<A NVIDIA.

Detecting Data Contamination in LLMs
via In-Context Learning

Michal Zawalski’ = Meriem Boubdir! Klaudia Balazy® Besmira Nushif = Pablo Ribalta'
TNVIDIA °Work done while at NVIDIA

Abstract: We present Contamination Detection via Context (CoDeC), a practical and
accurate method to detect and quantify training data contamination in large language models.
CoDeC distinguishes between data memorized during training and data outside the training
distribution by measuring how in-context learning affects model performance. We find that in-
context examples typically boost confidence for unseen datasets but may reduce it when the
dataset was part of training, due to disrupted memorization patterns. Experiments show that
CoDeC produces interpretable contamination scores that clearly separate seen and unseen datasets,
and reveals strong evidence of memorization in open-weight models with undisclosed training
corpora. The method is simple, automated, and both model- and dataset-agnostic, making it easy
to integrate with benchmark evaluations.

1. Introduction

Detecting contamination is essential for the integrity of LLM evaluation (Dodge et al., 2021; Maini et al.,
2024; Carlini et al., 2022; Singh et al., 2024). Existing approaches, such as loss-based criteria (Zhang et al.,
2021b, 2024; Carlini et al., 2022), score calibration using external models (Maini et al., 2024; Carlini et al.,
2022), and explicit overlap checks (Gao et al., 2020; Biderman et al., 2023b), often require access to training
data, extensive parameter tuning, and may fail to produce reliable, interpretable results for large models.
This calls for an automated, scalable method applicable across diverse datasets and architectures.

To fill this gap, we introduce Contamination Detection via Context (CoDeC), a simple yet effective dataset-
level method that detects data contamination via in-context learning. CoDeC builds on the observation
that context sampled from a dataset seen during training provides no new information to the model, while
unseen data can improve predictions (see Figure 1). Hence, the percentage of samples in a dataset for which
added context reduces confidence quantifies contamination. CoDeC requires only gray-box access to token
probabilities, works with any dataset, and needs no prior knowledge of the model’s training corpus.

Unlike traditional methods focused solely on strict membership inference, CoDeC detects contamination
arising also from training on augmented or related data, such as synthetically generated shadow data, which
exposes the model to distribution-specific cues. By capturing both direct memorization and contamination
via related distributions, CoDeC proves valuable both for fair evaluation and guiding model development.

Through extensive experiments, we show that CoDeC clearly separates training from unseen datasets,

S ||

Log Probability
Log Probability

-8

|
a
Cumulative difference

Logprob without context
mmm Logprob difference with context
_104 == Cumulative difference 1

Logprob without context
mm Logprob difference with context |
= Cumulative difference

REOSRG (GO0 2EQES SRS S N N

HOREHER MAY S S SRR

¢ §
¥

& 3

Token

(a) Changes in model confidence on an unseen text. (b) Changes in model confidence on a training text.

Figure 1 | Change in model log-probabilities with and without context for the Pythia 1.4B model, evaluated on a
sample from an unseen dataset (gsm8k, 1a) and a training dataset (ArXiv, 1b). Differences in confidence for consecutive
tokens are small but consistent. See Appendix C.2 for details of this experiment.

Accepted for presentation at the Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling 1
workshop, NeurIPS 2025

Detecting Data Contamination in LLMs via In-Context Learning

Fix a target Sample N more Evaluate the Measqre th? Calculate the
; } change in logits
datapoint datapoints suspect LLM wrt N score percentage

Suspect dataset

LLM Score(D) =
N

00@— &8 — B INCARYY
000@— ~° — bt 7

. N context samples
Random in-context Target
samples sample

Average target logits

oL
L S

Figure 2 | Overview of Contamination Detection via Context (CoDeC). For each dataset element, CoDeC augments
the context with a few other samples from the same dataset. A decrease in the model’s logits for the target sample
indicates potential contamination. The overall contamination level is estimated as the fraction of samples exhibiting
this effect.

achieving near-perfect dataset-level AUC 99.9% across many models, while baseline methods fail to provide
reliable separation. We apply CoDeC to recent open-source models, evaluating on widely used benchmarks,
finding multiple instances of potential contamination. Our experiments and ablations further demonstrate
that CoDeC is stable across diverse datasets and model types, and can be further enhanced by scaling the
context. CoDeC enables the community to better trust reported LLM results and supports the development
of more reliable model evaluation practices.

In summary, our main contributions are the following:

e We introduce CoDeC, a simple model-agnostic approach that effectively detects data contamination in
LLMs using in-context learning.

e We confirm the strong advantage of CoDeC over baselines through experiments on diverse models and
datasets, analyze its properties via direct evaluation and finetuning, and propose practical guidelines.

e We use CoDeC to evaluate a variety of recent models on widely used benchmarks, revealing several
instances of potential contamination.

2. Contamination Detection via Context

2.1. Problem Definition

Given a language model M and a candidate dataset D = {z;}¥ |, where each z; is a text sequence, our goal
is to quantify contamination, i.e. whether that dataset or similar data was in the training set of M and the
model is relying on memorization rather than generalization.

2.2. Key Idea

LLMs respond differently to in-context examples depending on prior exposure. When given an unseen dataset,
adding in-context samples taken from that dataset usually improves the model’s confidence, as it can generalize
better with more information. However, if the model has memorized the dataset, the in-context samples not
only provide little new information but also disrupt memorization patterns, leading to reduced confidence.
Thus, by comparing confidence levels with and without in-context learning across sample sequences, we can
leverage these shifts to detect contamination. We provide experimental evidence for those observations in
Section 3 and extended discussion in Appendix A.

2.3. CoDeC Pipeline

Our method (presented in Figure 2) consists of the following steps:

1. Baseline prediction: For each datapoint z in the suspect dataset D, obtain the model’s average
log-likelihood on the consecutive tokens of x.

Detecting Data Contamination in LLMs via In-Context Learning

2. In-context prediction: Sample n additional examples x1, ..., &, from D\ {z}, prepend them to z
(creating a sequence x1]|...|z,|z), and obtain the model’s predictions on z in this new context.

. Score computation: Compute the difference in confidence A(x) = logprob;,_.ontext () —108PTObLcoline (Z)-

4. Aggregation: Repeat the above for all x € D. The contamination score for the dataset is then

w

N
1
SCoDeC(D) = N Zl]I[A(xl) < 0]
where 1 is the indicator function.

2.4. Properties

CoDeC offers several properties that make it broadly applicable and easy to use. It produces intu-
itive, percentage-based contamination scores that are immediately interpretable and require no model-
or dataset-specific calibration, avoiding the threshold tuning often needed in membership inference methods
due to the arbitrary scales of their raw scores (Maini et al., 2024; Carlini et al., 2022; Zhang et al., 2021b). The
method works with any dataset that can be represented as a collection of text sequences, including standard
training corpora and widely used benchmarks. It is model-agnostic and requires only gray-box access to token
probabilities. CoDeC is also computationally efficient, needing just two forward passes per sample. A detailed
discussion of its theoretical and empirical properties can be found in Appendix A.3.

2.5. Why Does CoDeC Work?

The effectiveness of CoDeC stems from several intuitive principles:

1. Dataset-specific priors reveal contamination. Models trained on a dataset internalize its unique
style, structure, vocabulary, and implicit assumptions. If these priors are already memorized, additional
in-context examples add little useful information.

2. Context disrupts memorization. For contaminated datasets, adding memorized in-context examples
can interfere with memorized token sequences or priors. The presence of patterns triggering memorization
in the context confuses the model, leading to reduced confidence.

3. ICL simulates finetuning dynamics. Contaminated models resemble finetuned models near satura-
tion — additional training yields minimal gains, whereas non-contaminated models adapt faster. CoDeC
effectively measures how much learning capacity remains for the dataset. Figure 8 illustrates these
dynamics.

4. Interventions expose loss landscape. Contamination is often linked to overfitting (Maini et al.,
2024). Overfitted models sit in narrow local minima that are more easily destabilized by new context,
while unseen data corresponds to flatter, more stable loss surfaces.

In the next section, we provide empirical evidence grounding those intuitions. Further discussion can be
found in Appendix A.5.

3. Experiments

In this section, we demonstrate that CoDeC consistently distinguishes between seen and unseen data, is stable
across evaluation settings, and yields interpretable scores for model auditing.

Models. We validate CoDeC on a diverse suite of LLMs with publicly available weights and training data,
enabling reproducibility and ground-truth verification. Our evaluation includes models trained on different
corpora and spanning varied architectures: Pythia (Biderman et al., 2023a), GPT-Neo (Black et al., 2021),
and RWKV-4 (Peng et al., 2023b), all trained on the Pile (Gao et al., 2020); OLMo (Groeneveld et al., 2024a),
trained on Dolma (Soldaini et al., 2024); Nemotron-v2 (NVIDIA et al., 2025a) and Nemotron-H (NVIDIA
et al., 2025b), trained on Nemotron-CC (Su et al., 2024). Those models cover transformers, RNNs, and hybrid
mamba-transformer architectures.

Detecting Data Contamination in LLMs via In-Context Learning

[Unseen data [Training data

Vanilla loss baseline Min-K% baseline
g -4 .
8 -1
s) 1AL Q -
i i - é X ' V g
§ -3 ’ -10 é@ %é%
:5)—4 12 : - T
CoDeC (ours) 0 Zlib Ratio baseline
§r e T - T s 5 @ @ = & L 4 ;
D 75%
. + _1072
}‘3 50% g é é %
g 25% Q é é - é -10-!
S ow : : - O =

R x“% R P P ,,pi‘ p‘z N x‘i"g\ 1® ca‘&o ® g)b‘?’ & o xb‘% SR P P @2‘; 3‘3 x‘b\“ x‘é\‘\w
\/ % % %

*“\\ \\6‘ Qﬂ‘ «\@ <$\“@ & @‘e o O«\ 2@0“@“000‘“‘ *6“ \\‘“ Q\\‘ «“ Qﬁ‘\\“\(ﬂ N @* oY O

W@

Figure 3 | CoDeC vs. baselines; Contamination scores for training (red) and unseen (blue) datasets. Each

point is a model-dataset pair. CoDeC achieves the best separation, enabling consistent classification across

models and datasets.

