
Detecting Data Contamination in LLMs via
In-Context Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present Contamination Detection via Context (CoDeC), a simple and accu-1

rate method to detect and quantify training data contamination in large language2

models. CoDeC distinguishes between data memorized during training and data3

outside the training distribution by measuring how in-context learning affects4

model performance. We find that in-context examples typically boost confidence5

for unseen datasets but may reduce it when the dataset was part of training, due to6

disrupted memorization patterns. Experiments show that CoDeC produces inter-7

pretable contamination scores that clearly separate seen and unseen datasets, and8

reveals strong evidence of memorization in open-weight models with undisclosed9

training corpora. The method is automated, parameter-free, and both model- and10

dataset-agnostic, making it easy to integrate with benchmark evaluations.11

1 Introduction12

Detecting contamination is crucial for the integrity of LLM evaluation [7, 17, 5]. Existing approaches13

mostly rely on classical techniques such as loss-based criteria [24, 23, 5], calibrating scores using14

an external model [17, 5], explicit overlap checks [10, 1], and related heuristics. While effective15

in some settings, these methods can be difficult to apply to large language models without access16

to the training data, may require extensive parameter tuning, and often fail to provide reliable and17

interpretable estimates of contamination. There is a pressing need for automated, reliable, and18

interpretable methods to measure contamination in LLMs, applicable across diverse datasets and19

model architectures.20

In this work, we address this gap by proposing Contamination Detection via Context (CoDeC), a21

simple and effective dataset-level method for detecting and quantifying contamination in LLMs.22

Instead of searching for explicit overlaps, CoDeC measures distributional similarity through changes23

in model behavior under in-context learning. If the model has memorized datapoints from its training24

set, adding similar in-context examples is more likely to disrupt these memorization patterns than25

to improve predictions. The contamination score is computed as the percentage of datapoints in the26

target dataset for which the added context leads to lower confidence. Our approach requires only27

gray-box access (model outputs or logits) and works with any dataset.28

Through extensive experiments on models with known and unknown training data, we show that29

CoDeC is reliable, broadly applicable, and easily interpretable. Ablations reveal that adding more30

context or carefully selecting examples improves separation even further, especially on diverse31

benchmarks. Our method enables the community to better trust reported LLM results and supports32

the development of more reliable model evaluation practices.33

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Suspect dataset

LLM

contaminated

not contaminated

Target
sample

Random in-context
samples

Fix a target
datapoint

A
ve

ra
ge

 t
ar

ge
t

lo
g

it
s

Sample N more
datapoints

Evaluate the
suspect LLM

Measure the
change in logits

wrt N

Calculate the
score percentage

N context samples

Figure 1: Overview of Contamination Detection via Context (CoDeC). For each dataset element,
CoDeC augments the context with a small set of other samples from the same dataset. A decrease in
the model’s logits for the target sample indicates potential contamination. The overall contamination
level is estimated as the fraction of samples exhibiting this effect.

2 Contamination Detection via Context34

Problem definition. Given a language model M and a candidate dataset D = {xi}Ni=1, where each35

xi is a text sequence, our goal is to quantify contamination, i.e. whether that dataset or similar data36

was in the training set of M and the model is relying on memorization rather than generalization.37

Key Idea. LLMs respond differently to in-context examples depending on prior exposure. Building38

on this observation, CoDeC measures the influence of in-context learning on model predictions.39

When given an unseen dataset, adding in-context samples taken from that dataset generally improves40

the model’s confidence, as it can generalize better with more information. However, if the model has41

memorized the dataset, the in-context samples not only provide little additional information but also42

disrupt memorization patterns, leading to reduced confidence. Thus, by comparing confidence levels43

with and without in-context learning across sample sequences, we can leverage these shifts to detect44

contamination.45

CoDeC Pipeline. The method (Figure 1) consists of the following steps, with further details in46

Appendix A:47

1. Baseline prediction: For each datapoint x in the suspect dataset D, obtain the model’s average48

log-likelihood on the consecutive tokens of x.49

2. In-context prediction: Sample n additional examples x1, ..., xn from D \ {x}, prepend them to50

x (creating a sequence x1|...|xn|x), and obtain the model’s predictions on x in this new context.51

3. Score computation: Compute the difference in confidence ∆(x) = logprobin-context(x) −52

logprobbaseline(x).53

4. Aggregation: Repeat the above for all x ∈ D. The contamination score for the dataset is then

SCoDeC(D) =
1

N

N∑
i=1

1[∆(xi) < 0]

where 1 is the indicator function.54

Properties. CoDeC has several theoretical properties that make it broadly applicable and easy55

to use. It outputs intuitive percentage scores, directly interpretable without model- or dataset-56

specific calibration. The method is parameter-free, avoiding the threshold tuning required by many57

membership inference approaches [17, 5, 24], and works with any dataset that can be represented as58

a set of text sequences. It is model-agnostic, requiring only gray-box access to token probabilities59

and two forward passes per sample. See Appendix A.3 for an extended discussion of properties of60

CoDeC.61

Why Does CoDeC Work? The central idea of CoDeC is to detect whether a model has internalized62

the distinctive features of a dataset, since reliance on such features is a strong indicator of contamina-63

tion. When evaluated with unseen datasets, in-context examples provide novel distributional cues64

that improve predictions. For seen datasets, they offer no advantage and may even lower confidence65
2

Figure 2: CoDeC vs. baselines; Contamination scores for training (orange) and unseen (blue)
datasets. Each point is a model–dataset pair. CoDeC achieves the best separation, enabling consistent
classification across models and datasets.

