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ABSTRACT

View transformers process multi-view observations to predict actions and have
shown impressive performance in robotic manipulation. Existing methods typ-
ically extract static visual representations in a view-specific manner, leading to
inadequate 3D spatial reasoning ability and a lack of dynamic adaptation. Tak-
ing inspiration from how the human brain integrates static and dynamic views
to address these challenges, we propose Cortical Policy, a novel dual-stream
view transformer for robotic manipulation that jointly reasons from static-view
and dynamic-view streams. The static-view stream enhances spatial understand-
ing by aligning features of geometrically consistent keypoints extracted from a
pretrained 3D foundation model. The dynamic-view stream achieves adaptive
adjustment through position-aware pretraining of an egocentric gaze estimation
model, computationally replicating the human cortical dorsal pathway. Subse-
quently, the complementary view representations of both streams are integrated to
determine the final actions, enabling the model to handle spatially-complex and
dynamically-changing tasks under language conditions. Empirical evaluations on
both RLBench benchmark and real-world tasks demonstrate that Cortical Policy
outperforms state-of-the-art baselines substantially, validating the superiority of
dual-stream design for visuomotor control. Our cortex-inspired framework of-
fers a fresh perspective for robotic manipulation and holds potential for broader
application in vision-based robot control.

1 INTRODUCTION

Enabling robots to handle the uncertainty of unstructured, non-stationary environments remains a
fundamental challenge for robotic manipulation (Liang et al., 2024; Shi et al., 2025; Li et al., 2025b).
Critically, this challenge requires coherent scene perception through robust fusion of multi-modal
inputs, including vision, language, and proprioception. To achieve this, view transformers (Goyal
et al., 2023; 2024) provide an efficient solution by leveraging multi-view images to predict actions,
showing competitive performance while offering greater scalability than explicit 3D representation-
based approaches.

Leveraging a set of static camera views around the robot workspace, previous view transformers typ-
ically extract visual representations through naively fusing view-specific 2D information. Despite
demonstrated competence in stationary environments (Goyal et al., 2023; 2024; Zhang et al., 2024;
Qian et al., 2025), this paradigm fails to model cross-view relationships, hampering 3D spatial under-
standing beyond 2D images. More importantly, the static camera configurations lack dynamic-view
perception essential for human-like manipulation with unpredictable object displacements (Hallquist
et al., 2024). These limitations manifest as two frequent failure modes in robotic manipulation:
inadequate spatial reasoning and dynamic adaptation failure. As shown in Fig. 1 (top), when
placing an object in between the others, the SOTA view transformer (Goyal et al., 2024) exhibits sig-
nificant error, failing to place within the right region. This lack of robustness to 3D scene structure
is further supported by findings that view transformers are sensitive to environmental disturbances
like texture, lighting, and table color variations (Qian et al., 2025). Furthermore, when the target
object is moved during approach, existing methods (Goyal et al., 2023; 2024; Qian et al., 2025) fail
to adjust trajectories as expected, persisting with the originally-planned trajectory until task failure
(Fig. 1, bottom). These empirical findings underscore that the scene perception provided by current
view transformers remains incomplete, which hinders robust manipulation performance.
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Figure 1: Deficiencies of prior view transformers for robotic manipulation. (Top) A task re-
quiring the robot to understand the spatial relationships between two bottles before deciding on the
placing position. Previous method RVT-2 fails to merge different camera views correctly in 3D,
causing wrong block placement. (Bottom) Dynamic adaptation failure during object displacement.

To bridge this gap, we draw inspiration from how the human brain organizes view-based visual
cues to guide behavior, and in particular, two cortical pathways for visual processing. The ven-
tral pathway utilizes static views for scene understanding, while the dorsal pathway specializes in
dynamic-view perception, leveraging real-time visual feedback to adjust trajectory (Rossit & McIn-
tosh, 2021; Chen et al., 2025). Translating this cortical principle into a computational framework,
we propose Cortical Policy, a dual-stream view transformer for endowing robots with integrated 3D
spatial understanding and dynamic adaptation. Our method enhances robotic perception through
two separate, complementary pipelines: a static-view stream that encodes enduring environmental
structures and a dynamic-view stream that derives actions from motion cues.

To enhance spatial comprehension, the static-view stream learns 3D-aware features by enforcing
cross-view geometric consistency, which is supervised by a 3D foundation model. To facilitate adap-
tive re-planning under task dynamics, the dynamic-view stream extracts action-oriented features and
heatmaps from a pretrained, position-aware transformer adapted from an egocentric gaze estimation
model. By integrating view representations of both streams, Cortical Policy generates actions that
are simultaneously geometrically grounded and dynamically adaptive. Through experimental val-
idation across benchmark and multiple real-world tasks, we demonstrate that our cortex-inspired
policy, with enhanced 3D awareness and adaptive motion control, substantially boosts the interac-
tive capabilities of an embodied agent in dynamic physical environments. The main contributions
of this work are summarized as follows:

• Different from prior view transformers that perform single-stream processing on static views,
we propose Cortical Policy, a dual-stream view transformer that integrates static and dynamic
views for robotic manipulation, mirroring the two human cortical pathways to advance visuomotor
imitation learning.

• Unlike view-independent processing in prior methods, we introduce a cross-view geometric con-
sistency learning objective. This objective leverages a pretrained 3D foundation model (VGGT)
to align cross-view features in a shared 3D space, significantly enhancing the spatial reasoning
robustness of the static-view stream.

• A novel dynamic-view stream absent in prior work is designed to emulate the human dorsal path-
way. This stream extracts action-oriented representations from a position-aware, pretrained gaze
estimation model, thereby enabling adaptive trajectory adjustment.

2 RELATED WORK

This work extends view transformers for robotic manipulation by enhancing static-view 3D percep-
tion and introducing dynamic-view processing. We review the relevant work in this section.

View Transformers for Robotic Manipulation. View transformers have become a prevalent ar-
chitecture for language-conditioned manipulation (Guhur et al., 2022; Ma et al., 2024). They ag-
gregate multi-view visual inputs with language instructions and proprioception to predict 6-DoF
gripper poses, states, and collision indicators. RVT (Goyal et al., 2023) establishes a five-camera
paradigm (back, front, top, left, right) to render virtual static views, using a view transformer to
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predict view-specific heatmaps, which are back-projected to 3D to estimate gripper translation;
multi-camera features are concatenated to predict the remaining action components. To improve
precision, VIHE (Wang et al., 2024) and RVT-2 (Goyal et al., 2024) adopt multi-stage refinement:
VIHE iteratively renders virtual in-hand static views, while RVT-2 localizes regions of interest with
three static views (front, top, right) before predicting poses from refined regions. Recent meth-
ods enhance static-view visual representations with visual foundation models (Zhang et al., 2024;
Fang et al., 2025) or 3D multi-view pretraining (Qian et al., 2025). Although these methods have
advanced static-view perception, their inherent reliance on pre-defined viewpoints limits the adapt-
ability in dynamic scenarios. In contrast, Cortical Policy jointly leverages static and dynamic views
for action prediction to overcome this limitation.

3D Perception in Robotics. To enhance robots’ understanding of the physical world, extensive ef-
forts have been made to integrate 3D representations into robotic manipulation (James et al., 2022;
Goyal et al., 2023; Chen et al., 2024). Existing approaches, however, face distinct challenges. Voxel-
based methods (James et al., 2022; Shridhar et al., 2023) are computationally expensive. Point
cloud methods handle occlusion and sim-to-real transfer well, yet require fine-grained semantic
alignment (Zhen et al., 2024; Cui et al., 2025) or use inefficient backbones (Chen et al., 2024).
Multi-perspective projection offers an efficient alternative by projecting point clouds onto virtual
orthographic views to generate multi-camera RGB-D images, and has been widely adopted in recent
work (Goyal et al., 2023; 2024; Fang et al., 2025; Li et al., 2025a). Unlike existing multi-perspective
policies that struggle to capture cross-view relations, Cortical Policy addresses this limitation by ex-
plicitly modeling inter-view relationships, enhanced by geometric priors from VGGT (Wang et al.,
2025), a powerful 3D foundation model whose spatial knowledge remains novel in robotic manipu-
lation (Lin et al., 2025; Tang et al., 2025; Abouzeid et al., 2025). We introduce a novel integration of
VGGT within the static-view stream, using its predictions to enforce view-invariant feature learning.

3 METHOD

3.1 PRELIMINARIES

Research on the human visual system and neuroscience reveals several cortical principles, which
could guide the development of manipulation policies and enable robots to achieve human-like pro-
ficiency. These principles include:
1. Parallel streams with separable and complementary structures and functions. The dorsal

and ventral streams emerge from distinct regions of the early visual cortex, processing dynamic
and static visual signals respectively (Chen et al., 2025). Separate processing channels support
generalization to novel scenes and adaptability to dynamic tasks.