Dat?sgts. For each model, we (?refa'te a jce.st bed Model CoDeC (ours) Vanilla loss Min-K% Zlib
consisting of (1) data llmown to be in its training set Pythia 410M 100.0% 0% 76.2% 92.3%
(e.g., subsets of the Pile) and (2) unseen data pub- Pythia 1.4B 100.0% 77.3% 79.9% 91.5%
lished after the model’s training cutoff. The unseen gythia 12B 100.0? 76.9;& 82.3? 92.3?
. . PT-Neo 1.3B 100.0% 77.3% 792% 90.8%

data includes rec.ent benchmarks, news, Web51t?s, GPT-Noo 20B 100.0% 6.9% 83.5% 92.7%
etc. A complete list of the datasets can be found in RWKV-4 430M 100.0% 75.4% 75.4% 92.3%
Appendix B. RWKV-4 3B 100.0% 76.5% 79.6% 91.9%
RWKV-4 14B 99.6% 77.3% 81.5% 92.7%

OLMo 1B 100.0% 64.8% 71.9% 80.5%

. . OLMo 7B 100.0% 65.6% 72.7% 78.1%
Baselines. We compare CoDeC against three Nemotron v2 9B 100.0% 83.7% 97.6% 98.2%
common contamination detection methods: Vanilla Nemotron-H 8B 100.0% 80.0% 73.3% 88.0%

Loss (Fu et al., 2024), scoring based on model loss; Nemotron-I 56B 100.0% 822% 86.7% 92.0%

Min-K% (Zhang et al., 2021b), focusing on the Cumulative 99.9% 75.7% 185% 89.6%
most informative tokens; and Zlib Ratio (Carlini
et al., 2022), which normalizes perplexity by sample
entropy. More details can be found in Appendix C.1.

Table 1 | AUC scores for separating seen vs. unseen datasets
(Figure 3), computed per dataset’.

3.1. Main Validation

CoDeC cleanly separates seen from unseen data (see Figure 3), achieving dataset-level AUC of 99.9%
across all evaluated models (see Table 1). In contrast, baselines fail to provide a reliable separation. Their
scores for seen and unseen data overlap significantly, making them ineffective for confident contamination
detection. The consistent and sharp separation achieved by CoDeC enables meaningful, model-agnostic
comparisons.

To further validate CoDeC, we examined how scores for each dataset vary across different models. Figure 5
shows the distribution of CoDeC scores on various datasets for all models trained on the Pile corpus (extended
results can be found in Appendix C.3). For most datasets scores are remarkably consistent, clustering around
the per-dataset mean located between 0 and 60%. Such stability suggests that major outliers in the distribution
are indicators of at least partial contamination.

We also analyzed whether dataset diversity affects CoDeC scores by measuring the variance of text
embeddings (see Figure 5). While a certain correlation exists, it is insufficient to explain the observed patterns,
indicating that CoDeC captures deeper signals beyond simple diversity. Importantly, this finding suggests

"While AUC, a parameter-free metric commonly used for evaluating MIA methods (Maini et al., 2024), is usually computed
over individual samples, here it is computed over dataset-level scores. Details are provided in Appendix B.4.

Detecting Data Contamination in LLMs via In-Context Learning

Score Distribution per Dataset Dataset Diversity

CoDeC description 4
Ukraine Conflict Updates {
Slack

GSM8K (test)

AIME 2025 4

Math 500 (problem)
Frames 4

GPQA diamond o

BFCL v3

Gutenberg: Necklace
Gutenberg: Colonial Memories

CoDeC Scores During Training

Dataset type
mm Training datasets
80% | N Unseen datasets

Dataset

Contamination Score

pile CC 4 &
20% GitHub 4 Lo d
Wikipedia (music) -
Full Pile + N
0% | | | | | Mathematics 4 i . . i . ? : . .
0 10° 104 10° 10° 0.0 0.2 0.4 0.6 0.8 1o 0.15 0.20 0.25
Training steps Contamination Score Diversity

Figure 4 | Changes in CoDeC scores over training Figure 5 | Distribution of CoDeC scores per dataset, computed

of OLMo 7B. A list of the datasets evaluated in for models trained on the Pile. The last 5 datasets are parts

this experiment can be found in Appendix C.4. of the training data. The complete evaluation can be found in
Appendix C.3.

Contamination during finetuning

o 100%] q q ?_: B —— .
P o m— 7
o -
9 80% - i //’/- | | /
=
S 60%- 4 4 g
=]
[+
£ 40%+ 1 1 g Model
E N EleutherAlfpythia-1.4b
8 20% A il il il B EleutherAlfgpt-nec-1.38
= B allenai/OLMe-1B-hf
S 0% 1]] | == Qwen/Qwen3-1.78
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
Finetuning batches Finetuning batches Finetuning batches Finetuning batches

Figure 6 | CoDeC scores during finetuning different models on 10 datasets (see Appendix B.3 for the list). Though
the Qwen3 model does not disclose its training data, by finetuning we can confirm the effectiveness of CoDeC also for
that architecture.

that scores even near 50% should not be treated as contamination hints for highly diverse datasets, especially
if the scores are consistent across models.

3.2. Contamination During Training

Figure 5 tracks how CoDeC scores change during training of the OLMo 7B model, for which training
checkpoints are publicly available. At initialization, scores are close to 50% for all datasets, reflecting random
delta-confidence fluctuations in an untrained model. By 1k steps, the model has acquired basic language
understanding but has seen too little to memorize anything. Only the Stack-v4 dataset (code snippets and
byte-like samples) drops only to 33% at 1k steps because it does not align with general language skills, leaving
memorization as the only viable strategy.

The key shift occurs between 1k and 10k steps, which makes just about 2% of the full training. Contami-
nation scores for training datasets rise sharply, while scores for unseen datasets settle near their final values.
Beyond this point, up to the final 477k training steps, scores remain largely stable — indicating that the model
has already seen enough data to recognize and memorize the distributions of its training sets.

Since CoDeC detects contamination in the very early stages of training, it is highly effective for identifying
and preventing benchmark leaks, supporting more reliable model development. The complete list of datasets
presented in Figure 4 can be found in Appendix C.4.

3.3. Contaminating via Finetuning

Finetuned models approach 100% CoDeC score on all datasets. To further validate CoDeC, we
performed a controlled finetuning experiment on four example models (Pythia, GPT-Neo, OLMo, and Qwen3)
as shown in Figure 6. For each run, we took a model and finetuned it on a chosen dataset, both from its

Detecting Data Contamination in LLMs via In-Context Learning

Contamination transfer to other datasets Contamination transfer from other datasets
100%

100% +
=== Finetuning samples
80% 4 — Finetuning test split
== Random crops (75%)
=== Random crops (50%)
60% Random crops {25%)
— GPOA

m— Auxiliary QA

40% GSM3K

Gutenberg (00D}

80%

60% - f
40% - /\/,__

T
°

Contamination Score
Contamination Score

20%

P » ® Y & © ~ » Y © » &
Finetuning batches Finetuning batches

.
»

Figure 7 | Contamination transfer between MMLU and related distributions, computed for the Pythia model.
Evaluation on other distributions, including data mixes and noise injection can be found in Appendix C.5.

original training data and from unseen sources. In each case, the CoDeC score consistently rose above 90%,
showing a clear and stable increase after exposure to the data. Finetuning on a dataset clearly introduces
contamination, and CoDeC reliably detects this effect.

This setup is independent of any uncertainty about the model’s original training corpus. As a result, the
evaluation can be applied to any model, such as Qwen3 (Yang et al., 2025), to confirm the applicability of
CoDeC for recent models, even with undisclosed training data.

Contamination transfer. Next, we explore how contamination from one dataset influences related datasets,
and vice versa. Specifically, we analyzed the effect of finetuning a model on MMLU and measuring CoDeC
scores on datasets with varying levels of similarity to MMLU, and conversely, training on related datasets and
evaluating contamination on MMLU.

Figure 7 (left) shows how training on MMLU influences CoDeC scores on other datasets. Finetuning
makes the model highly contaminated even with unseen questions from MMLU. Contamination scores remain
high even when we randomly crop the evaluation data down to as little as 25% of the original content (which
was already short).

Contamination transfers modestly across QA benchmarks because MMLU shares question format, style,
and structure with them. Exploiting these patterns can boost benchmark performance without reflecting
broader knowledge. Accordingly, models contaminated with one QA dataset show slightly elevated CoDeC
scores on related QA datasets, though far from the high-contamination range. No such transfer is observed
for unrelated datasets (e.g., MMLU and Gutenberg books).

The right chart in Figure 7 shows the reverse: training on related datasets and evaluating on MMLU.
Unsurprisingly, the relative impact is almost identical as in the first case. Even finetuning only on parts of
the samples or otherwise augmented text drove the CoDeC scores high on the original MMLU. Importantly,
this demonstrates that CoDeC cannot be cheated by simple data augmentations.

More evaluations for the contamination transfer experiment, including other augmentations, can be found
in Appendix C.5.

In-context learning reveals overfitting. We compared finetuning to adding in-context samples and
found a close relationship between them (see Figure 8). Confidence curves obtained by finetuning with a
moderate learning rate and by adding extra context follow an identical pattern, suggesting a similar influence
on model behavior. Contaminated datasets are highly sensitive to the learning rate: even small updates cause
early drops in confidence of the model. Unseen datasets are robust, with confidence improving even under
very high learning rates. This pattern is consistent across models and datasets.

These results support the view that contamination is closely related to overfitting (Maini et al., 2024):
memorized samples sit in high-variability, narrow minima where even small updates can destabilize predictions,
whereas unseen samples lie in flatter regions that benefit from additional learning signals. CoDeC captures

Detecting Data Contamination in LLMs via In-Context Learning

Model confidence with growing context Model confidence during finetuning
s The Pile (training) P
s gsm8k (unseen)
0.3
0.4
Learning rate:
Y021 Y 0.2 le-4
c c 3e-5
(] [
° o le-5
= = 0.0 I 3e-6
S 0.1 5
O (@] m le-6
< < _02/ Dataset:
’ mmm The Pile (training)
0.0 A mmm gsm8k (unseen)
_0.41
0 1 2 3 4 0 10 20 30 40 50 60
N context samples Finetuning steps
(a) Changes in model confidence with adding (b) Changes in model confidence during finetuning with various
more samples to the context. learning rates.

Figure 8 | Relation between finetuning and in-context learning for contamination detection. Both plots show how the
average probability of target tokens evolve as more learning signal is provided. For learning rate around 3e~%, the
curves nearly overlap.

Example-based Context Character-based Context Contamination Score vs. Dataset Size
100% | e———————————————— | 1 f 100% 1 m————
© 80% 1 © 80%
o o
& &
.5 60%1 Dataset type _5 60% A
§ mmm Training datasets ®
[=4
£ 0wl \ == Unseen datasets £ ol
© ©
8 8
5 5
O 20%4 O 20%
Dataset Type
B Training datasets
0% o — {— — 0% | — N Unseen datasets —————
1 2 3 a 128 512 2048 8192 10 30 100 300 1000
Number of examples in context Number of characters in context Dataset Size
(a) Impact of context size. (b) Impact of the target dataset size.

Figure 9 | Ablation studies of CoDeC on the Pythia 1.4B model using 5 training and 5 unseen datasets (see Appendix
B.3 for the list). Shaded regions show the range between the minimum and maximum scores across 5 runs.

this distinction, which explains why the method is effective.

