalable compositional captions from scene graphs, GENERATE ANY
SCENE expands the textual and visual space, allowing for a diversity of synthetic images that extend
beyond real-world scenes. Our goal is to utilize these richly varied synthetic images to further boost
model performance.

Iterative self-improving framework. Inspired by DreamSync [39]], we designed an iterative self-
improving framework using GENERATE ANY SCENE with SDvI.5 as the baseline model. With
VQA Score, which shows strong correlation with human evaluations on compositional images [37],
we guide the model’s improvement throughout the process. Specifically, GENERATE ANY SCENE
generates 3 x 10K captions across three epochs. For each caption, SDv1.5 generates 8 images, and
the image with the highest VQA Score is selected. From each set of 10K optimal images, we then
select the top 25% (2.5K image-caption pairs) as the training data for each epoch. In subsequent
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Figure 2: Results for Self-Improving Models. Average VQA score of SDv1.5 fine-tuned on different
data across 1K GENERATE ANY SCENE image/video evaluation set and GenAl-Bench image/video
benchmark [38]].

epochs, we use the fine-tuned model from the prior iteration to generate new images. We employ
LoRA [40]] for parameter-efficient fine-tuning.

Baselines. We conduct comparative experiments with the CC3M dataset, which comprises high-
quality and diverse real-world image-caption pairs [12]. We randomly sample 3 x 10K captions from
CC3M, applying the same top-score selection strategy for iterative fine-tuning of SDv1.5. Additionally,
we include a baseline using random-sample fine-tuning strategy to validate the advantage of our
highest-scoring selection-based strategy. We evaluate our self-improving pipeline on Text-to-Vision
generation benchmarks, including GenAl Bench [38]]. For the Text-to-Video generation task, we use
Text2Video-Zero as the baseline model, substituting its backbone with the original SDv1.5 and our
fine-tuned SDvi.5 models.

Fine-tuning with our synthetic captions can surpass high-quality real-world image-caption
data. Our results show that fine-tuning with GENERATE ANY SCENE-generated synthetic data
consistently outperforms CC3M-based fine-tuning across Text-to-Vision generation tasks (Figure2),
achieving the highest gains with our highest-scoring selection strategy. This highlights GENERATE
ANY SCENE’s scalability and compositional diversity, enabling models to effectively capture complex
scene structures. Additional experiment settings and results are in Appendix [C|

4 Distilling targeted capabilities

Although self-improving with GENERATE ANY SCENE shows clear advantages over high-quality
real-world datasets, its efficiency is inherently limited by the model’s own generation capabilities. To
address this, we leverage the taxonomy and systematical generation capabilities within GENERATE
ANY SCENE to identify specific strengths of proprietary models (DaLL-E 3), and distill these
capabilities into open-source models. More details are in Appendix D.

We evaluate multiple models using GENERATE ANY SCENE controllably generated captions and
observe that DaL.L-E 3 achieves TIFA Score 1.5 to 2 times higher than those of other models. As
shown in Figure fa| when comparing TIFA Score across captions with varying numbers of elements
(objects, relations, and attributes), DaLL-E 3 counterintuitively maintains consistent performance
regardless of element count. The performance of other models declines as the element count increases,
which aligns with expected compositional challenges. We suspect that these differences are primarily
due to DaLL-E 3’s advanced capabilities in compositionality and understanding hard concepts,
which ensures high faithfulness across diverse combinations of element types and counts.

Distilling compositionality from DalLL-E 3. When analyzing model outputs from our synthetic
captions, we find that DaLL-E 3 tends to produce straightforward combinations of multiple objects
(Figure[3). In contrast, open-source models like SDv1.5 often omit objects from the captions, despite
being capable of generating each one individually. This difference suggests that DaLL-E 3 may
benefit from training data emphasizing multi-object presence, even without detailed layout or object
interaction. Such training likely underpins DaLL-E 3’s stronger performance on metrics like 7TFA
Score and VQA Score that prioritize object inclusion. To effectively distill these compositional
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Figure 3: Examples for Distilling Capabilities. Examples of images generated by DaLL-E 3, the
original SDv1.5, and the fine-tuned versions. The left four captions demonstrate fine-tuning with
multi-object captions generated by GENERATE ANY SCENE for better compositionality, while the
right two columns focus on understanding hard concepts.

abilities into SDv1.5, we employ GENERATE ANY SCENE for targeted synthesis of 778 multi-object
captions, paired with images generated by DaLL-E 3, for finetuning SDv1.5.

