
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VISIONLAW: INFERRING INTERPRETABLE INTRIN-
SIC DYNAMICS FROM VISUAL OBSERVATIONS VIA
BILEVEL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The intrinsic dynamics of an object governs its physical behavior in the real world,
playing a critical role in enabling physically plausible interactive simulation with
3D assets. Existing methods have attempted to infer the intrinsic dynamics of ob-
jects from visual observations, but generally face two major challenges: one line
of work relies on manually defined constitutive priors, making it difficult to align
with actual intrinsic dynamics; the other models intrinsic dynamics using neural
networks, resulting in limited interpretability and poor generalization. To address
these challenges, we propose VisionLaw, a bilevel optimization framework that
infers interpretable expressions of intrinsic dynamics from visual observations.
At the upper level, we introduce an LLMs-driven decoupled constitutive evolu-
tion strategy, where LLMs are prompted as a physics expert to generate and revise
constitutive laws, with a built-in decoupling mechanism that substantially reduces
the search complexity of LLMs. At the lower level, we introduce a vision-guided
constitutive evaluation mechanism, which utilizes visual simulation to evaluate
the consistency between the generated constitutive law and the underlying intrin-
sic dynamics, thereby guiding the upper-level evolution. Experiments on both
synthetic and real-world datasets demonstrate that VisionLaw can effectively in-
fer interpretable intrinsic dynamics from visual observations. It significantly out-
performs existing state-of-the-art methods and exhibits strong generalization for
interactive simulation in novel scenarios.

1 INTRODUCTION

With the advancement of 4D generation Zhao et al. (2023); Bahmani et al. (2024); Jiang et al.
(2024a); Ren et al. (2023), realistic interaction with 3D assets has become increasingly feasible,
facilitating broad applications in areas like virtual reality, embodied intelligence, and animation Shi
et al. (2023); Lu et al. (2024); Jiang et al. (2024b). Among these advances Xie et al. (2024); Lin et al.
(2024b), incorporating physical simulation Stomakhin et al. (2013); Müller et al. (2007) stands out
as a particularly prominent method, as it enables the generation of interactive dynamics that closely
mirror real-world physical behavior. To ensure simulation realism, it is essential to accurately cap-
ture the intrinsic dynamics of objects, including material properties (e.g., stiffness) and constitutive
laws Chaves (2013), which describe the response behaviors of materials under applied forces.

Humans can roughly infer the intrinsic dynamics of objects merely by observing their motion, and
are even capable of predicting how these objects would interact in new scenarios. A fundamental
question arises: can we enable machines to infer the intrinsic dynamics directly from visual obser-
vations, as humans do? Recent methods Xie et al. (2024); Li et al. (2023) have attempted to bridge
the gap between visual dynamics and physical simulation by incorporating physical simulators (e.g.,
Material Point Method, MPM Stomakhin et al. (2013)) into 3D representations such as NeRF and
3D Gaussian Splatting (3DGS) Mildenhall et al. (2021); Kerbl et al. (2023). This integration has
led to a promising paradigm for inferring the intrinsic dynamics from visual observations. Depend-
ing on the type of intrinsic dynamics being inferred, existing methods can be categorized into two
groups: material parameter estimation and constitutive law inference.

For material parameter estimation, PAC-NeRF and GIC Li et al. (2023); Cai et al. (2024) esti-
mate material parameters by the supervision of multi-view videos. PhyDreamer, DreamPhysics,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LLMs
Thinker

Elas%c Cons%tu%ve Component

Plas%c Cons%tu%ve Component

Visual
Observa-on

Intrinsic Dynamics

MPM
Simulator

You are a thinker. Please
complete the genera5on
and correc5on of the
cons5tu5ve law.