3.4. Ablations

Context Size. While our experiments use the simplest form of CoDeC with a single in-context sample, the
method can be easily extended to include more context. Larger contexts yield clearer separation between seen
and unseen data but also increase computational cost (see Figure 9a). In practice, a single in-context sample
already provides strong signal while keeping inference efficient. However, adding more samples can further
enhance performance if resources permit.

Target Dataset Size. A key practical factor is how many examples are needed for reliable contamination
scores. CoDeC proves highly sample-efficient: around 100 examples already give stable estimates with low
variance, making the method feasible even on small benchmarks. With 1,000 examples, the variance with
respect to the sampled contexts falls below 1% (see Figure 9b).

3.5. Interpreting CoDeC Scores

CoDeC captures how strongly model’s predictions depend on memorized patterns and whether outputs are
driven by internal distributional priors. Note that this can also occur if the model has been trained on
identically distributed or closely related data (e.g., synthetically generated). Hence, while high scores do

Detecting Data Contamination in LLMs via In-Context Learning

not prove that a dataset was in the training corpus, the method is informative for separating generalization
capabilities of the model from specialization. Among models with similar benchmark accuracies, models with
lower CoDeC scores generalize better.

For highly contaminated datasets, scores typically cluster near 100%. While most unseen datasets are
scored below 20%, some can reach as high as 60%. This may occur for two main reasons: (i) the dataset is
highly related to the training data, resulting in partial contamination; or (ii) the dataset consists of extremely
diverse samples, so in-context examples act like random noise. Hence, to separate dataset effects from true
memorization, scores should be compared across multiple models on the same dataset.

Best practices. For robust contamination assessment, we suggest combining absolute thresholds with
reference-based comparisons. High absolute scores (>80%) should be treated as contamination red flags, but
significant deviations from other models’ CoDeC scores should be equally alarming. For a broader discussion,
see Appendix A.5.

3.6. Broader Application of CoDeC

Experiments on models with known training data, presented in Section 3, confirm the reliability of CoDeC.
With confidence in its validity, we subsequently applied CoDeC to a broad suite of over 40 recent models
and analyzed their contamination scores across widely used benchmarks. The full evaluation can be found in
Appendix C.7.

Most models fall well below the high-contamination area, suggesting they were not directly trained on
benchmark data. Nevertheless, certain models score close to this threshold or remain clear outliers on specific
benchmarks, which may indicate partial data leakage or substantial training on closely related synthetic
or derivative content. Variants within the same model family tend to produce similar scores, reinforcing
CoDeC’s robustness across model types. The largest models generally achieve very low contamination scores,
supporting the view that increased capacity facilitates generalization over memorization.

These findings underscore the support of CoDeC in identifying contamination risk, interpreting benchmark
accuracy with appropriate caution, and informing fair model comparison.

4. Limitations and Future Work

While CoDeC demonstrates robust and promising results, there are several areas for improvement. Scores
may be affected by adversarial datasets, such as those with heavy duplication or mixtures of unrelated
sources, although these issues do not compromise evaluations on standard benchmarks (see the discussion
in Appendix A.3.2). In principle, it may be possible to engineer training strategies that bypass increases
in CoDeC estimates. However, if such approaches preserve a model’s ability to learn or prevent it from
internalizing dataset-specific priors, they would represent a notable advance in their own right. Improving the
criterion so that untrained models or unrelated data mixtures consistently yield scores well below 50% could
further enhance interpretability. Another direction is adapting CoDeC for strict membership inference at the
sample level, enabling more fine-grained analysis. Finally, additional research is needed to fully explore the
applicability of CoDeC across diverse model architectures and training regimes.

5. Related Works

Contamination detection. Detection of training data contamination in LLMs is closely related to research
on membership inference attacks (MIAs), which aim to determine whether a specific data sample was used
in model training (Shokri et al., 2017). Early methods relied on training shadow models (Zhang et al.,
2021a; Yuan et al., 2023), which is prohibitively costly for modern LLMs. A simple approach to detecting
contamination is based on thresholding loss (Yeom et al., 2018) or perplexity (Carlini et al., 2022). (Shi et al.,
2024; Zhang et al., 2025) improve over those methods by focusing on the most informative tokens. Mattern
et al. (2023); Mitchell et al. (2023) detect contamination by perturbing samples to check for memorization.
Many approaches rely on reference models for calibrating the entropy (Min et al., 2024; Maini et al., 2024).

Detecting Data Contamination in LLMs via In-Context Learning

Similarly, Carlini et al. (2022) proposes estimating entropy using zlib library. More recent approaches leverage
held-out data to train a model-calibrated contamination classifier (Maini et al., 2024; Bar-Shalom et al., 2025).

Numerous approaches have been proposed to estimate benchmark contamination. For example, Yang
et al. (2023) show that simple n-gram overlap de-duplication is insufficient, as paraphrases, translations, and
variations of test samples can still leak into training data. Golchin and Surdeanu (2024) observed that some
models, when given only the name of a benchmark, can recreate its questions. Oren et al. (2023) compare the
loss when samples are presented in a canonical order versus a random order, under the assumption that a
contaminated model will favor the former. Other approaches measure whether the model can reconstruct
masked answers or even answer without being given the question (Deng et al., 2024; Balepur et al., 2024).
However, such methods often suffer from low recall or rely on narrow assumptions about the targets, whereas
CoDeC avoids these limitations entirely.

Recent studies prove that the problem of membership inference is inherently hard, especially in the era of
LLMs trained on massive corpora and usually for just a single epoch, rendering most prior methods ineffective
(Maini et al., 2024; Duan et al., 2024; Carlini et al., 2022). Instead, Maini et al. (2024) proposed dataset-level
approaches to achieve meaningful results, but they require access to held-out identically distributed samples.
CoDeC follows the dataset-level setup, though it works without additional constraints.

Beyond attacks, several defenses have been proposed to mitigate contamination detection. Jia et al. (2019)
introduced adversarial filtering to reduce memorization. Shejwalkar and Houmansadr (2020) explored selective
forgetting using differential privacy and gradient masking, while Mireshghallah et al. (2021) investigated
privacy-preserving fine-tuning to obfuscate membership signals.

In-context learning. LLMs are known to improve when prompted few-shot (Brown et al., 2020). The
connection between in-context learning and training is a widely studied relationship (von Oswald et al., 2023;
Mosbach et al., 2023; Dai et al., 2023). CoDeC builds upon this work, and extends the understanding of how
in context examples impact generation confidence differently when the model has already seen the text vs.
not.

6. Conclusions

We introduced Contamination Detection via Context (CoDeC), a simple yet very effective method for detecting
and quantifying training data contamination in large language models. By measuring how in-context examples
from the same dataset affect model predictions, CoDeC distinguishes between datasets the model has memorized
and those it has not. Our experiments show that CoDeC produces clear, interpretable contamination scores on
a wide range of models and datasets, exposing evidence of memorization and overfitting even in open-weight
models with undisclosed training data.

Unlike traditional membership inference methods, CoDeC requires no external references, dataset-specific
tuning, or retraining, making it practical for large-scale, real-world evaluations. Its percentage-based scores
are easy to interpret and integrate into benchmark reporting.

While high CoDeC scores (> 80%) indicate likely contamination, moderate values should be compared
across models to separate dataset effects from memorization. Importantly, the scores do not prove training
membership but capture also the influence from directly seen, related, or augmented data, making CoDeC a
practical tool for ensuring fair evaluation.

References

Balepur, N., Ravichander, A., and Rudinger, R. (2024). Artifacts or abduction: How do llms answer
multiple-choice questions without the question?

Bar-Shalom, G., Frasca, F., Lim, D., Gelberg, Y., Ziser, Y., El-Yaniv, R., Chechik, G., and Maron, H. (2025).
Learning on 1lm output signatures for gray-box behavior analysis.

Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,

Detecting Data Contamination in LLMs via In-Context Learning

Prashanth, U. S., Raff, E., Skowron, A., Sutawika, L., and van der Wal, O. (2023a). Pythia: A suite for
analyzing large language models across training and scaling.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley, H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit,
S., Prashanth, U. S., Raff, E., et al. (2023b). Pythia: A suite for analyzing large language models across
training and scaling. In International Conference on Machine Learning, pages 2397-2430. PMLR.

Black, S., Gao, L., Wang, P., Leahy, C., and Biderman, S. (2021). GPT-Neo: Large Scale Autoregressive
Language Modeling with Mesh-Tensorflow. If you use this software, please cite it using these metadata.

Blakeman, A., Basant, A., Khattar, A., Renduchintala, A., Bercovich, A., Ficek, A., Bjorlin, A., Taghibakhshi,
A, Deshmukh, A. S., Mahabaleshwarkar, A. S., et al. (2025). Nemotron-h: A family of accurate and
efficient hybrid mamba-transformer models. arXiv preprint arXiv:2504.03624.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell; A., et al. (2020). Language models are few-shot learners. Advances in Neural Information
Processing Systems (NeurIPS).

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song,
D., Erlingsson, U., Oprea, A., and Raffel, C. (2022). Extracting training data from large language models.
In 29th USENIX Security Symposium.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and Wei, F. (2023). Why can gpt learn in-context?
language models implicitly perform gradient descent as meta-optimizers.

Deng, C., Zhao, Y., Tang, X., Gerstein, M., and Cohan, A. (2024). Investigating data contamination in
modern benchmarks for large language models.

Dodge, J., Sap, M., Marasovi¢, A., Agnew, W., Ilharco, G., Groeneveld, D., Mitchell, M., and Gardner, M.
(2021). Documenting large webtext corpora: A case study on the colossal clean crawled corpus. arXiv
preprint arXiv:2104.08710.

Duan, M., Suri, A., Mireshghallah, N., Min, S., Shi, W., Zettlemoyer, L., Tsvetkov, Y., Choi, Y., Evans, D.,
and Hajishirzi, H. (2024). Do membership inference attacks work on large language models?

Fu, Y., Uzuner, O., Yetisgen, M., and Xia, F. (2024). Does data contamination detection work (well) for llms?
a survey and evaluation on detection assumptions. NAACL.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A., Nabeshima,
N., et al. (2020). The pile: An 800gb dataset of diverse text for language modeling. arXiv preprint
arXi:2101.00027.

Golchin, S. and Surdeanu, M. (2024). Time travel in llms: Tracing data contamination in large language
models.

Groeneveld, D., Beltagy, I., Walsh, P., Bhagia, A., Kinney, R., Tafjord, O., Jha, A. H., Ivison, H., Magnusson,
1., Wang, Y., Arora, S., Atkinson, D., Authur, R., Chandu, K. R., Cohan, A., Dumas, J., Elazar, Y., Gu,
Y., Hessel, J., Khot, T., Merrill, W., Morrison, J., Muennighoff, N., Naik, A., Nam, C., Peters, M. E.,
Pyatkin, V., Ravichander, A., Schwenk, D., Shah, S., Smith, W., Strubell, E., Subramani, N., Wortsman,
M., Dasigi, P., Lambert, N., Richardson, K., Zettlemoyer, L., Dodge, J., Lo, K., Soldaini, L., Smith, N. A.
and Hajishirzi, H. (2024a). Olmo: Accelerating the science of language models.