2. Dual-stream visuomotor control. Consistent with visual processing, human visuomotor con-
trol follows a dual-stream pattern (Rossit & McIntosh, 2021): the ventral stream handles scene
perception and object identification, while the dorsal stream translates retinal input into adaptive
motor signals. Both streams are indispensable for precise motor control.

3. Enduring representations in the ventral stream. The ventral stream encodes stable visual
stimuli for cognitive processes (Kravitz et al., 2011; Becker et al., 2025). Using an allocentric
(world-centered) frame of reference (Milner & Goodale, 2008), it forms enduring representations
that facilitate recognition, long-term memory, and action planning.

4. Adaptive action reasoning in the dorsal stream. The dorsal stream encodes spatiotemporal
dynamics to guide actions (Kravitz et al., 2013; Hallquist et al., 2024). Using an egocentric
(body-centered) frame of reference (Gheihman et al., 2025), it estimates properties of the target
object in real time and adjusts movement trajectories accordingly.

Building on these cortical principles of visuomotor control, we present CORTICAL POLICY, an im-
itation learning framework for robotic manipulation. As illustrated in Fig. 2, the proposed policy
centers on a dual-stream view transformer that integrates parallel streams: (i) a static-view stream
encodes 3D spatial structures of the task scene through geometrically consistent representation learn-
ing, which is supervised by a pretrained 3D reconstruction model, i.e., VGGT; (ii) a dynamic-view
stream predicts adaptive actions through a position-aware pretrained model. This model processes
dynamic wrist-view frames to estimate end-effector locations, generating action-oriented features
that facilitate overall visuomotor reasoning. The complementary representations from both streams
are fused by an action head, generating precise actions for robot control.
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Figure 2: Overview of the proposed cortical policy. Inspired by the dorsal-ventral pathways in
visual neuroscience, this architecture implements dual processing streams: a static-view stream for
3D spatial understanding and a dynamic-view stream for end-effector position awareness.

3.2 STATIC-VIEW STREAM

An enduring visual representation in the brain generally exhibits a unified and compact understand-
ing of the 3D world, allowing easy generalization across environments, objects, and time. However,
most off-the-shelf vision encoders fall short of comprehensive 3D understanding as they are trained
solely on 2D images. To extract 3D-aware representations from image inputs, additional priors must
be injected, typically via depth modality integration (Wu et al., 2025), cross-view consistency (You
et al., 2025), or equivariance constraints (Howell et al., 2023). Notably, You et al. (2025) and Lee
et al. (2025) demonstrated that incorporating view equivariance into 2D foundation models signifi-
cantly boosts 3D task performance.

Motivated by these findings, our static-view stream reinforces cross-view feature consistency to
learn 3D-aware semantic representations. We adapt RVT-2 backbone (Goyal et al., 2024), preserving
its core mechanisms including two-stage processing, intra-view self-attention and vision-language
co-attention, while augmenting its feature extractor (RVT Encoder) with geometric constraints.

3D Supervision Generation. We leverage geometrically consistent keypoints as 3D supervision
signals, which represent identical 3D points across viewpoints. This design anchors cross-view
consistency directly in 3D geometry. Using spatial reasoning capabilities of VGGT, we predict
depth map, confidence map, camera parameters for N static-view images. These predictions enable
unprojection to camera-coordinate point maps {Pi}Ni=1, which are then transformed into the world
coordinate system to identify co-visible 3D points. We apply non-maximum suppression to the first
viewpoint’s co-visible points, selecting the M highest-confidence points as candidate keypoint set
K1. These candidates are tracked across viewpoints to yield geometrically consistent keypoint sets
{Ki}Ni=1. As shown in Fig. 3 (a), VGGT-derived keypoints primarily lie on the surfaces of objects
or robots, providing geometric cues for task-relevant 3D structures.

Feature Consistency Optimization. Given geometrically consistent keypoints K =
{(kvj

i )Nj=1}Mi=1, where keypoint kvj
i represents 3D point pi in viewpoint vj , we supervise RVT

Encoder to align cross-view features at these keypoints. To enable fine-grained 3D supervision, we
incorporate a trainable 3×3 convolutional layer after the RVT Encoder, which enhances feature res-
olution through local patch interactions (You et al., 2025). For each keypoint kvj

i , we extract its fea-
ture f

vj
i via bilinear sampling from the view feature map. The training objective adopts SmoothAP

loss (Brown et al., 2020), which optimizes cross-view feature rankings by prioritizing similarity for
geometrically consistent keypoints. For query k

vp
i and target viewpoint vq , the positive and negative

sets are defined as K(i) = {kvq
i } and N (i) = {kvq

j | j ̸= i, ∥pi − pj∥2 > ζ} respectively, where ζ
is a tunable 3D distance threshold. The SmoothAP loss enforces ranking K(i) above N (i):

SmoothAP
(
vp → vq

)
=

1

|Kp|

|Kp|∑
i=1

1 +
∑

kj∈K(i) G(Dij)

1 +
∑

kj∈K(i) G(Dij) +
∑

kj∈N (i) G(Dij)
, (1)
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Figure 3: Static-view stream. (a) Visualization of geometrically consistent keypoints. (b) Pipeline.

where Dij = fj · f
vp
i − f

vq
i · fvpi , G(x) = (1 + e−x/τ )−1 is sigmoid function. To suppress error

accumulation in sequential view matching, we propose a cyclic geometric consistency loss:

Lcgc = 1− 1

N

N∑
p=1

SmoothAP
(
vp → vp⊕1

)
, (2)

where

vp⊕1 =

{
vp+1, 1 ≤ p < N,

v1, p = N.

Optimizing Lcgc minimizes ranking loss over a closed loop v1 → v2 → · · · → vN → v1, reducing
cumulative action estimation errors by aligning features from identical 3D location (Fig. 3 (b)). This
mitigates view-specific biases and promotes viewpoint-invariant representation learning.

3.3 DYNAMIC-VIEW STREAM

Unlike static-view stream that relies on enduring and holistic scene comprehension, the dynamic-
view stream prioritizes adaptive egocentric action reasoning. This visuomotor pipeline requires im-
mediate exploitation of transient visual cues, emphasizing action-centric perception from egocentric
viewpoints (Milner & Goodale, 2008).

Diverging from existing egocentric action prediction work (Dai et al., 2024; Plizzari et al., 2024)
that focus on what actions occur, we infer how actions are executed by predicting kinematic param-
eters, including gripper translation, rotation, state (open or close) and collision indicator. Among
these, gripper translation specifies 3D coordinates of end-effector, forming the geometric founda-
tion for precise action proposals. In light of this, our dynamic-view stream achieves adaptive action
reasoning by directly predicting end-effector position from a dynamic wrist-mounted camera view
(i.e., robot egocentric view). Accordingly, action reasoning is modeled as attention map generation,
analogous to egocentric gaze estimation (Lai et al., 2024) that predicts human visual attention maps
from first-person videos. This shared formulation enables seamless extraction of view-specific fea-
ture maps and saliency maps from gaze models. Both maps can be integrated into RVT-2, serving
as dynamic-view features and heatmaps, respectively.

Fig. 2 illustrates the pipeline of dynamic-view stream, where a state-of-the-art egocentric gaze es-
timation model (GLC) (Lai et al., 2024) is utilized as feature extractor, coupled with RVT-2 action
head for action reasoning. First, we construct an egocentric video dataset through dynamic cameras,
annotating each frame with ground-truth end-effector positions. Subsequently, we perform position-
aware pretraining on this dataset, enabling GLC to infer positions from dynamic-view frames. Dur-
ing training of Cortical Policy, the pretrained GLC model remains frozen, while its intermediate
representations (including feature maps and saliency maps) are extracted and fused with static-view
counterparts for action decoding.
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Egocentric Video Rendering. Preparing pretraining data requires addressing three critical issues:
(1) Domain gap minimization: since human gaze provides localization cues for camera wearer ac-
tions (Li et al., 2018; Huang et al., 2020), the field-of-view (FOV) discrepancy between human
head-mounted cameras (Grauman et al., 2022; Schaumlöffel et al., 2025) and robotic wrist-mounted
cameras (James et al., 2020; Khazatsky et al., 2024) should be bridged, so as to transfer spatiotem-
poral localization priors from human gaze to end-effector position. (2) Positional invariance miti-
gation: the original wrist camera view produces invariant end-effector projections due to its fixed
spatial relationship with end-effector, yielding non-informative annotations that increase overfitting
risks and impede position-aware feature learning. (3) Cross-view alignment: the pretraining egocen-
tric data serves as dynamic-view observations, thus needs to enable feature distribution consistency
with static views to facilitate cross-view generalization. We resolve these issues by constructing
dynamic virtual cameras within RVT renderer using real-time wrist camera extrinsics. Compared
to raw wrist cameras, these virtual cameras adapt FOVs to match human egocentric data, diversify
end-effector projections, and align processing with static viewpoints while preserving egocentric
motion dynamics. The renderer associates each frame with its end-effector position via projection,
generating annotated RGB-D sequences to constitute the final egocentric videos (see supplementary
material for examples). In total, the dataset comprises 3,600 position-labeled videos (18 tasks ×
100 episodes × 2 stages) at 224×224 resolution, exclusively used for position-aware pretraining.