by disrupting memorized patterns. CoDeC captures the effect efficiently through in-context learning66

rather than costly retraining, directly measuring how much capacity remains for learning the target67

data. We refer to Appendix A.4 for an extended discussion.68

3 Experiments69

In this section, we demonstrate that CoDeC consistently distinguishes between seen and unseen data,70

is stable across evaluation settings, and yields interpretable scores for model auditing.71

Model CoDeC (ours) Vanilla loss Min-K% Zlib

Pythia 410M 100.0% 75.0% 76.2% 92.3%
Pythia 1.4B 100.0% 77.3% 79.2% 91.5%
Pythia 12B 100.0% 76.9% 82.3% 92.3%
GPT-Neo 1.3B 100.0% 77.3% 79.2% 90.8%
GPT-Neo 20B 100.0% 76.9% 83.5% 92.7%
RWKV-4 430M 100.0% 75.4% 75.4% 92.3%
RWKV-4 3B 100.0% 76.5% 79.6% 91.9%
RWKV-4 14B 99.6% 77.3% 81.5% 92.7%
OLMo 1B 100.0% 64.8% 71.9% 80.5%
OLMo 7B 100.0% 65.6% 72.7% 78.1%
Nemotron-H 56B 100.0% 82.2% 86.7% 92.0%
Nemotron-H 8B 100.0% 80.0% 73.3% 88.0%

Cumulative 99.9% 74.9% 77.5% 89.2%

Table 1: AUC1scores for separating seen vs. unseen
datasets (Figure 2), computed per dataset.

Models. We validate CoDeC on a diverse72

suite of LLMs with publicly available weights73

and training data, enabling reproducibility and74

ground-truth verification. Our evaluation in-75

cludes models trained on different corpora and76

spanning varied architectures: Pythia, GPT-77

Neo, and RWKV-4, all trained on the Pile [10];78

OLMo, trained on Dolma [20]; and Nemotron-79

H, trained on Nemotron-CC [21].80

Datasets. For each model, we create a test81

bed consisting of (1) data known to be in its82

training set (e.g., subsets of the Pile [10]) and83

(2) unseen data published after the model’s84

training cutoff. The unseen data includes recent benchmarks, news, websites, etc. Datasets details85

can be found in Appendix C.86

Baselines. We compare CoDeC against three common contamination detection methods: Vanilla87

Loss [9], scoring based on model loss; Min-K% [24], focusing on the lowest-probability tokens; and88

Zlib Ratio [5], which normalizes perplexity by sample entropy.89

3.1 Main Validation90

CoDeC cleanly separates seen from unseen data (see Figure 2), achieving AUC of 99.9% across all91

evaluated models (see Table 1). Baselines show substantial overlap between seen and unseen scores,92

limiting their utility for drawing reliable conclusions. In contrast, CoDeC provides clear separation,93

enabling consistent reference across models.94

1While AUC, a parameter-free metric commonly used for evaluating MIA methods [17], is usually computed
over individual samples, here it is computed over dataset-level scores. Details are provided in Appendix C.3.

3

(a) Impact of context size. (b) Impact of number of examples.
Figure 3: Ablation studies of CoDeC on the Pythia 1.4B model using 5 training and 5 unseen datasets.
Shaded regions show the range between the minimum and maximum scores across 5 runs.

3.2 Ablations95

Context Size. While our experiments use the simplest form of CoDeC with a single in-context96

sample, the method can be easily extended to include more context. Larger contexts yield clearer97

separation between seen and unseen data but also increase computational cost (see Figure 3a). In98

practice, a single in-context sample already provides strong signal while keeping inference efficient.99

However, adding more samples can further enhance performance if resources permit.100

Target Dataset Size. A key practical factor is how many examples are needed for reliable con-101

tamination scores. CoDeC proves highly sample-efficient: around 100 examples already give stable102

estimates with low variance, making the method feasible even on small benchmarks. With 1,000103

examples, the variance falls below 1% (see Figure 3b).104

3.3 Interpreting CoDeC Scores105

A core design goal of CoDeC was interpretability. The final score represents the percentage of data106

points exhibiting memorization, a metric independent of model-specific properties like output scaling.107

Based on our findings, scores >80% indicate strong contamination, <60% suggest no evidence of108

contamination. High values, even below 80%, may indicate partial overlap with related data, or109

training on strongly related distributions.110

Absolute contamination scores can be sometimes influenced by dataset properties such as diversity,111

so they can be best interpreted in comparison across multiple models. Significant outliers among112

CoDeC scores are also indicating likely contamination.113

3.4 Broader Application of CoDeC114

In previous sections, we validated CoDeC on models with known training data. Since access to115

training data is not required, we also applied it to 30 popular models on standard benchmarks. Most116

showed only mild contamination, but some exhibited high scores on multiple benchmarks, indicating117

substantial training overlap. Several widely used datasets, such as Math-500, appear heavily saturated.118

Full results are provided in Appendix D.2.119

4 Conclusions120

We introduced Contamination Detection via Context (CoDeC), a simple yet very effective method for121

detecting and quantifying training data contamination in large language models. By measuring how122

in-context examples from the same dataset affect model predictions, CoDeC distinguishes between123

datasets the model has memorized and those it has not. Our experiments show that CoDeC produces124

clear, interpretable contamination scores on a wide range of models and datasets, exposing strong125

evidence of memorization and overfitting even in open-weight models with undisclosed training data.126

Compared to traditional membership inference approaches, CoDeC requires no external references,127

dataset-specific tuning, or costly retraining, making it practical for large-scale, real-world evaluations.128