Groeneveld, D., Beltagy, 1., Walsh, P., Bhagia, A., Kinney, R., Tafjord, O., Jha, A. H., Ivison, H., Mag-
nusson, 1., Wang, Y., et al. (2024b). Olmo: Accelerating the science of language models. arXiv preprint
arXiv:2402.00838.

HuggingFaceH4 Team (2024). Aime 2024 dataset. Problems from the American Invitational Mathematics
Examination 2024, accessible via Hugging Face :contentReference|oaicite:3]index=3.

Jia, R., Raghunathan, A., Goksel, K., and Liang, P. (2019). Certified robustness to adversarial word
substitutions.

10

Detecting Data Contamination in LLMs via In-Context Learning

Maini, P. et al. (2024). Llm dataset inference: Did you train on my dataset? In Advances in Neural
Information Processing Systems (NeurIPS).

Mattern, J., Mireshghallah, F., Jin, Z., Schélkopf, B., Sachan, M., and Berg-Kirkpatrick, T. (2023). Membership
inference attacks against language models via neighbourhood comparison.

Min, S., Gururangan, S., Wallace, E., Shi, W., Hajishirzi, H., Smith, N. A., and Zettlemoyer, L. (2024). Silo
language models: Isolating legal risk in a nonparametric datastore.

Mireshghallah, F., Inan, H. A., Hasegawa, M., Riihle, V., Berg-Kirkpatrick, T., and Sim, R. (2021). Privacy
regularization: Joint privacy-utility optimization in language models.

Mitchell, E., Lee, Y., Khazatsky, A., Manning, C. D., and Finn, C. (2023). Detectgpt: Zero-shot machine-
generated text detection using probability curvature.

Mosbach, M., Pimentel, T., Ravfogel, S., Klakow, D., and Elazar, Y. (2023). Few-shot fine-tuning vs. in-context
learning: A fair comparison and evaluation.

Nguyen, H., May, V., Raj, H., Nezhurina, M., Wang, Y., Luo, Y., Vu, M. C., Nakamura, T., Tsui, K., Nguyen,
V. K., Salinas, D., Krasnodebska, A., Schuhmann, C., Richter, M. L., Xuan-Son, Vu, and Jitsev, J. (2025).
Mixturevitae: Open web-scale pretraining dataset with high quality instruction and reasoning data built
from permissive-first text sources.

NVIDIA, :, Basant, A., Khairnar, A., Paithankar, A., Khattar, A., Renduchintala, A., Malte, A., Bercovich,
A., Hazare, A., Rico, A., Ficek, A., et al. (2025a). Nvidia nemotron nano 2: An accurate and efficient
hybrid mamba-transformer reasoning model.

NVIDIA, :, Blakeman, A., Basant, A., Khattar, A., Renduchintala, A., Bercovich, A., Ficek, A., Bjorlin, A.,
Taghibakhshi, A., Deshmukh, A. S., Mahabaleshwarkar, A. S.; et al. (2025b). Nemotron-h: A family of
accurate and efficient hybrid mamba-transformer models.

opencompass Team (2025). Aime 2025 dataset. Problems from the American Invitational Mathematics
Examination 2025 (AIME 2025-1 & II), accessible via Hugging Face :contentReference[oaicite:2]index=2.

Oren, Y., Meister, N., Chatterji, N., Ladhak, F., and Hashimoto, T. B. (2023). Proving test set contamination
in black box language models.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho, S., Biderman, S., Cao, H., Cheng, X., Chung, M.,
Grella, M., et al. (2023a). Rwkv: Reinventing rnus for the transformer era. arXiv preprint arXiv:2305.13048.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho, S., Biderman, S., Cao, H., Cheng, X., Chung, M.,
Grella, M., GV, K. K., He, X., Hou, H., Lin, J., Kazienko, P., Kocon, J., Kong, J., Koptyra, B., Lau, H.,
Mantri, K. S. 1., Mom, F., Saito, A., Song, G., Tang, X., Wang, B., Wind, J. S., Wozniak, S., Zhang, R.,
Zhang, 7., Zhao, Q., Zhou, P., Zhou, Q., Zhu, J., and Zhu, R.-J. (2023b). Rwkv: Reinventing rnns for the

transformer era.

Qwen, :, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H., Lin,
H., Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J., Dang, K., Lu, K., Bao, K., Yang, K.,
Yu, L., Li, M., Xue, M., Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Tang, T., Xia, T., Ren, X., Ren, X.,
Fan, Y., Su, Y., Zhang, Y., Wan, Y., Liu, Y., Cui, Z., Zhang, Z., and Qiu, Z. (2025). Qwen2.5 technical
report.

Shejwalkar, V. and Houmansadr, A. (2020). Membership privacy for machine learning models through
knowledge transfer.

Shi, W., Ajith, A., Xia, M., Huang, Y., Liu, D., Blevins, T., Chen, D., and Zettlemoyer, L. (2024). Detecting
pretraining data from large language models.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017). Membership inference attacks against machine
learning models.

11

Detecting Data Contamination in LLMs via In-Context Learning

Singh, A. K., Kocyigit, M. Y., Poulton, A., Esiobu, D., Lomeli, M., Szilvasy, G., and Hupkes, D. (2024).
Evaluation data contamination in llms: how do we measure it and (when) does it matter?

Soldaini, L., Kinney, R., Bhagia, A., Schwenk, D., Atkinson, D., Authur, R., Bogin, B., Chandu, K., Dumas,
J., Elazar, Y., et al. (2024). Dolma: An open corpus of three trillion tokens for language model pretraining
research. arXiv preprint arXiv:2402.00159.

Su, D., Kong, K., Lin, Y., Jennings, J., Norick, B., Kliegl, M., Patwary, M., Shoeybi, M., and Catanzaro, B.
(2024). Nemotron-cc: Transforming common crawl into a refined long-horizon pretraining dataset. arXiv
preprint arXiv:2412.02595.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. (2023). Transformers learn in-context by gradient descent.

Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Gao, C., Huang, C., Lv, C., Zheng, C., Liu,
D., Zhou, F., Huang, F., Hu, F., Ge, H., Wei, H., Lin, H., Tang, J., Yang, J., Tu, J., Zhang, J., Yang, J.,
Yang, J., Zhou, J., Zhou, J., Lin, J., Dang, K., Bao, K., Yang, K., Yu, L., Deng, L., Li, M., Xue, M., Li, M.,
Zhang, P., Wang, P., Zhu, Q., Men, R., Gao, R., Liu, S., Luo, S., Li, T., Tang, T., Yin, W., Ren, X., Wang,
X., Zhang, X., Ren, X., Fan, Y., Su, Y., Zhang, Y., Zhang, Y., Wan, Y., Liu, Y., Wang, Z., Cui, Z., Zhang,
Z., Zhou, Z., and Qiu, Z. (2025). Qwen3 technical report.

Yang, S., Chiang, W.-L., Zheng, L., Gonzalez, J. E., and Stoica, I. (2023). Rethinking benchmark and
contamination for language models with rephrased samples.

Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. (2018). Privacy risk in machine learning: Analyzing the
connection to overfitting.

Yuan, W., Yang, C., Nguyen, Q. V. H., Cui, L., He, T., and Yin, H. (2023). Interaction-level membership
inference attack against federated recommender systems.

Zhang, J., Sun, J., Yeats, E., Ouyang, Y., Kuo, M., Zhang, J., Yang, H. F., and Li, H. (2025). Min-k

Zhang, J., Sun, J., Yeats, E. C., Ouyang, Y., Kuo, M., Zhang, J., Yang, H., and Li, H. H. (2024). Min-k%-++:
Improved baseline for detecting pre-training data from large language models. CoRR, abs/2404.02936.

Zhang, W., Tople, S., and Ohrimenko, O. (2021a). Leakage of dataset properties in multi-party machine
learning.

Zhang, Z., Wu, H., Wang, T., Lin, G., Zhang, Y., Wang, T., and He, X. (2021b). Understanding and mitigating
the uncertainty in deep neural networks: Min-k arXiv preprint arXiv:2012.07805.

12

Detecting Data Contamination in LLMs via In-Context Learning

A. Detailed explanation of Contamination Detection via Context

A.1. Key idea

Consider the following illustrative example. If a mathematician trains for the International Mathematical
Olympiad (IMO) competition by solving all available IMO problems, their knowledge becomes highly
contaminated with IMO-specific problem characteristics. Beyond the genuine mathematical knowledge
acquired, exposure to the IMO problem distribution introduces several specific priors, such as: all assumptions
mentioned in the problem are necessary, the hypothesis requested to prove always holds, the problems are
challenging yet formulated without advanced academic concepts, etc. These properties are unique to IMO
problems but not to general mathematical questions and texts. Therefore, leveraging such priors results in an
unfair measure of one’s general mathematical skills.

Now, suppose this mathematician is given free access to IMO problems during the competition. If they
have already learned to solve those problems, such context is no longer useful for further learning. However, if
the mathematician has learned from other sources and has never seen any IMO problem, they would benefit
greatly from understanding the specifics of these problems, their structure, and implicit assumptions.

Following this example, Contamination Detection via Context (CoDeC) measures the contamination score
by evaluating how access to the target dataset affects the model’s predictions. For each datapoint in the
dataset, CoDeC samples a few in-context examples from the same dataset and compare the average logits
with and without this context.

If the model has not used the target dataset for training, it should benefit from the additional context, as
these examples contain valuable information about the data distribution. Even if not directly related, they
may share similarities in structure, style, vocabulary, topic, or other implicit common priors. Conversely,
if the model was trained on that dataset, it already knows these priors, making the provided context less
beneficial. Furthermore, if the model is overly confident due to memorized patterns, such as specific word
sequences or frequent occurrences, introducing additional context (likely also memorized) should disrupt these
patterns and negatively affect the confidence.

A.2. CoDeC pipeline

Following the key idea described above, the complete pipeline of CoDeC consist of 4 simple steps:

1. Baseline prediction: For each datapoint = in the suspect dataset D, obtain the model’s average
log-likelihood on the consecutive tokens of z.

2. In-context prediction: Sample n additional examples x1, ..., x,, from D\ {z}, prepend them to z
(creating a sequence x1]|...|z,|z), and obtain the model’s predictions on z in this new context. Focus
solely on the probability of tokens in z, ignoring the context examples. While any number of context
examples can be used, in our experiments we used one.

