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Abstract. Robust 3D segmentation of primary and permanent teeth
in cone-beam CT (CBCT) is critical for pediatric and orthodontic care.
We propose a fully automatic deep-learning pipeline built on the self-
configuring nnU-Net v2 framework, tailored for high-fidelity dental shape
modeling. Our approach learns fine-scale tooth geometries directly from
volumetric data, eliminating manual tuning. On a pediatric CBCT co-
hort (369 training, 93 validation, 55 test scans), our model attains a mean
Dice score of 0.87 across 55 dental and supporting anatomical structures.
Key components include adaptive preprocessing (isotropic resampling,
automatic craniofacial cropping, intensity normalization), on-the-fly 3D
augmentations, and lightweight postprocessing to remove spurious seg-
ment. The resulting segmentations are consistent and clinically action-
able, supporting advanced 3D morphometric analysis and digital treat-
ment planning. By extending state-of-the-art volumetric segmentation to
mixed dentition CBCT data, our work facilitates integration of AI-driven
geometric learning into routine pediatric dentistry workflows.

Keywords: 3D segmentation · pediatric dentistry · Cone-beam CT (CBCT)
· deep learning· nnU-Net · dental morphometry.
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1 Introduction

Understanding and analyzing the 3D shape of anatomical structures is a cor-
nerstone of medical image computing. In dentistry, tooth morphology includ-
ing crown and root geometries directly impacts diagnosis, treatment planning,
and monitoring. Recent advances in artificial intelligence, particularly convolu-
tional neural networks (CNNs) have significantly improved the segmentation of
anatomical structures in medical images. They now learn shape representations
from voxel data, overcoming the limitations of thresholding or region growing
caused by partial volume effects and anatomical variability [1, 2]. Accurate, au-
tomatic segmentation of individual teeth in cone-beam CT (CBCT) is espe-
cially critical for pediatric mixed dentition, which involves coexisting primary
and erupting permanent teeth, unerupted buds, resorbing roots, and impacted
teeth all of which introduce significant shape variability. While previous methods
have shown strong results for permanent teeth [1], few have addressed the chal-
lenge of comprehensive shape segmentation across all dentition types in pediatric
CBCTs. This paper explores a fully automatic segmentation approach using the
self-configuring nnU-Net v2 framework [3, 4]. Unlike traditional pipelines that
require manual network tuning or rule-based preprocessing, nnUNet v2 adapts
its architecture and training plan to the geometry of the input data. This makes
it particularly well-suited for tasks involving complex, irregular, and densely
packed structures such as mixed dentition. Our study represents the first ap-
plication of nnUNet v2 to the joint segmentation of both primary and perma-
nent teeth, including all 52 dental and 3 skeletal supporting structures, treated
as independent classes in a high-resolution 3D domain. Our contributions are
twofold: (1) to design and evaluate a self-configuring deep learning pipeline tai-
lored to pediatric dental anatomy in CBCT; and (2) to demonstrate how this
approach enables high-fidelity geometric modeling of the entire dentition, facili-
tating downstream applications such as orthodontic planning, eruption tracking,
and surgical guidance.

Fig. 1. End-to-end automated dental analysis , deployed as modules of 3D Slicer
software [5] (A) Batch Anonymizer converts identifiable DICOM image stacks into
de-identified NIfTI volumes. (B) Automated Standard Orientation (ASO) aligns each
volume to the occlusal and midsagittal planes, ensuring consistent orientation across
patients. (C) The BatchDentalSegmentador module performs fully automatic tooth
segmentation. (D) Individual tooth meshes undergo statistical shape analysis to quan-
tify morphological variability.
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2 Methods

2.1 Dataset and Annotation Strategy

To enable robust shape modeling of the mixed dentition (Fig.1), we curated a ret-
rospective dataset of 517 pediatric CBCT scans exhibiting both primary and per-
manent teeth [6]. Each volume encompasses complete maxillary and mandibular
arches and captures a broad spectrum of tooth development stages, including
unerupted buds, resorbing roots, and impactions, each presenting unique geo-
metric challenges. On average, each scan includes 6–8 primary teeth and over 28
permanent teeth in varying states of eruption. Initial segmentations were gener-
ated using the DentalSegmentator module in 3D Slicer [7] and refined manually
in ITK-SNAP [8] to assign anatomically precise voxel-wise labels for each dis-
cernible tooth. This resulted in a dense multi-class segmentation with 55 total
unique anatomical structures, each representing 52 distinct dental shapes, the
upper jaw/cranium, lower jaw and the mandibular canal. Importantly, our label-
ing captures detailed morphologies, including curved roots, crown morphology,
and interproximal spacing, thereby supporting downstream geometric analysis.
Unerupted or malformed structures were included when identifiable, ensuring
anatomical completeness. The dataset was split into 369 scans for training, 93
for validation, and 55 for testing. This diverse set provides a strong basis for
generalizable 3D learning across a spectrum of pediatric dental geometries.

