
Exploring Token Pruning in Vision State Space Models

Zheng Zhan1∗, Zhenglun Kong12∗, Yifan Gong1, Yushu Wu1, Zichong Meng1

Hangyu Zheng3, Xuan Shen1, Stratis Ioannidis1, Wei Niu3, Pu Zhao1, Yanzhi Wang1
1Northeastern University, 2Harvard University, 3University of Georgia

{zhan.zhe, kong.zhe, yanz.wang}@northeastern.edu

Abstract

State Space Models (SSMs) have the advantage of keeping linear computational
complexity compared to attention modules in transformers, and have been applied
to vision tasks as a new type of powerful vision foundation model. Inspired by the
observations that the final prediction in vision transformers (ViTs) is only based
on a subset of most informative tokens, we take the novel step of enhancing the
efficiency of SSM-based vision models through token-based pruning. However,
direct applications of existing token pruning techniques designed for ViTs fail to
deliver good performance, even with extensive fine-tuning. To address this issue,
we revisit the unique computational characteristics of SSMs and discover that naive
application disrupts the sequential token positions. This insight motivates us to
design a novel and general token pruning method specifically for SSM-based vision
models. We first introduce a pruning-aware hidden state alignment method to stabi-
lize the neighborhood of remaining tokens for performance enhancement. Besides,
based on our detailed analysis, we propose a token importance evaluation method
adapted for SSM models, to guide the token pruning. With efficient implementation
and practical acceleration methods, our method brings actual speedup. Extensive
experiments demonstrate that our approach can achieve significant computation
reduction with minimal impact on performance across different tasks. Notably,
we achieve 81.7% accuracy on ImageNet with a 41.6% reduction in the FLOPs
for pruned PlainMamba-L3. Furthermore, our work provides deeper insights into
understanding the behavior of SSM-based vision models for future research2.

1 Introduction

Recent years have witnessed the rapid evolvement of the computer vision field in the era of deep
learning. Significant research efforts have been devoted to designing effective and efficient archi-
tectures of deep neural networks (DNNs) for visual tasks. Convolution Neural Networks (CNNs)
[29, 12, 23, 30] and Vision Transformers (ViTs) [6, 22, 31, 43] are two representative categories
of backbone networks. Though ViTs exhibit superior modeling capabilities with the incorporation
of the self-attention mechanism [6, 32], the complexity of self-attention grows quadratically as the
input size increases. Inspired by the great potential of State Space Models (SSMs) for long sequence
modeling with linear complexity in natural language processing (NLP) tasks [9, 24, 33, 44], the
latest backbone network designs for visual tasks [10, 21] leverage SSM-based blocks. Particularly,
VMamba [21] reduces the complexity of attention computation with the selective scan mechanism
presented in the S6 model [9] and matches the performance with existing foundation models.

Like the existing research efforts promoting the efficiency of CNNs and ViTs, the exploration of the
SSM efficiency is desirable to facilitate real-time applications. While weight pruning is the prevalent

∗Equal contributions
2Code available at https://github.com/ZLKong/ToP-ViM

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/ZLKong/ToP-ViM


technique for CNNs [34, 13, 17, 14, 38, 7, 8, 35, 40], token pruning [27, 26, 39, 28, 16, 41, 5] proves
to be an effective way to enhance the efficiency of ViTs due to the independent patch processing
design. Given that the SSM-based blocks also process input by dividing it into patches like ViTs,
the existing token pruning techniques [18] for ViTs can be applied as a straightforward approach to
boost the SSM efficiency. However, as shown in Figure 2, although enjoying certain benefits of faster
inference with less tokens, this naive token pruning application for SSMs suffers from significant
accuracy drops. Even after extensive fine-tuning efforts, its accuracy is still not able to recover from
the token pruning with non-marginal gaps compared with the original accuracy. This indicates that
the direct application of token pruning designed for ViTs permanently harms the performance of
SSM-based vision models.

Given this observation, we conduct a thorough analysis of the computation patterns in SSM-based
blocks, aiming to find the root cause and provide a foundation for efficient token pruning design
in SSMs. Unlike ViTs whose attention mechanism computes the correlation between each pair
of patches, SSM-based blocks follow traversal paths and thus the paths are sensitive to their ad-
jacent patches. The direct application of token pruning techniques from ViT disrupts the patch
locations/neighborhood in SSM-based blocks, thus incurring massive accuracy drops.

Based on our analysis, the question naturally arises whether we can keep the sequential property
of tokens/batches in SSM-based vision models while pruning tokens to accelerate the forward
computation. A successful solution not only improves the computational efficiency, but also provides
more insights into the interpretability of SSM scan/token for future research. We take the first novel
step towards this direction by proposing a general token pruning method for SSM-based vision models.
Specifically, we propose a token importance evaluation method adapted for SSM models to guide the
token pruning process based on a comprehensive analysis of SSM-based models. More importantly,
to address the root cause of the above significant accuracy drop, we introduce a pruning-aware hidden
state alignment method to reform the scan mechanism in SSMs for pruned and remaining tokens, thus
stabilizing the neighborhood of remaining tokens and enhancing performance. Following the token
pruning designs, we explore the efficient implementation and practical acceleration methods. With
our tailored design, the computations can be significantly reduced with high accuracy performance.
Notably, we achieve 81.7% accuracy on ImageNet for token pruned PlainMamba-L3, with 41.4%
FLOPs reduction. We summarize our contributions as follows:

• After observing the incapability of directly applying token-based pruning techniques from
ViTs for vision SSMs, we conduct a comprehensive analysis of SSM-based blocks to identify
the failure reason, as well as provide more insights for the SSM scan mechanism in vision
tasks, shedding lights on future research on SSM-based vision models.