3. Score computation: Compute the difference in confidence A(z) = logprob;,_context (£)—10EPTOby , celine (Z)-
Since the context is sampled randomly, the value of A(z) is subject to some variance. To achieve higher
statistical significance, we average the A(x) values over 5 seeds, though even a single seed provides
meaningful scores. Additionally, when computing the average log-likelihood, We ignore first 10 tokens
to avoid the influence of switching between texts.

4. Aggregation: Repeat the above for all x € D. The contamination score for the dataset is then

N
1
Scopec(D) = = Z 1[A(z:) < 0]
where 1 is the indicator function.

In summary, to compute CoDeC scores, we compare the model’s confidence with and without additional
context for each sample. The final score represents the percentage of samples for which the influence of
additional context is negative.

13

Detecting Data Contamination in LLMs via In-Context Learning

A.3. Properties of CoDeC
A.3.1. Theoretical properties

CoDeC by its design has several desirable properties that make it useful in practice:

Score as a percentage. CoDeC returns a contamination score as a percentage of dataset elements indicating
contamination, making it intuitively understandable. Unlike classical approaches that compute scores in
open ranges requiring references and scale knowledge, percentage points are easily grasped without in-depth
analysis. Even the intuitive notion of probability of contamination, while not fully grounded, can be useful
here.

Works with any dataset. CoDeC can be computed for any set of strings, making it broadly applicable. In
our evaluations, we used various data sources: standard training datasets (e.g., Wikipedia, Common Crawl),
code (e.g., GitHub), QA benchmarks (e.g., MMLU, GPQA), math benchmarks (e.g., AIME, MATH-500),
PDFs (e.g., ArXiv), books (e.g., Project Gutenberg), websites (e.g., global news, Amazon Reviews), files (e.g.,
Linux syslog), and more. While CoDeC is designed primarily for datasets, it is straightforward to transform a
single text source into a dataset by splitting it into parts.

Works with any gray-box model. Any model that outputs logits for a given text (including most models
available on HuggingFace) can be used to compute CoDeC. The method is independent of the model’s training
specifics and architecture. It can even be applied to fully black-box models by empirically estimating target
token probabilities, though this increases score variance unless we assume multiple repetitive calls and model
stochasticity.

Parameter-free. CoDeC does not require model-specific or dataset-specific parameters. Unlike classical
MIA methods, which need a tuned classification threshold and deep model knowledge or external ground-truth
data, CoDeC can be applied off-the-shelf to any model and dataset.

Computationally efficient. To compute CoDeC scores, the model runs twice with at most twice longer
samples, introducing minimal computational overhead. Using as few as 1000 samples already yields precise
scores (see Figure 9b), hence it can be applied even to large corpora. Additionally, in-context learning is much
faster than methods requiring finetuning or shadow model training.

A.3.2. Empirical properties

Furthermore, during our experiments we observed the following empirical properties of CoDeC:

Robustness to text cropping. CoDeC scores remain stable when using partial training prompts. This
property proves particularly valuable when evaluating single, long text sources (books, articles) that should
be split into dataset components.

Sensitivity to formatting variations. Artificial formatting changes (added labels, modified whitespace)
reduce contamination scores even for training data. Understanding that sensitivity is crucial for reliable QA
benchmark evaluation, where labels like Question:, Answer:, or instruction prompts are common. Incorrect
labels (those not used during training) decrease scores, as expected: in-context samples provide formatting
information that artificially increases prediction confidence. Furthermore, incorrect labels may break memo-
rization patterns themselves. To ensure meaningful evaluation, the suspect dataset should focus exclusively on
text portions guaranteed to appear during training (e.g., question text only), independent of training-specific
formatting. As shown in Section 3.3, CoDeC captures the contamination even in cropped samples, so uncertain
parts may be safely excluded.

14

Detecting Data Contamination in LLMs via In-Context Learning

Impact of data diversity. Training datasets consistently yield scores near 100% regardless of their
properties. However, unseen dataset scores vary from 0% to 60%, depending on dataset characteristics.
CoDeC assumes that additional context from the same distribution provides some additional information, e.g.
text type, style, vocabulary, domain knowledge, etc. In large, diverse datasets with unrelated samples, minimal
information sharing between datapoints occurs. Hence, additional context may not improve predictions and
can act as random noise, potentially yielding CoDeC scores up to 60%, even for unseen data. Our experiments
suggest that this effect may be mitigated using more context samples.

Larger models use less memorization. Our main evaluation (Figure 3) included models from 410M to
56B parameters, where training data could be verified. While results remain consistent across architectures
and sizes, larger models within families show slightly lower CoDeC scores. This trend intensifies at larger
scales. For instance, Llama-Nemotron-Nano 4B exhibits high contamination across multiple benchmarks,
while Llama-Nemotron-Ultra 253B maintains all contamination scores below 20%. Although these models
share a family, their training processes and data compositions differ; however, these differences alone cannot
explain the contamination disparities.

This size-dependent behavior aligns with expectations. CoDeC measures reliance on memorization instead
of general knowledge. Larger models possess greater capacity for genuine knowledge acquisition, reducing
overfitting to individual datapoints. Consider an illustrative example: when solving algebraic equations,
children often rely on pattern memorization, while expert mathematicians apply fundamental skills even for
previously encountered problems.

Adversarial cases. While CoDeC provides robust contamination scores for most datasets and models,
adversarial constructions remain possible. For instance, a dataset containing 1,000 identical (or near-identical)
samples produces low CoDeC scores regardless of training exposure. Constructing datasets with artificially
high contamination scores is more challenging but possible through combining several unrelated, diverse data
sources.

These edge cases do not compromise evaluations on standard benchmarks, as genuine datasets remain
unaffected by such artificial constructions. Since evaluation data selection remains under user control, models
cannot exploit these constructions to bypass detection.

CoDeC applies to any causal model by design. We evaluated over 40 models across various sizes and
architectures. One notable exception emerged: GPT-OSS 20B consistently produces contamination scores
exceeding 99% across all datasets. Investigation revealed heavy optimization for chat and reasoning tasks
that impairs standard language sequence modeling. Even when provided identical text as context, confidence
decreases due to persistent attempts to terminate sequences and transition to thinking or chat-like dialogue
patterns. Addressing that issue remains for future work.

A.4. Why does CoDeC work?

The central idea behind CoDeC is to measure whether a model has internalized a dataset’s specific priors, as
their presence is a clear indicator of training data contamination. These priors are not limited to exact string
memorization but cover a wide range of cues, such as stylistic patterns, characteristic vocabulary, or common
structural templates. While a model may lack the capacity to memorize every single training example, the
manifold of these general cues is significantly narrower and can be memorized more easily. CoDeC is designed
to detect if the model leverages this learned manifold.

Our approach uses in-context learning as an efficient proxy for finetuning. Consider the standard finetuning
process: a model performance improves significantly during the first epoch on a new dataset, with smaller
gains in subsequent epochs. Similarly, if we could finetune a model on a target dataset for contamination
detection, a contaminated model would improve much more slowly than a non-contaminated one because
it has already learned the data distribution. However, performing actual finetuning for every evaluation is
computationally prohibitive, especially for large models. CoDeC achieve a similar outcome by using in-context
learning, which is a negligible cost. Hence, in essence, CoDeC measures the remaining learning capacity for
the target dataset. If the model has already been trained on the data, it has little capacity left to learn, and
its performance will not significantly improve when presented with in-context examples from that dataset.

15

Detecting Data Contamination in LLMs via In-Context Learning

This behavior can be also understood through the lens of the loss landscape. Contamination is often linked
to overfitting (Maini et al., 2024), where the model settles into a sharp, narrow local minimum in the loss
landscape for the training data. For unseen data, the loss landscape tends to be flatter. Our experiments
suggest that in-context learning acts similarly to finetuning with a high learning rate. This makes the process
highly sensitive to the local geometry of the loss manifold. For a contaminated sample, the model is already
in a steep local minimum. Hence, taking even a single step is likely to exit this minimum, resulting in worse
performance. Conversely, for an uncontaminated sample where the loss manifold is flat, the same step will
likely move the model towards a region of higher confidence, improving performance at least slightly.

Finally, CoDeC relates to reference-based MIAs, which often use external models or datasets to calibrate
the difficulty of a given sample. CoDeC shares a similar structure but introduces a crucial distinction: it
relies on a self-reference approach. Instead of using external data for calibration, CoDeC uses the model own
predictions as the baseline. This design choice makes our scores independent of the availability of external
resources and ensures that the calibration is based on specifically to the properties and knowledge of the
model being investigated.

A.5. How to interpret CoDeC scores?

The CoDeC score is a measure of how much a model’s predictions rely on memorized patterns rather than
genuine reasoning. Importantly, it does not indicate strict membership of a dataset in the training corpus.
Instead, it reflects whether the outputs are predicted based on memorized internal distribution priors —
something that can happen if the model was trained on identically distributed or closely related data (e.g.
artificially generated). From another perspective, a lower contamination score indicates greater remaining
model capacity to learn from the target dataset.

In practice, our experiments reveal two complementary ways to interpret CoDeC scores: absolute evaluation
and reference-based comparison.

A.5.1. Absolute Score Interpretation

Because CoDeC scores naturally fall between 0% and 100%, they can be compared across datasets and models
without model-specific scaling or parameter tuning. Empirically, we found a consistent pattern:

e Scores above 80% were measured for nearly all training datasets we used for experiments, indicating
strong contamination evidence.

e Scores below 60% were measured for nearly all unseen datasets. In general, they show no evidence of
contamination — the model is likely reasoning based on general knowledge rather than memorization.

e Scores in the 60%-80% range are ambiguous: they may be due to partial contamination, training on
related distributions, or simply higher model capacity.

Thus, while an absolute threshold (>80%) is a strong indicator, values in the intermediate range require more
nuanced analysis.

A.5.2. Reference Score Interpretation

Absolute scores alone only partially capture variations in dataset properties like diversity. For example, even
a non-contaminated model might score relatively high on a broad, highly diverse dataset. To adjust for such
effects, the scores should be compared across multiple models on the same dataset.

The most reliable approach is to include at least one model that is known to be non-contaminated with the
target dataset (e.g., older model like Pythia). If all models show similar contamination scores, this suggests
no substantial memorization specific to any model, but rather a dataset-specific level of the score. However,
if a score of the model stands out as an outlier compared to reference models, this strongly suggests higher
reliance on memorization.

Choosing reference models of similar size and architecture further helps ensure that differences in scores
point to contamination rather than general learning capacity.

16

Detecting Data Contamination in LLMs via In-Context Learning

A.5.3. Informed model comparison

Contamination is not inherently negative. For example, models designed to solve advanced math problems are
expected to be trained extensively on math datasets for excellence, naturally resulting in higher contamination.
This is similar to top IMO competitors who have solved thousands of problems, many from previous
competitions, to build their expertise. However, when comparing two models with similar performance, the
one with lower contamination is likely more adaptable and possesses deeper, more general capabilities. Just
as a person who excels at IMO without targeted training demonstrates broader intelligence, a model with less
reliance on problem-specific priors is usually more capable.