Feedback

Corotated
Elas-city

❄

🔥
Material Property: 𝑬, 𝝆, 𝜼

🔥

🔥

Neural
Elas6c Law

Iden-ty
Plas-city

❄

Supervise

Render

Supervise Supervise

Render Render

Manually Defined
Cons/tu/ve Laws

Neural
Plas6c Law

Method 2: “Poor interpretability and generaliza6on”

Method 1: “Struggle to align with actual dynamics” Our Method: ”Strong interpretability and generaliza6on”

Figure 1: Existing works either rely on manually defined constitutive laws, which struggle to align
with actual intrinsic dynamics, or learn neural constitutive laws, which suffer from poor inter-
pretability and generalization. In contrast, our approach can automatically infer interpretable in-
trinsic dynamics solely from visual observations.

and Physics3D Zhang et al. (2024); Huang et al. (2025); Liu et al. (2024) distill visual dynamics
priors from video diffusion models to guide the estimation process. However, these approaches typ-
ically rely on manually defined constitutive laws, which often fail to align with the complex physical
behaviors observed in practice, thereby compromising the accuracy of parameter estimation.

For constitutive law inference, OmniPhysGS Lin et al. (2025) introduces constitutive Gaussians,
which assign a suitable constitutive law to each Gaussian kernel from an expert-designed constitu-
tive set. However, such a predefined set often fails to capture the full diversity of real-world physical
behaviors. NeuMA Cao et al. (2024) learns neural constitutive laws from visual observations. De-
spite its effectiveness, it has notable limitations: 1) The learned laws are black-box representations,
which lack interpretability and are difficult for humans to understand; 2) Due to the lack of physical
inductive biases, neural networks tend to mechanically memorize and reconstruct visual observa-
tions instead of modeling underlying dynamics, resulting in overfitting and poor generalization.

To overcome the aforementioned challenges, we introduce VisionLaw, an interpretable intrinsic dy-
namics inference framework based on bilevel optimization, which can jointly infer symbolic consti-
tutive law and their corresponding continuous material properties solely from visual observations.
At the upper level, we propose an LLMs-driven decoupled constitutive evolution strategy, which: 1)
unleashes the capabilities of LLMs in physical understanding and mathematical reasoning to gener-
ate and refine symbolic constitutive hypotheses; 2) introduces a decoupling mechanism to effectively
alleviate the search space explosion caused by jointly evolving elastic and plastic components. At
the lower level, we construct a vision-guided constitutive evaluation mechanism. Supervised by vi-
sual observations, it optimizes the continuous material parameters of a given constitutive law using
a differentiable simulator and renderer. The goal is to generate evaluation and feedback that re-
flect the consistency between the generated laws and ground-truth intrinsic dynamics, which in turn
guides the evolution at the upper level. Through collaborative optimization between the upper and
lower levels, VisionLaw effectively captures the interpretable intrinsic dynamics from visual obser-
vations and generalizes them to novel scenarios, enabling physically plausible 4D interaction. Our
contributions are summarized as follows:

• We propose a bilevel optimization framework that can automatically infer symbolic consti-
tutive law and material properties from visual observations.

• We distill physics priors from LLMs to introduce explicit physical inductive bias, thereby
facilitating the evolution of constitutive laws. In addition, a decoupled evolution strategy is
introduced to significantly improve both search efficiency and solution quality.

• We introduce a vision-guided constitutive evaluation mechanism to provide evaluation and
feedback of a given constitutive law for the upper-level evolution.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Extensive experiments on both synthetic and real-world datasets demonstrate that our
method effectively captures the interpretable intrinsic dynamics underlying visual obser-
vations and transfers them to novel scenarios for 4D interaction.

2 PRELIMINARIES

2.1 CONSTITUTIVE LAWS

In continuum mechanics Chaves (2013), constitutive laws define how materials respond under ap-
plied forces. The essential reason why materials like rubber, sand, and water exhibit entirely dif-
ferent physical behaviors lies in the differences in the constitutive laws they follow. To simulate
the motion and deformation of materials, we need to solve a system of partial differential equations
derived from the conservation of mass and momentum:

Dρ

Dt
+ ρ∇ · v = 0, ρ

Dv

Dt
= ∇ ·P+ ρg, (1)

where ρ denotes the density, v the velocity field, g the gravitational acceleration, and P the stress
tensor, which is defined by the constitutive law. In this paper, we employ the MPM simulator
to solve the above system of governing equations for simulation. Please refer to Appendix D for
further details about MPM. Within the MPM framework, two types of constitutive laws must be
specified: (1) an elastic constitutive law that describes reversible elastic responses, and (2) a plastic
constitutive law that captures irreversible plastic evolution. Their formulations are given as:

φE (F; θE) 7→ τ , φP (F; θP) 7→ Fcorrected, (2)
where φE and φP denote the elastic and plastic constitutive laws, respectively. F is the deformation
gradient, τ is the Kirchhoff stress tensor, Fcorrected is the corrected deformation gradient after plastic
return mapping. The continuous material parameters in the elastic and plastic laws are denoted by
θE and θP , respectively. Several classical constitutive laws are listed in Appendix E. Despite the
availability of many classical constitutive laws, they remain inadequate in capturing the diversity
and nonlinear behavior of complex materials. To this end, we propose VisionLaw, which infers
constitutive laws directly from visual observations.

2.2 PHYSICS-INTEGRATED 3D GAUSSIANS

3D Gaussians Splatting (3DGS) Kerbl et al. (2023) represents the scene using a set of anisotropic
Gaussian kernels G = {xi,Ai, αi, Ci}i∈K, where xi, Ai, αi, and Ci represent the center position,
covariance matrix, opacity, and spherical harmonic coefficients of the Gaussian kernel Gi, respec-
tively. To render 3D Gaussians into a 2D image from a given view, the color of each pixel can be
formulated as:

C =
∑
i∈N

σiSH(di, Ci)
i−1∏
j=1

(1− σj), (3)

where N denotes a set of sorted Gaussian kernels related to the pixel and view. σi is the effective
opacity, defined as the product of the projected 2D Gaussian weight and opacity αi. SH computes
RGB values based on the view direction di and spherical harmonic coefficients Ci. Unlike NeRF’s
implicit form, 3DGS offers an explicit representation that exhibits a Lagrangian nature, facilitating
seamless integration with simulation algorithms. Thus, PhyGaussians Xie et al. (2024) pioneers the
integration of MPM simulator Stomakhin et al. (2013) into 3DGS, combining physical simulation
with visual rendering. Specifically, this method treats Gaussian kernels as particles representing the
continuum, and assigns each a time property t, material properties θ (e.g., stiffness). Therefore,
given the constitutive law and simulation conditions (e.g., external forces and boundary), MPM can
be applied to predict the displacement and deformation of Gaussian kernels at the next time step:

xt+1,Ft+1 = Φ(Gt), (4)

At+1 = Ft+1At(Ft+1)T . (5)
Here, Φ is a differentiable MPM simulator, Ft+1 denotes the deformation gradient at time step t+1,
which describes the local deformation of particles (the subscript i is omitted for simplicity). Gaus-
sian covariance At+1 can be updated by applying Ft+1, which approximates the deformation of the
Gaussian kernel. After the MPM simulation is completed, a 4DGS representation is constructed,
which enables rendering of visual dynamics using Eq. 3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

self.𝐸 = 1𝑒!

Python Code

φ Discrete Expression

Θ Continuous Parameterization

self.𝜎" = 4.0

Elasticity Model Plasticity Model

self.𝜈 = 0.2 self.𝐺 = 7.0

𝑥 = 𝐸 + 𝜈
𝜏 = 𝑥# + 𝑥 𝐹$%& = sin(𝑦)

𝑦 = 𝜎" × 𝐺

self.𝐸 = 1𝑒!

Python Code

φ Discrete Expression

Θ Continuous Parameterization

self.𝜎" = 4.0

Elasticity Model Plasticity Model

self.𝜈 = 0.2 self.𝐺 = 7.0

𝑥 = 𝐸 + 𝜈
𝜏 = 𝑥# + 𝑥 𝐹$%& = sin(𝑦)

𝑦 = 𝜎" × 𝐺

3DGS Representa.on Differen.able Simulator Differen.able Renderer Visual Simula.on

Loss

Visual Observa.on

......