• Based on our analysis, we propose a general token pruning method for SSM-based vision
models, incorporating an adapted token importance evaluation to determine the pruned
tokens, a pruning-aware hidden state alignment method to reform the SSM scan mechanism
for pruned and remaining tokens, and practical implementation for efficient inference.

• We take the first step towards accelerating vision SSM models with token-based pruning.
Our extensive and comprehensive experiments for image classification and object detection
demonstrate the effectiveness of our proposed method for vision SSMs.

2 Related Work

State Space Models. SSMs [9, 24, 33] were first proposed to tackle long sequence modeling in
the NLP community. The design has the strength to model complex systems by focusing on how
the input, output, and state variables evolve over time. Recent progress has demonstrated that the
variants of SSMs can be applied to visual tasks as an alternative to CNNs and ViTs with promising
results. S4ND [25] is the first work that applies the state space mechanism to visual tasks and
shows the potential to achieve competitive performance with ViTs [6]. The design expands the
S4 model [10] and normalizes the parameters into a diagonal structure. But it fails to efficiently
capture image information in an input-dependent manner. ViM [46] proposes a novel vision backbone
with bidirectional Mamba. Based on that, PlainMamba [37] invents a continuous 2D scanning to
enhance spatial continuity by ensuring adjacency of tokens in the scanning sequence. VMamba [21]
introduce Cross-Scan Module (CSM) to enable 1D selective scan, matching the performance with
existing foundation models including ResNet [12], ViT [6], Swin [22], and ConvNext [23]. The

2



great accomplishments demonstrate the potential of vision SSMs as an emerging fantastic foundation
model family.

Token Pruning. Token pruning is an effective strategy to enhance computational efficiency by
reducing the number of processed tokens or patches. It enables significant acceleration without
requiring additional weights or specialized hardware, aiming to selectively retain the most informative
tokens and sparsify the sequence. It is also vital for dense prediction tasks where sequence sizes
are extensive. Several innovative approaches have been developed for vision transformers. For
example, EViT [18] uses the attentiveness of the [CLS] token with respect to other tokens to identify
the most important tokens. DynamicViT [27] and SPViT [15] add layers that employ the Gumbel-
Softmax trick to selectively prune less informative tokens. IA-RED2 [26] drops redundant tokens
with a multi-head interpreter. PS-ViT (T2T) [39] discard useless patches in a top-down paradigm.
PATCHMERGER [28] uses spatial attention to generate a small set of tokens adaptive to the input.
ToMe [2] measures dot product similarity between token keys to determine redundancy and prune
accordingly. However, the dynamics of information flow between tokens and the learning mechanisms
in models like Mamba [9] remain largely unexplored. Unlike ViTs that reply on attention features,
the absence of attention layers in Mamba makes current pruning methods ineffective. Furthermore,
the inclusion of the SSM module prevents the effective use of existing token pruning methods [42].

3 Preliminary and Motivation

3.1 State Space Models

State Space Models (SSMs) are sequential models that map an input sequence x(t) ∈ RL to an output
sequence y(t) ∈ RL through a hidden state h(t) ∈ RN as follows,

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(1)

where L denotes the length of the sequence, N denotes the number of representation dimensions,
A ∈ RN×N is the evolution matrix, B ∈ RN×L, and C ∈ RL×N are the projection matrices.

The Mamba model [9] represents a discrete version of the continuous system for SSMs and incor-
porates a timescale parameter ∆ to facilitate the transformation of continuous parameters with the
zero-order hold (ZOH) as follows,

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) ·∆B.
(2)

After obtaining the discretized A and B, the discretization of Equation (1) can be rewritten as follows,

ht = Aht−1 +Bxt,

yt = Cht.
(3)

Finally, the Mamba model computes the output through a global convolution as follows,

K = (CB,CAB, . . . ,CA
L−1

B),

y = x ∗K,
(4)

where y denotes the output sequence, L denotes the length of the input sequence x, and K ∈ RL

denotes a structured convolutional kernel.

3.2 Failure of Applying ViT Token Pruning for ViMs

(Observation) After applying token pruning method to an SSM-based vision model, the
Zero-shot performance will drop significantly. Moreover, this process will permanently
harm the model’s performance, even after extensive fine-tuning.

Epic failure of traditional token pruning for vision SSMs. To explore the token sparsity in
vision SSMs, we first prune tokens in SSM-based models with the ‘must-try’ baseline, which directly
applies the token pruning techniques designed for ViTs. Specifically, we prune the tokens using

3



Actual ViM Scan

after token pruning

Condensed

token matrix

ViT token pruning Token pruningViM Scan

11

77 88 99 11

11

13

13 1515 16

16

17

17

19

19

22

22

24

24

25

25

2

10

12 14

18 20

2321

343 4 55 6

6

1

7 8 9

11 13 15

16 17 19

22 24 25

2

10

12 14

18 20

2321

43 5

6

9

13 15 6 7 8

25 16 17 19 11

1 3 4 5

2422

Figure 1: Illustration of the cross-scan in ViM models before and after token pruning.