Position-aware Pretraining. To enable knowledge transfer from human gaze estimation to end-
effector position prediction, we initialize the GLC backbone with Ego4D-pretrained weights (Grau-
man et al., 2022), then fine-tune it on our egocentric video dataset. Each video is segmented into
5-second clips and resized to 256×256 resolution. Following Lai et al. (2024), we randomly sample
8 frames per clip to form input sequences. Each sequence is fed into GLC to generate spatiotem-
porally coherent saliency maps. For each frame, the end-effector location is determined by the
most salient pixel in its saliency map. GLC ensures robust position localization through two core
mechanisms: (i) capturing the temporal attention transition by leveraging egocentric motion cues
in dynamic-view frames; (ii) explicitly modeling the spatial correlations between global and local
tokens via its dedicated Global-Local Correlation module. Trained with KL-divergence loss for 15
epochs, we select the final GLC checkpoint for feature extraction in the dynamic-view stream.

Dynamic-view Feature Extraction. We extract intermediate representations from the pretrained
GLC as action priors for training dynamic-view stream pipeline. For clarity, the GLC architecture
is partitioned into Gaze Encoder (comprising Visual Token Embedding, Transformer Encoder and
Global–Local Correlation modules) and Transformer Decoder. The Gaze Encoder outputs visual to-
kens that are projected as view feature maps via a trainable linear projection layer. The Transformer
Decoder generates saliency maps as view heatmaps. Formally, given patch size P , batch size B,
and GLC embedding dimension D, the dynamic-view feature map F is acquired by concatenating
FSA ∈ RB×(P×P )×D from the last Transformer Encoder block and FGLC ∈ RB×(P×P )×D from
the Global-Local Correlation module:

F = LP([FSA,FGLC ]c) ∈ RB×(P×P )×C , (3)

where the operator [·, ·]c implements concatenation along the channel dimension, LP(·) denotes lin-
ear projection that aligns the 2D-dim GLC embeddings with RVT-2’s C-dim token space, enabling
integration of F into action decoding. With D = 768 and P = 16, our dual-stream transformer
produces dynamic-view feature maps (B × 256 × 1536) and saliency maps (B×1×2×128×128)
via 2×2×2 downsampling. For compatibility with static-view heatmaps, the saliency map is resized
to B×1×2×224×224, then temporally compressed to B×1×1×224×224 via 3D convolution.

Dual-stream Action Prediction. Cortical Policy merges dual-stream outputs to determine gripper
actions, where 3-DoF translation selects the highest-scoring 3D point from back-projected view
heatmaps. For predicting 3-DoF rotation, gripper state and collision indicator, we follow Goyal
et al. (2024) in leveraging both global and local features. In our implementation, four viewpoints
are incorporated to represent the scene at time t, including three static views and one dynamic view.
Each viewpoint predicts a feature map Fj and a heatmap Hj that indicates the end-effector pixel
coordinate. Local features are pooled from Fj at these coordinates, while the global feature vector
is formed by concatenating the following components:

[ ϕ(F1 ⊙H1);ϕ(F2 ⊙H2);ϕ(F3 ⊙H3)︸ ︷︷ ︸
static views

; ϕ(F4 ⊙H4)︸ ︷︷ ︸
dynamic view

; ψ(F1);ψ(F2);ψ(F3)︸ ︷︷ ︸
static views

; ψ(F4)︸ ︷︷ ︸
dynamic view

],
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Table 1: Comparison with SOTA methods on RLBench. The “Avg. Success” and “Avg. Rank”
columns report the average success rate (%) and the average rank across 18 tasks. Best results are
highlighted in bold, and the second best are underlined.

Models Reference Avg.
Success ↑

Avg.
Rank ↓

Close
Jar

Drag
Stick

Insert
Peg

Meat off
Grill

Open
Drawer

Place
Cups

Place
Wine

Push
Buttons

Hiveformer CoRL (2022) 45.3 8.1 52 76 0 100 52 0 80 84
PerAct CoRL (2022) 49.4 7.6 55.2±4.7 89.6±4.1 5.6±4.1 70.4±2.0 88.0±5.7 2.4±3.2 44.8±7.8 92.8±3.0

RVT CoRL (2023) 62.9 5.7 52.0±2.5 99.2±1.6 11.2±3.0 88.0±2.5 71.2±6.9 4.0±2.5 91.0±5.2 100.0±0.0

Σ-agent CoRL (2024) 68.8 4.2 78.4±2.9 100.0±0.0 15.2±2.9 97.6±1.9 76.8±3.8 0.8±1.3 90.4±3.5 100.0±0.0

SAM-E ICML (2024) 70.6 3.8 82.4±3.6 100.0±0.0 18.4±4.6 95.2±3.3 95.2±5.2 0.0±0.0 94.4±4.6 100.0±0.0

VIHE IROS (2024) 77 3.6 48 100 84 100 76 12 88 100
RVT-2 RSS (2024) 77.5 3.5 93.3±1.9 97.3±1.9 28.0±3.3 100.0±0.0 92.0±3.3 32.0±5.7 84.0±9.8 100.0±0.0

3D-MVP CVPR (2025) 67.5 4.3 76.0 100.0 20.0 96.0 84.0 4.0 100.0 96.0
Ours – 81.0 1.8 96.0±0.0 100.0±0.0 38.7±6.8 100.0±0.0 84.0±6.5 24.0±3.3 94.7±3.8 100.0±0.0

Models Reference Put in
Cupboard

Put in
Drawer

Put in
Safe

Screw
Bulb

Slide
Block

Sort
Shape

Stack
Blocks

Stack
Cups

Sweep to
Dustpan

Turn
Tap

Hiveformer CoRL (2022) 32 68 76 8 64 8 8 0 28 80
PerAct CoRL (2022) 28.0±4.4 51.2±4.7 84.0±3.6 17.6±2.0 74.0±13.0 16.8±4.7 26.4±3.2 2.4±2.0 52.0±0.0 88.0±4.4

RVT CoRL (2023) 49.6±3.2 88.0±5.7 91.2±3.0 48.0±5.7 81.6±5.4 36.0±2.5 28.8±3.9 26.4±8.2 72.0±0.0 93.6±4.1

Σ-agent CoRL (2024) 66.4±4.5 70.4±3.8 98.4±1.9 73.2±2.2 74.4±4.5 36.0±3.2 51.2±5.4 33.6±6.7 80.8±1.3 95.2±1.3

SAM-E ICML (2024) 64.0±2.8 92.0±5.7 95.2±3.3 78.4±3.6 95.2±1.8 34.4±6.1 26.4±4.6 0.0±0.0 100.0±0.0 100.0±0.0

VIHE IROS (2024) 60 96 92 92 96 52 68 68 64 92
RVT-2 RSS (2024) 44.0±6.5 98.7±1.9 92.0±3.3 86.7±1.9 74.7±5.0 26.7±1.9 80.0±5.7 72.0±0.0 98.7±1.9 94.7±1.9

3D-MVP CVPR (2025) 60.0 100.0 92.0 60.0 48.0 28.0 40.0 36.0 80.0 96.0
Ours – 65.3±9.4 100.0±0.0 98.7±1.9 81.3±1.9 86.7±1.9 37.3±1.9 81.3±1.9 76.0±3.3 100.0±0.0 94.7±5.0

where ⊙ is element-wise multiplication; ϕ(·) and ψ(·) represent sum and max-pooling, respectively.
The GLC-generated representations ensure that H4 effectively highlights end-effector positions,
thereby producing highly focused global features through heatmap-weighting rule Fj ⊙ Hj . The
total loss combines action prediction loss and cross-view geometric consistency loss in Eq. (2):

L = Laction + λLcgc, (4)

where Laction is defined as the sum of cross-entropy losses for each action component, and λ is
a trade-off parameter set to 1. Through optimizing Eq. (4), Cortical Policy unifies dynamic-view
action cues and static-view spatial knowledge, leading to enhanced manipulation skill acquisition.

