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Abstract

In this paper, we theoretically study the offline
alignment of language models with human pref-
erence feedback, under both preference label cor-
ruption and privacy protections. To this end, we
propose SquareχPO, a simple one-line change to
χPO where the standard log-loss is replaced by a
new square loss over probability. Thanks to the
inherent properties of this new loss, we have ad-
vanced the state-of-the-art of differentially private
and robust offline direct alignment. Specifically,
for the local model of label privacy, SquareχPO
is the first algorithm that attains an optimal rate
based on single-policy concentrability even with
general function approximations. It also gives the
first result under the central model of privacy pro-
tection over both prompts (responses) and labels.
On the robustness side against Huber label cor-
ruption, SquareχPO is the first alignment method
that has a meaningful theoretical guarantee under
general function approximations. More impor-
tantly, SquareχPO can address privacy protection
and corruption simultaneously, where an interest-
ing separation is observed, implying that the order
of privacy and corruption matters. Furthermore,
we show that SquareχPO can also be easily ex-
tended to handle the scenario of the general prefer-
ence model with state-of-the-art guarantees under
corruption and privacy. Last but not least, all of
our theoretical guarantees enjoy a unified analysis,
building upon a new result on the generalization
error bounds of least-square regression under cor-
ruption and privacy constraints, which we believe
is of independent interest to the community.
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1. Introduction
Aligning large language models (LLMs) to human values
is crucial for their responsible deployment. Two primary
paradigms have emerged: indirect alignment, where a re-
ward model is learned before the policy optimized via Rein-
forcement Learning (RL) (Christiano et al., 2017; Ouyang
et al., 2022), and direct alignment, an RL-free approach
leveraging reparametrization techniques like Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2023). Very
recently, a variant of DPO, called χPO (Huang et al., 2024),
addresses the overoptimization issue in direct alignment by
relying on a significantly weaker condition – single-policy
concentrability – making it the first offline direct alignment
method with such a guarantee.

Meanwhile, privacy and robustness concerns in the pref-
erence datasets of the alignment process have gained sig-
nificant attention. Membership inference attacks expose
privacy vulnerabilities (Feng et al., 2024), while data poison-
ing undermines label integrity (Casper et al., 2023). Recent
efforts have addressed these challenges separately, provid-
ing theoretical guarantees for privacy or robustness. On
the privacy side, existing theoretical work has primarily fo-
cused on simple linear function approximations (Zhou et al.,
2025; Chowdhury et al., 2024b; Korkmaz & Brown-Cohen,
2024), which are insufficient for practical scenarios involv-
ing non-linear reward or policy function classes (e.g., neural
networks).

Q1. For general function approximations, can we achieve
optimal (or better) rates under privacy constraints?

Contribution 1. We answer Q1 affirmatively by introduc-
ing SquareχPO, a simple variant of χPO which replaces the
log loss with a new square loss over probabilities. For pref-
erence label privacy under the local model of Differential
Privacy (DP) (Kasiviswanathan et al., 2011; Chaudhuri &
Hsu, 2011), SquareχPO achieves the optimal privacy cost,
even with general function approximations. Furthermore,
under the standard central DP model (Dwork et al., 2006), it
provides the first pure DP guarantees for the case of general
function approximations.

Moving now to the robustness side, Mandal et al. (2024)
takes an indirect approach, focusing on the linear setting,
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while Chowdhury et al. (2024a) follows a DPO-style direct
method, which, however only achieves a suboptimal rate for
the linear case and suffers from a non-vanishing suboptimal-
ity gap for general function approximations.

Q2. Can we improve these results under label corruption,
even for general function approximations?

Contribution 2. Our SquareχPO provides an affirmative
answer to Q2. Specifically, it not only preserves the favor-
able single-policy concentrability property of χPO, but also
achieves the optimal O(1/

√
n) rate for general function

approximations under the same random-flipping corruption
setting as in Chowdhury et al. (2024a). Furthermore, due
to the inherent boundedness of our new loss, SquareχPO is
the first alignment method to provide meaningful guarantees
under stronger Huber label corruption (Huber, 1964), match-
ing the best-known results in the non-preference feedback
offline RL setting (Zhang et al., 2022).

Instead of studying privacy protection and robustness to
corruption separately, there is growing interest in under-
standing their interplay, driven by both practical scenarios
and theoretical insights, for example, in bandits (Zhou &
Zhang, 2024; Wu et al., 2024b; Charisopoulos et al., 2023)
or general statistical tasks; please refer to Kamath (2024)
for a wonderful recent survey.

Q3. Can we achieve privacy protection and robustness si-
multaneously, and what are the interplays between them?

Contribution 3. Our SquareχPO simultaneously addresses
privacy and robustness in offline direct alignment, uncov-
ering interesting interplays between the two. For the local
model of label privacy, we examine two settings that differ
in the order of privacy and corruption. SquareχPO is adap-
tive, as it does not require prior knowledge of the specific
setting while providing sharp rates. Notably, our results re-
veal that corruption following privacy leads to worse bounds.
For the central model of DP, our findings illustrate that the
effects of privacy and corruption are only additive. Both are
consistent with prior observations in mean estimation and
bandits (Zhou & Zhang, 2024; Wu et al., 2024b).

All the above results (including those prior work) are es-
tablished under the assumption of the Bradley-Terry (BT)
preference model (Bradley & Terry, 1952), which implic-
itly assumes transitive preferences (i.e., a ≻ b, b ≻ c ⇒
a ≻ c). However, transitivity does not always hold in prac-
tice. Building on recent work in the non-private and non-
corrupted setting, where general preference models have
been explored (Munos et al., 2023; Swamy et al., 2024), it
is natural to pose the next question:

Q4. For a general preference model, can we still achieve
privacy protection and robustness simultaneously?

Contribution 4. We answer this question affirmatively by

demonstrating that an iterative version of SquareχPO pro-
vides the first set of results for private and robust alignment
under a general preference model, achieving guarantees
analogous to the results of iterative χPO (Huang et al., 2024)

Finally, on the technical side, it is often desirable to have a
clean and unified analysis across different settings, which in
our case includes privacy (local or central models), corrup-
tion, as well as BT and general preference models.

Q5. Can we have a unified analysis of SquareχPO?

Contribution 5. We answer this question affirmatively by
establishing all of our theoretical results through a key com-
mon analytical tool: new generalization error bounds for
least-square regression under privacy constraints and corrup-
tion. Given the widespread use of least-square regression
oracles in RL (Agarwal et al., 2019), we believe these results
could be of independent interest.

In the interest of space, we relegate the discussion on further
related work to Appendix A.

2. Preliminaries
2.1. Offline Alignment

In the offline alignment problem, there exists a pre-collected
preference dataset Dpref = {(xi, a

0
i , a

1
i , yi)}ni=1, where

each context/prompt xi is i.i.d. sampled from a distri-
bution ρ, and two responses a0i and a1i are i.i.d sampled
from a reference policy πref , i.e., a0i ∼ πref(· | xi)
and a1i ∼ πref(· | xi), and finally the preference label
yi ∈ {0, 1} is generated according to some probability
distribution, i.e., yi ∼ Ber(P⋆(a1i ≻ a0i | xi)), where
P⋆(a1i ≻ a0i | xi) ∈ [0, 1] is the probability that given
xi, a1i is preferred over a0i and Ber(·) denotes a Bernoulli
distribution. Without loss of generality, we assume that
ρ(x) > 0 for all x and πref(a | x) > 0 for all x and a.
Depending on the modeling assumption of the preference
probability P⋆(a1i ≻ a0i | xi), the (offline) alignment is
often categorized into the following two settings.

Bradley-Terry (BT) preference model (Bradley & Terry,
1952). In this setting, there exists an unknown true reward
function r⋆ : X × A → [0, Rmax] that induces the prefer-
ence probability as follows

P⋆(a1i ≻ a0i | xi) =
exp(r⋆(xi, a

1
i ))

exp(r⋆(xi, a1i )) + exp(r⋆(xi, a0i ))
.

With the preference dataset Dpref , the goal under this setting
is to learn a policy π̂ that minimizes the suboptimality gap:

SG(π̂;π⋆) := J(π⋆)− J(π̂), (1)

where J(π) := Ex∼ρ,a∼π(·|x)[r
⋆(x, a)] and π⋆ is any com-

parator policy (e.g., it could be the optimal policy maximiz-
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ing J(π) or any other policy). For notation simplicity, we
will abbreviate Eπ[·] := Ex∼ρ,a∼π(·|x)[·].

General preference model (Munos et al., 2023). In this
setting, one directly works with a general preference model
P⋆(a1i ≻ a0i | xi) without the parametrization of a re-
ward function as above. This general preference model
has several advantages over the BT-preference model, e.g.,
it is better at capturing non-transitive preferences (a ≻ b,
b ≻ c, c ≻ a). Without the reward function, the solution
concept now becomes minimax winner (von Neumann win-
ner) (Munos et al., 2023; Swamy et al., 2024; Wang et al.,
2023b), which is given by

πMW := argmax
π∈Π

min
π′∈Π

P⋆(π ≻ π′),

where P⋆(π ≻ π′) := Ex∼ρ[P⋆(π(x) ≻ π′(x) | x)] for a
pair of policies π, π′ in a policy class Π. It is often more
convenient to work with a scaled and shifted version of
P⋆(a1 ≻ a0 | x) as ℓ⋆(x, a1, a0) := 2P⋆(a1 ≻ a0 | x)−1,
which leads to an equivalent definition of minimax winner

πMW := argmax
π∈Π

min
π′∈Π

ℓ⋆(π, π′), (2)

where ℓ⋆(π, π′) := Ex∼ρ,a1∼π(·|x),a0∼π′(·|x)[ℓ
⋆(x, a1, a0)].

Since this minimax winner can be viewed as a Nash equi-
librium of two-player constant-sum game, our goal in this
setting is to minimize the duality gap

DG(π̂) := max
π∈Π

ℓ⋆(π, π̂)−min
π∈Π

ℓ⋆(π̂, π).

2.2. DPO and χPO

DPO. One of the most popular offline alignment algorithms
is Direct Preference Optimization (DPO) (Rafailov et al.,
2023). Its popularity could be partially attributed to its
success in eliminating the reward model learning process,
achieved by a reparameterization of reward by the optimal
policy of a KL-regularized optimization objective. In par-
ticular, under the BT-preference model, given a preference
dataset Dpref and a user-specified policy class Π, DPO solves

π̂DPO = argmax
π∈Π

∑
(x,a+,a−)∈Dpref

log[σ(βhDPO(x, a+, a−))],

where hDPO(x, a+, a−) := log π(a+|x)
πref (a+|x) − log π(a−|x)

πref (a−|x) ,
σ(z) = 1

1+e−z is the sigmoid function, and β > 0 is
some regularization parameter. Here, for any data point
(x, a0, a1, y) in Dpref , we set a+ = ay (the preferred one)
and a− = a1−y (the non-preferred one).