2.2 Self-Configuring Segmentation Pipeline

We implemented the nnU-Net v2 pipeline [3, 4], which offers a fully automated
segmentation framework that configures all aspects of preprocessing, network
architecture, and training strategy based on data-driven heuristics (Fig. 2)[9].
This design is especially suited for medical shape analysis tasks, where anatom-
ical variability and image heterogeneity demand robust adaptation.

Fig. 2. Illustration of the nnU-Net v2 segmentation pipeline. Left: coronal slice from
the original pediatric CBCT volume. Right: voxel-wise prediction showing all 55 teeth
individually.
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Preprocessing : To prepare the CBCT volumes for geometric learning Fig
3, nnU-Net performs: (1) Resolution normalization. All scans are resampled to
a consistent isotropic spacing, preserving geometric proportions and enabling
scale-invariant feature learning. (2) Spatial cropping. The field-of-view is re-
stricted to the craniofacial region via automatic bounding box detection, focus-
ing the learning process on relevant anatomical context. (3) CT-based inten-
sity normalization. Voxel intensities are clipped and z-normalized to homogenize
grayscale representations of bone and soft tissue, preserving contrast critical for
shape boundaries. (4) On-the-fly 3D augmentation. During training, randomized
transformations such as elastic deformations, rotations, and intensity shifts are
applied to simulate anatomical variation and imaging noise without distorting
the underlying geometry. These steps produce standardized yet anatomically
diverse inputs that allow the network to learn generalizable shape features.

Fig. 3. nnU-Net v2 preprocessing. (Left) Original axial pediatric CBCT. (Cen-
ter) After automatic cropping and intensity normalization. (Right) Segmentation of
55 anatomical structure (52 dental and 3 skeletal), plus background (label 0), in the
preprocessed space.

Architecture Configuration : nnU-Net v2 automatically selected a full-
resolution 3D U-Net with six resolution levels (about 30 M parameters), omitting
low-resolution cascades since our volumes fit in GPU memory. Training patches
measured 112 x 128 x 128 voxels, covering several teeth while respecting mem-
ory limits Fig.4. The encoder applies successive strides to downsample, and a
symmetric decoder with skip-connections reconstructs spatial detail. The net-
work concludes with a 1 × 1 × 1 convolution followed by softmax activation
and a voxel-wise argmax over 56 classes. This full-resolution setup proved both
accurate and efficient, without needing 2D or multi-resolution variants.

Automated training schedule : We trained using the default nnU-Net
v2 optimization, which automatically configures hyperparameters, learning rate
scheduling, and optimizer selection. A combined soft Dice and cross-entropy loss
handled the severe class imbalance across 56 labels. Each iteration sampled two
random 112x128x128 patches, with on-the-fly augmentations (rotations, elastic
deformations, zooms, noise) to improve generalization. We trained for 150 epochs
(3000 iterations per epoch) per fold using 5-fold cross-validation and ensembled
the softmax outputs, to produce consistent, anatomically robust segmentations.
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Fig. 4. 112x1282 voxel training patches: (A) deciduous incisors and permanent buds;
(B) deciduous molars with an erupting first permanent molar. Colored overlays show
tooth labels on the CBCT.

Postprocessing : After inference, connected components are extracted per
class and small isolated false positives are removed, retaining the largest anatom-
ically plausible shape per label. This preserves the integrity of each tooth’s mor-
phology and ensures separation of closely spaced structures. This light-weight
postprocessing step helps preserve geometric consistency without requiring ex-
ternal priors or templates. Post-segmentation , surface meshes are generated and
made available for shape analysis. We enforced shape smoothness via Laplacian
regularization.

3 Results

3.1 Quantitative Segmentation Performance

We tested our nnU-Net v2 on 55 pediatric CBCT scans, reporting Dice (DSC)
and Intersection-over-Union (IoU) across all 55 labels. As Figure 5 and Table
1 show, permanent teeth average DSC about 0.90, while smaller primary teeth
average about 0.85. All annotated structures were recovered (no missing labels),
matching prior CBCT segmentation benchmarks [10].

Fig. 5. Per-class accuracy on the test set. Blue circles =Dice, orange triangles= IoU,
for the 55 labels ordered from the upper right third molar . Most permanent teeth
score Dice ≥ 0.90, primary teeth around 0.90. Lower values appear only for the rare
third molars.
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Table 1. Results demonstrate the model’s capacity to robustly segment both primary
and permanent teeth across all regions of the dentition. Lower Dice and higher variabil-
ity are observed for third molars and primary incisors, reflecting anatomical variation
and limited sample representation.