selector metrics of EViT [18] on both transformer-based ViT-S [6] and SSM-based ViM-S models
[46]. Given N input tokens for one layer, with token pruning, K tokens remain while the other
N −K tokens are pruned. The remaining tokens are relabeled as {xj}K−1

j=0 and their hidden states
are obtained following Equation (3). In this way, the number of the tokens and the corresponding
hidden states are reduced, condensing token matrix to save computation costs, as shown in Figure 1.
After pruning tokens based on the token selector, we evaluate the performance in terms of zero-shot
and fine-tuning accuracy. The results are shown in Figure 2. As observed, the direct application of
token pruning from ViTs is not capable of delivering satisfying performance on ViMs. Specifically,
direct token pruning suffers from substantial zero-shot accuracy degradation on ViM-S (with over
68% accuracy drop compared with the original accuracy), despite its success for ViT-S with merely
1.4% accuracy drop. Furthermore, even after extensive fine-tuning for the pruned model, its accuracy
is not restored still with a 5.7% accuracy gap compared with the original ViM-S model, while it can
boost the accuracy to a competitive level on ViT-S after fine-tuning. The significant performance
degradation in ViM-S demonstrates that the direct application of token pruning hurts the underlying
computations in SSM-based blocks, with permanent negative effects which can hardly be restored
after fine-tuning.

50

60

70

80

Base model Zero-shot Fine-tuning

50

60

70

80

Acc. 

Drop

>68%

Acc. 

Drop

5.7%

To
p

-1
 A

cc
ur

ac
y

79.9 80.5

74.8
78.5 79.4

(a) Token pruning on ViT-S (b) Token pruning on ViM-S

Figure 2: Accuracy comparison for token pruning on
transformer-based ViT-S and SSM-based ViM-S.

Computation patterns in vision SSM.
Observing the great success for ViT-S
and epic failure for ViM-S with the
same method, we are motivated to revisit
the unique computation characteristics of
SSMs and rethink the token pruning strat-
egy in ViMs. To figure out the reason of
failure, we look into the token computation
patterns in SSM-based blocks. Given the
input data, SSM-based blocks first unfold
image patches/tokens into sequences along
traversal paths (i.e., cross-scan, as shown
in Figure 1 with ViM scan), process each
token sequence using a separate computa-
tion block in parallel, and subsequently reshape and merge the resultant sequences to form the output
map (i.e., cross-merge). The traversal paths facilitate the integration of information from all image
pixels in various directions with linear complexity, enhancing the model’s understanding.

Reason for the failure. However, the unique traversing along the sequence paths in ViM makes
each token sensitive to its neighboring tokens. This is not a problem for ViT as the quadratic design
of the attention mechanism calculates the correlation between the target token and all other tokens
in the image, eliminating the sensitivity to adjacent tokens. As shown in Figure 1, introducing a
token pruning strategy within an SSM-based block disrupts the original token positions in the SSM
scan. Consequently, tokens that were not previously adjacent become neighbors during the scan
in different directions or paths, leading to a distorted scan functionality and a significant accuracy
degradation. Especially considering that the tokens are actually image patches in visual tasks with
semantic information, disrupting their positions during the scan brings great difficulties to understand
their relationship and the overall semantics.

4



In response to the limitations of directly applying existing token pruning methods designed for ViTs,
we aim to address the following question:

(Question) Can we prune tokens in SSM-based vision models to accelerate their forward
computation without disrupting the original sequential token positions in different directions
during the scan?

4 Methodology

To address the above Question, we propose a general token pruning method tailored for SSM-
based vision models. Specifically, we propose a pruning-aware hidden state alignment method
to stabilize the neighborhood of remaining tokens during the scan, addressing the distorted scan
functionality in traditional token pruning and thus enhancing accuracy performance. Furthermore,
based on our detailed analysis of SSM-based vision models, we propose a token importance evaluation
method adapted for SSM models, to guide the token pruning. Moreover, we discuss the efficient
implementation and practical acceleration methods for token-pruned SSM-based vision models.

4.1 Pruning-Aware Hidden State Alignment

To maintain the sequential property of SSM tokens during the scan and tackle the Question, we
propose the following novel pruning-aware hidden state alignment technique to align the sequential
positions or neighbourhood of tokens before and after token pruning during the scan, thus maintaining
the model performance under token pruning. For SSM-based vision models, the input token sequence
for the lth layer is denoted as Tl−1 ∈ RB×N×D, where B, N , and D are the batch size, token number,
and hidden state dimension, respectively. The tokens in one batch of the sequence can be unfolded as
{xj}N−1

j=0 with N tokens in total. After applying token pruning (Section 4.2), K tokens are kept while
the other N −K tokens are removed from the input token sequence. We adopt different strategies to
align the hidden states of remained tokens and pruned tokens during the scan as detailed below.

Alignment of hidden states for remaining tokens. We denote the set of the remaining token indices
as {qj}K−1

j=0 with K elements and qs < qt if s < t. Formally, the pruning-aware hidden states during
the scan corresponding to the remained tokens can be represented as

h′
q0 = Bxq0 ,

h′
q1 = A

q1−q0
Bxq0 +Bxq1 ,

...

h′
q(K−1)

= A
q(K−1)−q0

Bxq0 +A
q(K−1)−q1

Bxq1 +A
q(K−1)−q2

Bxq2 + ...+Bxq(K−1)︸ ︷︷ ︸
K terms/tokens

.

(5)

As shown in Equation (5), the hidden states of remained tokens depend on its current token and all
previous remaining tokens. The pruned tokens are not effective in the hidden states.