χPO. To address the inherent overoptimization issue in
DPO, Huang et al. (2024) recently proposed a simple variant
of DPO by introducing an additional χ2-regularization term,

which leads to the following optimization1

π̂χPO = argmax
π∈Π

∑
(x,a+,a−)∈Dpref

log[σ(βhχPO(x, a+, a−))],

where hχPO(x, a+, a−) :=ϕ
(

π(a+|x)
πref (a+|x)

)
−ϕ

(
π(a−|x)

πref (a−|x)

)
and ϕ(u) := u + log u. Compared to DPO, there is an ad-
ditional linear term in ϕ(z) that introduces pessimism (Jin
et al., 2021b), which enables a suboptimality gap that only
depends on single policy concentrability (Rashidinejad et al.,
2021). On the other hand, DPO could only achieve a sub-
optimality gap in terms of all-policy concentrability coef-
ficient (Chen & Jiang, 2019) due to the lack of pessimism.
Moreover, χPO can also be extended to handle the general
preference model with a meaningful upper bound on the
duality gap. Given the stronger performance of χPO, we
will mainly focus on it when we consider robustness and
privacy in offline alignment, as discussed below.

2.3. Robustness and Privacy in Preference Data

Label corruption. In practice, the preference label yi may
not be sampled from the clean distribution Ber(P⋆(a1i ≻
a0i | xi)). To characterize this, we borrow the classic Huber
corruption model from robust statistics.

Definition 2.1 (α-Huber corruption (Huber, 1964)). We
consider the following α-Huber corruption: each label is
independently sampled from (1− α)Gi + αBi, where Gi

is the clean distribution Ber(P⋆(a1i ≻ a0i | xi)) and Bi

is some arbitrary unknown Bernoulli distribution. That is,
with probability α ∈ [0, 1/2], each label is sampled from
some bad distribution.

Label privacy in the local model. The preference label is
often collected via human feedback, which could potentially
reveal each person’s private information, as discussed before.
To this end, a strong privacy protection is to ensure Local
Differential Privacy (LDP) via a local randomizer. Given the
binary data of the preference label, it is natural to consider
the classic randomized response mechanism.

Definition 2.2 (Randomized response and ε-LDP (Warner,
1965)). Let ε > 0 be the privacy parameter and y ∈ {0, 1}
be the true label. The randomized response (RR) mecha-
nismR flips y and outputs private ỹ based on the following
distribution

P [ỹ = y] =
eε

1 + eε
and P [ỹ ̸= y] =

1

1 + eε
. (3)

This can be easily shown to satisfy ε-LDP, i.e., for any y, y′

and any subset S in the range ofR such that

P[R(y) ∈ S] ≤ eε · P [R (y′) ∈ S] .

1We ignore the clipping operation for the ease of presentation.
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Interplay between corruption and LDP. In practice, cor-
ruption and LDP protection can exist together, which moti-
vates us to consider their interplay in the following settings.
Definition 2.3 (CTL and LTC). Given a raw preference
dataset Dpref = {(xi, a

0
i , a

1
i , yi)}ni=1 and two parameters

α ∈ [0, 1/2], ε > 0, we consider the following two set-
tings that differ in the order of corruption and label privacy
protection in the local model:

Corruption-then-LDP (CTL). The raw label yi is first
corrupted by the α-Huber model, which is then further
privatized by ε-LDP RR mechanism, leading to the final
preference dataset given by D̃pref = {(xi, a

0
i , a

1
i , zi)}ni=1.

LDP-then-Corruption (LTC). The raw label yi is first
privatized by ε-LDP RR mechanism, which is then further
corrupted by the α-Huber model, leading to the final prefer-
ence dataset given by D̃pref = {(xi, a

0
i , a

1
i , zi)}ni=1.

One of our goals is to study whether there exists a separation
between the two settings, implying the order of corruption
and LDP matters.
Remark 2.4. The two settings naturally include corruption-
only and privacy-only as special cases by setting ε = ∞
and α = 0, respectively. Moreover, it is easy to see that,
combining the results of CTL and LTC directly gives us the
result for an even practical setting where corruption happens
both before and after LDP.

Differential privacy in the central model. We will also
consider the standard DP definition, which is defined in the
central model where the learner has access to the raw data
and needs to ensure a similar output on two neighboring
datasets.
Definition 2.5 ((ε, δ)-DP (Dwork et al., 2006)). Let ε > 0
and δ ∈ [0, 1], andA be a given offline alignment algorithm.
We say A satisfies ε-DP if for any measurable set S in the
range of A

P[A(Dpref) ∈ S] ≤ eε · P
[
A
(
D′

pref

)
∈ S

]
+ δ,

holds for any pair of (Dpref ,D′
pref) that only differs in one

sample (xi, a
0
i , a

1
i , yi) for some i ∈ [n]. If δ = 0, we simply

write ε-DP (i.e., pure DP).

Here, we not only protect the preference label, but also the
prompt and responses. As before, we would also like to
study the interplay between corruption the central DP. In
contrast to the local model, here the label corruption can
only happen before the central privacy protection.
Definition 2.6 (Corruption and DP (cDP)). Given a raw
preference dataset Dpref = {(xi, a

0
i , a

1
i , yi)}ni=1 and two

parameters α ∈ [0, 1/2], ε > 0, we consider the following
interplay: each label yi is first corrupted by α-Huber model,
resulting in D̄pref = {(xi, a

0
i , a

1
i , ȳi)}ni=1. Then, the learner

employs an algorithm A that is ε-DP with respect to D̄pref .

Algorithm 1 SquareχPO for CTL and LTC

1: Input: Locally private and corrupted preference dataset
D̃pref = {

(
xi, a

0
i , a

1
i , zi

)
}ni=1 under CTL and LTC, pri-

vacy parameter ε > 0, regularization coefficient β > 0,
reference policy πref

2: Define

ϕ(u) := u+ log u (4)

hχPO,i :=ϕ

(
π(a1i | xi)

πref(a1i | xi)

)
−ϕ

(
π(a0i | xi)

πref(a0i | xi)

)
(5)

3: Optimize the following objective:

π̂←argmin
π∈Π

∑
i∈[n]

[
2σ
(
clip2Rmax

[βhχPO,i]
)
−1−c(ε)z̄i

]2
,

where c(ε) := eε+1
eε−1 and z̄i = 2zi − 1

4: Output: π̂

Remark 2.7. As before, cDP recovers privacy-only and
corruption-only settings by setting α = 0 and ε = ∞,
respectively.

3. Bradley-Terry Preference Model
In this section, we study offline alignment in the BT-
preference model under privacy constraints and corruption.
We first focus on the interplay between corruption and the
label LDP (i.e., CTL and LTC) and then turn to the setting
of central DP, i.e., cDP.

3.1. Local Model

Our proposed algorithm, SquareχPO in Algorithm 1, is
the same for both CTL and LTC, i.e., adaptive. The key
modification compared with χPO is to use a square loss
instead of the log loss, plus an additional c(ε) factor for the
private case. We will dive into the intuition about the choice
of our loss function in the sequel. Before that, we remark
that the clipping clipR(u) = max{min{u,R},−R} with
R = 2Rmax is adopted in χPO as well, mainly used for a
slightly tighter theoretical bound.

3.1.1. INTUITION BEHIND SquareχPO

We now discuss our new loss function in SquareχPO, high-
lighting the intuition on how it helps to handle corruption
and privacy protection. It is worth noting that our new loss
function could be of its own interest even in the standard
scenario, i.e., non-private and non-corrupted cases, with
DPO-type (rather than χPO-type) reparameterization.

1. Square loss over probability. Without privacy protection
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(c(ε) = 1), our new loss function essentially reduces to∑
i∈[n]

(pi(π)− zi)
2, (6)

where we define pi(π) := σ
(
clip2Rmax

[βhχPO,i]
)
, while

DPO and χPO essentially adopts the standard log-loss, i.e.,

−zi log pi(π)− (1− zi) log(1− pi(π)). (7)

In fact, the loss in (6) is often referred to as Brier
score (Brier, 1950) in probabilistic predictions. One di-
rect observation here is that the Brier score is always upper
bounded by 1 while the log-loss can be unbounded, which
implies that label corruption under log-loss may have a
larger impact than that under the Brier score.

2. Converting to ±1 with c(ε) scaling. Instead of working
with zi ∈ {0, 1}, we convert it to z̄i = 2zi − 1 ∈ {1,−1}
and we similarly update the probability part. There are two
main reasons for this: (i) From (3) of RR, we can easily
see that the private mean (under ±1) is 1/c(ε) of the true
mean (probability). This implies that the c(ε) factor in
front of the private data leads to an unbiased estimate of the
true probability, which essentially follows from the same
intuition as in private mean estimation under RR, since the
empirical average mean estimator can also be written as
the solution to a square loss; (ii) Recall that for the general
preference model, it often works with ±1 (cf. (2)). As
we will see later, this conversion allows us to essentially
employ the same technique to analyze both BT-preference
and general preference models, altogether.
Remark 3.1. We mention in passing that many alignment al-
gorithms draw inspiration from binary classification for their
loss functions, in the non-private non-corrupted cases. For
instance, in addition to log-loss in DPO and χPO, SLiC (Zhao
et al., 2023) leverages the hinge loss while IPO (Azar et al.,
2024) adopts the standard square loss. The key conceptual
difference between our square loss and that of IPO lies in
the fact that the latter takes the square over the raw log-ratio
(i.e., implicit reward) while ours is a square over proba-
bility (i.e., an additional sigmoid step is applied). More
recently, Tang et al. (2024) proposed a family of loss func-
tions for alignment based on standard supervised learning,
including exponential loss, truncated quadratic loss, and
savage loss. To the best of our knowledge, our SquareχPO
is the first one that proposes to use the Brier score as the
loss. In the next section, we will demonstrate its strong
theoretical guarantees.

3.1.2. THEORETICAL GUARANTEES

In this section, our aim is to establish the suboptimality gap
(cf. (1)) of SquareχPO (Algorithm 1), under both CTL and
LTC, without knowledge of the setting in advance.

We start with the same assumptions as in χPO (Huang et al.,
2024), i.e., policy realizability and bounded range.

Assumption 3.2 (Policy realizability). Fix β > 0. The
policy class Π satisfies π⋆

β ∈ Π, where π⋆
β is the optimal

policy of the following mixed χ2-regularized objective:

Jχmix

β (π) :=Eπ[r
⋆(x, a)]−β · [Dχ2(π∥πref)+DKL(π∥πref)].

The Jχmix

β (π) in χPO mixes χ2-regularization with the stan-
dard KL-regularization in DPO, which in turn leads to the
new reward reparameterization using optimal solution π⋆

β :

r⋆(x, a) = βϕ

(
π⋆
β(a|x)

πref(a|x)

)
+ Zβ,r⋆(x),

where we recall that ϕ(u) = u + log u and Zβ,r⋆(x) is
some action-independent normalization term. Thus, As-
sumption 3.2 essentially implies the implicit reward realiz-
ability under the above parameterization.

As in χPO (Huang et al., 2024), the next assumption asserts
that the implicit reward difference under any policy in Π is
upper bounded by some constant.

Assumption 3.3 (Bounded implicit reward difference). For
a parameter Vmax ⩾ Rmax, it holds that for all π ∈ Π,
x ∈ X , and a, b ∈ A,∣∣∣∣βϕ( π(a | x)

πref(a | x)

)
− βϕ

(
π(b | x)
πref(b | x)

)∣∣∣∣ ⩽ Vmax.