CoDeC measures the remaining learning capacity for the target data distribution, indicating how much
room a model has to improve with possible further task-specific tuning. This way, CoDeC allows to understand
not only the raw performance of each model, but also the sources of that performance — how much it relies
on genuine knowledge and how much on data-specific priors that not necessarily generalize to other related
setups.

A.5.4. Partial contamination

Direct inclusion of a benchmark in training is not the only source of contamination. Highly related data —
such as paraphrases, augmented samples, identically structured content, or additional examples — can also
compromise evaluation, making observed performance less trustworthy. In practice, questions from widely
used benchmarks often leak into public sources such as forums, blog posts, and educational material.

As shown in Section 3.3 (Figure 7), CoDeC detects contamination arising from training on related content.
Scores should therefore be interpreted in terms of how the training data relates to the target dataset — a
relationship that cannot be captured by classical n-gram overlap checks, commonly used in practice (Nguyen
et al., 2025).

This explains why some datasets never explicitly seen during training still reach CoDeC scores as high
as 60% (see Figure 11). For example, in our experiments the highest-scored unseen datasets were Amazon
product reviews, the Colonial Memories book from Project Gutenberg, and Global News articles. Models
trained on the Pile dataset have direct exposure to Project Gutenberg and Books3, making Colonial Memories
strongly distribution-related even without being part of the training set. Likewise, news and product reviews
are common in large web corpora, so high contamination scores for them are not surprising.

Importantly, CoDeC still distinguishes these cases: data directly included in training consistently score
near 100%, while related but unseen data get high but noticeably lower scores.

A.5.5. Best Practices

For robust contamination assessment, we suggest combining absolute thresholds with reference-based compar-
isons. High absolute scores (>80%) should be treated as contamination red flags, but significant deviations
from other models’ CoDeC scores can be equally alarming. By viewing CoDeC scores not as binary labels but
as indicators of memorization intensity, the results serve as a useful indicator both for ensuring a fair model
comparison on benchmarks, and reliable model quality assessment during training.

We also suggest that, among models with equal benchmark scores, those with lower CoDeC scores should
generalize better.

17

Detecting Data Contamination in LLMs via In-Context Learning

B. Evaluation setup

To make the main evaluation meaningful, we have to use models for which we know the training data, and
prepare additional datasets that were certainly not used for training. Following standard practice, we ensured
this exclusion by using data published only after the release of the training datasets, eliminating the risk of
data leakage. In each case, we selected a broad range of data types, sources, levels of diversity, and other
characteristics to ensure comprehensive coverage of possible data properties in evaluation.

For each dataset, we selected 1000 random samples for evaluation. If the data source was a continuous
stream of text (e.g. book or an article), we split it into 600-characters chunks and treated as a dataset.

Since the selection of both training and unseen datasets is inevitably somewhat arbitrary, we emphasize
that the results in this paper reflect all evaluations we have conducted, including internal experiments. Given
that the pipeline is simple and lightweight, we strongly encourage readers to run it themselves and
confirm the reliability of CoDeC on datasets of their choice.

Because most LLMs available today do not disclose their training data, our model choice is necessarily
limited. Nevertheless, we selected the following families with full access to their training datasets:

o Pythia (Biderman et al., 2023b), trained on the Pile dataset (Gao et al., 2020).

o GPT-Neo (Black et al., 2021), trained on the Pile dataset.

e RWKYV-4 (Peng et al., 2023a), trained on the Pile dataset.

o OLMo (Groeneveld et al., 2024b), trained on the Dolma dataset (Soldaini et al., 2024).

o Nemotron-v2 (NVIDIA et al., 2025a), trained on the Nemotron-CC dataset (Su et al., 2024).
o Nemotron-H (Blakeman et al., 2025), trained on the Nemotron-CC dataset.

B.1. Training datasets

We used the following sets as training data examples:

The Pile

o HackerNews

o Wikipedia

o GitHub

e ArXiv

e DM Mathematics

e Pile CommonCrawl

e PubMed Central

e Full Pile

o Wikipedia Music (a low-diversity subset of Wikipedia containing only music-related articles)
o GitHub Licenses (a low-diversity subset of GitHub containing only license comments)

Since the Pile dataset is not available for direct download, we used the samples provided in the
iamgroot42/mimir dataset.

Dolma

e (4

o Wikipedia

e Pes20 v2

e Reddit v5

e Stack v4

¢ CommonCrawl head
¢ CommonCrawl middle
e CommonCrawl tail

18

Detecting Data Contamination in LLMs via In-Context Learning

Nemotron-CC

o Wikipedia

o StackExchange

o ArXiv

o CommonCrawl 2024 (high quality)

o CommonCrawl 2020 (high quality)

o CommonCrawl 2020 (low quality)

o CommonCrawl 2019 (medium quality)
o CommonCrawl 2016 (medium quality)
o CommonCrawl 2014 (low quality)

o CommonCrawl 2013 (high quality)

B.2. Unseen datasets

For unseen datasets, we used the following sources:

Popular benchmarks. We evaluated the models on the following benchmarks. For each model family, we
used those that were published after the training dataset release date to ensure they were unseen:

e For models trained on the Pile: gsm8k, GPQA Diamond, IFEval, HumanEval, FRAMES, AIME 2024,
AIME 2025, LiveCodeBench v1, LiveCodeBench v5, BFCL v3, BBQ, RewardBench v1, RewardBench
v2, and MATH 500.

e For OLMo models: FRAMES, AIME 2024, AIME 2025, LiveCodeBench v5, BFCL v3, RewardBench
vl, and RewardBench v2.

e For Nemotron-H, we used only AIME 2025.

Project Gutenberg. We used three books added to Project Gutenberg after April 2025:

e Colonial Memories
o Jibby Jones : A story of Mississippi River adventure for boys
e The Corbin necklace

Datasets from HuggingFace.

e NickyNicky/global-news-dataset
e McAuley-Lab/Amazon-Reviews-2023

A recent website.

e An article with Ukrainian conflict updates: https://www.understandingwar.org/backgrounder/
ukraine-conflict-updates

Self-created data.

e A document describing this project.
o A transcript from a meeting.

e Linux syslog file from our computer.
e Internal slack channel log.

B.3. Datasets for ablations

For the ablations (Figures 9a, 9b) and experiments with finetuning (Figure 6), we used the following
representative 10 datasets:

19

https://www.understandingwar.org/backgrounder/ukraine-conflict-updates
https://www.understandingwar.org/backgrounder/ukraine-conflict-updates

Detecting Data Contamination in LLMs via In-Context Learning

Training data (from the Pile)

e HackerNews
o Wikipedia
e GitHub

o ArXiv

e Full Pile

Unseen data

o Colonial Memories (Project Gutenberg)
e Ukrainian conflict updates

o Global News

o gsm8k

e Amazon reviews

B.4. AUC comparison

The Area Under the Receiver Operating Characteristic Curve (AUC) is a standard metric for evaluating
binary classifiers. It measures the probability that a randomly chosen positive example is ranked higher than
a randomly chosen negative example, making it threshold-independent and robust to class imbalance. If ST is
the set of scores for positive examples and S~ for negative examples, then:

AUC = G| |s—\ ooy 1)4 0.5-1(st =s7)

steSt s—esS—

In the context of Membership Inference Attacks (MIAs), AUC is widely used to quantify the classifier’s
ability to distinguish between training samples (positives) and unseen samples (negatives).

A key difference between our setting and typical MIA evaluations is granularity. In most prior work,
contamination scores are computed per sample, and the AUC reflects the quality of sample-level classification.
In contrast, our method focuses on the dataset level: we compute a single contamination score per dataset
and evaluate the model’s ability to classify entire datasets as seen or unseen. This approach better reflects the
intended use of CoDeC, which is designed to provide interpretable, aggregate measures of contamination for
benchmarks and corpora rather than individual samples.

As shown in Figure 3, CoDeC achieves near-perfect separation between seen and unseen datasets, leading
to dataset-level AUC scores close to 100%. This demonstrates that CoDeC is highly effective at capturing
training data contamination in a way that aligns with MIA evaluation traditions.

20

Detecting Data Contamination in LLMs via In-Context Learning

C. Extended Experiments

C.1. Baselines

In our analysis, we compare with the following general-purpose baselines:

e Vanilla loss. Models are trained to optimize the loss on training examples. Hence, a straightforward
way to identify training data is to score the samples based on the average token loss.

e Min-K%. Introduced by (Shi et al., 2024), Min-K% builds on the observation that training samples do
not have tokens with very low probability. Hence, the criterion computes the score based on the loss
measured only on the least-probable tokens in the sequence.

e Zlib ratio. Loss-based methods, while effective in some settings, cannot distinguish contaminated data
from genuinely easy data, as both result in low model loss. To fix this problem, the Zlib ratio method
(Carlini et al., 2022) normalizes the score using sample entropy, estimated as the Zlib compression rate.

C.2. Influence of the Context on Model Logits

" F14
]
2
ri2
P 2
> r10§
2 - o
3 -6 = g
© ré s
S o
& -81 e =
o o
o =}
~ -~10 ta E
. O
12 Logprob without context L5
- Emm Logprob difference with context I
== Cumulative difference |
—-14 4 0
XKEOFEES @O 2ORL S AN (S VEHE 1 C@RRFLE SR FE S FLREE A RE @ RO
R R S S S R i U SO e
& £ < S RS & & & &
Token
(a) Changes in model confidence on unseen dataset (gsm8k).
0 -
Ly L] -
L} I Lo
1
-2)
1 | 1 o
v}
> - - -4 §
2 o
= -4 (9]
3 | 6 E
B el
£ g
o -6 | -8 =
o o
o >
- -10 E
-8 i (@]
Logprob without context 1
Emm Logprob difference with context
—10 4 = Cumulative difference 1 —14
e 22 OIS RO SE A UE O E RE LS CRE 2SR A& A & @ L AL
& § I & & &E

(b) Changes in model confidence on training dataset (ArXiv).

Figure 10 | Change in model log-probabilities with and without context for the Pythia 1.4B model, evaluated on a
sample from an unseen dataset (gsm8k, la) and a training dataset (ArXiv, 1b).

We observed that models react differently to context depending on whether the dataset was seen during
training or not. Specifically, we pass the context by sampling an additional text from the dataset and
prepending it to the target sequence (connected with two newlines). Then, we compare the log probabilities
for each token in the target sequence with and without the added context. For better stability, we ignore the
first 10 tokens of the target sequence to exclude the influence of transitions between texts.

If the dataset from which the samples were taken (both the target text and the context) was seen during
training, the log probabilities consistently decrease. However, for unseen datasets, we observe consistently

21

Detecting Data Contamination in LLMs via In-Context Learning

higher estimated probabilities of the correct tokens in the target text. Hence, CoDeC determines whether the
samples were seen during training based on whether the cumulative difference is positive or negative. Note
that since we check only the sign of the difference, the scale of those fluctuations is not important. Therefore,
CoDeC works for each model regardless of its internal properties.