4 EXPERIMENT

This section evaluates Cortical Policy by answering the following questions: (1) How well does
Cortical Policy perform in manipulation compared to state-of-the-art policies? (2) What impact do
geometric consistency loss and various design choices in dynamic-view stream have on overall per-
formance? (3) How robust is Cortical Policy against environmental perturbations (e.g., distractors,
changes in camera pose, and object properties)? (4) Does Cortical Policy work in real-world tasks?
To this end, we conduct experiments in both simulation and real-world scenarios, reporting results
in Sections 4.2, 4.3, 4.4, 4.5 respectively.

4.1 EXPERIMENTAL SETUP

We begin with an overview of the datasets, baselines and evaluation metrics. For more detailed
experimental settings, please refer to Appendix B.

Benchmark Datasets. For fair comparison, we adopt a standard multi-task manipulation bench-
mark that contains 18 RLBench (James et al., 2020) tasks with 249 language-specified variations
simulated in CoppeliaSim (Rohmer et al., 2013). The tasks are performed by a Franka Panda robot
arm with a parallel jaw gripper. Raw visual observations are captured by four 128×128 RGB-D
cameras mounted at front, left shoulder, right shoulder, and wrist of the robot. The policy-predicted
gripper poses are executed by a sampling-based motion planner. Each behavior-cloning agent is
allowed up to 25 steps to complete a task. Following PerAct, we use the same training-test split,
training all models on 100 demonstrations per task and evaluating a single checkpoint on all tasks.

Baselines and Evaluation Metrics. We benchmark Cortical Policy against 8 state-of-the-art manip-
ulation policies: Hiveformer (Guhur et al., 2022), PerAct (Shridhar et al., 2023), RVT (Goyal et al.,
2023), VIHE (Wang et al., 2024), RVT-2 (Goyal et al., 2024), Σ-agent (Ma et al., 2024), SAM-
E (Zhang et al., 2024), and 3D-MVP (Qian et al., 2025), which are predominantly based on view
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Table 2: Ablation study on dual-stream view transformer. All designs contribute to improving
performance of Cortical Policy. “Arch.”, “Pre.”, “Heat.” denote model architecture, position-aware
pretraining, dynamic-view heatmap, respectively. “Single” means single-stream model with only
static viewpoints, “Dual” means dual-stream model integrating dynamic and static viewpoints.

Models Arch. Lcgc Pre. Heat. Avg.
Success ↑

Avg.
Rank ↓

Close
Jar

Drag
Stick

Insert
Peg

Meat off
Grill

Open
Drawer

Place
Cups

Place
Wine

Push
Buttons

A Single ✗ – – 77.5 3.3 93.3±1.9 97.3±1.9 28.0±3.3 100.0±0.0 92.0±3.3 32.0±5.7 84.0±9.8 100.0±0.0
B Single ✔ – – 80.1 2.4 94.7±1.9 100.0±0.0 25.3±5.0 100.0±0.0 94.7±1.9 21.3±1.9 86.7±5.0 100.0±0.0
C Dual ✗ ✗ ✔ 77.6 3.0 97.3±0.0 98.7±0.0 30.7±10.0 100.0±0.0 88.0±3.3 28.0±6.5 93.3±5.0 100.0±0.0
D Dual ✗ ✔ ✗ 73.3 4.8 90.7±1.9 90.7±13.2 26.7±3.8 100.0±0.0 94.7±1.9 20.0±0.0 82.7±8.2 98.7±1.9
E Dual ✗ ✔ ✔ 79.5 3.1 90.7±1.9 97.3±1.9 29.3±1.9 100.0±0.0 100.0±0.0 46.7±7.5 88.0±5.7 100.0±0.0

F (Ours) Dual ✔ ✔ ✔ 81.0 1.9 96.0±0.0 100.0±0.0 38.7±6.8 100.0±0.0 84.0±6.5 24.0±3.3 94.7±3.8 100.0±0.0

Models Arch. Lcgc Pre. Heat. Put in
Cupboard

Put in
Drawer

Put in
Safe

Screw
Bulb

Slide
Block

Sort
Shape

Stack
Blocks

Stack
Cups

Sweep to
Dustpan

Turn
Tap

A Single ✗ – – 44.0±6.5 98.7±1.9 92.0±3.3 86.7±1.9 74.7±5.0 26.7±1.9 80.0±5.7 72.0±0.0 98.7±1.9 94.7±1.9
B Single ✔ – – 61.3±5.0 98.7±1.9 97.3±1.9 92.0±5.7 82.7±1.9 18.7±1.9 92.0±3.3 81.3±5.0 100.0±0.0 94.7±1.9
C Dual ✗ ✗ ✔ 73.3±5.0 96.0±0.0 92.0±0.0 85.3±6.8 78.7±5.0 6.7±3.8 81.3±1.9 50.7±5.0 100.0±0.0 96.0±0.0
D Dual ✗ ✔ ✗ 48.0±14.2 97.3±3.8 88.0±8.6 85.3±1.9 65.3±5.0 18.7±10.5 86.7±1.9 44.0±14.2 94.7±5.0 88.0±11.8
E Dual ✗ ✔ ✔ 50.7±6.8 88.0±3.3 89.3±1.9 88.0±6.5 84.0±3.3 22.7±3.8 82.7±3.8 81.3±6.8 98.7±1.9 93.3±6.8

F (Ours) Dual ✔ ✔ ✔ 65.3±9.4 100.0±0.0 98.7±1.9 81.3±1.9 86.7±1.9 37.3±1.9 81.3±1.9 76.0±3.3 100.0±0.0 94.7±5.0

transformer architectures and have demonstrated effectiveness in 3D object manipulation. For vi-
sual input, PerAct uses 3D voxels, Hiveformer utilizes raw cameras positioned on the wrist and both
shoulders, whereas the other baselines employ multiple static virtual cameras. We report success
rates for individual tasks, along with average success rate and rank across all tasks.

4.2 PERFORMANCE COMPARISON ON RLBENCH

Table 1 summarizes the comparison results on RLBench. Cortical Policy achieves the highest aver-
age success rate, outperforming the best-performing baseline (RVT-2) by an absolute improvement
of 3.5%. In terms of individual tasks, our model achieves top-1 or top-2 performance in 14 out of
18 tasks. These results demonstrate the efficacy of Cortical Policy for robotic manipulation, ad-
vancing toward human-like visuomotor control. For tasks where RVT and RVT-2 already achieve
success rates above 90%, our dual-stream framework generally yields better performance, as seen in
“close jar”, “sweep to dustpan”, and “put in safe”. We observe that our model outperforms existing
methods in multi-object tasks, such as “stack cups” and “stack blocks”, with a margin of 1.3%-
4.0%. These tasks implicitly require understanding spatial relationships among objects, validating
the effectiveness of 3D prior injection in the static-view stream.

4.3 ABLATION STUDY

To evaluate the impact of key design choices in Cortical Policy, we conduct ablation experiments on
RLBench, with results summarized in Table 2. The ablated variants are implemented as: (A) Re-
moving the entire dynamic-view stream along with cross-view geometric consistency loss Lcgc.
(B) Using only static-view stream. (C) Ablating position-aware pretraining and instead fine-tuning
the gaze model jointly with manipulation policy in an end-to-end manner, excluding Lcgc. (D) Em-
ploying only view feature maps without heatmaps during dynamic-view feature extraction, also
excluding Lcgc. (E) Removing Lcgc while retaining all components of dynamic-view stream. An
identical training configuration is maintained for all ablation studies. The discussion follows.

Effects of cross-view geometric consistency. Lcgc leads to consistent improvements across archi-
tectures, e.g., variant B outperforms A by 2.6%, the full model F surpasses E by 1.5%, demonstrat-
ing the effectiveness of Lcgc for both single-stream and dual-stream policies. This validates that our
viewpoint-invariant representation learning method benefits robotic manipulation.

Effects of position-aware pretraining. Compared to end-to-end training (variant C), freezing
position-aware pretrained gaze model (variant E) obtains 1.9% higher average success rate and sta-
bility across tasks. This demonstrates the superiority of our pretraining approach.

Choice of gaze model representations. Our dynamic-view stream utilizes both feature maps and
heatmaps from the gaze model. Without heatmaps, variant D underperforms single-stream variants,
confirming that the heatmaps’ explicit action cues are crucial to dynamic-view stream.

Dual-stream versus single-stream architecture. Both the static-view and dynamic-view streams
boost performance, with gains of 2.6% (variant B vs. A) and 0.9% (variant F vs. B), respec-
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Table 3: Results on THE COLOSSEUM. The “Avg. Success” and “Avg. Rank” columns report
the average success rate (%) and the average rank across all perturbations on 4 COLOSSEUM tasks.