Finally, we will measure the theoretical performance using
the same type of single-policy concentrability as in χPO.

Definition 3.4 (L1-Concentrability). The single-policy L1-
concentrability coefficient for a policy π is given by

Cπ := Eπ

[
π(a|x)
πref(a|x)

]
,

where we recall that Eπ[·] := Ex∼ρ,a∼π(·|x)[·].

By a direct calculation, one can see Cπ = 2Dχ2(π∥πref)+1,
which is extremely useful in the analysis of both χPO and
our next main result on Algorithm 1.

Theorem 3.5. For any given comparator policy π⋆, there
exists a proper choice of β > 0 such that when Assump-
tions 3.2 and 3.3 hold, with probability at least 1− ζ, the
output of Algorithm 1 satisfies the following suboptimality
gaps under CTL and LTC:

SGCTL(π̂;π
⋆)≲κ(π⋆)

(
c(ε)

√
log(|Π|/ζ)

n
+
√
α

)
,

SGLTC(π̂;π
⋆)≲κ(π⋆)

(
c(ε)

√
log(|Π|/ζ)

n
+
√
α · c(ε)

)
,
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where a ≲ b as shorthand for a = O(b), c(ε) = eε+1
eε−1 and

κ(π⋆) := e2Rmax · Vmax

Rmax

√
Cπ⋆ is the single-policy concen-

trability related term.

Remark 3.6. Thanks to the use of RR in CTL and LTC,
our algorithm is ε-LDP. Setting ε = ∞ and α = 0 in the
above utility bounds, leads to the same bound as in χPO.
Moreover, as a by-product, the above theorem also directly
gives results for privacy-only and corruption-only settings.
Furthermore, it can be easily leveraged to establish bounds
for the setting where corruption happens both before and
after local privacy with a simple summation of the two
bounds above. We stress that, as in Huang et al. (2024), we
consider a finite policy class Π for the ease of presentation.
The extension to an infinite function class can be easily
achieved via the standard covering number argument. For
example, for a linear reward model in Rd (or equivalently, a
log-linear policy class), log |Π| will roughly be Õ(d).

With the above theorem, several important observations and
remarks are in order.

Interplay between local privacy and corruption. One can
see that under CTL, the impact of local privacy parameter
ε (i.e., the first term) and corruption parameter α (i.e., the
second term) is separable (additive), while there exists a
multiplicative term in LTC, which leads to an additional√

c(ε) ⩾ 1 factor. While these are only upper bound results,
we tend to believe that the different interplay between local
privacy and corruption (i.e., additive vs. multiplicative)
indeed exists, especially given the recent similar tight result
in mean estimation (Zhou & Zhang, 2024).

Comparison with prior private alignment. To the best
of our knowledge, Chowdhury et al. (2024b) is the only
related work that studies label privacy protection in offline
alignment. However, it considers the standard RL-based ap-
proach where a reward model is explicitly learned before the
policy optimization, rather than our RL-free direct optimiza-
tion method. More importantly, it only considers the linear
reward setting while ours is the first one that establishes
formal guarantees for the general function approximation
settings with the same (optimal) privacy cost of c(ε) and a
similar single-policy concentrability dependence. Finally,
we refer readers to Section 6 for comparisons with one
concurrent work (Zhou et al., 2025) on private alignment.

Comparison with prior robust alignment. To the best
of our knowledge, only Chowdhury et al. (2024a) provides
a formal theoretical bound on the suboptimality gap of a
robust variant of DPO under a particular type of label corrup-
tion. Specifically, it considers the so-called random-flipping
corruption (i.e., with some known probability, the true la-
bel is flipped). An astute reader may already observe that
this corruption model is weaker than our Huber corruption,
and moreover, it is essentially equivalent to label privacy

Algorithm 2 SquareχPO for cDP
1: Input: Possibly label corrupted preference dataset
D̄pref = {

(
xi, a

0
i , a

1
i , ȳi

)
}ni=1, privacy parameter ε > 0,

regularization coefficient β > 0, reference policy πref ,
hχPO,i in (5)

2: Define

L(π; D̄pref) :=
∑
i∈[n]

[
2σ
(
clip2Rmax

[βhχPO,i]
)
−1−ȳ′i

]2
,

where ȳ′i = 2ȳi − 1 ∈ {1,−1}
3: Sample a policy π̂ from Π via the following distribution

P (π) ∝ exp
(
−ε

8
· L(π; D̄pref)

)
4: Output: π̂

noise under RR after a simple reparameterization. Thus, it
is in fact more fair to compare it with Theorem 3.5 under
α = 0. In this context, our main result has two significant
improvements over Chowdhury et al. (2024a): (i) Even un-
der the linear model, Chowdhury et al. (2024a) only archives
a O(1/n1/4) rate with worse all-policy concentrability de-
pendence while ours is the optimal O(1/n1/2) rate with
single-policy concentrability; (ii) For the general function
approximation setting, Chowdhury et al. (2024a) fails to
achieve a vanish suboptimality gap as n → ∞ while ours
maintains the optimalO(1/n1/2) rate. Another related work
is Mandal et al. (2024), which only considers RL-based
alignment with linear function approximations under adver-
sary corruption of both prompt (responses) and labels. In
contrast, our main focus is RL-free alignment for general
function approximations while under label-corruption only.
Finally, we refer readers to Section 6 for comparisons with
one concurrent work (Zhou et al., 2025) on robust align-
ment.

3.2. Central Model

We now turn to privacy protection in the central model
where both the prompt (responses) and labels are sensitive
information (cf. cDP in Definition 2.6).

Our proposed algorithm is presented in Algorithm 2, which
essentially applies the exponential mechanism (McSherry
& Talwar, 2007) with our square loss as the score func-
tion. The boundedness of our square loss (in contrast to the
unboundedness of log-loss) plays a key role in balancing
privacy and utility thanks to its bounded sensitivity, i.e.,
changing any single sample at most modify L(π; D̄pref) by
4, which leads to our sampling distribution in Algorithm 2.

We now proceed to present the privacy and utility guarantees
of Algorithm 2.

6
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Theorem 3.7. Let ε > 0, Algorithm 2 satisfies ε-DP. For
any given comparator policy π⋆, there exists a proper choice
of β > 0 such that when Assumptions 3.2 and 3.3 hold, with
probability at least 1− ζ , the output of Algorithm 2 satisfies
the following suboptimality gap under cDP

SGcDP(π̂;π
⋆)≲κ(π⋆)

((
1 +

1√
ε

)√
log(|Π|/ζ)

n
+
√
α

)
,

where κ(π⋆) = e2Rmax · Vmax

Rmax

√
Cπ⋆ is the single-policy

concentrability related term.

With this theorem in hand, several interesting and important
observations are in order.

Interplay between central DP and corruption. One can
first observe that as in CTL, the cost of privacy and corrup-
tion is separable (i.e., additive). However, the privacy cost is
smaller in the central model than that under the local model.

Comparison with prior alignment under central DP.
To the best of our knowledge, there are two concurrent
works (Chowdhury et al., 2024b; Korkmaz & Brown-Cohen,
2024) that studied RL-based alignment under central DP
constraint in the context of a linear reward model in Rd. In
particular, they both consider a weaker approximate DP
constraint (i.e., δ > 0) and establish a privacy cost of
O
(

(d log(1/δ))1/4√
nε

)
. In contrast, our result can handle gen-

eral function approximations with a stronger pure DP guar-
antee. In fact, if one simply generalizes their approaches by
following the non-private counterpart in Zhu et al. (2023) to
tackle non-linear functions, it will lead to a strictly subop-
timal non-vanishing suboptimality gap. Further, our result
under a linear model reduces to a privacy cost of O

( √
d√
nε

)
,

which has a worse dependence on d (due to the stronger
pure DP) while getting rid of the additional log(1/δ) factor
(which is typically at least on the order of log n).
Remark 3.8. It should be clear that Algorithm 2 is not a
computationally efficient due to the sampling operation,
especially for an infinite class Π. Hence, we view it as an
information-theoretic result, which serves as an important
theoretical benchmark for our next step in developing a
computationally efficient algorithm. This is indeed a typical
path in the private machine learning literature.

4. General Preference Model
In this section, we turn to the general preference model,
which does not assume preference transitivity as in previ-
ous BT-preference model. We will demonstrate that our
SquareχPO can be easily extended to this setting based on
the self-play framework (Swamy et al., 2024; Gao et al.,
2024; Rosset et al., 2024). As already shown in χPO (Huang
et al., 2024) for the standard non-private non-corrupted set-

ting, it is impossible to achieve a single-policy concentrabil-
ity dependence in the sample complexity bound under the
general preference model. Thus, we will aim to achieve a
coverage dependence the same as in χPO under the general
preference model, which is somewhat in between single-
policy and all-policy concentrability.

In the interest of space, our proposed algorithm for the
general preference model under privacy and corruption is
presented in Algorithm 3 in appendix. It mainly consists of
two key steps: (i) preference model estimation and (ii) pol-
icy optimization with self-play. Our modification compared
to iterative χPO in Huang et al. (2024) only lies in the first
step, since the labeled data set (which is our corruption and
privacy protection target) is only used during the first step
while the second step works with an unlabeled dataset Dx.

(i) Preference model estimation. Depending on the local
or central privacy model, we have two different ways of
finding ℓ̂. For the local model, ℓ̂ is found via a modified
least-square regression where an additional factor of c(ε) is
applied in (10), which will essentially reduce to the same
loss as in Huang et al. (2024) when ε =∞ (i.e., no privacy
protection). We can now also observe that the loss function
under the BT-preference model in Algorithm 1 is simply
a specific instantiation of (10) by plugging BT-preference
probability (via sigmoid function) into ℓ(xi, a

0
i , a

1
i ). Sim-

ilarly, for the central model, we again use the exponential
mechanism to find ℓ̂, based on the square loss, which is also
a generalization of the loss used in Algorithm 2 under the
BT-preference model.

(ii) Policy optimization with self-play. With the estimated
preference model ℓ̂ in hand, we proceed to run policy op-
timization over a unlabeled dataset via self-play, which
means that r̂t is constructed using the current policy πt

(i.e., bt ∼ πt(x)). With this r̂t, our algorithm (which is
the same as in Huang et al. (2024)) updates its policy by
mirror descent (Nemirovskij & Yudin, 1983) with a mixed
regularizer (i.e., χ2-regularizer and KL-regularizer) over
both the current policy πt and πref . This type of mirror
descent can be rewritten using the same χPO reparametriza-
tion as a regression over a reward difference, leading to the
loss Lt(π;Dx) in (11) with the reparametrization function
fβ,η
π,π′(x, a, b) given by(

1 +
1

η

)
β · hχPO,π(x, a, b)−

β

η
· hχPO,π′(x, a, b), (8)

where hχPO,π(x, a, b) := ϕ
(

π(a|x)
πref(a|x)

)
−ϕ

(
π(b|x)
πref(b|x)

)
is es-

sentially the same reparametrization used in the last section
(cf. (5)) with ϕ(u) = u + log u being the same as before.
At a high level, this policy optimization step can be viewed
as a combination of the techniques developed in Gao et al.
(2024) (i.e., regression over the reward difference with a

7
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reparametrization trick) and in Chang et al. (2024) (i.e.,
regularized over both πt and πref). We will provide more
intuition on this step in the next section.