Alignment of hidden states for pruned tokens. As observed in Figure 1 and 2, if one token is
pruned, removing its position during the scan disrupts the neighbourhood of its adjacent tokens,
leading to significant zero-shot accuracy drop which can hardly be compensated even after extensive
fine-tuning. To mitigate this problem, our pruning-aware hidden state alignment maintains the
position gap from pruned tokens during the scan to stabilize the neighbourhood of all remaining
tokens. Specifically, to make the problem tractable, for two adjacent remaining tokens xqi and xqi+1

,
if qi+1 − qi > 1, meaning there are tokens pruned between xqi and xqi+1

, we denote the number
of pruned tokens between xqi and xqi+1

as Ki (Ki ≥ 1) and their indices can be represented as
{qi + j}Ki

j=1. We have qi < (qi)+ 1 < ... < (qi)+Ki < q(i+1). To highlight the difference between
qi+1 and qi + 1, we use round brackets in the expression (e.g., q(i+1) and (qi) + 1) without changing
their meanings. Thus, the hidden states for the pruned tokens between two remaining adjacent tokens
can be represented as follows,

5



h′
qi = A

qi−q0
Bxq0 +A

qi−q1
Bxq1 + ...+Bxqi ,

h′
(qi)+1 = A

(qi)+1−(q0)
Bxq0 +A

(qi)+1−(q1)
Bxq1 + ...+ABxqi ,

...

h′
(qi)+Ki

= A
(qi)+Ki−(q0)

Bxq0 +A
(qi)+Ki−(q1)

Bxq1 + ...+A
Ki

Bxqi ,

h′
q(i+1)

= A
q(i+1)−q0

Bxq0 +A
q(i+1)−q1

Bxq1 + ...+A
q(i+1)−qi

Bxqi +Bxq(i+1)
.

(6)

For pruned tokens with indices smaller than q0, their hidden states are set to zero. For pruned tokens
with indices larger than qK−1, their hidden states can still be obtained following Equation (6). As
shown in Equation (6), if a token is pruned, we do not simply remove its corresponding hidden state
during the scan as it leads to substantial accuracy degradation shown in Figure 1 and 2. Instead,
its hidden state in the scan can be obtained by using the previous state with one step forward, i.e.,
h′
(qi)+1 = Ah′

(qi)
+Bx(qi)+1 = Ah′

(qi)
where the token x(qi)+1 is pruned. In this way, the hidden

states corresponding to pruned tokens are aligned with that of the original unpruned tokens to maintain
the sequential positions of the original tokens without disrupting their neighbours.

Comparison with traditional token pruning. As discussed in Section 3.2, in traditional ViT
token pruning, the remaining tokens are relabeled as {xj}K−1

j=0 (disrupting their neighbours due to
removal of pruned indices) and their hidden states are obtained following Equation (3). Different from
ViT token pruning, we still keep the original indices of all tokens (including remaining and pruned
tokens) to record their original sequential positions and neighbourhood. During the scan, the hidden
states of pruning tokens becomes completely zero in ViT token pruning, which is different from our
adapted scan mechanism in Equation (6) to keep a copy from its previous unpruned neighbour.

4.2 Token Pruning based on Importance Evaluation

In SSM-based vision models such as ViM, for the lth layer, the input token sequence Tl−1 ∈
RB×N×D is first projected to X ′ ∈ RB×N×D′

, and then goes through bidirectional SSMs for data-
dependent global visual context modeling. It processes X ′ from the forward and backward scan
via:

ym ← SSM(Am, Bm, Cm)(X ′
m), for m ∈ {forward, backward}, (7)

where ym ∈ RB×N×D′
is the output of SSM. Then ym is gated to obtain y′forward and y′backward. The

token sequence output of the lth layer can be obtained as follows:

Tl ← LinearT (y′forward + y′backward) + Tl−1. (8)

Therefore, the output of SSM can directly reflect the token importance. The Mamba architecture,
with its high-dimensional channel space, allows for a finer-granularity analysis of attention across
numerous channels. Unlike Transformers that produce a single attention matrix per head, Mamba
models exploit their extensive channel capacity for a more detailed attention distribution, enhancing
the model’s ability to discern subtle features and interactions among tokens. Thus, we aggregate the
clipped values across all channels for each token to evaluate token importance as follows,

S =

∑D′

d=1 max(0, [y]::d)
D′ , (9)

where [·]::d denotes the dth feature map in the feature dimension with size D′. We use S as the token
importance metric to guide the pruning process, ensuring that only the most contextually relevant
tokens are retained, thereby optimizing computational resources. Given the sparsity requirement
for the token pruning, we sort S and prune the corresponding less important tokens. To make a
comprehensive study, we compare the performance with other token importance metrics, including
the ℓ1 norm, ℓ2 norm, as well as unclipped values without the max operation. We find that using
clipped values in Equation (9) as the token importance metric can constantly yield better results.