Its percentage-based scores are easy to interpret and integrate seamlessly into benchmark reporting.129

4

References130

[1] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,131

Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward132

Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In133

International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.134

[2] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale135

Autoregressive Language Modeling with Mesh-Tensorflow, March 2021. If you use this136

software, please cite it using these metadata.137

[3] Aaron Blakeman, Aarti Basant, Abhinav Khattar, Adithya Renduchintala, Akhiad Bercovich,138

Aleksander Ficek, Alexis Bjorlin, Ali Taghibakhshi, Amala Sanjay Deshmukh, Ameya Sunil139

Mahabaleshwarkar, et al. Nemotron-h: A family of accurate and efficient hybrid mamba-140

transformer models. arXiv preprint arXiv:2504.03624, 2025.141

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,142

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are143

few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 2020.144

[5] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-145

ine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin146

Raffel. Extracting training data from large language models. In 29th USENIX Security Sympo-147

sium, 2022.148

[6] Amadou Djiré et al. Pearl: Perturbation analysis for revealing memorization in large language149

models. arXiv preprint arXiv:2505.03019, 2025.150

[7] Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,151

Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the152

colossal clean crawled corpus. arXiv preprint arXiv:2104.08710, 2021.153

[8] Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization154

or memorization: Data contamination and trustworthy evaluation for large language models.155

In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association for156

Computational Linguistics: ACL 2024, pages 12039–12050, Bangkok, Thailand, August 2024.157

Association for Computational Linguistics.158

[9] Yujuan Fu, Ozlem Uzuner, Meliha Yetisgen, and Fei Xia. Does data contamination detection159

work (well) for llms? a survey and evaluation on detection assumptions. NAACL, 2024.160

[10] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason161

Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse162

text for language modeling. arXiv preprint arXiv:2101.00027, 2020.163

[11] Shayan Golchin and Mihai Surdeanu. Data contamination detection through guided prompts.164

In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics165

(ACL), 2023.166

[12] Shayan Golchin and Mihai Surdeanu. Data contamination quiz: Detecting training overlap in167

language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural168

Language Processing (EMNLP), 2023.169

[13] Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,170

Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating171

the science of language models. arXiv preprint arXiv:2402.00838, 2024.172

[14] Jie Huang, Mo Yu, Hong Sun, Linfeng Qiu, Yu Su, Yue Wang, and Tengyu Ma. Probing trust-173

worthiness of language models via perplexity-based measures. In Findings of the Association174

for Computational Linguistics: ACL 2023, 2023.175

[15] HuggingFaceH4 Team. Aime 2024 dataset, 2024. Problems from the American In-176

vitational Mathematics Examination 2024, accessible via Hugging Face :contentRefer-177

ence[oaicite:3]index=3.178

5

[16] Zihan Li, Weizhi Yang, Zexuan Chen, Tianyu Gao, and Danqi Chen. Emergent phenomena in179

in-context learning. arXiv preprint arXiv:2301.00234, 2023.180

[17] Pratyush Maini et al. Llm dataset inference: Did you train on my dataset? In Advances in181

Neural Information Processing Systems (NeurIPS), 2024.182

[18] opencompass Team. Aime 2025 dataset, 2025. Problems from the American Invitational183

Mathematics Examination 2025 (AIME 2025-I & II), accessible via Hugging Face :contentRef-184

erence[oaicite:2]index=2.185

[19] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,186

Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the187

transformer era. arXiv preprint arXiv:2305.13048, 2023.188

[20] Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell189

Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: An190

open corpus of three trillion tokens for language model pretraining research. arXiv preprint191

arXiv:2402.00159, 2024.192

[21] Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostofa193

Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-cc: Transforming common194

crawl into a refined long-horizon pretraining dataset. arXiv preprint arXiv:2412.02595, 2024.195

[22] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of196

in-context learning as implicit bayesian inference. In International Conference on Learning197

Representations (ICLR), 2022.198

[23] Jingyang Zhang, Jingwei Sun, Eric C. Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao199

Yang, and Hai Helen Li. Min-k%++: Improved baseline for detecting pre-training data from200

large language models. CoRR, abs/2404.02936, 2024.201

[24] Zizhao Zhang, Han Wu, Tongzheng Wang, Guangyu Lin, Yueqi Zhang, Tingting Wang, and202

Xiangyu He. Understanding and mitigating the uncertainty in deep neural networks: Min-k203

arXiv preprint arXiv:2012.07805, 2021.204

[25] Chunting Zhou, Yao Zhao, Xinyu Chen, and Mohit Bansal. Lighteval: Accurate llm evaluation205

without ground truth labels. arXiv preprint arXiv:2305.18290, 2023.206

6

A Detailed explanation of the Contamination Detection via Context approach207

A.1 Key idea208

Consider the following illustrative example. If a mathematician trains for the International Mathemat-209

ical Olympiad (IMO) competition by solving all available IMO problems, their knowledge becomes210

highly contaminated with IMO-specific problem characteristics. Beyond the genuine mathematical211

knowledge acquired, exposure to the IMO problem distribution introduces several specific priors,212

such as: all assumptions mentioned in the problem are necessary, the hypothesis requested to prove213

always holds, the problems are challenging yet formulated without advanced academic concepts, etc.214

These properties are unique to IMO problems but not to general mathematical questions and texts.215

Therefore, leveraging such priors results in an unfair measure of one’s general mathematical skills.216

Now, suppose this mathematician is given free access to IMO problems during the competition.217

If they have already learned to solve those problems, such context is no longer useful for further218

learning. However, if the mathematician has learned from other sources and has never seen any219