Models Arch. Lcgc Pre. Heat. Avg.
Success ↑

Avg.
Rank ↓

All
Perturbations

MO-
Color

RO-
Color

MO-
Texture

RO-
Texture

MO-
Size

PerAct – – – – 7.7 7.0 0.0±0.0 8.0±8.5 5.3±5.0 2.0±2.0 4.0±3.3 16.0±17.3
RVT – – – – 37.7 6.0 3.0±5.2 27.0±27.3 36.0±15.0 50.0±38.0 57.3±32.7 50.7±29.6

RVT-2 Single ✗ – – 60.5 4.4 15.0±17.3 64.0±25.6 64.9±27.2 93.4±2.7 66.2±31.8 80.4±17.5
Variant B Single ✔ – – 63.8 3.3 10.3±8.0 69.7±28.1 70.2±28.0 95.4±0.7 71.6±30.9 84.0±14.2
Variant D Dual ✗ ✔ ✗ 66.4 2.9 10.0±8.2 69.7±27.5 72.9±29.9 94.0±2.0 74.7±24.5 83.6±16.7
Variant E Dual ✗ ✔ ✔ 68.7 2.4 8.7±15.0 75.0±29.7 73.8±29.6 96.7±0.7 71.1±33.4 82.7±13.6

Ours Dual ✔ ✔ ✔ 69.9 1.9 10.0±15.1 78.0±26.9 76.9±28.9 100.0±0.0 66.7±27.8 86.7±16.1

Models Arch. Lcgc Pre. Heat. RO-
Size

Light
Color

Table
Color

Table
Texture Distractor Background

Texture
RLBench
Variations

Camera
Pose

PerAct – – – – 9.3±1.9 7.0±4.4 8.0±6.3 3.0±3.3 2.7±3.8 8.0±6.9 25.0±24.7 9.0±7.1
RVT – – – – 22.7±29.3 52.0±30.7 42.0±30.8 48.0±27.9 13.3±13.2 40.0±32.9 41.0±26.6 45.0±31.4

RVT-2 Single ✗ – – 44.4±28.2 63.7±30.4 42.3±31.7 54.4±24.4 60.4±30.5 72.0±27.9 63.7±27.0 62.7±28.6
Variant B Single ✔ – – 44.0±33.1 73.7±26.4 47.3±30.7 61.0±25.2 64.0±31.2 67.0±24.6 68.0±25.2 66.7±31.4
Variant D Dual ✗ ✔ ✗ 40.0±27.9 73.2±26.2 49.4±31.1 69.7±25.1 79.1±22.0 70.0±26.6 74.7±22.9 68.3±32.2
Variant E Dual ✗ ✔ ✔ 53.8±27.2 78.3±23.7 60.0±25.1 70.7±25.9 74.2±18.5 68.7±24.0 76.7±22.3 71.4±30.9

Ours Dual ✔ ✔ ✔ 51.6±33.5 69.3±34.6 46.7±32.4 75.0±27.5 83.1±20.1 77.7±26.9 82.3±17.8 74.0±32.7

Figure 4: (a) Training time of Cortical Policy modules, with time cost of 3D supervision gen-
eration, dual streams, action head. (b) (Top) Real-world performance comparison. (Bottom)
Visualization of the initial and final states for the four real-world tasks. (c) Trajectory visualiza-
tion for “stack 2 blocks with base displacement” task.

tively. This demonstrates the effectiveness of incorporating dynamic-view perception for action
prediction. Notably, the dynamic virtual camera breaks the strict orthographic constraints of multi-
camera setups in existing view transformers, while it still improves performance. We also record
computational time for each component (Fig. 4 (a)), showing that our dual-stream design enhances
performance without sacrificing efficiency.

4.4 ROBUSTNESS EVALUATION ON COLOSSEUM

We further evaluate the robustness and generalization capabilities of our method on the COLOS-
SEUM benchmark (Pumacay et al., 2024), which is an extension of RLBench. The models trained
on the original RLBench tasks are evaluated in environments spanning diverse unseen perturba-
tions, encompassing changes in object color and size, lighting, distractors, and camera poses, etc.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

As shown in Table 3, Cortical Policy obtains the highest average success rate among all the baselines
(including its ablation variants), notably outperforming RVT-2 by 9.4%. Among all the 14 evalu-
ated generalization settings, our method achieves the top performance in 9 of them. These results
demonstrate that Cortical Policy possesses strong robustness against environmental perturbations.
More details about the data and results of the COLOSSEUM benchmark are in Appendix G.

4.5 REAL-WORLD EXPERIMENT

We design four real-world tasks for evaluation: a basic task (“stack 2 blocks”) aligned with the
RLBench “stack blocks” task, a spatial reasoning task (“stack 2 blocks in between the bottles”) and
two challenging dynamic tasks (“stack 2 blocks with target/base displacement”). These tasks extend
the simulated stacking scenario by introducing real-world complexities including spatial constraints
and unpredictable scene dynamics. Each task is evaluated through 10 trials (see Appendix B.2 for
hardware details). As shown in Fig. 4 (b), compared to ablated variants (B, E), RVT, RVT-2, and 3D-
MVP, Cortical Policy achieves: (1) a 30% higher success rate than RVT and RVT-2 (and 10% over
3D-MVP) in the spatial reasoning task, confirming that Lcgc enhances geometric understanding; (2)
an 80% success rate under dynamic perturbations, whereas static-view-only approaches completely
fail (0%). Fig. 4(c) demonstrates that our method succeeds by dynamically re-planning trajectories,
while baselines fail to do so, highlighting Cortical Policy’s adaptation capability through dynamic-
view processing. These real-world results collectively validate the robustness and superiority of our
method in physical deployment. Demos can be found in supplementary material.

5 CONCLUSION

This paper presents Cortical Policy, a dual-stream framework for enhancing spatial reasoning and
dynamic-scene adaptability of robotic manipulation policies. Through VGGT-supervised geometric
consistency optimization, we inject strong 3D priors into the policy, thereby improving spatial un-
derstanding. Complementing this, the dynamic-view stream learns to discover and attend to action-
critical targets, demonstrating its effectiveness in tracking the end-effector. This enables adaptive
adjustment to task dynamics, an ability absent in prior work. Extensive experiments demonstrate
the superiority of Cortical Policy in both simulated and real-world scenarios, highlighting the con-
tribution of the dynamic-view stream to handling unpredictable scene perturbations.

Limitations and Future Work. While Cortical Policy demonstrates strong within-task general-
ization (validated on COLOSSEUM), its zero-shot transfer to novel tasks remains challenging, as
reflected by the 24% success rate on the unseen ”close laptop lid” task. A promising direction
is to enhance its compositional abstraction capability for task generalization (e.g., by recombining
learned perceptual and motor primitives). Additionally, as our current dual-stream implementation
prioritizes validating the core cortical principles, it exhibits limitations in high-precision manipula-
tion tasks. Building on its modular design, we plan to extend this framework with multi-resolution
encoders and hierarchical attention mechanisms. The adaptive fusion of dual-stream representations
at token and viewpoint levels also warrants further exploration. Furthermore, extending dynamic-
view stream to track diverse targets beyond the end-effector (e.g., specific objects, affordance points,
multiple entities) will further probe the framework’s generalization in open-world settings.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of Cortical Policy, our implementation details are provided in Ap-
pendix B.3. Sections 3.2 and 3.3 describe the methodology and data processing steps for egocentric
video dataset used in position-aware pretraining. Additionally, the anonymous source code is avail-
able in supplementary material to facilitate validation and replication of our findings.
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APPENDIX

This appendix provides supplementary materials supporting the main paper, organized as follows:

• LLM Usage Disclosure: Role specification of large language models
• Experimental Setup: RLBench tasks, implementation details and baselines
• Time Analysis: Additional computational efficiency analysis
• Keypoints Visualization: Qualitative results of geometrically consistent keypoints
• Egocentric Rendering Visualization: Position-aware pretraining data samples
• Failure Case Analysis: In-depth investigation of RVT-2’s spatial reasoning limitations
• COLOSSEUM Experiments: Comprehensive generalization and robustness evaluation

A LARGE LANGUAGE MODEL USAGE DISCLOSURE

In compliance with ICLR 2026 policy, we disclose the use of large language models (LLMs) in the
preparation of this work:

• DeepSeek-R1 (https://www.deepseek.com) was utilized exclusively for language
polishing of non-technical sections (Introduction and Related Work).

• All technical content (Method, Experiment and Conclusion) was written by humans with-
out LLM assistance.

• LLM-generated text was rigorously verified and modified by the authors.
• No LLM was used for data analysis, algorithm design, or scientific interpretation.

The authors assume full responsibility for all content in this manuscript.