Distilling hard concepts understanding from DaLL-E 3. Figure [3|shows that DaLL-E 3 is capable
not only of handling multi-object generation but also of understanding and generating rare and hard
concepts, such as a specific species of flower. We attribute this to its training with proprietary real-
world data. Using the taxonomy of GENERATE ANY SCENE, we compute model performance on each
concept by averaging generation scores across captions containing that concept. Accumulating results
through the taxonomy, we identify the 100 concepts where SDv1.5 shows the largest performance
gap relative to DaLL-E 3. For distilling, we generate 778 captions incorporating these hard concepts
with other elements, and use DaLL-E 3 to produce corresponding images.

Baselines. For the baseline, we randomly synthesize 778 captions using GENERATE ANY SCENE
paired with DaLL-E 3-generated images to fine-tune the model. To evaluate model improvements,
we generate another 1K multi-object captions and 1K hard-concept captions separately.

Models Models o 0.375 0.368 0.366
0.45 Dalle-3 —— Targetedly Fine-tuned spv1.5 |0-45 o 0.346
[ Best Open-Source Model —— Randomly Fine-tuned SDv1.5 o 5 93>0 0333
§0.40 SDV1.5 e —— SDvLs 408 90325
n Targetedly Fine-tuned SDv1.5 S s N " < :
<0.35 Randomly Fine-tuned SDv1.5 - — 0.35< i 0300
E Other Open-source Models — E
N ~ 0.275{ 0.269)
©0.30 —— 0300 & 0.250)
-] — © 0.250
$0.25 0.25g . = SDv1.5
2 < B Randomly Fine-tuned SDv1.5
0.20 0.20 0.200 Targetedly Fine-tuned SDv1.5
4 6 8 10 12 ) 5 3 7 8 Avg. over Captions Avg. over Hard Concepts
# Element # Object Score Type

(a) Distilling compositionality
from DaLLL-E 3: Model results on
TIFA vs. total element numbers in
captions in 10K general GENERATE
ANY SCENE captions.

(b) Distilling compositionality
from DaL.L-E 3: Model results on
TIFA vs. total element numbers
in captions in 1K multi-object
GENERATE ANY SCENE captions.

(c) Distilling hard concepts under-
standing from DALL-E 3: Models’
average TIFA Score performance
over captions and hard concepts in
1K hard concepts GENERATE ANY
SCENE captions.

Figure 4: Results for Distilling Capabilities. The left two figures show the results for Distilling
compositionality, while the rightmost figure shows the results for Distilling hard concepts under-
standing from DALL-E 3.
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Figure 5: Comparison of generated images. Our reward model enables image generation with
better semantic alignment, realism, and visual quality than baselines.

Targeted caption synthesis via GENERATE ANY SCENE enables effective distillation of composi-
tional abilities and hard concept understanding. We analyze images generated by SDv/.5 before
and after fine-tuning on high-complexity captions (Figure[3). Surprisingly, with fewer than 1K LoRA
fine-tuning steps, SDv1.5 effectively learns DalL-E 3 ’s capability to arrange and compose multiple
objects within a single image. Quantitatively, Figure @b shows a 10% improvement in TIFA Score
after targeted fine-tuning, surpassing the performance of the randomly fine-tuned model. On a broader
set of 10K GENERATE ANY SCENE-generated captions, the targeted fine-tuned model consistently
outperforms randomly fine-tuned and original counterparts across complex scenes (Figure [#a). These
results confirm not only the effectiveness but also the scalability and efficiency of GENERATE ANY
SCENE. Also, the results in Figure fic show that our targeted fine-tuning with hard concepts leads to
improved model performance, reflected in higher average scores across captions and increased scores
for each challenging concept.

S Reinforcement learning with a synthetic reward function

Reinforcement Learning with Human Feedback (RLHF) has become an increasingly popular fine-
tuning strategy in text-to-image generation [41] [42] [26]. However, defining an effective reward model
that accurately captures semantic alignment for text-to-image generation remains an open challenge.
Existing reward models like CLIP offer only coarse-grained image-text similarity signals, which fall
short in assessing compositional correctness and lack interpretability. Alternative approaches have
explored using visual question answering (VQA) as a proxy for evaluating semantic alignment, aiming
for finer-grained assessments, yet require either labor-intensive datasets with dense annotations or
large volumes of contextually relevant questions via advanced LLMs. Leveraging its structured scene
graph synthesis capabilities, GENERATE ANY SCENE offers a scalable alternative by producing
exhaustive semantic queries with negligible overhead, enabling low-cost, compositional reward
modeling (Sec[2.T).