IMO problem, they would benefit greatly from understanding the specifics of these problems, their220

structure, and implicit assumptions.221

Following this example, Contamination Detection via Context (CoDeC) measures the contamination222

score by evaluating how access to the target dataset affects the model’s predictions. For each datapoint223

in the dataset, CoDeC samples a few in-context examples from the same dataset and compare the224

average logits with and without this context.225

If the model has not used the target dataset for training, it should benefit from the additional context,226

as these examples contain valuable information about the data distribution. Even if not directly227

related, they may share similarities in structure, style, vocabulary, topic, or other implicit common228

priors. Conversely, if the model was trained on that dataset, it already knows these priors, making229

the provided context less beneficial. Furthermore, if the model is overly confident due to memorized230

patterns, such as specific word sequences or frequent occurrences, introducing additional context231

(likely also memorized) should disrupt these patterns and negatively affect the confidence.232

A.2 CoDeC pipeline233

Following the key idea described above, the complete pipeline of CoDeC consist of 4 simple steps:234

1. Baseline prediction: For each datapoint x in the suspect dataset D, obtain the model’s235

average log-likelihood on the consecutive tokens of x.236

2. In-context prediction: Sample n additional examples x1, ..., xn from D \ {x}, prepend237

them to x (creating a sequence x1|...|xn|x), and obtain the model’s predictions on x in this238

new context. Focus solely on the probability of tokens in x, ignoring the context examples.239

3. Score computation: Compute the difference in confidence ∆(x) = logprobin-context(x)−240

logprobbaseline(x). Since the context is sampled randomly, the value of ∆(x) is subject to241

some variance. To achieve higher statistical significance, average the ∆(x) values over 5242

seeds, though even a single seed provides meaningful scores.243

4. Aggregation: Repeat the above for all x ∈ D. The contamination score for the dataset is
then

SCoDeC(D) =
1

N

N∑
i=1

1[∆(xi) < 0]

where 1 is the indicator function.244

In summary, to compute CoDeC scores, we compare the model’s confidence with and without245

additional context for each sample. The final score represents the percentage of samples for which246

the influence of additional context is negative.247

A.3 Properties of CoDeC248

A.3.1 Theoretical properties249

CoDeC by its design has several desirable properties that make it useful in practice:250

7

Score as a percentage. CoDeC returns a contamination score as a percentage of dataset elements251

indicating contamination, making it intuitively understandable. Unlike classical approaches that252

compute scores in open ranges requiring references and scale knowledge, percentage points are easily253

grasped without in-depth analysis. Even the intuitive notion of probability of contamination, while254

not fully grounded, can be useful here.255

Works with any dataset. CoDeC can be computed for any set of strings, making it broadly256

applicable. In our evaluations, we used various data sources: standard training datasets (e.g.,257

Wikipedia, Common Crawl), code (e.g., GitHub), QA benchmarks (e.g., MMLU, GPQA), math258

benchmarks (e.g., AIME, MATH-500), PDFs (e.g., ArXiv), books (e.g., Project Gutenberg), websites259

(e.g., global news, Amazon Reviews), files (e.g., Linux syslog), and more. While CoDeC is designed260

primarily for datasets, it is straightforward to transform a single text source into a dataset by splitting261

it into parts.262

Works with any gray-box model. Any model that outputs logits for a given text (including most263

models available on HuggingFace) can be used to compute CoDeC. The method is independent of264

the model’s training specifics and architecture. It can even be applied to fully black-box models265

by empirically estimating target token probabilities, though this increases score variance unless we266

assume multiple repetitive calls and model stochasticity.267

Parameter-free. CoDeC does not require model-specific or dataset-specific parameters. Unlike268

classical MIA methods, which need a tuned classification threshold and deep model knowledge or269

external ground-truth data, CoDeC can be applied off-the-shelf to any model and dataset.270

Computational efficiency. To compute CoDeC scores, the model runs twice with at most twice271

longer samples, introducing minimal computational overhead. Using as few as 1000 samples already272

yields precise scores (see Figure 3b), hence it can be applied even to large corpora. Additionally,273

in-context learning is much faster than methods requiring finetuning or shadow model training.274

A.3.2 Empirical properties275

Furthermore, during our experiments we observed the following empirical properties of CoDeC:276

Robustness to text cropping. CoDeC scores remain stable when using partial training prompts.277

This property proves particularly valuable when evaluating single, long text sources (books, articles)278

that should be split into dataset components.279

Sensitivity to formatting variations. Artificial formatting changes (added labels, modified whites-280

pace) reduce contamination scores even for training data. This sensitivity is crucial for QA benchmark281

evaluation, where labels like Question:, Answer:, or instruction prompts are common. Incorrect labels282

(those not used during training) decrease scores, as expected: in-context samples provide formatting283

information that artificially increases prediction confidence. Furthermore, incorrect labels may break284

memorization patterns themselves. To ensure meaningful evaluation, we focus exclusively on text por-285

tions guaranteed to appear during training (e.g., question text only), independent of training-specific286

formatting.287

Impact of data diversity. Training datasets consistently yield scores near 100% regardless of288

their properties. However, unseen dataset scores vary from 0% to 60%, depending on dataset289

characteristics. CoDeC assumes that additional context from the same distribution provides some290

additional information, e.g. text type, style, vocabulary, domain knowledge, etc. In large, diverse291

datasets with unrelated samples, minimal information sharing between datapoints occurs. Hence,292

additional context may not improve predictions and can act as random noise, potentially yielding293

CoDeC scores up to 60%, even for unseen data. Our experiments suggest that this effect may be294

mitigated using more context samples.295

Larger models use less memorization. Our main evaluation (Figure 2) included models from296