4.1. Theoretical Guarantees

In this section, we present our main theoretical result on
Iterative SquareχPO in Algorithm 3. First, we state the
same set of assumptions as in Huang et al. (2024).

Assumption 4.1 (Preference function realizability). The
model class L satisfies ℓ⋆ ∈ L where ℓ⋆ is the ground truth
preference function.

The next assumption is about the policy realizability during
each policy update step, which is analogous to Assump-
tion 3.2 in the BT-preference model.

Assumption 4.2 (Policy realizability for general prefer-
ences). For any policy π ∈ Π and ℓ ∈ L, the policy class
Π contains the minimizer of the following regularized opti-
mization objective: ∀x ∈ X

π̄(x;ℓ,π):=argmax
p∈∆(X )

{
Ea∼p,b∼π(x)[ℓ(x,a,b)]−Rx(p,πref ,π)

}
,

where the regularizerRx(p, πref , π) is given by

Rx(p, πref , π) := βDfχmix
(p∥πref(x)) +

β

η
Bx(p, π),

with Dfχmix
(p∥q) := Dχ2 (p∥q)+DKL (p∥q) and Bx(p, q)

being the Bregman divergence induced by the convex func-
tion F (u) := Dfχmix

(u∥πref), i.e.,

Bx(p, q) := F (p)− F (q)− ⟨∇F (q), p− q⟩.

While it may seem to be complicated, we now pause briefly
to provide further intuition on the above optimization by
comparing it with Jχmix

β in Assumption 3.2. We first note
that the π in π̄(x; ℓ, π) will be πt in our algorithm. Thus,
compared with Jχmix

β , the above optimization basically adds
another regularization over πt via Bx(p, π

t), which directly
gives us the reparametrization function in (8)2 with π′ = πt.

Finally, analogous to Assumption 3.3, we assume that the
implicit reward is bounded.

Assumption 4.3 (Bounded implicit reward difference for
general preferences). For a parameter Vmax ⩾ 2, it holds
that for all π, π′ ∈ Π, x ∈ X , and a, b ∈ A,

|fβ,η
π,π′(x, a, b)| ⩽ Vmax.

Our main guarantee for Algorithm 3 is as follows.

2Note that the last term in Bx(p, q) will not contribute, since
the gradient of it is independent of p.

Theorem 4.4. Let ε > 0, Algorithm 3 satisfies ε-LDP or ε-
DP, respectively. Let subopt(π̂, C) := maxπ∈Π ℓ∗(π, π̂)−
maxπ∈ΠC

ℓ∗(π, π̂) and ΠC := {π : maxx∈X Dχ2(π(x) ∥
πref(x)) ⩽ C}. Then, for any ζ ∈ (0, 1] and each setting
of CTL, LTC and cDP , under Assumptions 4.1, 4.2 and 4.3,
there exists corresponding proper choices of T, β, η such
that with probability 1− ζ, the following bounds hold:

DG(π̂) ≲ min
C⩾1
{subopt(π̂, C) + C · B} ,

where B ∈ {BCTL,BLTC,BcDP} are defined as

BCTL :=

(
Vm + c(ε)

√
log(|L||Π|/δ)

n
+

√
α log

|Π|
δ

)
,

BLTC :=

(
Vm + c(ε)

√
log(|L||Π|/δ)

n
+

√
αc(ε) log

|Π|
δ

)
,

BcDP:=

(
Vm+

(
1+

1√
ε

)√
log(|L||Π|/δ)

n
+

√
α log

|Π|
δ

)
,

where Vm := Vmax
log(|Π|/δ)√

m
.

Remark 4.5. We remark again that this is the first set of
results for private and robust alignment under a general
preference model.

5. Key Techniques Highlight
In this section, we would like to highlight a key common
technique behind all the results in previous sections. In
particular, all of our sample complexity bounds build upon
the following lemma that characterize generazation error
bounds of least-square regression under CTL , LTC or cDP .

Lemma 5.1 (Informal statement of Lemma B.1). Let
{(ui, y

′
i)}ni=1 be a clean dataset and H be a hypothesis

class such that realizability holds (h∗ ∈ H). Define gener-
alization error for any ĥ as

err2gen := Eu∼ρ′ [(ĥ(u)− h∗(u))2],

for feature distribution ρ′. Then, with probability at least
1− ζ, we have

1. Under CTL and LTC, given {(ui, z
′
i)}ni=1 as input

dataset, ĥ = argminh∈H
∑n

i=1(h(ui)− c(ε)z′i)
2 achieves

err2gen,CTL ≲ c(ε)2 · log(|H|/ζ)
n

+ α,

err2gen,LTC ≲ c(ε)2 · log(|H|/ζ)
n

+ α · c(ε) .

2. Under cDP, given {(ui, ȳ
′
i)}ni=1 as input dataset, running

exponential mechanism using square loss over ȳ′i yields

err2gen,cDP ≲
log(|H|/ζ)

n
+

log(|H|/ζ)
nε

+ α .
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The above result is a nontrivial extension of the standard
findings in (Song et al., 2022) to the private and corrupted
settings. Given the widespread use of least-squares regres-
sion oracles in offline, online, and hybrid RL (Agarwal et al.,
2019), we believe this result can be readily applied to drive
new advancements in the private and corrupted scenarios.

6. Discussion
In this section, we first provide a detailed discussion on the
concurrent work (Zhou et al., 2025) on private and robust
offline alignment, which shares similar motivations but has
the following key differences. First, Zhou et al. (2025) only
focuses on the linear model with BT-preference, while we
consider general function approximations for BT-preference
as well as a general preference model. Second, Zhou et al.
(2025) only considers local DP, while we also consider
central DP. Third, Zhou et al. (2025) considers a strong cor-
ruption model while we consider a slightly weaker model,
i.e., Huber corruption model. This gives a different term
regarding the interplay between privacy and corruption, i.e.,
c(ε)
√
α vs.

√
c(ε)α. We also believe that the dependence

on α in Lemma 5.1 can be improved to α2 by leveraging the
Huber corruption property3. Second, although we mainly
focus on the theory in the main body, we have also man-
aged to conduct some experiments as proof-of-concept, see
Appendix E for details.

7. Conclusion
We introduced SquareχPO, a novel offline alignment
method that achieves state-of-the-art theoretical guarantees
in the presence of noisy labels caused by privacy protections
and/or adversarial corruption. Our algorithm can handle
both BT-preference and general preference models. While
our primary focus is theoretical, SquareχPO remains practi-
cal and easy to implement, requiring only a minor modifica-
tion to χPO and DPO. Future work will focus on comprehen-
sive empirical evaluations to further validate our findings.

Acknowledgements
XZ is supported in part by NSF CNS-2153220 and CNS-
2312835.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

3In fact, we are working on a new paper that will have a more
thorough discussion. Stay tuned.

References
Abdin, M. I., Jacobs, S. A., Awan, A. A., Aneja, J., Awadal-

lah, A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Behl, H. S., Benhaim, A., Bilenko, M., Bjorck, J., Bubeck,
S., Cai, M., Mendes, C. C. T., Chen, W., Chaudhary, V.,
Chopra, P., Giorno, A. D., de Rosa, G., Dixon, M., El-
dan, R., Iter, D., Garg, A., Goswami, A., Gunasekar, S.,
Haider, E., Hao, J., Hewett, R. J., Huynh, J., Javaheripi,
M., Jin, X., Kauffmann, P., Karampatziakis, N., Kim, D.,
Khademi, M., Kurilenko, L., Lee, J. R., Lee, Y. T., Li,
Y., Liang, C., Liu, W., Lin, E., Lin, Z., Madan, P., Mitra,
A., Modi, H., Nguyen, A., Norick, B., Patra, B., Perez-
Becker, D., Portet, T., Pryzant, R., Qin, H., Radmilac, M.,
Rosset, C., Roy, S., Ruwase, O., Saarikivi, O., Saied, A.,
Salim, A., Santacroce, M., Shah, S., Shang, N., Sharma,
H., Song, X., Tanaka, M., Wang, X., Ward, R., Wang, G.,
Witte, P., Wyatt, M., Xu, C., Xu, J., Yadav, S., Yang, F.,
Yang, Z., Yu, D., Zhang, C., Zhang, C., Zhang, J., Zhang,
L. L., Zhang, Y., Zhang, Y., Zhang, Y., and Zhou, X.
Phi-3 technical report: A highly capable language model
locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Rein-
forcement learning: Theory and algorithms. CS Dept.,
UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Amortila, P., Foster, D. J., Jiang, N., Sekhari, A., and Xie,
T. Harnessing density ratios for online reinforcement
learning. arXiv preprint arXiv:2401.09681, 2024a.

Amortila, P., Foster, D. J., and Krishnamurthy, A. Scal-
able online exploration via coverability. arXiv preprint
arXiv:2403.06571, 2024b.

Azar, M. G., Guo, Z. D., Piot, B., Munos, R., Rowland, M.,
Valko, M., and Calandriello, D. A general theoretical
paradigm to understand learning from human preferences.
In International Conference on Artificial Intelligence and
Statistics, pp. 4447–4455. PMLR, 2024.

Bagnell, J., Kakade, S. M., Schneider, J., and Ng, A. Policy
search by dynamic programming. Advances in neural
information processing systems, 16, 2003.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan,
T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T.,
El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernan-
dez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L.,
Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark,
J., McCandlish, S., Olah, C., Mann, B., and Kaplan, J.
Training a helpful and harmless assistant with reinforce-
ment learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022a.

9



Square-χPO

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McK-
innon, C., Chen, C., Olsson, C., Olah, C., Hernandez,
D., Drain, D., Ganguli, D., Li, D., Tran-Johnson, E.,
Perez, E., Kerr, J., Mueller, J., Ladish, J., Landau, J.,
Ndousse, K., Lukosuite, K., Lovitt, L., Sellitto, M.,
Elhage, N., Schiefer, N., Mercado, N., DasSarma, N.,
Lasenby, R., Larson, R., Ringer, S., Johnston, S., Kravec,
S., Showk, S. E., Fort, S., Lanham, T., Telleen-Lawton,
T., Conerly, T., Henighan, T., Hume, T., Bowman, S. R.,
Hatfield-Dodds, Z., Mann, B., Amodei, D., Joseph, N.,
McCandlish, S., Brown, T., and Kaplan, J. Constitu-
tional AI: Harmlessness from AI feedback. arXiv preprint
arXiv:2212.08073, 2022b.

Beygelzimer, A., Langford, J., Li, L., Reyzin, L., and
Schapire, R. Contextual bandit algorithms with super-
vised learning guarantees. In Proceedings of the Four-
teenth International Conference on Artificial Intelligence
and Statistics, pp. 19–26. JMLR Workshop and Confer-
ence Proceedings, 2011.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 39(3/4):324–345, 1952.