𝑡!

𝑡"

self.𝐸 = 1𝑒!

Python Code

φ Discrete Expression

Θ Continuous Parameterization

self.𝜎" = 4.0

Elasticity Model Plasticity Model

self.𝜈 = 0.2 self.𝐺 = 7.0

𝑥 = 𝐸 + 𝜈
𝜏 = 𝑥# + 𝑥 𝐹$%& = sin(𝑦)

𝑦 = 𝜎" × 𝐺

×𝑀

Candidate Cons+tu+ve Individuals

Itera&on

Itera&on

Lo
ss

Pa
ra
m
et
er

“Analyze”:
Analyze step-by-
step the potential
issues based on the
feedback.
“Plan”:
Think step-by-step
what you need to do
to improve model
performance.

You are an
intelligent AI
assistant for coding,
physical
simulation ...
Follow the user‘s
requirements ...

Decouple Evolu+on Strategy

Alterna+ng

Joint

Elas%city

Elas%city Plas%city

❄

🔥 🔥

Elas%city🔥

Plas%city🔥

Plas%city❄

Popula.on

forward
backward

Evaluate & Feedback

Select

Guide

......

𝑡!

𝑡"

Top-k

Figure 2: Given a constitutive individual—either predefined at initialization or generated by
LLMs—it is embedded into a differentiable MPM simulator for forward simulation. The resulting
dynamics are rendered and compared with observations to compute a loss, which is backpropagated
to optimize material parameters. This process produces both a fitness score and feedback for the
individual. Based on fitness, the top-k individuals are selected and, along with their feedback, en-
coded into prompts for the LLMs. Guided by the decoupled evolution strategy, the LLMs analyzes
and refines these constitutive law expressions to generate offspring for the next optimization cycle.

3 METHODOLOGY

In this work, we aim to infer interpretable intrinsic dynamics from a series of visual observations.
Formally, given multi-view video observations V = {V1, V2, ..., VN} of moving objects along with
corresponding camera extrinsic and intrinsic parameters, the goal is to infer the discrete constitutive
law expressions and optimize the continuous material parameters in a unified manner. To this end,
we propose VisionLaw, a novel bilevel optimization framework:

min
φ,Θ

L (R (φ,Θ, θ∗; Φ,G) , V) , (6)

s.t. h (φ,Θ;Φ) ≤ 0, (7)
θ∗ ∈ argmin

θ∈Θ
L (R (θ; Φ, φ,G) , V) , (8)

where, R is a differentiable renderer defined by Eq. 3. The constitutive law φ consists of an elastic
law φE and a plastic law φP . Θ defines the continuous parameter space for inner-level optimization
θ ∈ Θ. h(·) ≤ 0 refers to the validity of the simulation (e.g. whether a constitutive law φ is
simulatable). The material parameter θ includes the elastic parameters θE and the plastic parameters
θP . For the upper level, based on evaluation and feedback from the lower level, LLMs is employed
to generate and refine discrete constitutive expressions (φ,Θ). At the lower level, given the output
(φ,Θ) from the upper level, the optimal continuous material parameters θ∗ are estimated under
visual observation supervision, using differentiable rendering and simulation. During this process,
evaluation and feedback are provided. The pipeline of the proposed VisionLaw is illustrated in Fig.2.