Experiment setup. Building on this scene graph-based reward modeling strategy, we adopt Group
Relative Policy Optimization (GRPO) as our reinforcement learning algorithm. We fine-tune the
SimpleAR-0.5B-SFT model for one epoch using 10K captions generated by GENERATE ANY SCENE,
each paired with their scene graph-derived QA sets. For reward evaluation, we use Qwen2.5-VL-3B, a
lightweight open-source vision-language model, to answer these QA pairs given the model-generated
images. The reward is computed as the accuracy across all questions. This fine-grained, scene
graph-aligned reward provides precise feedback on compositional faithfulness. As a baseline, we
compare against SimpleAR-0.5B-RL, trained with CLIP-based rewards on 11K captions from real
world datasets for one epoch. We evaluate our scene graph-based reward model on three benchmarks:
DPG-Bench [10], GenEval [9]], and GenAI-Bench [38]. More details are in Appendix [E.

GENERATE ANY SCENE rewards outperform CLIP. As shown in Table[2} our method outperforms
both SFT and CLIP-RL models and achieves a significant improvement, demonstrating superior
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compositional faithfulness driven by explicit scene graph rewards. Importantly, this performance gain
is directly enabled by the GENERATE ANY SCENE engine, which constructs explicit scene graphs
to generate compositional captions. GENERATE ANY SCENE provides a structured and cognitively
aligned visual representation, from which we derive exhaustive QA pairs with minimal additional
cost. Combined with lightweight VLM judge, this approach offers a scalable, low-cost solution for
semantic-level reward modeling.

Table 2: Evaluation on the DPG, GenEval and GenAl benchmark. GRPO training with our reward
model outperforms both SFT baseline and CLIP-RL models. TO: two objects, P: position, CA: color
attribute.

Method DPG-Bench GenEval GenAI-Bench
Global Relation Overall TO P CA Overall Basic Advanced All
SimpleAR-0.5B-SFT 85.02 86.59 7848 0.73 022 023 0.53 0.74 0.60 0.66
SimpleAR-0.5B-RL (Clip) 86.64 88.51 79.66 0.82 0.26 0.38 0.59 0.75 0.60 0.67
SimpleAR-0.5B-RL (Ours) 88.46 90.13 80.50 0.81 031 0.38 0.61 0.75 0.61 0.68

6 Improving generated-content detection

Advances in Text-to-Vision generation underscore the need for effective content moderation [43]].
Major challenges include the lack of high-quality and diverse datasets and the difficulty of generalizing
detection across models Text-to-Vision generation [44}45]. GENERATE ANY SCENE addresses these
issues by enabling scalable, systematical generation of compositional captions, increasing the diversity
and volume of synthetic data. This approach enhances existing datasets by compensating for their
limited scope-from realistic to imaginative-and variability.

Experiment setup. To demonstrate GENERATE ANY SCENE’s effectiveness in training generated
content detectors, we used the D? dataset [46] as a baseline. We sampled 5K captioned real and
SDv1.4-generated image pairs from D? and generated 5K additional images with GENERATE ANY
SCENE captions. We trained a ViT-T [47]] model with a single-layer linear classifier, and compared
models trained with samples solely from D? against those trained with samples GENERATE ANY
SCENE and D?3.

GENERATE ANY SCENE improves generated content detectors. We evaluate the detector’s
generalization on the Genlmage [48] validation set and images generated using GENERATE ANY
SCENE captions. Figure[6demonstrates that combining GENERATE ANY SCENE-generated images
with real-world captioned images consistently enhances detection performance, particularly across
cross-model scenarios and diverse visual scenes. More details are in Appendix [F|
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(a) In-domain testing (Same
Model - SD v1.4): Detection results
on images generated by SD v1.4
using the Genlmage dataset.
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model): Average detection results on
images generated by multiple mod-
els using our captions.
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(c) Out of domain: Average de-
tection results on images generated
by multiple models using captions
from the GenImage dataset.

Figure 6: Results for Application 4: Generated content detector. Comparison of detection
performance across different data scales using D? alone versus the combined D? + GENERATE ANY
SCENE training set in cross-model and cross-dataset scenarios.