Brier, G. W. Verification of forecasts expressed in terms of
probability. Monthly weather review, 78(1):1–3, 1950.

Casper, S., Davies, X., Shi, C., Gilbert, T. K., Scheurer, J.,
Rando, J., Freedman, R., Korbak, T., Lindner, D., Freire,
P., Wang, T., Marks, S., Segerie, C.-R., Carroll, M., Peng,
A., Christoffersen, P., Damani, M., Slocum, S., Anwar,
U., Siththaranjan, A., Nadeau, M., Michaud, E. J., Pfau,
J., Krasheninnikov, D., Chen, X., Langosco, L., Hase,
P., Bıyık, E., Dragan, A., Krueger, D., Sadigh, D., and
Hadfield-Menell, D. Open problems and fundamental lim-
itations of reinforcement learning from human feedback.
arXiv preprint arXiv:2307.15217, 2023.

Chang, J. D., Zhan, W., Oertell, O., Brantley, K., Misra, D.,
Lee, J. D., and Sun, W. Dataset reset policy optimization
for RLHF. arXiv preprint arXiv:2404.08495, 2024.

Charisopoulos, V., Esfandiari, H., and Mirrokni, V. Robust
and private stochastic linear bandits. In International Con-
ference on Machine Learning, pp. 4096–4115. PMLR,
2023.

Chaudhuri, K. and Hsu, D. Sample complexity bounds for
differentially private learning. In Proceedings of the 24th
Annual Conference on Learning Theory, pp. 155–186.
JMLR Workshop and Conference Proceedings, 2011.

Chen, J. and Jiang, N. Information-theoretic considerations
in batch reinforcement learning. In International Con-
ference on Machine Learning, pp. 1042–1051. PMLR,
2019.

Chhor, J. and Sentenac, F. Robust estimation of discrete
distributions under local differential privacy. In Interna-
tional Conference on Algorithmic Learning Theory, pp.
411–446. PMLR, 2023.

Chowdhury, S. R. and Zhou, X. Differentially private regret
minimization in episodic markov decision processes. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 6375–6383, 2022a.

Chowdhury, S. R. and Zhou, X. Distributed differen-
tial privacy in multi-armed bandits. arXiv preprint
arXiv:2206.05772, 2022b.

Chowdhury, S. R. and Zhou, X. Shuffle private linear con-
textual bandits. arXiv preprint arXiv:2202.05567, 2022c.

Chowdhury, S. R., Kini, A., and Natarajan, N. Provably
robust DPO: Aligning language models with noisy feed-
back. arXiv preprint arXiv:2403.00409, 2024a.

Chowdhury, S. R., Zhou, X., and Natarajan, N. Differen-
tially private reward estimation with preference feedback.
In International Conference on Artificial Intelligence and
Statistics, pp. 4843–4851. PMLR, 2024b.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Cui, Q. and Du, S. S. When are offline two-player zero-sum
markov games solvable? Advances in Neural Information
Processing Systems, 35:25779–25791, 2022.

Duan, Y., Jia, Z., and Wang, M. Minimax-optimal off-
policy evaluation with linear function approximation. In
International Conference on Machine Learning, pp. 2701–
2709. PMLR, 2020.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating noise to sensitivity in private data analysis. In
Theory of Cryptography: Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7,
2006. Proceedings 3, pp. 265–284. Springer, 2006.

Feng, Q., Kasa, S. R., Yun, H., Teo, C. H., and Bodapati,
S. B. Exposing privacy gaps: Membership inference
attack on preference data for LLM alignment. arXiv
preprint arXiv:2407.06443, 2024.

Gabbianelli, G., Neu, G., and Papini, M. Importance-
weighted offline learning done right. In International
Conference on Algorithmic Learning Theory, pp. 614–
634. PMLR, 2024.

Gao, Z., Chang, J. D., Zhan, W., Oertell, O., Swamy, G.,
Brantley, K., Joachims, T., Bagnell, J. A., Lee, J. D., and

10



Square-χPO

Sun, W. Rebel: Reinforcement learning via regressing
relative rewards. arXiv preprint arXiv:2404.16767, 2024.

Garcelon, E., Perchet, V., Pike-Burke, C., and Pirotta, M.
Local differential privacy for regret minimization in re-
inforcement learning. Advances in Neural Information
Processing Systems, 34:10561–10573, 2021.

Georgiev, K. and Hopkins, S. Privacy induces robustness:
Information-computation gaps and sparse mean estima-
tion. Advances in neural information processing systems,
35:6829–6842, 2022.

Hopkins, S. B., Kamath, G., Majid, M., and Narayanan,
S. Robustness implies privacy in statistical estimation.
In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, pp. 497–506, 2023.

Huang, A., Zhan, W., Xie, T., Lee, J. D., Sun, W., Krishna-
murthy, A., and Foster, D. J. Correcting the mythos of
KL-regularization: Direct alignment without overparame-
terization via Chi-squared preference optimization. arXiv
preprint arXiv:2407.13399, 2024.

Huber, P. J. Robust estimation of a location parameter. The
Annals of Mathematical Statistics, 35(1):73–101, 1964.

Jin, C., Liu, Q., and Miryoosefi, S. Bellman eluder di-
mension: New rich classes of rl problems, and sample-
efficient algorithms. Advances in neural information
processing systems, 34:13406–13418, 2021a.

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably
efficient for offline rl? In International Conference on
Machine Learning, pp. 5084–5096. PMLR, 2021b.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In Proceedings of the
Nineteenth International Conference on Machine Learn-
ing, pp. 267–274, 2002.

Kamath, G. The broader landscape of robustness in algorith-
mic statistics, 2024. URL https://arxiv.org/abs/
2412.02670.

Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhod-
nikova, S., and Smith, A. What can we learn privately?
SIAM Journal on Computing, 40(3):793–826, 2011.

Korkmaz, E. and Brown-Cohen, J. Learning dif-
ferentially private rewards from human feedback.
https://openreview.net/pdf?id=reBq1gmlhS, 2024.

Lee, J., Jeon, W., Lee, B., Pineau, J., and Kim, K.-E. Op-
tidice: Offline policy optimization via stationary distribu-
tion correction estimation. In International Conference
on Machine Learning, pp. 6120–6130. PMLR, 2021.

Li, F., Zhou, X., and Ji, B. Differentially private linear
bandits with partial distributed feedback. In 2022 20th
International Symposium on Modeling and Optimization
in Mobile, Ad hoc, and Wireless Networks (WiOpt), pp.
41–48. IEEE, 2022.

Li, M., Berrett, T. B., and Yu, Y. On robustness and local
differential privacy. The Annals of Statistics, 51(2):717–
737, 2023.

Liu, T., Zhao, Y., Joshi, R., Khalman, M., Saleh, M.,
Liu, P. J., and Liu, J. Statistical rejection sam-
pling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

Liu, Z., Lu, M., Zhang, S., Liu, B., Guo, H., Yang, Y.,
Blanchet, J., and Wang, Z. Provably mitigating overop-
timization in RLHF: Your SFT loss is implicitly an ad-
versarial regularizer. arXiv preprint arXiv:2405.16436,
2024.

Ma, J. Y., Yan, J., Jayaraman, D., and Bastani, O. Offline
goal-conditioned reinforcement learning via f -advantage
regression. Advances in neural information processing
systems, 35:310–323, 2022a.

Ma, Y. J., Shen, A., Jayaraman, D., and Bastani, O. Smodice:
Versatile offline imitation learning via state occupancy
matching. arXiv preprint arXiv:2202.02433, 1(2):3,
2022b.

Mandal, D., Nika, A., Kamalaruban, P., Singla, A., and
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A. Additional Related Work
The alignment problem has been extensively studied in the previous literature (Yu et al., 2021; Ziegler et al., 2019; Stiennon
et al., 2020; Bai et al., 2022a; Shin et al., 2023; Zhan et al., 2023; Mandal et al., 2024). Besides the private or robust alignment
related work we mentioned in the main text, we refer the readers to Sun et al. (2024a) for more general trustworthiness
in large language models and to Xiao & Zhu (2025); Touvron et al. (2023) for comprehensive surveys on large language
models. Here, we discuss some additional related work.

Alignment with Human Feedback. The most fundamental method to align LLM is Reinforcement Learning from Human
Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022), which has been practically used in OpenAI (2022); Sun
et al. (2024b); Bai et al. (2022a;b). Instead of fine-tuning models by training a reward model from human feedback and
optimizing policy using Reinforcement Learning (e.g., Proximal policy optimization (PPO) (Schulman et al., 2017)), Direct
Preference Optimization (DPO) (Rafailov et al., 2023) simplifies alignment by directly optimizing the policy using human
preference data. This approach bypasses the need for a reward model and reinforcement learning method, resulting in a
more stable and efficient training process (Abdin et al., 2024). In the following, we divide related work on alignment with
human feedback based on different perspectives:

• Extended works from DPO. Taking DPO as a starting point, many preference optimization variants have emerged
to improve efficiency, stability, adaptability, or other properties. Relevant examples are Chi-Squared Preference
Optimization (χPO) (Huang et al., 2024), Rejection Sampling Optimization (RSO) (Liu et al., 2023), Identity Preference
Optimization (IPO) (Azar et al., 2024), ΨPO (Azar et al., 2024), generalized preference optimization (GPO) (Tang
et al., 2024), Direct Nash Optimization (DNO) (Rosset et al., 2024), Self-Play Preference Optimization (SPPO) (Wu
et al., 2024a), and Exploratory Preference Optimization (XPO) (Xie et al., 2024). Our SquareχPO is a variant of χPO,
where the main difference is in the loss function—more on this in the next bullet point.

• The role of loss function. Our SquareχPO is mainly different from the original χPO in the loss function used to
estimate the policy, changed from log-loss to least square loss over probabilities. Compared to the log-loss, the square
loss provides a more interpretable measure of error, avoids extreme gradient values for small probability estimates, and
ensures numerical stability. Wang et al. (2024a) explores how different loss functions affect the sample efficiency and
adaptivity in classification and RL problems. We remark that the use of the square loss is not by any means new in
RL. For example, we have temporal-difference (TD) learning with squared loss for regression (Jin et al., 2021a; Xie
et al., 2022) and Fitted Q-Iteration (FQI) (Munos & Szepesvári, 2008; Chen & Jiang, 2019), which uses least-squares
to approximate the Bellman backup. Thus, we believe that our new generalization error bound can be useful when one
aims to extend those problems to private and robust scenarios.

• Type of regularization divergence. The objective function of preference optimization can be generally written as
(reward) loss + (regularization) penalty (Xiao & Zhu, 2025). A number of different regularizers have been proposed
in the literature. Wang et al. (2023a) proposes a generalized approach, f -DPO, by using f -divergences for the
regularization term, to integrate a variety of popular divergences. Our mixed χ2 divergence in SquareχPO can be
viewed as a special case of f -DPO, and it can provably alleviate overoptimization and achieve sample-complexity
guarantees based on single-policy concentrability (Huang et al., 2024). Notably, χ2-regularization has been used in a
number of RL works to derive single-policy concentrability guarantee (Wang et al., 2024b; Gabbianelli et al., 2024;
Duan et al., 2020; Zhan et al., 2022; Amortila et al., 2024b; Zhu & Zhang, 2024; Lee et al., 2021; Ma et al., 2022a;b).
Xiao et al. (2024) introduces a new regularizer called preference matching divergence which helps the LLM balance
response diversification and reward maximization. Moreover, Liu et al. (2024) shows that the SFT Loss is implicitly an
adversarial regularizer in RLHF, that provably mitigates overoptimization.