6



4.3 Efficient Implementation and Practical Acceleration

Efficient implementation for the SSM scan. Based on the pruning-aware hidden state alignment
technique discussed in Section 4.1, we propose the pruning-aware hidden state alignment
kernel for practical acceleration. It utilizes a position map to guide the SSM operator, ensuring the
correctness of computations. The position map is the token pruning indicator based on {qj}K−1

j=0 in
Section 4.1, which inherits from token importance evaluation and records the location of remained
tokens and pruned tokens. The pruning-aware hidden state alignment kernel takes the
pruned dense sequences and the position map as its inputs. During the scan, it switches between the
token remaining pattern and the token pruned pattern based on the remaining/pruning state of the token
indexed by the position map. The token remaining pattern in the kernel follows the computations
in Equation (5). Similarly, following Equation (6), the token pruned pattern still updates the hidden
states but ignores computations related to the current token. The kernel switches to another pattern if
it detects a corresponding change in token pruning state. A pseudo-code for our pruning-aware
hidden state alignment is demonstrated in Appendix A. Thus, the pruning-aware hidden
state alignment kernel can effectively accelerate the SSM scan under token pruning.

Practical acceleration for the whole model. Note that the SSM scan only takes up around
10∼20% computations in the whole model. With less tokens, other parts in the model can be
accelerated directly due to less computations from pruned tokens, leading to significant inference
speedup performance as demonstrated in our experiments.

5 Experiment Results

We conduct comprehensive experiments on ImageNet-1K[4], COCO 2017 [20] and ADE20K [45]
datasets. All experiments are conducted on 4 NVIDIA V100s. "-EViT" means apply EViT token
pruning method. "-prune" means apply our token pruning method. We report average results of
multiple runs for all experimental sections, and different runs do not vary much. For ViM-T, we
prune after the 10th and 20th layers. For ViM-S, we prune after the 5th, 10th, 15th, and 20th layers.
For PlainMamba-L1, we prune after the 5th and 10th layers. For PlainMamba-L2, we prune after the
5th, 10th and 15th layers. For PlainMamba-L3, we prune after the 5th, 11th, 17th, and 23th layers.

5.1 Image Classification on ImageNet-1K

Settings. We finetune both the ViM and PlainMamba for 30 epochs on the ImageNet-1K dataset.
The top-1 accuracy on the validation set is reported. For ViM, we set a patch extraction stride of
8 while keeping the patch size unchanged, a constant learning rate of 10−5, and a weight decay of
10−8. For PlainMamba, we use a warm-up period of 5 epochs. The weight decay is set to 1e-8, the
base learning rate to 2e-5, the warm-up learning rate to 2e-8, and the minimum learning rate to 2e-7.

Results. The comparison results of our token pruning models against benchmark backbone models
on ImageNet-1K are summarized in Table 1. One advantage of our method is that it is general and
can be applied to a wide range of SSM-based vision model architectures to reduce computation
complexity with a minor loss of performance. We evaluate our method on five base models including
ViM-T, ViM-S, PlainMamba-L1, PlainMamba-L2, and PlainMamba-L3. We report the top-1 accuracy
and FLOPs. Compared to directly applying the EViT method on vision state space models, using
our pruning-aware hidden state alignment and token importance metric constantly outperforms
EViT across various models of different scales. Specifically, On ViM, our method surpasses EViT
by 3.8% on ViM-T and 4.0% on ViM-S. On PlainMamba, our method exceed EViT by 2.4% on
PlainMamba-L1, 2.7% on PlainMamba-L2, and 2.8% on PlainMamba-L3.

5.2 Object Detection and Instance Segmentation

Settings. Following previous works, we conduct experiments for object detection and instance
segmentation on the COCO 2017 dataset. The COCO 2017 dataset contains 118K images for training,
5K images for validating, and 20K images for testing. We use both the two-stage Mask R-CNN [11]
and the single-stage RetinaNet [19]. For both models, we report the results of both 1× schedule.
Following [37], we use ViTAdapter [3] to compute multi-scale features to fit the FPN network
structure.

7



Table 1: Classification results of different models on ImageNet-1K. We compare the proposed token
pruning method with existing methods under comparable GFLOPs.

Method Img. Size Params (M) FLOPs(G) Top-1 Acc. (%)

ViT-Base 3842 86 55.40 77.9
ViT-Large 3842 307 190.70 76.5
DeiT-Tiny 2242 6 1.30 72.2
DeiT-Small 2242 22 4.60 79.8
DeiT-Base 2242 86 17.50 81.8

ViM-T 2242 7 1.50 76.1
ViM-S 2242 26 5.10 80.5
ViM-T-EViT 2242 7 1.28 (-14.3%) 71.3
ViM-S-EViT 2242 26 3.57 (-30.0%) 74.8
ViM-T-ToP 2242 7 1.29 (-14.0%) 75.1
ViM-S-ToP 2242 26 3.60 (-29.4%) 78.8

PlainMamba-L1 2242 7 3.0 77.9
PlainMamba-L2 2242 25 8.1 81.6
PlainMamba-L3 2242 50 14.4 82.3
PlainMamba-L1-EViT 2242 7 2.44 (-18.7%) 75.0
PlainMamba-L2-EViT 2242 25 6.22 (-23.2%) 78.3
PlainMamba-L3-EViT 2242 50 8.35 (-42.0%) 78.9
PlainMamba-L1-ToP 2242 7 2.46 (-18.0%) 77.4
PlainMamba-L2-ToP 2242 25 6.27 (-22.6%) 81.0
PlainMamba-L3-ToP 2242 50 8.44 (-41.4%) 81.7

Table 2: Results on COCO object detection and instance segmentation.