Figure 10a shows the logprob differences for the text "At the beginning of an academic year, there were 15
boys in a class and the number of girls was 20% greater. Later in the year, transfer students were admitted
such that the number of girls doubled but the number of boys remained the same. How many students are
in the class now?" with and without the context text "Ten adults went to a ball game with eleven children.
Adult tickets are $8 each and the total bill was $124. How many dollars is one child’s ticket?". Both texts
are sampled from the gsm8k dataset, which was not used for training the Pythia models. Despite the texts
having different topics, they share a similar structure; hence, we observe that most tokens in the target text
benefit from the added context.

In contrast, Figure 10b shows the logprob differences for the text " We show that a phase-only spatial light
modulator can be used to generate non-trivial light distributions suitable for trapping ultracold atoms, when the
hologram calculation is included within a simple and robust feedback loop that corrects for imperfect device
response and optical aberrations." with and without a context text "We consider one source of decoherence
for a single trapped ion due to intensity and phase fluctuations in the exciting laser pulses. For simplicity
we assume that the stochastic processes involved are white noise processes, which enables us to give a simple
master equation description of this source of decoherence.". Both texts are sampled from the ArXiv dataset
within the Pile corpus, which was used to train Pythia. Although both texts share a similar structure (both
are opening abstracts), both are related to physics, and both use similar vocabulary, nearly all log probabilities
decrease when the context is provided due to disrupted memorization.

The described behavior is highly consistent, as demonstrated in our main experiments (Figure 3).

C.3. Per-dataset Score Distribution

Score Distribution per Dataset Across Models Dataset Diversity

CoDeC description [}

Ukraine Conflict Updates - ﬁ'
Slack 4
Linux syslog
GSMBK (train) 1 %:'
GSMBK (test)
Math 500 (solution) 4 Q—D:}—f
AIME 2024 ool o i
AIME 2025 4 e - .
Gutenberg: Jibby Jones | X C—
BBQ § t__+ 1§
HumanEval - .
Math 500 (problem) -
rrames | T
Reward Bench v1 [ok}
Global News (full) { el 0 T }
GPQA diamond - —t T ¥ B
BFCL v3 4 ——t e [- p—rt
Gutenberg: Necklace -
Reward Bench v2 - e N 1
Global News (descriptions) { b o o | & i
Gutenberg: Colonial Memories { . t ¥ o+
Amazon Reviews - .
HackerNews - .]
Pile CC q
Github (licenses) 4 - L and
GitHub - [X
Wikipedia (music) .ot
Full Pile - . -
Mathematics . L3
ArXiv o . *
Wikipedia - -
Pubmed Central .

Dataset

0.0 0.2 0.4 0.6 0.8 10 0.14 016 018 020 022 024
score Diversity

Figure 11 | Distribution of CoDeC scores per dataset, computed for models trained on the Pile. The last 10
datasets are parts of the training data. Among the unseen datasets, the largest scores receive those that are
more related to the subsets of the Pile.

22

Detecting Data Contamination in LLMs via In-Context Learning

C.4. Contamination During Training

Contamination Score

CoDeC Scores During Training

80% -

60%

40%

20%

0%

Dataset type
BN Training datasets
W Unseen datasets

104

Training steps

Datasets
Dolma Reddit v5 = Amazon Reviews
Dolma Stack v4 === Reward Bench v2
Dolma CC En Middle — ==== Global News (descriptions)
Dolma CC En Head m—— BFCL V3
Dolma CC En Tail == Reward Bench vl
Dolma C4 = Gutenberg: Necklace
Dolma Simple Wiki = Frames
Dolma Pes2o v2 === Global News (full)
e |iveCodeBench v5
m— AIME 2025
Gutenberg: Jibby Jones
Linux syslog
Ukraine Conflict Updates
AIME 2024
Slack

CoDeC description

Figure 12 | Changes in CoDeC scores over the course of training OLMo 7B. Already after 10k training steps
(about 2% of the full training), the contamination scores have nearly converged to their final values.

C.5. Contamination Transfer

Contamination Score

Contamination transfer from other datasets

100% A

80% -

60% -

40% A

20% A

=== Finetuning samples
== Finetuning test split
we Random crops (75%)
Random crops (50%)
Random crops (25%)
= GPQA
e Auxiliary QA
GSM8K
Gutenberg (OOD)

mm= Mix training and unseen (75%)
e Mix training and unseen (50%)

Mix training and unseen (25%)
mmmm Add random tags (1)

| === Add random tags (2)

Add random tags (5)

=== Normalized whitespaces
=== Doubled whitespaces
Lowercase
Uppercase
=== Add random letters (1%)
m== Add random letters (2%)
Add random letters (5%)
Add random letters (10%)

,\,Q ,]/Q ,,)Q o (,’Q S

Finetuning batches

AN T
Finetuning batches

Q ,\’0 ’19 ,,)Q o (70 S

Finetuning batches

Figure 13 | Contamination transfer to MMLU from related distributions, computed for the Pythia 1.4B model.

Contamination Score

Contamination transfer to other datasets

100% -| === Normalized whitespaces
S === Doubled whitespaces
; Lowercase
80% 1 E Uppercase
=== Add random letters (1%) /
] === Add random letters (2%)
60% - B Add random letters (5%)
=== Finetuning samples Add random letters (10%) \/_
/\— Finetuning test split /
40% A === Random crops (75%) — p
Random crops (50%) [re— === Mix training and unseen (75%)
Random crops (25%) e Mix training and unseen (50%)
20% 4 e GPQA Mix training and unseen (25%) B
e Auxiliary QA === Add random tags (1)
GSM8K wes Add random tags (2)
0% - Gutenberg (OOD) Add random tags (5) 4
T T
Q D D D O By S Q D D D W S S Q

Finetuning batches

Finetuning batches

OIS O @
Finetuning batches

Figure 14 | Contamination transfer from MMLU to related distributions, computed for the Pythia 1.4B model.

23

Detecting Data Contamination in LLMs via In-Context Learning

C.6. Release-Aligned Validation on Annual Benchmarks

We further validate CoDeC in a setting where no training corpora are available. Many benchmarks are released
annually; if CoDeC captures reliance on memorized priors, then models whose training cutoff predates a given
benchmark year should exhibit higher CoDeC scores on those pre-release years than on post-release years.

For each model we define a pre/post partition of benchmark years based on public release timelines
(see Table 2). For each (model, year) pair we compute the dataset-level CoDeC score and summarize per
model across years. Across six models spanning three families, we observe a consistent Pre > Post pattern
(Figure 15): median CoDeC drops by 5-15 percentage points after the benchmark’s release, with per-model
Wilcoxon tests significant after FDR correction.

100
Target release

[Pre-release

80 1 l ' , [Post-release

20

ct
\(\5““ 0"@“‘3 ®

Figure 15 | Release-aligned CoDeC scores (%) by model. For each model, benchmark years are grouped into
Pre-release (blue) vs. Post-release (orange) according to the model’s training cutoff (see Table 2). Boxes
show the distribution of Scopec across years; medians decrease from pre to post for all models, consistent
with CoDeC detecting reduced reliance on memorized priors once the benchmark is out-of-distribution relative
to the training window.

Table 2 | Pre- and post-release IMO years per model (see (HuggingFaceH4 Team, 2024; opencompass Team,
2025)), used for the splits in Figure 15.

Model Pre-release years Post-release years
Meta Llama 3.1 8B Instruct < 2022 2023, 2024, 2025
Llama 3.2 3B instruct < 2022 2023, 2024, 2025
Gemma 3 1B it <2023 2024, 2025
Gemma 3 4B it < 2023 2024, 2025
Gemma 3 12B it <2023 2024, 2025
Qwen3 8B <2023 2024, 2025

C.7. Broader Evaluation

Experiments on models with known training data, presented in Section 3, confirmed the reliability of CoDeC.
With confidence in its validity, we subsequently applied CoDeC to a broad suite of recent models and analyzed
their contamination scores across widely used benchmarks.

Table 3 summarizes the CoDeC scores for various models on popular benchmarks. Most models scored
below our high-contamination threshold of 80%, suggesting that none were directly trained on benchmark data.
However, several scores approach this threshold (e.g., Phi-4-reasoning-plus on AIME 2024, Devstral-Small on
AIME 2025, Qwen3-30B-A3B-Thinking on MATH 500, Nemotron-Nano-8B on Reward Bench v1, etc). Such
results may indicate partial leakage of benchmark data into training corpora, or extensive training on closely

24

Detecting Data Contamination in LLMs via In-Context Learning

related data (e.g., synthetically generated MMLU questions). In either case, high scores suggest benchmark
accuracy may be inflated by memorization rather than genuine reasoning.

A notable case is Qwen 2.5, which scored 100% on the GSM8K training set but only 27% on its test set.
According to the technical report (Qwen et al., 2025), GSM8K’s training set was deliberately included in
training, but questions overlapping heavily with the test set were excluded. CoDeC detected this difference,
validating its effectiveness. Additionally, it demonstrates that even simple overlap detection strategies can be
successful to avoid contamination if applied carefully.

As discussed earlier, models with outlier scores on a given benchmark warrant higher attention. We observe
clear examples in [FEval, Hellaswag, and RewardBench v1, where unusually high scores of single models
suggest contamination. Hence, accuracy results on such benchmarks should be interpreted with caution for
those models.

For GSM8K and Hellaswag, we evaluated both training and test sets. Scores were generally similar across
both splits, except for Qwen and related models due to deliberate decontamination. This suggests that other
model families, if they directly or indirectly use GSMS8K training data, made little or no effort to remove
overlaps with the test set.

We also computed CoDeC scores for both problems and solutions in the MATH-500 benchmark. Several
models scored high on problem statements but all scores on solutions are rather low.

Our evaluation suite includes diverse model types and architectures: base models, instruction-tuned models,
reasoning-optimized models, mixture-of-experts models, and both older and recent releases. Since CoDeC is
model-agnostic, it produces meaningful scores regardless of model category. Variants within the same family
(e.g., Llama-3.1-8B vs. Llama-3.1-8B-Instruct) typically produce very similar scores, suggesting all variants
are equally suitable for CoDeC evaluation.

We observed that the largest models tend to have much lower contamination scores. For instance,
Llama-Nemotron 8B appears somewhat contaminated with multiple benchmarks (MMLU-Pro, Reward-
Bench v1, AIME 2024, etc.), whereas Llama-Nemotron 235B scores between 0% and 20% across all evaluations.
Larger models are known to generalize better and thus rely less on memorization. We conjecture that,
regardless of overlap between training data and benchmarks, large models depend more on generalization,
resulting in lower contamination scores. As an analogy, a child shown the solution to a quadratic equation
may attempt to memorize it, being unable to solve it otherwise; an experienced mathematician, however,
would not memorize the example since solving it is more straightforward given their knowledge.