B EXPERIMENTAL SETUP

This section specifies the experimental framework covering RLBench tasks, real-robot setup, our
implementation details, baseline architectures and processing pipelines.

B.1 RLBENCH TASKS

We briefly summarize the RLBench tasks in Table 4, comprising 18 tasks with 249 variations across
object color, category, placement, count, shape, and size. Each task requires executing manipulation
sequences such as pick-and-place, tool use, drawer opening, and precision operations like peg inser-
tion and shape sorting. During evaluation, the robot handles variations including novel object poses,
randomly sampled language instructions, and scenes with unseen object appearances. This task vari-
ety necessitates manipulation policies with generalizable comprehension of scenes and instructions,
along with adaptable skill acquisition beyond specialized adaptation to individual scenarios.

For a more detailed introduction of each task, please refer to PerAct (Shridhar et al., 2023). For
training and evaluating Cortical Policy, we render four virtual camera views to get visual inputs,
including 3 static viewpoints and 1 dynamic viewpoint. We visualize the rendered images in Fig. 5.

B.2 REAL-ROBOT EXPERIMENTAL SETUP

To evaluate Cortical Policy in real-world scenarios, we deploy a tabletop manipulation system con-
sisting of a dual-arm Cobot Agilex ALOHA robot. As shown in Fig. 6, the experimental setup
integrates two fixed cameras for static-view perception, complemented by two wrist-mounted cam-
eras for dynamic-view perception. In our experiments, we utilize a single arm to execute four distinct
manipulation tasks: one benchmark task aligned with RLBench and three new tasks designed to test
spatial reasoning and dynamic scene adaptation abilities. Each task collects 45 human-teleoperated
demonstrations with placement variations, and a single agent is trained in a multi-task setting on all
four tasks. For evaluation, this unified agent is tested on novel spatial configurations unseen in the
training demonstrations. Four real-world tasks are detailed as follows:
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Table 4: Summary of the 18 RLBench tasks for multi-task experiments.

Task Name Language Template #of Variations Variation Type

close jar “close the jar” 20 color
drag stick “use the stick to drag the cube onto the target” 20 color
insert peg “put the ring on the spoke” 20 color

meat off grill “take the off the grill” 2 category
open drawer “open the drawer” 3 placement
place cups “place cups on the cup holder” 3 count
place wine “stack the wine bottle to the of the rack” 3 placement

push buttons “push the button, [then the button]” 50 color
put in cupboard “put the in the cupboard” 9 category
put in drawer “put the item in the drawer” 3 placement

put in safe “put the money away in the safe on the shelf” 3 placement
screw bulb “screw in the light bulb” 20 color
slide block “slide the block to target” 4 color
sort shape “put the in the shape sorter” 5 shape

stack blocks “stack blocks” 60 color, count
stack cups “stack the other cups on top of the cup” 20 color

sweep to dustpan “sweep dirt to the dustpan” 2 size
turn tap “turn tap” 2 placement

• Stack 2 blocks: This basic task requires the robot to sequentially stack a yellow block onto an
orange block, corresponding to RLBench “stack blocks” task for sim-to-real transfer evaluation.

• Stack 2 blocks in between the bottles: This task is an extended version of the basic task, testing
the understanding of spatial relationships by requiring the robot to: (1) Precisely place the orange
block in the region between two bottles. (2) Stably stack the yellow block atop the orange block.

• Stack 2 blocks with target displacement: This task introduces real-world unpredictability, eval-
uating how effectively the dynamic-view stream handles trajectory adaptation. While the robot is
approaching the first block, it is displaced, requiring adaptive trajectory re-planning to complete
the original stacking task.

• Stack 2 blocks with base displacement: This task also tests the dynamic adaptation capability
by displacing the already-stacked orange block during the yellow block’s approach phase. The
robot must re-locate the orange block and put the yellow block on it.

For each real-world task, 10 independent trials are conducted to calculate the overall success rate. A
trial was considered successful only if all sub-actions of the task are executed correctly.

B.3 IMPLEMENTATION DETAILS

All models are trained on 8 NVIDIA A800 GPUs. We measure the training efficiency of Cortical
Policy on an NVIDIA A800 GPU, revealing that VGGT-based 3D supervision generation constitutes
the most computationally intensive component. As shown in Fig. 4 (a), the average time costs for
VGGT feature aggregation, VGGT decoding, and geometrically consistent keypoint extraction are
1.00× 10−2, 8.80× 10−3, and 8.92× 10−3 minutes respectively, resulting in a total of 3.09× 10−2

minutes for the complete 3D supervision generation. This process is 4.7× slower than the action
reasoning procedure of Cortical Policy, primarily due to the computational demands of VGGT infer-
ence. To mitigate this bottleneck, we implement a multi-stage strategy that decouples 3D supervision
generation from feature consistency optimization. Specifically, geometrically consistent keypoints
are precomputed from VGGT, stored, and indexed by their corresponding demonstration IDs.

Cortical Policy is trained for 32.5K steps using the 8-bit LAMB optimizer (Dettmers et al., 2022)
with a cosine learning rate decay schedule and 2K-step warm-up. We select the final converged
model for evaluation. For baseline methods excluding RVT-2, we report evaluation results from
their original publications, with the performance of Hiveformer reported by Chen et al. (2023),
and the performance of PerAct reported by Goyal et al. (2023). Given the architectural similarities
between our framework and RVT-2, we conduct a controlled comparison by training RVT-2 from
scratch under identical conditions as ours, including the same computing resources and matching
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Close Jar Drag Stick Insert Peg Meat off Grill Open Drawer Place Cups

Place Wine Push Buttons Put in Cupboard Put in Drawer Put in Safe Screw Bulb

Slide Block Sort Shape Stack Blocks Stack Cups Sweep to Dustpan Turn Tap

Figure 5: Rendered views for 18 RLBench tasks. Three orthographic static cameras and a dynamic
camera (defined by the wrist camera’s raw extrinsic parameters) are used to generate image inputs.
For each task, the first three lines show the static views (top, front, right), and the last line shows the
dynamic view; rendered results of the first (coarse) stage are presented in the left part while that of
the second (fine) stage are shown right.

Figure 6: Real-world setup.

hyperparameters (32.5K training steps with batch size 512). This implementation differs from the
pretrained RVT-2 model (∼80K training steps with batch size 192) released by Goyal et al. (2024),
ensuring a fair assessment of our methodological contributions. To account for the randomness in
RLBench’s sampling-based motion planner, we perform three independent test runs per model, each
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Table 5: Training Hyperparameters of Cortical Policy.

Hyperparameters Value

Batch size 512
Learning rate 5.44× 10−3

Optimizer LAMB
Learning rate schedule cosine decay

Weight decay 1× 10−4

Warm-up steps 2000
Training steps 32.5K

Training epochs 104
Lcgc loss weight (λ) 1

Negative set distance threshold (ζ) 0.1
Keypoints per view (M ) 300
Sigmoid temperature (τ ) 0.01

Number of static views (N ) 3
GLC training epochs 15

comprising 25 episodes per task. The resulting average success rates with standard deviations are
reported in Tables 1 and 2.

We implement data augmentation protocols consistent with established view transformers (Goyal
et al., 2023; 2024). For translational augmentation, point clouds are randomly perturbed within
±12.5 cm along each Cartesian axis. For rotational augmentation, point clouds undergo random
z-axis rotations bounded by ±45◦. Table 5 details our training configuration, including a batch size
of 512 (64× 8) and a learning rate scaling with batch size as 1.0625× 10−5 × bs.

B.4 BASELINES

This section details the baseline manipulation policies that are based on view transformers, analyzing
their view processing architectures and vision-to-action mapping frameworks.

(1) Hiveformer (Guhur et al., 2022) predicts actions conditioned on a natural language instruction,
visual observations at t steps (RGB images, point clouds and proprioception from wrist, left shoul-
der, and right shoulder cameras) and previous actions at t steps (gripper translation, rotation, and
open/close state). Multi-modal tokens are formed by concatenating word tokens and visual tokens
from all camera views with embeddings of camera ID, step ID, modality type, and patch location. A
transformer encoder then models relationships among camera views, observations and instructions,
current and history information. Finally, a CNN decoder predicts rotation and gripper state, while a
UNet decoder predicts translation.

(2) RVT (Goyal et al., 2023) re-renders original visual observations (RGB-D images from front, left
shoulder, right shoulder, and wrist cameras) into five static virtual viewpoints anchored at the robot
base (front, top, left, right, back). This generates 7-channel images: 3 for RGB, 1 for depth, and 3
for pixel coordinates. These re-rendered images, along with language instruction and gripper state,
are processed by a joint transformer that sequentially computes intra-view attention, cross-view
attention and vision-language attention. The model outputs view-specific heatmaps for predicting
3D translation, and outputs global features that concatenate all viewpoints for estimating gripper
rotation, state, and collision indicator.