Backbone AP b AP b
50 AP b

75 APm APm
50 APm

75

PVT-Small 40.4 62.9 43.8 37.8 60.1 40.3
PVT-Medium 42.0 64.4 45.6 39.0 61.6 42.1
PVT-Large 42.9 65.0 46.6 39.5 61.9 42.5
Swin-Tiny 42.7 65.2 46.8 39.3 62.2 42.2
Swin-Small 44.8 66.6 48.9 40.9 63.2 44.2

PlainMamba-L1 44.1 64.8 47.9 39.1 61.6 41.9
PlainMamba-L2 46.0 66.9 50.1 40.6 63.8 43.6
PlainMamba-L3 46.8 68.0 51.1 41.2 64.7 43.9
PlainMamba-L1-EViT 41.9 62.8 45.7 37.2 60.1 40.2
PlainMamba-L2-EViT 43.7 64.2 47.6 38.3 62.2 41.9
PlainMamba-L3-EViT 44.2 66.4 49.7 39.5 62.8 42.7

PlainMamba-L1-ToP 43.7 64.6 47.4 38.9 61.3 41.5
PlainMamba-L2-ToP 45.5 66.2 49.9 40.1 63.3 42.7
PlainMamba-L3-ToP 46.5 67.7 50.8 40.6 64.1 43.4

Results. We used our pruned PlainMamba models as the backbone and compared them with existing
token pruning methods and dense backbones. As shown in Table 2, our token pruning method
maintains similar performance to dense models (less than 0.5%). When compared to existing
token pruning methods, specifically for PlainMamba-L1, our pruning method outperforms EViT-
based pruning by an average of 1.59% across all six precision metrics. For PlainMamba-L2, our
method surpasses EViT by an average of 1.63% across all six precision metrics. Additionally, for
PlainMamba-L3, our method exceeds EViT by an average of 1.30% across all six precision metrics.

5.3 Semantic Segmentation on ADE20K

Settings. We conduct experiments for semantic segmentation on the ADE20K dataset [45]. ADE20K
contains 150 fine-grained semantic categories, with 20K, 2K, and 3K images for training, validation,

8



and testing, respectively. We choose UperNet [36] as our base framework. We train all models for
160 iterations with batch size 16 and set the default training image size to 512×512.

Table 3: Semantic Segmentation.
Method mIoU/%

ViM-T 41.0
ViM-S 44.9
LocalVim-T 43.4
LocalVim-S 46.4

PlainMamba-L1 44.1
PlainMamba-L2 46.8
PlainMamba-L3 49.1

PlainMamba-L1-EViT 42.2
PlainMamba-L2-EViT 44.1
PlainMamba-L3-EViT 46.3
PlainMamba-L1-ToP 44.1
PlainMamba-L2-ToP 46.5
PlainMamba-L3-ToP 48.6

Results. We show the results of semantic segmentation on
ADE20K in Table 3. The results indicate that our method also
works well for the semantic segmentation task by greatly reducing
the computation costs while maintaining satisfying performance.
For instance, our token pruned PlainMamba-L1 reaches a mIoU
of 44.1%, which is the same as the unpruned PlainMamba-L1.
Our PlainMamba-L3-prune has a mIoU of 48.6%, which is bet-
ter than current state-of-the-art model architectures including
LocalVim-S and VMamba-T.

5.4 Ablation & Analysis

5.4.1 Token Importance Metric Analysis

In Table 4, we study on the impact of different token importance
metrics, focusing on pruning-aware hidden state alignment. We
test on two models: ViM-S and PlainMamba-L3. For the ViM-S
model, both ℓ1-norm and ℓ2-norm methods achieve an accuracy of 78.6%, while the method without
clipping (w/o Clip) results in a lower accuracy of 77.4%. The proposed clipping method (Clip)
achieves the highest accuracy of 78.8%. For the L3 model, similar trends are observed: the ℓ1-norm
and ℓ2-norm methods yield accuracies of 81.6% and 81.5%, respectively. The non-clipping approach
results in a decrease in accuracy to 80.5%, whereas the clipping method provides a better enhancement,
achieving 81.7%. These results suggest that the clipping mechanism in token importance metrics
offers a consistent improvement in model accuracy, particularly in the context of pruning-aware
hidden state alignment. It can potentially mitigate the adverse effects of extreme token importance
values.

5.4.2 Quantitative Evaluation of pruning-aware hidden state alignment.

Table 5: Comparison of w/o and w/ our alignment (both using Eq. (9) as token importance metric).

Model Method FLOPs Top-1 Acc. (%) Throughput

ViM-S
Dense 5.10G 80.5 1×
Prune w/o our alignment 3.57G 75.4 1.30×
Prune w/ our alignment 3.60G 78.8 1.27×

PlainMamba-L3
Dense 14.40G 82.3 1×
Prune w/o our alignment 8.35G 79.3 1.47×
Prune w/ our alignment 8.44G 81.7 1.43×

Table 4: Ablation study of token impor-
tance metric with pruning-aware hidden
state alignment .

Model Method Accuracy (%)

ViM-S

ℓ1-norm 78.6
ℓ2-norm 78.6
w/o Clip 77.4
Clip (ours) 78.8

L3

ℓ1-norm 81.6
ℓ2-norm 81.5
w/o Clip 80.5
Clip (ours) 81.7

In Table 5, we compare the performance of different prun-
ing methods across two models: ViM-S and PlainMamba-
L3. Our pruning method without the alignment process
reduces the FLOPs to 3.57G but also lowers the accuracy
to 75.4%, resulting in an improved throughput of 1.30×.
In contrast, adding the align matrix achieves a much higher
accuracy of 78.8%, with a similar throughput of 1.27×.
For the PlainMamba-L3 model, our pruning method with-
out the alignment reduces FLOPs to 8.35G but decreases
accuracy to 79.3%, while increasing throughput to 1.47×.
Equipping the alignment process improves accuracy to
81.7% and achieves a throughput of 1.43×. These results
demonstrate that the proposed pruning method with the
alignment process can effectively balance computational
efficiency and model accuracy, outperforming the baseline
pruning approach.