• Coverage coefficients (or concentrability coefficients). Coverage, a concept that captures how the training data
“covers” the test distribution, has played a fundamental role in offline RL (Munos & Szepesvári, 2008; Xie et al., 2021a;
Uehara & Sun, 2021; Zhan et al., 2022), offline-online (hybrid) RL (Ross & Bagnell, 2012; Xie et al., 2021b; Song
et al., 2022; Amortila et al., 2024a; Song et al., 2024), and online RL (Kakade & Langford, 2002; Bagnell et al., 2003;
Xie et al., 2022). The sub-optimality guarantees of SquareχPO obtained under the BT-preference model are based
on the single-policy concentrability, that is, the data only needs to have a good cover over the chosen comparator
policy. This is the gold standard in offline reinforcement learning due to being more effective compared with all-policy
concentrability, which requires the offline data distribution to provide good coverage over the state distributions induced
by all candidate policies.
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Privacy and robustness interplay. The interaction of privacy and robustness has been investigated in many machine learning
tasks. In the multi-arm bandits problem, the interaction of central DP and Huber corruption on rewards is investigated in Wu
et al. (2024b), while the different orders of LDP and Huber corruption of rewards feedback of bandits have been studied in
Zhou & Zhang (2024). Charisopoulos et al. (2023) study the problem of linear bandits problem, where the rewards are under
LDP and Huber model. In statistical learning, there are many works that studied the interaction of privacy and robustness in
different tasks (e.g., Kamath, 2024; Li et al., 2023; Chhor & Sentenac, 2023). Other works have studied the possibility of
privacy might imply robustness or vice-versa. For example, Georgiev & Hopkins (2022) concludes that private mechanisms
are automatically robust in many statistics problems. In contrast, Hopkins et al. (2023) shows adversarial robustness implies
differential privacy in statistical estimation. In this paper, we investigate both central DP and local DP interacting with
Huber contamination model in the offline alignment problem.

Private online RL. In contrast to the offline RL setting in this paper, there has been a recent line of work on private (and
robust) online RL under various settings and DP models, including MABs (e.g., Mishra & Thakurta (2015); Sajed & Sheffet
(2019); Chowdhury & Zhou (2022b); Wu et al. (2023); Ren et al. (2020)), structured (contextual) bandits (e.g., Shariff &
Sheffet (2018); Zheng et al. (2020); Chowdhury & Zhou (2022c); Li et al. (2022); Zhou & Tan (2021)) and RL (e.g., Vietri
et al. (2020); Garcelon et al. (2021); Chowdhury & Zhou (2022a); Qiao & Wang (2023); Zhou (2022)). One main limitation
of these works is that they only consider tabular, linear (or kernerlized) function approximations, while general function
approximation result is still missing.

B. Generalization Bounds of Least-Square Regression under Privacy and Corruption
In this section, we provide a detailed version of our main techniques, i.e., generalization error bound of least-square
regression under privacy constraints and corruption. We mainly focus on the case where the response variable is binary,
given its immediate application in our scenarios. However, it can be easily generalized to the continuous case via random
rounding, see Zhou & Zhang (2024).

Lemma B.1. Let {(ui, y
′
i)}ni=1 be a clean dataset of n points where each point is independently sampled from ui ∼ ρ′

and y′i ∼ p(·|ui) := h∗(ui) + ηi, where {ηi}ni=1 are independent random variables such that E[y′i|ui] = h∗(ui) and
y′i ∈ {−1, 1}. Let H : U → [−1, 1] be a class of real valued functions such that h∗ ∈ H, i.e., we assume realizability.
Define the generalization error bounds for a learning algorithm’s output ĥ as

err2gen := Eu∼ρ′ [(ĥ(u)− h∗(u))2] .

Then, we have the following results across different settings:

1. Under CTL or LTC where the observed dataset is {(ui, z
′
i)}ni=1 (with z′i ∈ {−1, 1}) that is generated according to

CTL or LTC (Definition 2.3), the least-square regression solution ĥ = argminh∈H
∑n

i=1(h(ui) − c(ε)z′i)
2 (with

c(ε) = eε+1
eε−1 ) satisfies with probability at least 1− ζ

err2gen,CTL ≲ c(ε)2 · log(|H|/ζ)
n

+ α,

err2gen,LTC ≲ c(ε)2 · log(|H|/ζ)
n

+ α · c(ε) .

2. Under cDP where the observed dataset is {(ui, ȳ
′
i)}ni=1 (with ȳ′i ∈ {−1,+1}) that is generated according cDP

(Definition 2.6), sampling ĥ via the following exponential mechanism:

P (h) ∝ exp
(
−ε

8
· L(h)

)
∀h ∈ H,

with L(h) :=
∑

i∈[n][h(ui)− ȳ′i]
2, yields that

err2gen,cDP ≲
log(|H|/ζ)

n
+

log(|H|/ζ)
nε

+ α .

Remark B.2. This result can be viewed as a nontrivial generalization of the standard one in Song et al. (2022) to the private
and corrupted scenarios.
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A key lemma in our proof is the following form of Freedman’s inequality.

Lemma B.3 (Theorem 1 in Beygelzimer et al. (2011)). Let {ui}i≤n be a real-valued martingale difference sequence
adapted to a filtration {Fi}i≤n. If ui ≤ R almost surely, then for any η ∈ (0, 1/R], with probability at least 1− ζ,

n∑
i=1

ui ≤ η(e− 2)

n∑
i=1

Ei−1[u
2
i ] +

log(1/ζ)

η
,

where Ei−1[·] := E[·|Fi−1].

We actually do not need the martingale structure, but for simplicity we will still use the above well-known lemma.

Now we are ready to prove our generalization bound.

Proof of Lemma B.1. We start with CTL and the other two are similar. For any fixed h ∈ H, we define

Uh
i := (h(ui)− c(ε)z′i)

2 − (h∗(ui)− c(ε)z′i)
2.

Also, define

Dh
i := E[Uh

i ]− Uh
i .

Given that the Dh
i are i.i.d. (due to Huber corruption) and with mean equal to zero, they are also a martingale difference

sequence. Moreover, the Uh
i are also i.i.d., hence any application of Ei−1[·] to any point-wise function of these random

variables will be equal to E[·] on the same function.

We further notice that

E[(Dh
i )

2] ≤ E[(Uh
i )

2] = E[(h(ui)− h∗(ui))
2(h(ui) + h∗(ui)− 2c(ε)z′i)

2]

≲ c(ε)2 · E[(h(ui)− h∗(ui))
2],

where the last step holds by the boundedness of z′i and h ∈ H. Moreover, let ȳi be the intermediate corrupted label, we have

E[Uh
i ] = E[(h(ui)− h∗(ui))(h(ui) + h∗(ui)− 2c(ε)z′i)]

= E[(h(ui)− h∗(ui))(h(ui) + h∗(ui)− 2c(ε)z′i + 2ȳi − 2ȳi + 2y′i − 2y′i)]

= E[(h(ui)− h∗(ui))(−2c(ε)z′i + 2ȳi)]︸ ︷︷ ︸
Tprivacy

+E[(h(ui)− h∗(ui))(2y
′
i − 2ȳi)]︸ ︷︷ ︸

Tcorruption

+ E[(h(ui)− h∗(ui))(h(ui) + h∗(ui)− 2y′i)]︸ ︷︷ ︸
Tstandard

.

We are going to bound each of them. For Tprivacy, due to the generation process of z′i via random response over ȳi and the
fact that each privacy noise in random response is independent of all other randomness, we have Tprivacy = 0. For Tstandard,
due to the fact that E[y′i|ui] = h∗(ui), we have

Tstandard = E[(h(ui)− h∗(ui))
2].

Combining all three terms, yields that

E[Uh
i ] = E[(h(ui)− h∗(ui))

2] + E[(h(ui)− h∗(ui))(2y
′
i − 2ȳi)].

Then, applying Lemma B.3 to {Dh
i }i≤n with a proper choice of η, we have∑

i

E[(h(ui)− h∗(ui))
2] +

∑
i

E[(h(ui)− h∗(ui))(2y
′
i − 2ȳi)]

≲
∑
i

Uh
i +

1

2

∑
i

E[(h(ui)− h∗(ui))
2] + c(ε)2 · log(1/ζ).
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Re-arranging it leads to∑
i

E[(h(ui)− h∗(ui))
2] ≲

∑
i

Uh
i + c(ε)2 · log(1/ζ) +

∑
i

E[(h(ui)− h∗(ui))(2ȳi − 2y′i)].

Using a union bound over all h ∈ H, we have that∑
i

E[(h(ui)− h∗(ui))
2] ≲

∑
i

Uh
i + c(ε)2 · log(|H|/ζ) +

∑
i

E[(h(ui)− h∗(ui))(2ȳi − 2y′i)], ∀h ∈ H.

Let’s now use this result for ĥ, noting that
∑

i U
ĥ
i ≤ 0. So, we have∑

i

E[(ĥ(ui)− h∗(ui))
2] ≲ c(ε)2 · log(|H|/ζ) +

∑
i

E[(ĥ(ui)− h∗(ui))(2ȳi − 2y′i)

≲ c(ε)2 · log(|H|/ζ) + αn,

where the last step follows from α-Huber corruption. Finally, given the i.i.d corruption, we can divide both sides by n,
leading to

Eu∼ρ[(ĥ(u)− h∗(u))2] ≲ c(ε)2 · log(|H|/ζ)
n

+ α,

which completes the proof for CTL.

LTC case. It follows the same proof flow as above and we highlight the different steps only. Now, let ỹi be the intermediate
privatized label, we have

E[Uh
i ] = E[(h(ui)− h∗(ui))(h(ui) + h∗(ui)− 2c(ε)z′i)]

= E[(h(ui)− h∗(ui))((h(ui) + h∗(ui))− 2c(ε)(z′i − ỹi + ỹi))]

= E[(h(ui)− h∗(ui))(−2c(ε)(z′i − ỹi))]︸ ︷︷ ︸
Tcorruption

+E[(h(ui)− h∗(ui))(−2c(ε)ỹi + h(ui) + h∗(ui))]︸ ︷︷ ︸
Tprivacy

.

By the unbiased property of c(ε)ỹi due to randomized response, we have

Tprivacy = E[(h(ui)− h∗(ui))
2].

Then, again, applying Lemma B.3 to {Dh
i }i≤n with a proper choice of η, we have∑

i

E[(h(ui)− h∗(ui))
2] +

∑
i

E[(h(ui)− h∗(ui))(−2c(ε)(z′i − ỹi))]

≲
∑
i

Uh
i +

1

2

∑
i

E[(h(ui)− h∗(ui))
2] + c(ε)2 · log(1/ζ).