410M to 56B parameters, where training data could be verified. While results remain consistent297

across architectures and sizes, larger models within families show slightly lower CoDeC scores. This298

8

trend intensifies at larger scales. For instance, Llama-Nemotron-Nano 4B exhibits high contamination299

across multiple benchmarks, while Llama-Nemotron-Ultra 253B maintains all contamination scores300

below 20%. Although these models share a family, their training processes and data compositions301

differ; however, these differences alone cannot explain the contamination disparities.302

This size-dependent behavior aligns with expectations. CoDeC measures reliance on memorization303

instead of general knowledge. Larger models possess greater capacity for genuine knowledge304

acquisition, reducing overfitting to individual datapoints. Consider an illustrative example: when305

solving algebraic equations, children often rely on pattern memorization, while expert mathematicians306

apply fundamental skills even for previously encountered problems.307

Adversarial cases. While CoDeC provides robust contamination scores for most datasets and308

models, adversarial constructions remain possible. For instance, a dataset containing 1,000 identical309

(or near-identical) samples produces low CoDeC scores regardless of training exposure. Construct-310

ing datasets with artificially high contamination scores is more challenging but possible through311

combining several unrelated, diverse data sources.312

These edge cases do not compromise evaluations on standard benchmarks, as genuine datasets remain313

unaffected by such artificial constructions. Since evaluation data selection remains under user control,314

models cannot exploit these constructions to bypass detection.315

CoDeC applies to any causal model by design. We evaluated over 40 models across various sizes and316

architectures. One notable exception emerged: GPT-OSS 20B consistently produces contamination317

scores exceeding 99% across all datasets. Investigation revealed heavy optimization for chat and318

reasoning tasks that impairs standard language sequence modeling. Even when provided identical319

text as context, confidence decreases due to persistent attempts to terminate sequences and transition320

to thinking or chat-like dialogue patterns. Addressing that issue remains for future work.321

A.4 Why does CoDeC work?322

The central idea behind CoDeC is to measure whether a model has internalized a dataset’s specific323

priors, as their presence is a clear indicator of training data contamination. These priors are not limited324

to exact string memorization but cover a wide range of cues, such as stylistic patterns, characteristic325

vocabulary, or common structural templates. While a model may lack the capacity to memorize326

every single training example, the manifold of these general cues is significantly narrower and can be327

memorized more easily. CoDeC is designed to detect if the model leverages this learned manifold.328

Our approach uses in-context learning as an efficient proxy for finetuning. Consider the standard329

finetuning process: a model performance improves significantly during the first epoch on a new330

dataset, with smaller gains in subsequent epochs. Similarly, if we could finetune a model on a target331

dataset for contamination detection, a contaminated model would improve much more slowly than332

a non-contaminated one because it has already learned the data distribution. However, performing333

actual finetuning for every evaluation is computationally prohibitive, especially for large models.334

CoDeC achieve a similar outcome by using in-context learning, which is a negligible cost. Hence,335

in essence, CoDeC measures the remaining learning capacity for the target dataset. If the model336

has already been trained on the data, it has little capacity left to learn, and its performance will not337

significantly improve when presented with in-context examples from that dataset.338

This behavior can be also understood through the lens of the loss landscape. Contamination is often339

linked to overfitting [17], where the model settles into a sharp, narrow local minimum in the loss340

landscape for the training data. For unseen data, the loss landscape tends to be flatter. Our experiments341

suggest that in-context learning acts similarly to finetuning with a high learning rate. This makes342

the process highly sensitive to the local geometry of the loss manifold. For a contaminated sample,343

the model is already in a steep local minimum. Hence, taking even a single step is likely to exit this344

minimum, resulting in worse performance. Conversely, for an uncontaminated sample where the345

loss manifold is flat, the same step will likely move the model towards a region of higher confidence,346

improving performance at least slightly.347

Finally, CoDeC relates to reference-based MIAs, which often use external models or datasets to348

calibrate the difficulty of a given sample. CoDeC shares a similar structure but introduces a crucial349

distinction: it relies on a self-reference approach. Instead of using external data for calibration,350

CoDeC uses the model own predictions as the baseline. This design choice makes our scores351

9

independent of the availability of external resources and ensures that the calibration is based on352

specifically to the properties and knowledge of the model being investigated.353

A.5 How to interpret CoDeC scores?354

The CoDeC score is a measure of how much a model’s predictions rely on memorized patterns rather355

than genuine reasoning. Importantly, it does not indicate strict membership of a dataset in the training356

corpus. Instead, it reflects whether the outputs are predicted based on memorized internal distribution357

priors – something that can happen if the model was trained on identically distributed or closely358

related data (e.g. artificially generated). From another perspective, a lower contamination score359

indicates greater remaining model capacity to learn from the target dataset.360

In practice, our experiments reveal two complementary ways to interpret CoDeC scores: absolute361

evaluation and reference-based comparison.362

A.5.1 Absolute Score Interpretation363

Because CoDeC scores naturally fall between 0% and 100%, they can be compared across datasets364

and models without model-specific scaling or parameter tuning. Empirically, we found a consistent365

pattern:366

• Scores above 80% were measured for nearly all training datasets we used for experiments,367

indicating strong contamination evidence.368

• Scores below 60% were measured for nearly all unseen datasets. In general, they show369

no evidence of contamination – the model is likely reasoning based on general knowledge370

rather than memorization.371

• Scores in the 60%–80% range are ambiguous: they may be due to partial contamination,372

training on related distributions, or simply higher model capacity.373

Thus, while an absolute threshold (>80%) is a strong indicator, values in the intermediate range374

require more nuanced analysis.375

A.6 Reference Score Interpretation376

Absolute scores alone only partially capture variations in dataset properties like diversity. For example,377

even a non-contaminated model might score relatively high on a broad, highly diverse dataset. To378

adjust for such effects, the scores should be compared across multiple models on the same dataset.379