9



Prune w/o 

our align.

Prune w/

our align.DenseOriginal

Prune w/o 

our align.

Prune w/

our align.DenseOriginal

Figure 3: Visual representation on ImageNet-1K. We present the original images, attention visualiza-
tions from ViM-S, and zero-shot results of w/o and w/ our alignment method after the final layer.

5.5 Visualization and Interpretability

To further interpret token pruning in SSM-based vision models and understand the pruning-aware
hidden state alignment behavior of our approach, we present attention visualizations based on zero-
shot results in Figure 3. Our pruning-aware hidden state alignment effectively aligns the hidden states
of pruned tokens in the SSM scan, maintaining similar visual representations and attention regions as
the dense model. In contrast, pruning without our alignment shows significantly different attention
regions, which could explain the huge accuracy drop. This demonstrates the effectiveness of our
proposed pruning-aware hidden state alignment. The visualization tool is adopted from [1].

Figure 4: visualizations of locations of pruned token. We use the output after the final layer to
visualize this reduction results.
We further visualize the token reduction results of our method within Fig. 4. We show the input
images along with their sparsification results. The masked regions represent the tokens that have been
pruned. Our method can gradually drop less informative tokens during forward pass and preserve the
tokens that contain representative regions with an adaptive pruned region for each image.

6 Conclusion and Limitation

In this paper, we take the first step toward accelerating vision SSM models with token-based pruning.
We analyze SSM-based blocks to understand the failure of direct token pruning and propose a
general token pruning method for SSM-based vision models. This method includes an adapted token
importance evaluation, a pruning-aware hidden state alignment, and practical implementations for
efficient inference. Our extensive experiments confirm the effectiveness of our method and provide
deeper insights into the SSM scan mechanism, guiding future research on SSM-based vision models.
Though our method is general, the efficiency is limited by baseline model architecture design.

Acknowledgement

This work is supported by National Science Foundation CNS-2312158, and also CCF-2428108,
OAC-2403090. We would like to express our sincere gratitude to the reviewers for their invaluable
feedback and constructive comments to improve the paper.

10



References
[1] Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of mamba models, 2024.

[2] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and
Judy Hoffman. Token merging: Your ViT but faster. In International Conference on Learning
Representations, 2023.

[3] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vision
transformer adapter for dense predictions. arXiv preprint arXiv:2205.08534, 2022.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[5] Peiyan Dong, Mengshu Sun, Alec Lu, Yanyue Xie, Kenneth Liu, Zhenglun Kong, Xin Meng,
Zhengang Li, Xue Lin, Zhenman Fang, et al. Heatvit: Hardware-efficient adaptive token
pruning for vision transformers. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 442–455. IEEE, 2023.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[7] Yifan Gong, Geng Yuan, Zheng Zhan, Wei Niu, Zhengang Li, Pu Zhao, Yuxuan Cai, Sijia
Liu, Bin Ren, Xue Lin, et al. Automatic mapping of the best-suited dnn pruning schemes for
real-time mobile acceleration. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 27(5):1–26, 2022.

[8] Yifan Gong, Zheng Zhan, Pu Zhao, Yushu Wu, Chao Wu, Caiwen Ding, Weiwen Jiang, Minghai
Qin, and Yanzhi Wang. All-in-one: A highly representative dnn pruning framework for edge
devices with dynamic power management. In Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, pages 1–9, 2022.

[9] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[10] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969, 2017.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[13] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for
accelerating deep convolutional neural networks. In International Joint Conference on Artificial
Intelligence (IJCAI), 2018.

[14] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[15] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei Niu, Mengshu Sun, Bin Ren,
Minghai Qin, Hao Tang, and Yanzhi Wang. Spvit: Enabling faster vision transformers via soft
token pruning. ECCV, 2022.

[16] Zhenglun Kong, Haoyu Ma, Geng Yuan, Mengshu Sun, Yanyue Xie, Peiyan Dong, Xin Meng,
Xuan Shen, Hao Tang, Minghai Qin, et al. Peeling the onion: Hierarchical reduction of data
redundancy for efficient vision transformer training. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 8360–8368, 2023.

11



[17] Tuanhui Li, Baoyuan Wu, Yujiu Yang, Yanbo Fan, Yong Zhang, and Wei Liu. Compressing
convolutional neural networks via factorized convolutional filters. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[18] Youwei Liang, Chongjian GE, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. EVit:
Expediting vision transformers via token reorganizations. In International Conference on
Learning Representations, 2022.

[19] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[21] Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, 2024.

[22] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 12009–12019,
2022.

[23] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11976–11986, 2022.

[24] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language
modeling via gated state spaces. arXiv preprint arXiv:2206.13947, 2022.

[25] Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus,
and Christopher Ré. S4nd: Modeling images and videos as multidimensional signals with state
spaces. Advances in neural information processing systems, 35:2846–2861, 2022.