7 Comprehensive evaluation with GENERATE ANY SCENE

We conduct extensive evaluations of text-to-vision models using GENERATE ANY SCENE. Specifi-
cally, we synthesize 10K captions for text-to-image, 10K for text-to-video, and 1K for text-to-3D,
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covering diverse scene structures and content topics. We evaluate 12 text-to-image, 9 text-to-video,
and 5 text-to-3D models. Evaluations combine GENERATE ANY SCENE synthetic scene graphs with
existing metrics (e.g., CLIP Score [49], VQA Score [37], TIFA Score [23131]) to assess semantic
similarity, faithfulness, and human preference alignment. Our key findings include: (1) DiT-backbone
text-to-image models align more closely with input captions than UNet-backbone models. (2) Text-
to-video models struggle with balancing dynamics and consistency, while both text-to-video and
text-to-3D models show notable gaps in human preference alignment. Additionally, we leverage
GENERATE ANY SCENE’s controllable caption generation to conduct fine-grained evaluations. These
analyses cover varying levels of perplexity, scene complexity, and commonsense reasoning, as well
as performance across different content categories. Details are in Appendix [A.

8 Related work

Text-to-Vision generation models. Text-to-Image generation advances are driven by diffusion
models and LLMs. Some open-source models [22} 150, |51} 52} 153 54] use UNet backbones to
refine images iteratively. In parallel, Diffusion Transformers (DiTs) architectures[53} [56} 157} I58]
have emerged as a better alternative in capturing long-range dependencies and improving coherence.
Proprietary models like DALL-E 3 [3]] and Imagen 3 [59] still set the state-of-the-art. Based on Text-fo-
Image generation method, Text-to-Video generation models typically utilize time-aware architectures
to ensure temporal coherence across frames [60} 161,162} 163164} 165,166l 67]. In Text-to-3D generation,
recent proposed models [4, 168, 169,70, 71] integrate the diffusion models with Neural Radiance Fields
(NeRF) rendering to generate diverse 3D objects. Recent studies [26] 42} 72, /3] have also explored
the integration of image generation into a unified multimodal language model (MLM) framework
based on auto-regressive transformer architectures, demonstrating promising improvements in both
performance and efficiency.

Synthetic captions for Text-to-Vision generation. Captions for Text-to-Vision generation models
vary greatly in diversity, complexity, and compositionality. This variation makes it challenging
and costly to collect large-scale and diverse captions written by humans. Consequently, synthetic
captions have been widely used for both training [74, 39} [75 [76} 18} [77, [78| [79] and evaluation
purposes [7]. For example, training methods like LLM-Grounded Diffusion [[/4] leverage LLM-
generated captions to enhance the model’s understanding and alignment with human instruction. For
evaluation, benchmarks such as T2I-CompBench [7] and T2V-CompBench [8] utilize benchmarks
generated by LLMs. However, LLMs are hard to control and may introduce exhibit systematic bias.
In this work, we propose a programmatic scene graph-based data engine that can generate infinitely
diverse captions for improving Text-to-Vision generation models.

Finetuning techniques for Text-fo-Vision generation. To accommodate the diverse applications
and personalization needs in text-to-vision models, numerous fine-tuning techniques have been
developed. LoRA [40] reduces fine-tuning costs via low-rank weight updates, while Textual Inver-
sion [80} |81]] introduces new word embeddings for novel concepts without altering core parameters.
DreamBooth [82] adapts models to specific subjects or styles using a few personalized images, and
DreamSync [39]] enables models to self-improve by learning from their own high-quality outputs.
Recently, RLHF [26, 41} 42]] in Text-to-Vision generation has shown promise as an efficient fine-
tuning strategy. In this work, we use several fine-tuning techniques with GENERATE ANY SCENE to
improve Text-to-Vision generation models.

9 Conclusion

We present GENERATE ANY SCENE, a system leveraging scene graph programming to generate
diverse and compositional synthetic captions for Text-to-Vision generation tasks. It extends beyond
existing real-world caption datasets to include comprehensive scenes and even implausible scenarios.
To demonstrate the effectiveness of GENERATE ANY SCENE, we explore four applications: (1)
self-improvement by iteratively optimizing models, (2) distillation of proprietary model strengths into
open-source models, (3) a scene-graph-based efficient reward model within the GRPO, and (4) robust
content moderation with diverse synthetic data. GENERATE ANY SCENE highlights the importance
of synthetic data in improving Text-to-Vision generation, and addresses the need to systematically
define and scalably produce the space of visual scenes.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

88 You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and introduction accurately reflect the paper’s contributions and scope
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the limitation section
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our paper describes the pipeline in detail. We also open-sourced the code and
the data for reproducing.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We fully open-sourced our codebase and datasets as described in the beginning.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper specifies training settings, the dataset used, and the model across
experiments. More details are in the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: In experiment section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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0.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: [NA]
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader impacts in the Appendix and limitations.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: all the used assets are properly cited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Please check the dataset host URL for documentation.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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