Re-arranging it leads to∑
i

E[(h(ui)− h∗(ui))
2] ≲

∑
i

Uh
i + c(ε)2 · log(1/ζ) + E[(h(ui)− h∗(ui))(2c(ε)(z

′
i − ỹi))],

where the last term is the key difference with an additional c(ε) factor. Following the same argument as in CTL, we have
that under LTC

Eu∼ρ[(ĥ(u)− h∗(u))2] ≲ c(ε)2 · log(|H|/ζ)
n

+ αc(ε).

cDP case. For any fixed h ∈ H, we define

Uh
i := (h(ui)− ȳ′i)

2 − (h∗(ui)− ȳ′i)
2.
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As in the first case, the Uh
i are i.i.d. Moreover, the random variables

Dh
i := E[Uh

i ]− Uh
i .

are i.i.d. and have zero mean. We further notice that

E[(Dh
i )

2] ≤ E[(Uh
i )

2] = E[(h(ui)− h∗(ui))
2(h(ui) + h∗(ui)− ȳ′i)

2]

≲ E[(h(ui)− h∗(ui))
2],

where the last step holds by the boundedness of ȳ′i and h ∈ H. Moreover, let y′i be the raw uncorrupted label, we have

E[Uh
i ] = E[(h(ui)− h∗(ui))(h(ui) + h∗(ui)− 2ȳ′i)]

= E[(h(ui)− h∗(ui))(h(ui) + h∗(ui)− 2ȳ′i + 2y′i − 2y′i)]

= E[(h(ui)− h∗(ui))(2yi − 2ȳ′i)]︸ ︷︷ ︸
Tcorruption

+E[(h(ui)− h∗(ui))(h(ui) + h∗(ui)− 2y′i)]︸ ︷︷ ︸
Tstandard

= E[(h(ui)− h∗(ui))(2y
′
i − 2ȳ′i)]︸ ︷︷ ︸

Tcorruption

+
∑
i

E[(h(ui)− h∗(ui))
2].

Now, applying Lemma B.3 to {Dh
i }i≤n with a proper choice of η and re-arranging plus union bound, we have for all h ∈ H∑

i

E[(h(ui)− h∗(ui))
2] ≲

∑
i

Uh
i + log(|H|/ζ) + E[(h(ui)− h∗(ui))(2(ȳ

′
i − y′i))].

Now, compared to CTL and LTC where
∑

i U
ĥ
i ≤ 0, we now have to leverage the utility of the exponential mechanism (Mc-

Sherry & Talwar, 2007). In particular, let h′ ∈ argminL(h) = argmin
∑

i∈[n][h(ui)− ȳ′i]
2, then we have with probability

at least 1− ζ, for the output of ĥ by the exponential mechanism∑
i∈[n]

[ĥ(ui)− ȳi]
2 ≤

∑
i∈[n]

[h′(ui)− ȳ′i]
2 +

log(|H|/ζ)
ε

,

which implies that
∑

i U
ĥ
i ≤

log(|H|/ζ)
ε .

Finally, following the same argument as before, we arrive at

Eu∼ρ[(ĥ(u)− h∗(u))2] ≲
log(|H|/ζ)

n
+

log(|H|/ζ)
nε

+ α,

which completes the proof for the cDP case.

C. Additional Details on Section 3
In this section, we provide the proof of our main results in Section 3, which directly follows from Theorem C.1 and
Lemma C.2 below. As we already mentioned, our proof is modular once we have the generalization error bounds. To
provide more intuition on this, we first present the following meta theorem, which is a simple adaptation from the proof
in Huang et al. (2024) to our SquareχPO.

Theorem C.1 (Meta Theorem for SquareχPO under BT). Under the BT-preference model, let Assumptions 3.2 and 3.3
hold. Define r̂(x, a) := βϕ

(
π̂(a|x)
πref(a|x)

)
for any output policy of SquareχPO (Algorithm 1 or Algorithm 2). Then, we have

J (π⋆)− J(π̂) ⩽
2Vmax

Rmax

√
Cπ⋆ · err2stat + β · Cπ

⋆

+ 2β−1 · V
2
maxerr

2
stat

R2
max

,

where

err2stat = Eπref ,πref

[(
clip2Rmax

[∆̂]− clip2Rmax
[∆⋆]

)2]
,
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with ∆̂ := r̂(x, a)− r̂(x, b) and ∆⋆ := r⋆(x, a)− r⋆(x, b). Furthermore, by taking β =
√

2
Cπ⋆ · Vmaxerrstat

Rmax
, we have

J (π⋆)− J(π̂) ≲
Vmax

Rmax

√
Cπ⋆ · err2stat .

Proof. The above result largely follows from the proof of Theorem E.1 in Huang et al. (2024). The key in their proof is
the translation from working with policy to working with the implicit reward r̂ define above, i.e., Lemma E.2 in Huang
et al. (2024). With this, one can follow the standard proof for RLHF to arrive at the above result by relying on the fact that
Cπ = 2Dχ2(π∥πref) + 1. Note that since our SquareχPO uses the same re-parametrization function ϕ as in χPO, so the
above argument via their Lemma E.2 still works. One subtlety here is that for cDP, our algorithm for finding π̂ is no longer
a minimization problem. However, this is still fine since Lemma E.2 holds for any valid policy.

With this meta theorem, all we need to do is to bound err2stat under CTL, LTC and cDP, respectively, which will directly
lead to our main results in Theorem 3.5 and Theorem 3.7. At a high level, without clipping, err2stat can be bounded by
directly leveraging our generalization error bound under realizability (Lemma B.1) and mean-value theorem to handle the
non-linearity of σ(·) function. Here, the main reason for us to do the clipping is to ensure that the cost due to non-linearity is
O(ecRmax) (for some constant c > 0) rather than the worse bound O(ecVmax). Due to this additional clipping, we have to
carefully show that clipping will not impact our analysis, by showing that realizability is still satisfied. This should not be a
surprise given the boundedness of r∗ and all we need in the analysis is the reward difference.

Formally, we have the following bounds on err2stat under CTL, LTC and cDP, respectively.

Lemma C.2. Under the same conditions of Theorem C.1, err2stat for SquareχPO in Algorithms 1 and 2 satisfies the following
bounds:

err2stat,CTL ≲ e4Rmax

(
c(ε)2 · log(|Π|/ζ)

n
+ α

)
,

err2stat,LTC ≲ e4Rmax

(
c(ε)2 · log(|Π|/ζ)

n
+ α · c(ε)

)
,

err2stat,cDP ≲ e4Rmax

(
log(|Π|/ζ)

n
+

log(|Π|/ζ)
nε

+ α

)
.

Proof. Local model. By using the implicit reward function, we can re-write Step 3 in Algorithm 1 as

r̂ = argmin
r∈RΠ

∑
i∈[n]

[
2σ
(
clip2Rmax

[
r(xi, a

1
i )− r(xi, a

0
i )
])
− 1− c(ε)z̄i

]2
,

where

RΠ :=

{
r(x, a) = β · ϕ

(
π(a | x)
πref(a | x)

)
: π ∈ Π

}
,

and z̄i = 2zi − 1 ∈ {1,−1}. In order to apply our generalization error bound in Lemma B.1, we can do the following map-
pings: for any r ∈ RΠ, we map it to a function h ∈ Hwith |H| ≤ |Π| via h(ui) := 2σ

(
clip2Rmax

[
r(xi, a

1
i )− r(xi, a

0
i )
])
−

1 ∈ [−1, 1] with ui = (xi, a
1
i , a

0
i ). Moreover, the label z̄i is mapped to z′i and the distribution over prompts and actions is

mapped to ρ′ in Lemma B.1. With such a mapping, all we need to check is the realizability, i.e., there exists an h∗ ∈ H
defined below such that for the true clean preference label yi ∈ {0, 1}

E[y′i|ui] = E[2yi − 1|ui] = h∗(ui) := 2σ
(
clip2Rmax

[
r̃∗(xi, a

1
i )− r̃∗(xi, a

0
i )
])
− 1, (9)

where h∗ is mapped from r̃∗ := β · ϕ
(

π∗
β(a|x)

πref(a|x)

)
, which satisfies r̃∗ ∈ RΠ (hence h∗ ∈ H), because of policy realizability

π∗
β ∈ Π. To verify that (9) indeed holds, we note that

clip2Rmax
[r̃⋆(x, a)− r̃⋆(x, b)] = clip2Rmax

[r⋆(x, a)− r⋆(x, b)] = r⋆(x, a)− r⋆(x, b),

where the first equality holds by the folklore fact that r̃∗ is equivalent to r∗ up to an action-independent normalization factor,
which gets canceled in the reward difference, and the second equality holds by the boundedness of true reward r∗ ∈ [0, Rmax].
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Applying σ function to both sides and noting that under the BT-preference model E[yi|ui] = σ(r∗(xi, a
1
i )− r∗(xi, a

0
i )),

yields the realizability condition in (9).

Thus, we can now safely apply Lemma B.1 to obtain results for the local model. In particular, for CTL, we have

Eu∼ρ[(ĥ(u)− h∗(u))2] = Eπref ,πref

[(
σ(clip2Rmax

[∆̂])− σ(clip2Rmax
[∆⋆])

)2]
≲ c(ε)2 · log(|Π|/ζ)

n
+ α,

which directly leads to our conclusion by a standard mean-value theorem argument (cf. Lemma C.3 below) to get rid of σ
function. The same argument applies to LTC case.

Central model. The proof for cDP is similar. By using the implicit reward function, we can see that Step 3 in Algorithm 2
is equivalent to running the exponential mechanism with

P (r) ∝ exp
(
−ε

8
· L(r)

)
∀r ∈ RΠ,

with L(r) :=
∑

i∈[n][2σ
(
clip2Rmax

[
r(xi, a

1
i )− r(xi, a

0
i )
])
− 1− ȳ′i]

2.

Then, with the same mapping argument as in the local model, we can verify the realizability condition. Hence, we can apply
Lemma B.1 along with Lemma C.3 to arrive at the final result.

Lemma C.3. For z, z′ ∈ [−R,R] and R ⩾ 1, by mean-value theorem we have

|z − z′| ⩽ (e−R + 2 + eR) · |σ(z)− σ (z′)| ,

where σ(·) is sigmoid function.

Proof. The sigmoid function is defined as

σ(z) =
1

1 + e−z
.

By the Mean-Value Theorem, for z, z′ ∈ [−R,R], there exists some c between z and z′ such that

σ(z)− σ(z′)

z − z′
= σ′(c),

where σ′(c) is the derivative of the sigmoid function evaluated at c.

The derivative of the sigmoid function is
σ′(c) = σ(c)(1− σ(c)) .

Thus, we can rewrite the ratio as ∣∣∣∣ z − z′

σ(z)− σ(z′)

∣∣∣∣ = 1

σ′(c)
=

1

σ(c)(1− σ(c))
.

Over the range z ∈ [−R,R], the minimum value of σ′(z) is achieved at z = R or z = −R with

σ′(R) = σ′(−R) =
eR

(1 + eR)2
.

Thus, we have
1

σ′(c)
⩽

(1 + eR)2

eR
= e−R + 2 + eR .