25

Contamination Detection via Context — Broad LLM Evaluation

> b xf@ <>°°\
> & & » & NI N N & & S oS o S S
AN > & ¢ & o & & ¢ S 8 K ¢ ¢
» » A K N N > > g & S S
IS T T A . G S MG D R R S
$ $ Q;.Q' QO Q;V QQ 3 ¥ ¥ Q‘& Q) & & N\ \ad & & &
Model ¥ ¥ Q Q < < & & ¥ ¥ B $ N N > ~> <F <F
deepseek-ai/DeepSeek-R1-Distill-Llama-8B 16 20 16 37 25 54 23 25 8 7 27 8 57 58 31 11 53 38 58
deepseek-ai/DeepSeek-R1-Distill-Qwen-14B 11 20 8 45 12 51 26 60 7 9 32 7 58 52 36 7 52 33 52
deepseek-ai/DeepSeek-V2 - 6 0 3 4 19 10 11 1 2 14 - 24 19 16 7 33 20 23
EleutherAI/pythia-1.4b 2 3 0 24 8 28 0 1 3 3 16 2 7 9 4 12 29 21 36
EleutherAI/pythia-12b 0 3 4 15 9 25 6 5 11 3 28 2 31 30 5 14 30 19 32
google/gemma-3-12b-it 3 0 4 17 6 13 11 10 3 2 3 1 0 - 15 6 19 17 22
google/gemma-3-12b-pt 6 10 0 2 7 24 11 13 1 2 11 0 33 27 - 5 40 18 29
google/gemma-3-27b-it 3 0 12 25 5 15 10 11 3 3 1 2 0 - 17 6 14 19 31
google/gemma-3-27b-pt 3 17 0 3 6 23 12 14 0 1 11 0 22 18 10 5 39 16 28
google/gemma-3-4b-it 2 10 12 17 7 16 9 8 3 4 11 5 0 0 13 - 18 19 23
google/gemma-3-4b-pt 2 0 4 6 7 32 12 15 1 2 15 0 35 - - 3 44 22 33
meta-llama/Llama-3.1-70B 11 13 0 6 6 24 19 19 3 4 63 0 15 15 17 17 38 19 23
meta-llama/Llama-3.1-8B 41 62 8 6 6 32 19 20 3 4 39 0 18 16 27 37 43 20 28
meta-llama/Llama-3.1-8B-Instruct 41 41 8 16 8 39 24 24 3 3 17 15 53 - - - 47 29 38
microsoft/phi-4 75 51 8 27 19 28 46 37 70 82 12 1 11 7 74 39 48 31 29
microsoft /Phi-4-mini-instruct 52 55 12 39 20 40 58 73 72 73 26 20 30 28 61 44 53 29 50
microsoft /Phi-4-reasoning-plus 84 69 12 40 18 36 47 66 64 81 11 8 40 41 80 26 55 38 53
mistralai/Devstral-Small-2507 60 82 - 9 7 28 - 15 2 2 9 - 20 17 - - 40 22 33
mistralai/Magistral-Small-2507 37 58 8 18 7 28 13 - 3 2 28 - 22 21 32 5 41 26 40
mistralai/Ministral-8B-Instruct-2410 13 27 - 18 11 40 13 15 3 4 16 - 11 - 26 21 45 30 54
mistralai/Mistral-7B-v0.1 7 6 8 6 6 33 8 9 1 2 18 0 21 20 13 5 39 25 36
mistralai/Mistral-Large-Instruct-2411 48 58 4 - 6 31 18 25 3 3 8 4 - - 68 34 47 27 50
mistralai/Mixtral-8x7B-v0.1 30 24 4 5 7 26 11 11 2 2 25 0 15 14 17 7 32 22 30
nvidia/Llama-3.1-Nemotron-Nano-8B-v1 66 62 37 46 37 56 43 42 10 12 32 57 38 35 61 21 71 76 58
nvidia/Llama-3_1-Nemotron-Ultra-253B-vl 0 0 8 12 5 6 13 12 1 1 1 3 2 2 - - 19 17 22
nvidia/Llama-3_ 3-Nemotron-Super-49B-v1 32 34 12 38 10 37 49 49 6 8 9 19 39 35 30 19 49 35 65
nvidia/Mistral-NeMo-Minitron-8B-Instruct 35 34 4 15 10 25 34 36 4 2 7 8 6 7 41 45 31 19 42
nvidia/Nemotron-H-47B-Base-8K 26 3 0 8 5 11 12 38 2 3 4 4 2 - - - 29 22 24
nvidia/Nemotron-H-56B-Base-8K 20 10 0 8 5 7 15 50 2 3 8 1 1 - - - 30 21 20
nvidia/Nemotron-H-8B-Base-8K 38 31 8 19 8 37 13 75 3 3 21 6 35 35 - - 49 29 39
nvidia/OpenReasoning-Nemotron-14B 17 20 12 20 20 38 29 30 5 5 14 16 10 11 - - 34 23 27
nvidia/OpenReasoning-Nemotron-32B 17 13 12 24 21 33 19 27 11 12 40 14 56 63 - - 40 36 38
nvidia/OpenReasoning-Nemotron-7B 16 13 25 24 20 37 42 38 4 3 45 22 70 70 - - 38 29 34
Qwen/Qwen2.5-1.5B 60 10 8 25 16 46 24 99 5 6 60 5 23 13 57 20 49 34 48
Qwen/Qwen2.5-1.5B-Instruct 57 27 12 40 17 60 27 100 4 6 54 21 43 24 60 16 60 38 63
Qwen/Qwen2.5-14B 64 10 4 17 13 25 16 70 3 3 54 1 13 8 71 12 39 30 39
Qwen/Qwen2.5-72B 61 6 4 15 11 14 11 45 3 3 48 2 5 6 68 8 37 29 36
Qwen/Qwen2.5-7B 62 6 8 19 15 31 20 68 7 3 48 3 10 7 70 14 40 30 40
Qwen/Qwen3-14B 7 0 8 34 13 32 28 54 - 5 57 7 4 4 14 6 37 34 48
Qwen/Qwen3-30B-A3B-Instruct-2507 55 17 12 43 12 23 57 96 6 8 64 19 51 41 s 29 46 35 60
Qwen/Qwen3-30B-A3B-Thinking-2507 40 37 8 39 14 37 53 93 7 8 67 34 31 28 80 24 52 39 63
Qwen/Qwen3-4B-Thinking-2507 15 31 16 29 17 28 45 82 6 5 58 15 31 33 46 13 45 31 50
Qwen/Qwen3-8B 2 6 8 29 15 30 14 21 5 6 42 7 8 10 - 5 35 30 44
Qwen/QwQ-32B 7 3 8 36 13 45 3 56 13 12 54 9 48 37 22 5 42 31 59

Table 3 | CoDeC scores for widely used models across a range of popular benchmarks. Scores are expressed as percentages. Where available, both train and test sets are included in
the table.

°
s =
u -
9 5 & g
@ o o &
s g 2 i
(=3
< o =}
i g 2 I
£ 2 e g
8 5 < 8
8 = S
n o S a
(4
4 "
S g
»]
w
L & & & L & &
g 8 8 8 R 5 = g 8 8 2 8
g 8 8 ¢ R
(%) 24005 - (%) 24005
(%) 21095 g 8 8 g R
(%) 24005

25 €,

%

Scores for AIME 2025

€70 %
650 %, P,
eSS, .
S rlo&lo — & K]
ASG Sy () c % >
5% I < 4 a
= g %, c
5 %, 5
2 < "% g
ﬁ » \o\ =3
8 £ %, T
@ %, 5
p; & % s
o < "
8 £ 4
«
@] v,]
151 %,]
8 4,00,
@ SeTe
%, o
%, s
952, 4 0% %,
. 065 %
e e
Yo, %,

s o o ¥
S e ¥ s o o o o o 0%,
2 g 8 8 % R ohas, ©
(%) 21095 N
S g8 8 2 8 (%) 21035 %%,
(%) 21035 B o100 .,
% S)

Scores for AIME 2024

o

%
25 -
o = z
> 3 [
o N &N&\ £
@ © e g
5 £ %, Z
e) L, s
v 5 X% 3
m - m.\a\\ S <
[w o, s
] m “« o
@ g
o
S
wv

o 2 o
S ® ©® ¥ &
=1

2 2 9 9 o o
S ® ©® ¥ «
l

(%) 21035

2% %
6 © o o o o O S
(%) 21035 (%) 21095 g 8 @ § R @S, 9%,
o o, - o %, ©
2205 e,
X (%) 21005 % %
%% %

Scores for MATH 500 (problem)

Scores for LiveCodeBench v5

Scores for LiveCodeBench v1

Scores for RewardBench v1

2 9o 9 9o o o
g ® © ¥ «

2 o o o

8 g2 R (%) 21035

(%) 21005

N
X

S
S

S @
RN SO,
S S
RN
e

S S
SO PEES
& &5
o &
¢ & @
& & &
&
&

2\
&
)
S)Q\
&

Scores for MMLU-Pro
5
oo

o
o

S
S

N
o
&

%

2 9 9 9o o o
S 8 ® ¥ & P
E

(%) 21035 %

2 o
& ¥ &

(%) 21035

Scores for MATH 500 (solution)

s o s o o o o o %, %,
© < & S ® © ¥ ~ % %o, %
E W,
(%) 2105 (%) 21005 %%
e,
“,
s,
%,

Scores for RewardBench v2

o o
e <

(%) 21005

Solole %,
95065555, %,
Gellntlele,
SoedeeSte,

B s O
8.8 %%y 8549540

TR IA T
DO

%

	Introduction
	Contamination Detection via Context
	Problem Definition
	Key Idea
	CoDeC Pipeline
	Properties
	Why Does CoDeC Work?

	Experiments
	Main Validation
	Contamination During Training
	Contaminating via Finetuning
	Ablations
	Interpreting CoDeC Scores
	Broader Application of CoDeC

	Limitations and Future Work
	Related Works
	Conclusions
	Detailed explanation of Contamination Detection via Context
	Key idea
	CoDeC pipeline
	Properties of CoDeC
	Theoretical properties
	Empirical properties

	Why does CoDeC work?
	How to interpret CoDeC scores?
	Absolute Score Interpretation
	Reference Score Interpretation
	Informed model comparison
	Partial contamination
	Best Practices

	Evaluation setup
	Training datasets
	Unseen datasets
	Datasets for ablations
	AUC comparison

	Extended Experiments
	Baselines
	Influence of the Context on Model Logits
	Per-dataset Score Distribution
	Contamination During Training
	Contamination Transfer
	Release-Aligned Validation on Annual Benchmarks
	Broader Evaluation