To further characterize the segmentation performance at the voxel level, we
computed per-class confusion matrices grouped by dentition type. Figure 6 shows
the normalized confusion matrices separately for permanent and deciduous teeth,
divided into upper and lower arches. The matrices highlight that misclassifica-
tions, when present, are mostly limited to adjacent teeth or homologous struc-
tures, especially among primary teeth with similar shapes.

Fig. 6. Normalized confusion matrices for upper/lower permanent and upper/lower
primary teeth. Notably, errors are rare and usually limited to neighboring classes or
to the same tooth on the opposite side (i.e., right–left confusion), especially among
primary incisors and molars.



Self-Configuring 3D Segmentation of Pediatric Dentition 7

3.2 Qualitative visual assessment

Figure 7 shows a representative test-set CBCT with the nnU-Net v2 segmenta-
tion overlaid. The automatic masks align closely with true tooth boundaries, iso-
lating each tooth in a distinct color and accurately separating adjacent structures
even unerupted buds and resorbing roots. No major label swaps were observed.

Fig. 7. Qualitative example of the automatic segmentation. Left: 3-D surface rendering
of the maxilla, mandible and teeth generated from the predicted labels. Right: axial,
coronal and sagittal CBCT slices with the same labels over-laid in semi-transparency.

Clinically, our open-source method, deployed and available in the 3D Slicer
platform delivers a patient specific digital twin within minutes: each tooth be-
comes a separate 3D object for measurement or virtual extraction. Segmentation
takes 2 min on GPU or <7 min on CPU, cutting manual effort by > 90 percent
and enabling chair-side deployment [10].

4 Discussion

Our results confirm that nnU-Net v2 accurately segments primary and perma-
nent teeth in pediatric CBCT, achieving a mean Dice of 0.87, performance that
approaches expert level [10]. We discuss clinical implications, compare with prior
dental-segmentation work, and outline limitations and future directions.

Precise 3D tooth segmentation enables advanced geometric analyses in pe-
diatric dentistry. Mixed dentition presents variable anatomy unerupted buds,
erupting premolars, resorbing roots while 2D imaging fails to capture these
shapes and manual segmentation is slow and inconsistent. We reconstruct the
entire dentition volumetrically, each tooth as a separate 3D object. These models
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support applications like extraction simulation, eruption-path prediction, surgi-
cal guidance, and 3D orthodontic planning. Our pipeline is fast, reliable, and
maximizes clinical CBCT value. While we emphasize enhancing the utility of
already prescribed scans, we also stress the importance of judicious CBCT use
in pediatric populations [11].

We demonstrate how nnU-Net v2, a self-configuring framework, extends Den-
talSegmentator for pediatric tooth shape modeling [1, 12], segmenting 55 classes
in pediatric CBCT while preserving inter-class 3D geometry. A single nnU-Net
generalizes across tooth types and stages without custom tuning, leveraging
shape priors during augmentation and outputting semantic labels directly, avoid-
ing heuristic post-processing. Unlike watershed or atlas methods [13], our model
infers tooth morphology directly while maintaining anatomical coherence.

Where classical methods fail near weak separation or artifacts, our network
remains robust through targeted data augmentation. Although Metal artifacts
continue to limit segmentation accuracy [14], training with bracketed scans may
help [15]. Reported per-tooth Dice ranges (0.75–0.93) [14] place our mean of
0.87 in the mid-range: better than early CNNs but below top permanent tooth
only pipelines, yet we uniquely handle mixed dentition in one pass. We disabled
left–right flips to avoid laterality errors (e.g., mis-labelling contralateral teeth)
and achieved 56-class segmentation in a single forward pass streamlining over
previous binary or hierarchical approaches while preserving anatomical fidelity.

Limitations include underrepresented anatomical outliers (e.g., syndromic
cases) and unmodeled cross-scanner variability. Future work will aim to: (i) ex-
pand training to include rare anatomies, (ii) incorporate shape-aware loss func-
tions, (iii) fuse with intraoral scans, (iv) integrate geometric learning tools [16].

5 Conclusion

We have presented a fully automatic segmentation pipeline that leverages the
self- configuring nnU-Net v2 framework to model the complete mixed dentition in
pediatric CBCT vol- umes. Our approach accurately segments all 55 anatomical
structures, including both primary and permanent teeth, while preserving the
geometric fidelity of the voxel level. The method achieves a mean Dice score
of 0.87 and delivers anatomically coherent segmentations suitable for clinical
and computational applications. By capturing the full spatial extent and inter-
class relationships of dental structures, our pipeline enables the generation of
patient-specific digital twins in which each tooth is represented as a manipulable
3D object. These models support shape-based clinical tasks such as eruption
assessment, surgical planning, and orthodontic treatment design. Critically, the
workflow runs in near real-time, enabling seamless integration into diagnostic
pipelines without manual post processing.
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