[26] Bowen Pan, Rameswar Panda, Yifan Jiang, Zhangyang Wang, Rogerio Feris, and Aude Oliva.
Ia-red2: Interpretability-aware redundancy reduction for vision transformers. Advances in
Neural Information Processing Systems, 34:24898–24911, 2021.

[27] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. Advances in neural information
processing systems, 34:13937–13949, 2021.

[28] Cedric Renggli, André Susano Pinto, Neil Houlsby, Basil Mustafa, Joan Puigcerver, and Carlos
Riquelme. Learning to merge tokens in vision transformers. arXiv preprint arXiv:2202.12015,
2022.

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[30] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pages 6105–6114. PMLR, 2019.

[31] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pages 10347–10357. PMLR, 2021.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

12



[33] Jue Wang, Wentao Zhu, Pichao Wang, Xiang Yu, Linda Liu, Mohamed Omar, and Raffay
Hamid. Selective structured state-spaces for long-form video understanding. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6387–6397,
2023.

[34] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. In Advances in neural information processing systems (NeurIPS),
pages 2074–2082, 2016.

[35] Yushu Wu, Yifan Gong, Pu Zhao, Yanyu Li, Zheng Zhan, Wei Niu, Hao Tang, Minghai Qin,
Bin Ren, and Yanzhi Wang. Compiler-aware neural architecture search for on-mobile real-time
super-resolution. In European Conference on Computer Vision, pages 92–111. Springer, 2022.

[36] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing
for scene understanding. In Proceedings of the European conference on computer vision
(ECCV), pages 418–434, 2018.

[37] Chenhongyi Yang, Zehui Chen, Miguel Espinosa, Linus Ericsson, Zhenyu Wang, Jiaming Liu,
and Elliot J Crowley. Plainmamba: Improving non-hierarchical mamba in visual recognition.
arXiv preprint arXiv:2403.17695, 2024.

[38] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei
Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance
score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[39] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay,
Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch
on imagenet. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 558–567, 2021.

[40] Zheng Zhan, Yifan Gong, Pu Zhao, Geng Yuan, Wei Niu, Yushu Wu, Tianyun Zhang, Malith
Jayaweera, David Kaeli, Bin Ren, et al. Achieving on-mobile real-time super-resolution
with neural architecture and pruning search. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4821–4831, 2021.

[41] Zheng Zhan, Zhenglun Kong, Yifan Gong, Yushu Wu, Zichong Meng, Hangyu Zheng, Xuan
Shen, Stratis Ioannidis, Wei Niu, Pu Zhao, and Yanzhi Wang. Exploring token pruning in vision
state space models. arXiv preprint arXiv:2409.18962, 2024.

[42] Zheng Zhan, Yushu Wu, Zhenglun Kong, Changdi Yang, Yifan Gong, Xuan Shen, Xue Lin,
Pu Zhao, and Yanzhi Wang. Rethinking token reduction for state space models. arXiv preprint
arXiv:2410.14725, 2024.

[43] Xiaosong Zhang, Yunjie Tian, Lingxi Xie, Wei Huang, Qi Dai, Qixiang Ye, and Qi Tian.
Hivit: A simpler and more efficient design of hierarchical vision transformer. In The Eleventh
International Conference on Learning Representations, 2022.

[44] Pu Zhao, Fei Sun, Xuan Shen, Pinrui Yu, Zhenglun Kong, Yanzhi Wang, and Xue Lin. Pruning
foundation models for high accuracy without retraining. arXiv preprint arXiv:2410.15567,
2024.

[45] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Scene parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[46] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
Vision mamba: Efficient visual representation learning with bidirectional state space model.
arXiv preprint arXiv:2401.09417, 2024.

13



Appendix
A Pseudo-code Example

Algorithm 1: PRUNING-AWARE HIDDEN STATE ALIGNMENT

#example code of pruning aware hidden state alignment
def pruning_aware_hsa(state, position_map , x, dt, A, B, C, y_ptr):

dA = exp(A * dt);
if position_map:

#remained token computation as Eq.5
dB = B * dt;
state = state * dA + dB * x;
y_ptr = &sum(state * C);

else:
#pruned token computation as Eq.6
state = state * dA;
x.ptr++;

return state

This is a pseudo-code example of our pruning-aware hidden state alignment for demonstration.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We explain method and summarize the contribution in introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation is included in conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15



Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper fully discloses all the information needed to reproduce the main
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16



Answer: [Yes]
Justification: The datasets and models we used is open-source, and we have provide our
code in the footnote of page one.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:We have specified all the training and test details necessary to understand the
results
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report average results of multiple runs in our experimental section. Our
paper does not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We explain the computation resources in experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research is conducted in the paper conform with NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper is not highly related to societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks. Our work does not release a new model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: CC-BY 4.0, and we referenced the works that we used to implement our code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provided our code in the footnote of page one.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20


	Introduction
	Related Work
	Preliminary and Motivation
	State Space Models
	Failure of Applying ViT Token Pruning for ViMs

	Methodology
	Pruning-Aware Hidden State Alignment
	Token Pruning based on Importance Evaluation
	Efficient Implementation and Practical Acceleration

	Experiment Results
	Image Classification on ImageNet-1K
	Object Detection and Instance Segmentation
	Semantic Segmentation on ADE20K
	Ablation & Analysis
	Token Importance Metric Analysis
	Quantitative Evaluation of pruning-aware hidden state alignment.

	Visualization and Interpretability

	Conclusion and Limitation
	Pseudo-code Example