The most reliable approach is to include at least one model that is known to be non-contaminated380

with the target dataset (e.g., older model like Pythia). If all models show similar contamination scores,381

this suggests no substantial memorization specific to any model, but rather a dataset-specific level of382

the score. However, if a score of the model stands out as an outlier compared to reference models,383

this strongly suggests higher reliance on memorization.384

Choosing reference models of similar size and architecture further helps ensure that differences in385

scores point to contamination rather than general learning capacity.386

A.6.1 Best Practices387

For robust contamination assessment, we suggest combining absolute thresholds with reference-388

based comparisons. High absolute scores (>80%) should be treated as contamination red flags, but389

significant deviations from other models’ CoDeC scores can be equally alarming. By viewing CoDeC390

scores not as binary labels but as indicators of memorization intensity, the results serve as a useful391

indicator both for ensuring a fair model comparison on benchmarks, and reliable model quality392

assessment during training.393

10

B Related Works394

Detecting contamination in large language models (LLMs) lies at the intersection of several research395

threads: measuring memorization through log-probabilities, understanding in-context learning behav-396

ior, and developing scalable automated evaluation methods. We review these areas and situate ou397

method Contamination Detection via Context (CoDeC) within this landscape.398

Contamination detection. Contamination, where evaluation data leaks into pretraining corpora,399

undermines benchmark validity [7]. Existing methods fall into two categories: explicit detection (e.g.,400

string overlap checks or dataset provenance audits) and implicit detection, which infers contamination401

from model behavior without access to training data. Implicit probes include entropy- and confidence-402

based signals [8], guided prompts that measure performance shifts when datasets are referenced [11],403

and quiz-style tests such as the Data Contamination Quiz (DCQ) [12]. Dataset-level inference extends404

this line by aggregating weak membership signals across many samples to statistically distinguish405

train vs. held-out slices of large corpora [17]. CoDeC belongs to this implicit, dataset-level family,406

offering a simple signal based on log-probability shifts under in-context prompting.407

Log-probabilities as a signal of memorization. LLMs generally assign higher likelihoods (lower408

loss) to training data than to unseen text, a property exploited in membership inference and memoriza-409

tion studies [5]. Common gray-box baselines include Min-K%, which averages the least likely tokens410

to avoid trivial predictability [24], and compression-based scores such as the Zlib ratio [5]. While411

informative, these per-sample signals can be brittle, collapsing under IID evaluation or distributional412

confounders. CoDeC mitigates this by aggregating dataset-level log-probability shifts from in-context413

prompting, yielding a more stable and interpretable measure.414

In-context learning. CoDeC enables models to adapt at inference time from a few examples [4].415

Analyses interpret ICL as approximate Bayesian inference [22], with gains when examples are aligned416

with the evaluation distribution. Conversely, for memorized data, added context can disrupt stored417

patterns and reduce confidence [16]. CoDeC operationalizes this asymmetry: unseen data typically418

benefits from in-context examples, while memorized data does not, producing a behavioral signal of419

contamination.420

Automated evaluation. A broader literature develops gray-box evaluation tools that operate without421

training data access. These include reference-free evaluation methods such as LightEval [25],422

entropy- and perplexity-based probes [14], and perturbation-driven memorization tests like PEARL423

[6]. CoDeC complements this space with a lightweight, interpretable proxy for contamination that424

requires only two forward passes per sample and directly links model confidence shifts to dataset-level425

memorization.426

11

C Evaluation setup427

To make the main evaluation meaningful, we have to use models for which we know the training428

data, and prepare additional datasets that were certainly not used for training. Following standard429

practice, we ensured this exclusion by using data published only after the release of the training430

datasets, eliminating the risk of data leakage. In each case, we selected a broad range of data types,431

sources, levels of diversity, and other characteristics to ensure comprehensive coverage of possible432

data properties in evaluation.433

For each dataset, we selected 1 000 random samples for evaluation. If the data source was a continuous434

stream of text (e.g. book or an article), we split it into 600-characters chunks and treated as a dataset.435

Since the selection of both training and unseen datasets is inevitably somewhat arbitrary, we em-436

phasize that the results in this paper reflect all evaluations we have conducted, including internal437

experiments. Given that the pipeline is simple and lightweight, we strongly encourage readers to438

run it themselves and confirm the reliability of CoDeC on datasets of their choice.439

Because most LLMs available today do not disclose their training data, our model choice is necessarily440

limited. Nevertheless, we selected the following families with full access to their training datasets:441

• Pythia [1], trained on the Pile dataset [10].442

• GPT-Neo [2], trained on the Pile dataset.443

• RWKV-4 [19], trained on the Pile dataset.444

• OLMo [13], trained on the Dolma dataset [20].445

• Nemotron-H [3], trained on the Nemotron-CC dataset [21].446

C.1 Training datasets447

We used the following sets as training data examples:448

The Pile449

• HackerNews450

• Wikipedia451

• GitHub452

• ArXiv453

• DM Mathematics454

• Pile CommonCrawl455

• PubMed Central456

• Full Pile457

• Wikipedia Music (a low-diversity subset of Wikipedia containing only music-related articles)458

• GitHub Licenses (a low-diversity subset of GitHub containing only license comments)459