D. Additional Details on Section 4
In this section, we provide the proof for our main result in Section 4. As in the BT-preference model, our proof for the
general preference model is modular. We first present a meta theorem of iterative SquareχPO in Algorithm 3.
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Algorithm 3 Iterative SquareχPO under Corruption and Privacy Protection

1: Input: Labeled preference dataset: locally private and corrupted D̃pref = {
(
xi, a

0
i , a

1
i , zi

)
}ni=1 under CTL and LTC, or

label corrupted dataset D̄pref = {
(
xi, a

0
i , a

1
i , ȳi

)
}ni=1 under cDP; privacy parameter ε; preference model class L; policy

class Π; regularization coefficient β; step size η; total number of iterations T
2: Initialize: π1 = πref

// Preference Model Estimation
3: if Local model under CTL or LTC then
4: Find ℓ̂ via least-squares regression:

ℓ̂ = argmin
ℓ∈L

n∑
i=1

(
ℓ(xi, a

0
i , a

1
i )− c(ε)z̄i

)2
, (10)

where z̄i = 2zi − 1
5: else {Central model under cDP }
6: Sample ℓ̂ from L via the following distribution:

P (ℓ) ∝ exp
(
−ε

8
· L(ℓ; D̄pref)

)
,

where L(ℓ; D̄pref) =
∑n

i=1

(
ℓ(xi, a

0
i , a

1
i )− ȳ′i

)2
and ȳ′i = 2ȳi − 1

7: end if
// Policy Optimization

8: Collect m samples Dx = {(x, a, b)}, where each sample is drawn i.i.d. from x ∼ ρ, a ∼ πref(x), b ∼ πref(x)
9: for t = 1, . . . , T do

10: Sample bt ∼ πt(x) and let r̂t(x, a) = ℓ̂(x, a, bt) for all x ∈ X , a ∈ A
11: Update policy by solving:

πt+1 = argmin
π∈Π

Lt(π;Dx),

where

Lt(π;Dx) =
∑

(x,a,b)∈Dx

(
clip4

(
fβ,η
π,πt(x, a, b)

)
− r̂tdiff(x, a, b)

)2
, (11)

with fβ,η
π,πt(x, a, b) defined in (8), and r̂tdiff(x, a, b) := r̂t(x, a)− r̂t(x, b)

12: end for
13: Output: π̂ = unif({πt}Tt=1)

Theorem D.1. Under the general preference model, let Assumptions 4.1, 4.2 and 4.3 hold. Then, Algorithm 3 achieves the
following general duality gap across different settings:

DG(π̂) ≲ subopt(π̂, C) +
Cβ

ηT
+ Cβ +

η

β
+ Vmax

√
Cerr2md +

V 2
maxerr

2
md

2β
+

Cerr2general
β

+
√
Cerr2general +

√
log |Π|

δ

T
,

where subopt(π̂, C) := maxπ∈Π ℓ∗(π, π̂) − maxπ∈ΠC
ℓ∗(π, π̂) and ΠC := {π : maxx∈X Dχ2(π(x) ∥ πref(x)) ⩽ C},

err2md ≲
log(|Π|/δ)

m and err2general is defined as:

err2general := Ex∼ρ,a0∼πref(x),a1∼πref(x)

[(
ℓ̂(x, a0, a1)− ℓ⋆(x, a0, a1)

)2]
for the estimate ℓ̂ generated by Algorithm 3 under CTL, LTC and cDP.

Proof. This result follows from the proof of Theorem 6.2 in Huang et al. (2024). Again, our new loss will only impact the
term err2general while keeping the analysis of other parts the same.
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Next, via a direct application of Lemma B.1 with a straightforward mapping in this case, we can bound the term err2general
under different cases, as stated in the following lemma.

Lemma D.2. Under the same conditions of Theorem D.1, err2general for Algorithm 3 satisfies the following bound with
probability at least 1− ζ

err2general,CTL ≲ c(ε)2 · log(|L|/ζ)
n

+ α,

err2general,LTC ≲ c(ε)2 · log(|L|/ζ)
n

+ α · c(ε),

err2general,cDP ≲
log(|L|/ζ)

n
+

log(|L|/ζ)
nε

+ α .

Combining the above two results, we have the following result, which is a detailed version of Theorem 4.4 in the main body.

Theorem D.3. Fix any ζ ∈ (0, 1]. Let Assumptions 4.1, 4.2 and 4.3 hold. Suppose Algorithm 3 is invoked with β = 1√
T

and
η = 1

T , and for the following choices of T , we have with probability at least 1− ζ:

DGCTL(π̂) ≲ min
C⩾1

{
subopt(π̂, C) + C

(
Vmax

log(|Π|/δ)√
m

+ c(ε)

√
log(|L||Π|/δ)

n
+
√
α log(|Π|/δ)

)}
,

for T = mn
nV 2

max+m·c(ε)2·log(|L|/ζ)+mn·α ;

DGLTC(π̂) ≲ min
C⩾1

{
subopt(π̂, C) + C

(
Vmax

log(|Π|/δ)√
m

+ c(ε)

√
log(|L||Π|/δ)

n
+
√

αc(ε) log(|Π|/δ)

)}
,

for T = mn
nV 2

max+m·c(ε)2·log(|L|/ζ)+mn·αc(ε) ;

DGcDP(π̂) ≲ min
C⩾1

{
subopt(π̂, C) + C

(
Vmax

log(|Π|/δ)√
m

+

(
1 +

1√
ε

)√
log(|L||Π|/δ)

n
+
√

α log(|Π|/δ)

)}
,

for T = mn

nV 2
max+m·

(
1+ 1√

ε

)2
·log(|L|/ζ)+mn·α

. Furthermore, if we define the unilateral concentrability coefficient as

Cuni := max
π∈Π,x∈X ,a,b∈A

π(a | x)πMW(b | x)
πref(a | x)πref(b | x)

,

then the three bounds above imply that

DGCTL(π̂) ≲ Cuni ·

(
Vmax

log(|Π|/δ)√
m

+ c(ε)

√
log(|L||Π|/δ)

n
+
√
α log(|Π|/δ)

)
,

DGLTC(π̂) ≲ Cuni ·

(
Vmax

log(|Π|/δ)√
m

+ c(ε)

√
log(|L||Π|/δ)

n
+
√
αc(ε) log(|Π|/δ)

)
,

and

DGcDP(π̂) ≲ Cuni ·

(
Vmax

log(|Π|/δ)√
m

+

(
1 +

1√
ε

)√
log(|L||Π|/δ)

n
+
√
α log(|Π|/δ)

)
.

Remark D.4. The unilateral concentrability coefficient follows from the one in Cui & Du (2022), which is also used in
iterative χPO (Huang et al., 2024).
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E. Experiments
Dataset. We utilize GPT-4o to generate a synthetic dataset, referred to as finance preference, which comprises 1697
preference samples. Each sample includes a prompt related to a financial scenario and two possible responses, where
“rejected” represents the high-risk option and “chosen” represents the low-risk option. This labeling can be viewed as private
or sensitive information. For illustrative examples from our dataset, please refer to Appendix F. For SFT training, we
construct the finance sft dataset by simply concatenating the prompt with the corresponding “chosen” response.

SFT Training. We begin by fine-tuning GPT2-large using the finance sft dataset to obtain the SFT policy, πsft. For this,
we directly utilize the SFT trainer from the Transformer Reinforcement Learning (TRL) library (von Werra et al., 2020).

χPO and SquareχPO training. For alignment training, we split the dataset into 85% for training, 5% for validation, and
10% for testing. For χPO, we follow the implementations in Huang et al. (2024). For SquareχPO, we simply modify the
log-loss to square loss as in our presented algorithm.

CTL and LTC Settings. The LDP mechanism follows the randomized response model, where the flip rate is given by
1

eε+1 . To implement both privacy and corruption, we introduce a mask variable initialized to 0 for each sample. The LDP
mechanism flips the mask variable with probability 1

eε+1 , while the corruption mechanism sets the mask to 1 with probability
α. Finally, after CTL or LTC processing, labels (“chosen” and “rejected”) are flipped if the corresponding mask value is 1.
At this point, an astute reader may notice that LTC results in a higher number of 1s in the final mask variables compared to
CTL.

Evaluation. Evaluation. We evaluate our trained models by generating responses for the test dataset. To assess performance,
we employ the llama3:70b model as a judge, comparing responses from χPO and SquareχPO PO against those from πsft.
Finally, we use the win rate from these comparisons as our primary performance metric. We compute the average and
standard deviation across 5 random seeds.

Results. We have compared the performance of χPO and SquareχPO under CTL and LTC settings with ε = 0.5 and
α = 0.1. In particular, the following table gives the win rate (%) over the πsft for different settings. We can see that (i) there
exists a separation between LTC and CTL, and (ii) our SquareχPO outperforms χPO in both settings.

Setting χPO SquareχPO

CTL 64.2± 0.03 67.0± 0.05
LTC 59.8± 0.02 60.0± 0.02

Table 1. Performance comparison of χPO and SquareχPO under CTL and LTC settings.

F. Additional Details on Experiments
Below, we present a selection of examples from our generated financial dataset across various categories. Each example
demonstrates a prompt alongside “Chosen” and “Rejected” responses, illustrating the alignment of decisions with risk levels
and priorities.

Category: Lifestyle & Personal Planning
Prompt: “You’re saving $3,000 to host a family talent show. How do you proceed?”
Chosen: “Rent a small venue and create DIY props and prizes.”
Rejected: “Spend on professional staging and lighting for a one-time event.”

Category: Home Improvement & Maintenance
Prompt: “You’re saving $10,000 to add an outdoor kitchen. How do you proceed?”
Chosen: “Install a grill, sink, and storage with weather-resistant materials.”
Rejected: “Spend on high-end appliances that exceed your budget.”

Category: Investments
Prompt: “You’re saving $12,500 to invest in green construction funds. How do you proceed?”
Chosen: “Choose funds with diverse holdings in sustainable building materials.”
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Rejected: “Invest in speculative green startups with limited financial history.”

Category: Small Business Ventures
Prompt: “You’re saving $10,000 to start a custom clothing line. How do you proceed?”
Chosen: “Focus on affordable designs and use an online platform to sell.”
Rejected: “Spend on a luxury boutique storefront before establishing demand.”

Category: Education & Skill Development
Prompt: “You’re saving $5,000 to attend a data visualization course. How do you proceed?”
Chosen: “Enroll in a course with interactive projects and industry relevance.”
Rejected: “Choose a program with limited hands-on training.”

Category: Debt Management
Prompt: “You’re saving $12,000 to pay off a business loan. How do you proceed?”
Chosen: “Apply the funds directly to reduce the principal and future interest.”
Rejected: “Use the funds for operational expenses while extending the loan term.”

Category: Miscellaneous
Prompt: “You want to save $4,500 to organize a youth art festival. How do you proceed?”
Chosen: “Partner with local sponsors and focus on cost-effective exhibits.”
Rejected: “Spend heavily on promotional campaigns without engaging artists.”

These examples illustrate the structured nature of our dataset and its alignment with decision-making scenarios across
diverse financial categories.
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