(3) VIHE (Wang et al., 2024) employs a multi-stage view rendering and action refinement framework
comprising an initial global stage and two refinement stages. The initial stage replicates RVT’s five-
camera rendering, while the subsequent stages autoregressively generate five virtual in-hand views
attached to the previously predicted gripper pose, enabling progressively finer workspace focus. The
view transformer adopts masked self-attention to facilitate intra-stage and cross-stage interactions
among language instructions, proprioception, multi-stage and multi-camera tokens. During refine-
ment, relative transformations are predicted to update prior stage outputs (gripper poses, collision
indicators, and states). Final action predictions are derived from the last refinement stage.

(4) RVT-2 (Goyal et al., 2024) extends RVT with a two-stage architecture: the coarse stage predicts
area of interest, while the fine stage renders close-up images for precise gripper pose estimation.
Beyond this multi-stage design, RVT-2 improves computational and memory efficiency through
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replacing transposed convolutions with convex upsampling, optimizing network parameters, sub-
stituting PyTorch3D with a point-renderer for virtual rendering, and utilizing both global and local
features to predict gripper rotation, state and collision indicator. Additionally, it reduces five static
virtual viewpoints to three (front, top, right), accelerating training while maintaining performance.

(5) Σ-agent (Ma et al., 2024) integrates visual and language encoders, multi-view query transformer
(MVQ-Former), contrastive imitation learning module. The visual encoder processes five virtual
images with intra-view self-attention. Language instructions are encoded using CLIP and projection
layers, generating language tokens for cross-attention computation. MVQ-Former transforms visual
tokens into view-specific query tokens for two contrastive learning objectives: a state-language one
aligns visual and text tokens in a joint embedding space to learn discriminative representations; a
(state, language)-future one concatenates current visual, query and language tokens, then processes
them through 4 self-attention layers to derive current-state queries. These queries are contrasted
against future-state features, which are extracted by feeding next-state images to the visual encoder
and applying average pooling. Both objectives augment the standard imitation learning loss during
training to enhance representation learning, but are excluded during inference.

(6) SAM-E (Zhang et al., 2024) incorporates the Segment Anything Model (SAM) as a founda-
tional visual perception module. Based on RVT’s rendering strategy, it processes RGB channels
through a LoRA-tuned SAM encoder, enabling generation of prompt-guided, object-oriented image
embeddings. Concurrently, spatial features are extracted from depth and pixel coordinate channels
via a Conv2D layer. These features are channel-wise concatenated with SAM embeddings to form
composite view tokens. Combined with language tokens, these view tokens are processed by a
transformer through view-wise and cross-view attention mechanisms. This generates enriched vi-
sual tokens for action-sequence prediction. Unlike step-by-step paradigms, SAM-E models coherent
action sequences by enforcing temporal smoothness in end-effector poses. For translation predic-
tion, it extends view-specific heatmaps with temporal channels. While rotation, state, and collision
indicators are derived from view-fused global features following RVT.

(7) 3D-MVP (Qian et al., 2025) aims to augment visual encoder for learning generalizable repre-
sentations, decomposing the view transformer into an input renderer, an encoder mapping static
virtual images to latent embeddings, and an action decoder. Rather than training the RVT architec-
ture from scratch, 3D-MVP adopts a two-stage training paradigm: first pretrains RVT encoder using
masked autoencoding on large-scale 3D scene datasets, then fine-tunes it on downstream manipu-
lation demonstrations. The finetuning procedure is identical to RVT training, while the pretraining
introduces a MAE decoder to reconstruct all five virtual images from masked multi-camera tokens.
This multi-view pretraining scheme produces 3D-aware features robust to occlusions and viewpoint
changes, enhancing manipulation performance and robustness to environmental variations.

C DETAILED TIME ANALYSIS

To evaluate computational efficiency, we execute the model on an NVIDIA A800 GPU for 20 trials 
with a fixed batch s ize of 5 12, recording the processing t ime for each module in Cortical Policy. 
As shown in Fig. 4 (a), the static-view stream (1.37 × 10−3 minutes) and dynamic-view stream 
(2.48 × 10−3 minutes) exhibit comparable latency, with the latter consuming approximately 1.8× 
more time. Among submodules, the attention computation of dynamic-view stream is more efficient 
than that of static-view stream, while its heatmap decoding incurs higher latency. This disparity 
stems primarily from the multi-scale down-sampling in MViT (Fan et al., 2021), which serves as the 
backbone of GLC model. Although this multi-scale design increases computation, it significantly 
enhances view heatmap prediction accuracy, as verified by Li et al. (2018). Notably, both streams 
process inputs faster than the RVT-2 action head (4.06 × 10−3 minutes). Combined with the 3.5%
success rate gain over RVT-2 (Table 1), these metrics demonstrate that our dual-stream transformer 
achieves superior manipulation performance without compromising adaptive responsiveness.

D VISUALIZATION OF GEOMETRICALLY CONSISTENT KEYPOINTS

Fig. 10 shows additional qualitative results of 3D supervision generation, demonstrating the 
viewpoint-consistent keypoint distributions across eight manipulation tasks. The figure organizes 
multi-perspective keypoint visualizations as follows:
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• Rows (top to bottom): Close Jar, Place Cups, Sweep to Dustpan, Insert Peg, Push Buttons,
Drag Stick, Screw Bulb, and Stack Blocks

• Columns (left to right): Coarse stage (top, front, right views) followed by fine stage (top,
front, right views)

E VISUALIZATION OF EGOCENTRIC RENDERING

Fig. 7 compares dynamic-view options for position-aware pretraining data: raw wrist camera views
versus rendered views from dynamic virtual cameras. As can be seen, end-effector positions in raw
wrist camera views are fixed at constant pixel coordinates. By contrast, rendered views exhibit posi-
tional variations, with shadows indicating regions occluded from physical wrist-mounted cameras.
Apart from image samples, egocentric video examples are also included in supplementary material.

Figure 7: Comparison of dynamic egocentric views and rendered examples.

F ADDITIONAL FAILURE CASE ANALYSIS

This section provides a deeper analysis of the RVT-2 failure in the ”stack 2 blocks in between
the bottles” task (Fig. 1), investigating whether it stems from spatial reasoning deficiency, mode
collapse, or language misunderstanding. As shown in Fig. 8, RVT-2 exhibits distinct action patterns
between the two stacking tasks. This behavioral diversity in a novel configuration indicates both
the absence of mode collapse and RVT-2’s ability to adapt to the tasks with different scenes and
instructions. The failure, therefore, points to a deficiency in the precise spatial reasoning required
for successful placement of the ”in between” relationship.

G DETAILED RESULTS ON COLOSSEUM

In this section, we provide comprehensive results on the COLOSSEUM benchmark (Pumacay et al.,
2024), extending the analysis in Section 4.4. We evaluate the same models from Table 1 and Table 2
(all trained on the original RLBench tasks) under a suite of unseen perturbations. These pertur-
bations encompass changes to object properties (MO/RO-Color, MO/RO-Texture, MO/RO-Size),
Light Color, Table Color/Texture, Distractor, Background Texture and Camera Pose. Evaluations
also include the RLBench Variations described in Table 4.

Following the official COLOSSEUM protocol for zero-shot generalization, we evaluate RVT-2, Cor-
tical Policy, and its variants on four tasks shared by RLBench and COLOSSEUM: drag stick, place
wine, stack cups, and insert peg. Results are averaged over three independent trials. For a com-
prehensive comparison, we include results of RVT (Goyal et al., 2023) and PerAct (Shridhar et al.,
2023) from the original COLOSSEUM paper (Pumacay et al., 2024). The detailed per-task results
across all perturbation types are shown in Table 6. Key observations include:
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Figure 8: RVT-2 behavior comparison. (Top) In the basic task ”stack 2 blocks”, RVT-2 places the
first block near the robot arm. (Bottom) In the spatial task ”stack 2 blocks in between the bottles”,
RVT-2 attempts to place the first block near the bottles but fails due to imprecision.

• Cortical Policy achieves the highest average success rate on all four tasks (drag stick: 80.3%, place
wine: 89.0%, stack cups: 76.8%, insert peg: 32.6%), demonstrating superior robustness to unseen
scene configurations.

• In tasks that heavily rely on spatial reasoning, such as ”stack cups”, our method achieves the high-
est success rate (36.0%) under the combined ”All Perturbations” setting, highlighting its superior
robustness against geometric variations.

• Ablation results underscore the critical role of the dynamic-view stream. Specifically, variant E
consistently outperforms B, with a notable margin of +9.3% in the challenging ”stack cups” task.