Since the Pile dataset is not available for direct download, we used the samples provided in the460

iamgroot42/mimir dataset.461

Dolma462

• C4463

• Wikipedia464

• Pes2o v2465

• Reddit v5466

• Stack v4467

• CommonCrawl head468

• CommonCrawl middle469

• CommonCrawl tail470

12

Nemotron-CC471

• Wikipedia472

• StackExchange473

• ArXiv474

• CommonCrawl 2024 (high quality)475

• CommonCrawl 2020 (high quality)476

• CommonCrawl 2020 (low quality)477

• CommonCrawl 2019 (medium quality)478

• CommonCrawl 2016 (medium quality)479

• CommonCrawl 2014 (low quality)480

• CommonCrawl 2013 (high quality)481

C.2 Unseen datasets482

For unseen datasets, we used the following sources:483

Popular benchmarks. We evaluated the models on the following benchmarks:484

• For models trained on the Pile: gsm8k, GPQA Diamond, IFEval, HumanEval, FRAMES,485

AIME 2024, AIME 2025, LiveCodeBench v1, LiveCodeBench v5, BFCL v3, BBQ, Re-486

wardBench v1, RewardBench v2, and MATH 500. All these benchmarks were released after487

the release of the Pile.488

• For OLMo models: FRAMES, AIME 2024, AIME 2025, LiveCodeBench v5, BFCL v3,489

RewardBench v1, and RewardBench v2.490

• For Nemotron-H, we used only AIME 2025.491

Project Gutenberg. We used three books added to Project Gutenberg after April 2025:492

• Colonial Memories493

• Jibby Jones : A story of Mississippi River adventure for boys494

• The Corbin necklace495

Datasets from HuggingFace.496

• NickyNicky/global-news-dataset497

• McAuley-Lab/Amazon-Reviews-2023498

A recent website.499

• An article with Ukrainian conflict updates: https://www.understandingwar.org/500

backgrounder/ukraine-conflict-updates501

Self-created data.502

• A document describing this project.503

• Linux syslog file from our computer.504

• Internal slack channel log.505

13

https://www.understandingwar.org/backgrounder/ukraine-conflict-updates
https://www.understandingwar.org/backgrounder/ukraine-conflict-updates
https://www.understandingwar.org/backgrounder/ukraine-conflict-updates

C.3 AUC comparison506

The Area Under the Receiver Operating Characteristic Curve (AUC) is a standard metric for evaluating507

binary classifiers. It measures the probability that a randomly chosen positive example is ranked508

higher than a randomly chosen negative example, making it threshold-independent and robust to class509

imbalance. If S+ is the set of scores for positive examples and S− for negative examples, then:510

AUC =
1

|S+| · |S−|
∑

s+∈S+

∑
s−∈S−

1(s+ > s−) + 0.5 · 1(s+ = s−)

In the context of Membership Inference Attacks (MIAs), AUC is widely used to quantify the511

classifier’s ability to distinguish between training samples (positives) and unseen samples (negatives).512

A key difference between our setting and typical MIA evaluations is granularity. In most prior work,513

contamination scores are computed per sample, and the AUC reflects the quality of sample-level514

classification. In contrast, our method focuses on the dataset level: we compute a single contamination515

score per dataset and evaluate the model’s ability to classify entire datasets as seen or unseen. This516

approach better reflects the intended use of CoDeC, which is designed to provide interpretable,517

aggregate measures of contamination for benchmarks and corpora rather than individual samples.518

As shown in Figure 2, CoDeC achieves near-perfect separation between seen and unseen datasets,519

leading to dataset-level AUC scores close to 100%. This demonstrates that CoDeC is highly effective520

at capturing training data contamination in a way that aligns with MIA evaluation traditions while521

providing a metric more suited to benchmark-level analysis.522

14

D Additional Experiments523

D.1 Application: Release-Aligned Validation on Annual Benchmarks524

We further validate CoDeC in a setting where no training corpora are available. Many benchmarks525

are released annually; if CoDeC captures reliance on memorized priors, then models whose training526

cutoff predates a given benchmark year should exhibit higher CoDeC scores on those pre-release527

years than on post-release years.528

For each model we define a pre/post partition of benchmark years based on public release timelines529

(see Table 2). For each (model, year) pair we compute the dataset-level CoDeC score and summarize530

per model across years. Across six models spanning three families, we observe a consistent Pre531

> Post pattern (Figure 4): median CoDeC drops by 5–15 percentage points after the benchmark’s532

release, with per-model Wilcoxon tests significant after FDR correction.533

Figure 4: Release-aligned CoDeC scores (%) by model. For each model, benchmark years are
grouped into Pre-release (blue) vs. Post-release (orange) according to the model’s training cutoff
(see Table 2). Boxes show the distribution of SCoDeC across years; medians decrease from pre to
post for all models, consistent with CoDeC detecting reduced reliance on memorized priors once the
benchmark is out-of-distribution relative to the training window.

Table 2: Pre- and post-release IMO years per model (see [15, 18]), used for the splits in Figure 4.
Model Pre-release years Post-release years
Meta Llama 3.1 8B Instruct ≤ 2022 2023, 2024, 2025
Llama 3.2 3B instruct ≤ 2022 2023, 2024, 2025
Gemma 3 1B it ≤ 2023 2024, 2025
Gemma 3 4B it ≤ 2023 2024, 2025
Gemma 3 12B it ≤ 2023 2024, 2025
Qwen3 8B ≤ 2023 2024, 2025

15

D.2 Broader Evaluation534

Contamination Detection via Context – Broad LLM Evaluation

Model gsm8k
(train)

gsm8k
(test)

MMLU MMLU-
Pro

GPQA Di-

amond

IFEval HumanEvalFRAMES hellaswag

(train)

hellaswag

(test)

AIME
2024

AIME
2025

LiveCodeBench

v1

LiveCodeBench

v5

BFCL
v3

BBQ RewardBench

v1

RewardBench

v2

MATH

500

(problem)

MATH

500

(solution)

EleutherAI/pythia-1.4b 1 0 36 29 28 2 16 8 3 3 2 3 7 9 24 0 21 36 4 12
EleutherAI/pythia-12b 5 6 35 30 25 2 28 9 3 11 0 3 31 30 15 4 19 32 5 14
Qwen/Qwen2.5-1.5B 99 24 44 49 46 5 60 16 6 5 60 10 23 13 25 8 34 48 57 20
Qwen/Qwen2.5-1.5B-Instruct 100 27 54 60 60 21 54 17 6 4 57 27 43 24 40 12 38 63 60 16
Qwen/Qwen2.5-14B 70 16 32 39 25 1 54 13 3 3 64 10 13 8 17 4 30 39 71 12
Qwen/Qwen2.5-72B 45 11 32 37 14 2 48 11 3 3 61 6 5 6 15 4 29 36 68 8
Qwen/Qwen2.5-7B 68 20 36 40 31 3 48 15 3 7 62 6 10 7 19 8 30 40 70 14
deepseek-ai/DeepSeek-R1-Distill-Llama-8B 25 23 51 53 54 8 27 25 7 8 16 20 57 58 37 16 38 58 31 11
deepseek-ai/DeepSeek-R1-Distill-Qwen-14B 60 26 51 52 51 7 32 12 9 7 11 20 58 52 45 8 33 52 36 7
meta-llama/Llama-3.1-70B 19 19 29 38 24 0 63 6 4 3 11 13 15 15 6 0 19 23 17 17
meta-llama/Llama-3.1-8B 20 19 36 43 32 0 39 6 4 3 41 62 18 16 6 8 20 28 27 37
meta-llama/Llama-3.1-8B-Instruct 24 24 43 47 39 15 17 8 3 3 41 41 53 - 16 8 29 38 - -
microsoft/Phi-4-mini-instruct 73 58 51 53 40 20 26 20 73 72 52 55 30 28 39 12 29 50 61 44
microsoft/phi-4 37 46 46 48 28 1 12 19 82 70 75 51 11 7 27 8 31 29 74 39
mistralai/Mistral-7B-v0.1 9 8 34 39 33 0 18 6 2 1 7 6 21 20 6 8 25 36 13 5
mistralai/Mixtral-8x7B-v0.1 11 11 33 32 26 0 25 7 2 2 30 24 15 14 5 4 22 30 17 7
nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1 54 58 64 72 69 70 27 42 11 9 71 72 54 56 61 20 - - 74 28
nvidia/Llama-3.1-Nemotron-Nano-8B-v1 42 43 59 71 56 57 32 37 12 10 66 62 38 35 46 37 76 58 61 21
nvidia/Llama-3_1-Nemotron-Ultra-253B-v1 12 13 18 19 6 3 1 5 1 1 0 0 2 2 12 8 17 22 - -
nvidia/Llama-3_3-Nemotron-Super-49B-v1 49 49 51 49 37 19 9 10 8 6 32 34 39 35 38 12 35 65 30 19
nvidia/Mistral-NeMo-Minitron-8B-Instruct 36 34 41 31 25 8 7 10 2 4 35 34 6 7 15 4 19 42 41 45
nvidia/Nemotron-H-47B-Base-8K 38 12 36 29 11 4 4 5 3 2 26 3 2 - 8 0 22 24 - -
nvidia/Nemotron-H-56B-Base-8K 50 15 37 30 7 1 8 5 3 2 20 10 1 - 8 0 21 20 - -
nvidia/Nemotron-H-8B-Base-8K 75 13 53 49 37 6 21 8 3 3 38 31 35 35 19 8 29 39 - -
nvidia/OpenReasoning-Nemotron-1.5B 27 26 48 56 51 15 58 23 7 8 35 51 49 52 37 16 53 56 - -
nvidia/OpenReasoning-Nemotron-14B 30 29 32 34 38 16 14 20 5 5 17 20 10 11 20 12 23 27 - -
nvidia/OpenReasoning-Nemotron-32B 27 19 36 40 33 14 40 21 12 11 17 13 56 63 24 12 36 38 - -
nvidia/OpenReasoning-Nemotron-7B 38 42 31 38 37 22 45 20 3 4 16 13 70 70 24 25 29 34 - -

Figure 5: CoDeC scores for widely used models across a range of popular benchmarks. Scores are expressed as percentages. Where available, both train and test sets are included in the
table.

535

536

537

538

539

17

540

541

18

	Introduction
	Contamination Detection via Context
	Experiments
	Main Validation
	Ablations
	Interpreting CoDeC Scores
	Broader Application of CoDeC

	Conclusions
	Detailed explanation of the Contamination Detection via Context approach
	Key idea
	CoDeC pipeline
	Properties of CoDeC
	Theoretical properties
	Empirical properties

	Why does CoDeC work?
	How to interpret CoDeC scores?
	Absolute Score Interpretation

	Reference Score Interpretation
	Best Practices

	Related Works
	Evaluation setup
	Training datasets
	Unseen datasets
	AUC comparison

	Additional Experiments
	Application: Release-Aligned Validation on Annual Benchmarks
	Broader Evaluation