Collectively, these COLOSSEUM results demonstrate the dual-stream architecture’s effectiveness
in handling realistic environmental variations, showing that the dynamic-view stream is the primary
contributor to the observed generalization and robustness.

Figure 9: Success rate variations with training epochs for compute-control evaluation.
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Table 6: Success rates of different methods under various perturbations of COLOSSEUM.

Task
Name Models

Avg.
Success ↑

No
Perturbations

All
Perturbations

MO-
Color

RO-
Color

MO-
Texture

RO-
Texture

MO-
Size

drag stick

PerAct 17.6 36 0 20 12 4 8 40
RVT 59.2 84 0 24 52 88 88 92

RVT-2 69.8 84.0±3.3 0.0±0.0 84.0±3.3 80.0±0.0 90.7±1.9 89.3±1.9 89.3±1.9
Variant B 73.4 85.3±5.0 0.0±0.0 90.7±1.9 89.3±1.9 94.7±1.9 90.7±1.9 92.0±0.0
Variant D 78.1 88.0±0.0 0.0±0.0 92.0±0.0 96.0±0.0 96.0±0.0 92.0±0.0 94.7±1.9
Variant E 78.3 88.0±0.0 0.0±0.0 92.0±0.0 96.0±0.0 97.3±1.9 92.0±0.0 88.0±0.0

Ours 80.3 88.0±0.0 0.0±0.0 92.0±0.0 96.0±0.0 100.0±0.0 92.0±0.0 96.0±0.0

place wine

PerAct 3.7 0 0 0 0 – 0 8
RVT 57.4 60 12 72 40 – 72 36

RVT-2 84.3 90.7±3.8 44.0±0.0 76.0±0.0 88.0±3.3 – 88.0±3.3 96.0±0.0
Variant B 85.1 94.7±5.0 16.0±0.0 82.7±5.0 90.7±1.9 – 96.0±0.0 96.0±0.0
Variant D 84.8 96.0±0.0 4.0±0.0 84.0±0.0 92.0±5.7 – 92.0±0.0 96.0±0.0
Variant E 88.2 98.7±1.9 0.0±0.0 97.3±1.9 93.3±3.8 – 97.3±3.8 96.0±0.0

Ours 89.0 100.0±0.0 0.0±0.0 100.0±0.0 98.7±1.9 – 80.0±0.0 100.0±0.0

stack cups

PerAct 4 8 0 12 – 0 – –
RVT 13.3 0 0 12 – 12 – –

RVT-2 66.3 96.0±0.0 4.0±0.0 76.0±0.0 – 96.0±0.0 – –
Variant B 67.0 97.3±1.9 5.3±1.9 84.0±0.0 – 96.0±0.0 – –
Variant D 68.0 88.0±0.0 16.0±0.0 80.0±0.0 – 92.0±0.0 – –
Variant E 76.3 98.7±1.9 34.7±1.9 86.7±5.0 – 96.0±0.0 – –

Ours 76.8 96.0±0.0 36.0±0.0 88.0±0.0 – 100.0±0.0 – –

insert peg

PerAct 5.1 4 0 0 4 – 4 0
RVT 9.1 4 0 0 16 – 12 24

RVT-2 21.4 32.0±0.0 12.0±0.0 20.0±3.3 26.7±1.9 – 21.3±1.9 56.0±0.0
Variant B 28.4 36.0±0.0 20.0±3.3 21.3±3.8 30.7±1.9 – 28.0±0.0 64.0±0.0
Variant D 32.0 36.0±0.0 20.0±0.0 22.7±1.9 30.7±1.9 – 40.0±3.3 60.0±0.0
Variant E 32.1 38.7±1.9 0.0±0.0 24.0±0.0 32.0±0.0 – 24.0±0.0 64.0±0.0

Ours 32.6 42.7±1.9 4.0±0.0 32.0±0.0 36.0±0.0 – 28.0±0.0 64.0±0.0

Task
Name Models

RO-
Size

Light
Color

Table
Color

Table
Texture Distractor Background

Texture
RLBench
Variations

Camera
Pose

drag stick

PerAct 8 12 12 8 0 20 64 20
RVT 0 72 52 88 4 88 76 80

RVT-2 29.3±1.9 73.3±1.9 53.3±3.8 46.7±3.8 80.0±3.3 84.0±0.0 78.7±1.9 84.0±3.3
Variant B 8.0±8.0 88.0±0.0 64.0±0.0 52.0±0.0 82.7±3.8 84.0±0.0 84.0±0.0 96.0±0.0
Variant D 8.0±8.0 90.7±1.9 68.0±0.0 88.0±0.0 94.7±3.8 84.0±0.0 88.0±0.0 92.0±0.0
Variant E 30.7±1.9 92.0±0.0 72.0±0.0 90.7±1.9 76.0±0.0 80.0±0.0 88.0±0.0 92.0±0.0

Ours 32.0±0.0 72.0±0.0 76.0±0.0 92.0±0.0 96.0±0.0 84.0±0.0 88.0±0.0 100.0±0.0

place wine

PerAct 12 8 0 4 0 4 8 8
RVT 64 88 88 60 32 52 56 72

RVT-2 84.0±0.0 89.3±6.8 88.0±6.5 86.7±1.9 84.0±5.7 88.0±0.0 89.3±3.8 88.0±3.3
Variant B 88.0±6.5 90.7±1.9 89.3±3.8 88.0±0.0 89.3±1.9 89.3±1.9 92.0±0.0 89.3±1.9
Variant D 76.0±0.0 90.7±1.9 90.7±1.9 90.7±1.9 94.7±1.9 88.0±0.0 94.7±5.0 97.3±1.9
Variant E 92.0±0.0 92.0±0.0 92.0±0.0 92.0±0.0 96.0±3.3 93.3±1.9 96.0±3.3 98.7±1.9

Ours 98.7±1.9 97.3±1.9 80.0±0.0 96.0±3.3 98.7±1.9 98.7±1.9 97.3±1.9 100.0±0.0

stack cups

PerAct – 0 16 0 – 4 0 8
RVT – 40 12 24 – 16 24 20

RVT-2 – 80.0±0.0 24.0±0.0 64.0±0.0 – 92.0±0.0 68.0±0.0 62.7±1.9
Variant B – 88.0±0.0 16.0±0.0 80.0±0.0 – 68.0±0.0 69.3±5.0 65.3±3.8
Variant D – 84.0±0.0 16.0±0.0 72.0±0.0 – 84.0±0.0 80.0±0.0 68.0±0.0
Variant E – 92.0±0.0 52.0±0.0 72.0±0.0 – 72.0±0.0 84.0±3.3 74.7±1.9

Ours – 96.0±0.0 4.0±0.0 84.0±0.0 – 96.0±0.0 92.0±3.3 76.0±0.0

insert peg

PerAct 8 8 4 0 8 4 28 0
RVT 4 8 16 20 4 4 8 8

RVT-2 20.0±0.0 12.0±0.0 4.0±0.0 20.0±0.0 17.3±1.9 24.0±0.0 18.7±1.9 16.0±0.0
Variant B 36.0±0.0 28.0±0.0 20.0±3.3 24.0±5.7 20.0±3.3 26.7±1.9 26.7±1.9 16.0±0.0
Variant D 36.0±3.3 28.0±0.0 22.7±3.8 28.0±0.0 48.0±0.0 24.0±0.0 36.0±0.0 16.0±0.0
Variant E 38.7±1.9 37.3±1.9 24.0±0.0 28.0±0.0 50.7±3.3 29.3±1.9 38.7±1.9 20.0±0.0

Ours 24.0±0.0 12.0±0.0 26.7±0.0 28.0±0.0 54.7±1.9 32.0±0.0 52.0±0.0 20.0±0.0
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(1) top@coarse (2) front@coarse (3) right@coarse (4) top@fine (5) front@fine (6) right@fine

(7) top@coarse (8) front@coarse (9) right@coarse (10) top@fine (11) front@fine (12) right@fine

(13) top@coarse (14) front@coarse (15) right@coarse (16) top@fine (17) front@fine (18) right@fine

(19) top@coarse (20) front@coarse (21) right@coarse (22) top@fine (23) front@fine (24) right@fine

(25) top@coarse (26) front@coarse (27) right@coarse (28) top@fine (29) front@fine (30) right@fine

(31) top@coarse (32) front@coarse (33) right@coarse (34) top@fine (35) front@fine (36) right@fine

(37) top@coarse (38) front@coarse (39) right@coarse (40) top@fine (41) front@fine (42) right@fine

(43) top@coarse (44) front@coarse (45) right@coarse (46) top@fine (47) front@fine (48) right@fine

Figure 10: Additional visualization of geometrically consistent keypoints.
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