3.1 UPPER-LEVEL CONSTITUTIVE EVOLUTION

3.1.1 LLMS-DRIVEN CONSTITUTIVE LAWS EVOLUTION.

Recently, LLMs have shown tremendous potential in scientific discovery Yang et al. (2023);
Romera-Paredes et al. (2024); Ma et al. (2024), owing to their strong symbolic reasoning abilities
and extensive physical priors. Inspired by this, in the upper-level search, we prompt LLMs to evolve
constitutive law expressions. Specifically, we consider LLMs as an intelligent operator and construct
an evolutionary search paradigm to iteratively optimize the constitutive law expressions. Each law
is represented as a Python code snippet with a clear physical meaning and strong interpretability.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The optimization procedure consists of five stages, which are as follows: i) Initialization: Several
classical constitutive laws (e.g., purely elastic material models) are introduced as initial individuals.
This serves as a physically plausible starting point for the evolutionary process. ii) Fitness Evalua-
tion: Each candidate constitutive law is passed to the lower level for simulation testing. Its fitness
is evaluated based on visual observation, and feedback, such as the loss curve, is collected. iii)
Selection: to enhance population diversity and avoid local optima, we first remove duplicate consti-
tutive individuals with fitness differences below a threshold ϵ. Then, we select the top-k constitutive
individuals with the highest fitness from the remaining population as ”parents” for the next round
of evolution. iv) Expression Correction: we prompt LLMs to 1) analyze the parent expression and
identify any shortcomings based on its feedback; 2) design an improvement plan and determine how
to modify the expression to increase fitness; 3) generate a set of physically plausible constitutive law
expressions as candidate individuals. This process is formalized as:

{φm,Θm}m∈|M | = LLM
({
φk,Θk, ok

}
k∈|K| ,P

)
, (9)

where,K denotes parent size,M denotes offspring size, o represents the feedback obtained from the
lower level and P denotes the prompt provided to LLMs. v) Stages ii) to iv) constitute a complete
evolutionary iteration. Multiple evolutionary iterations are executed until the predefined number of
iterations is reached. Eventually, the algorithm evolves constitutive laws that not only simulate dy-
namic behaviors consistent with visual observations but also exhibit strong physical interpretability.

3.1.2 DECOUPLE EVOLUTION STRATEGY.

In the MPM simulation framework, a complete constitutive law φ consists of an elastic part φE and
a plastic part φP , which together govern the system’s simulation behavior. However, simultaneous
optimization of these components significantly enlarges the search space, increases the difficulty
of LLMs search, and hinders convergence to high-quality solutions. To address the above issue, we
propose a decoupled evolution strategy that splits the coupled constitutive optimization task into two
independently solvable sub-tasks, thereby effectively reducing the search space.

This strategy consists of two phases: 1) Alternating Evolution: In each iteration, we prompt the
LLM to optimize only one component of the constitutive law expression (elastic or plastic), while
the other remains fixed and is updated in the subsequent iteration. The two components of con-
stitutive laws are optimized alternately across multiple iterations. 2) Joint Evolution: After the
alternating optimization phase, we prompt the LLM to jointly optimize both elastic and plastic com-
ponents to further enhance the overall performance. This phase serves as a fine-grained refinement
of the existing high-quality expressions from a global perspective. Through the proposed decoupled
evolution strategy, we effectively reduce the search space, enhance the stability and efficiency of
LLM-based search, and substantially improve the quality of the final constitutive laws.

3.2 LOWER-LEVEL CONSTITUTIVE EVALUATION

To effectively evaluate whether a candidate constitutive expression can accurately capture the in-
trinsic dynamics of motion observed in visual data, and to provide high-quality feedback to the
upper-level evolution, we design a vision-guided constitutive evaluation mechanism. First, a static
3DGS representation is reconstructed from the first frame of multi-view video inputs. Then, the
candidate constitutive law expression φ(θ), with continuous material parameters, is seamlessly em-
bedded into a differentiable MPM simulator. We integrate the MPM simulator with 3DGS to drive
the simulation and render the predicted visual dynamics V from given views. The supervised loss
between the predicted and observed visual dynamics can be formulated as:

L =
1

N

N∑
n=1

[λL2(V̂n, Vn) + (1− λ)LD–SSIM(V̂n, Vn)], (10)

where, V̂n denotes the rendered video from the n-th viewpoint, and L2 is the L2 norm loss. Since
both the renderer R and the MPM simulator Φ are differentiable, the evaluation loss can be back-
propagated to optimize the continuous material parameters. During this process, we collect the loss
curve and the material parameter update trajectory as feedback to construct the LLMs’ prompts.
Meanwhile, the minimum loss achieved during optimization is used as the fitness score of the con-
stitutive candidate to guide the selection process at the upper level.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Method BouncyBall ClayCat HoneyBottle JellyDuck RubberPawn SandFish Average
PAC-NeRF Li et al. (2023) 516.30 15.38 2.21 137.73 15.47 1.71 114.80
NCLaw Ma et al. (2023) 56.69 2.35 0.92 11.97 3.91 1.30 12.86
NeuMA Cao et al. (2024) 1.78 1.24 1.09 10.96 1.01 1.07 2.86

VisionLaw (Ours) 1.08 0.77 0.79 5.19 0.94 1.10 1.65

Table 1: Quantitative Comparison of Intrinsic Dynamics Consistency on Synthetic Datasets.
The Chamfer distance was employed to quantify the similarity between simulated and ground-truth
particle trajectories. Lower values indicate better alignment with ground-truth intrinsic dynamics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 IMPLEMENTATION DETAILS

Given multi-view videos of a scene, we follow NeuMA Cao et al. (2024) to perform 3D recon-
struction and Particle-GS binding using multi-view images from the initial time step. We use only
single-view videos as ground-truth observations to infer intrinsic dynamics across all experiments.
For all scenarios, the initial constitutive individual is only defined as a purely elastic model that com-
bines fixed corotated elasticity with identity plasticity. For the upper-level evolution, we employ
GPT-4.1-mini to generate constitutive hypotheses. Details of the prompt design are provided
in Appendix G. The decouple evolution strategy is executed through four iterations of alternating
optimization, followed by three iterations of joint optimization. For lower-level optimization, we
conduct MPM simulation Xie et al. (2024) under gravitational acceleration (9.8m/s2). We employ
the Adam optimizer with a learning rate of 1×10−3 to tune the material parameters. For each scene,
we perform five independent runs using different random seeds. All experiments are conducted on
an NVIDIA A40 (48GB) GPU. Detailed experimental settings are provided in Appendix A.1.

4.1.2 BASELINES

We compare our method with state-of-the-art intrinsic dynamics inference methods: PAC-NeRF Li
et al. (2023), NCLaw Ma et al. (2023), NeuMA Cao et al. (2024), and Spring-Gaus Zhong et al.
(2024). PAC-NeRF is capable of inverting material parameters from video input. NCLaw only fits
neural constitutive laws to known dynamics, whereas NeuMA extends this by introducing visual
information for adaptation. NeuMA is the most relevant work to ours, as it learns neural constitutive
laws directly from visual observations. Spring-Gaus models elastic objects using a spring-mass
system with Gaussian kernels. All baseline experimental settings follow the original setup.

4.1.3 DATASETS AND METRICS

To thoroughly evaluate the effectiveness of our method, we conduct experiments on both synthetic
and real-world datasets. For synthetic data, we adopt six dynamic scenes from NeuMA Cao et al.
(2024), each with varying initial conditions (including object shapes, velocities, and positions), in-
trinsic dynamics, and simulation time intervals. Each scene includes 10 videos captured from dif-
ferent views, each containing 400 frames, and the dataset further provides ground-truth particle
trajectories. For real-world evaluation, we conduct experiments on two scenes (’Bun’ and ’Burger’)
provided by Spring-Gaus Zhong et al. (2024). More details of the datasets are provided in Ap-
pendix A.2. Following prior works Guan et al. (2022); Cao et al. (2024), we use the L2-Chamfer
distance Erler et al. (2020) between the simulated and ground-truth particle trajectories to quantify
the accuracy of intrinsic dynamics inference. To assess the visual fidelity, we follow 3DGS Kerbl
et al. (2023) and employ PSNR, SSIM, and LPIPS as quantitative metrics.

4.2 PERFORMANCE ON INTRINSIC DYNAMICS INFERENCE

4.2.1 SYNTHETIC DATASET.

Comparison of Intrinsic Dynamics Consistency. In synthetic datasets, ground-truth particle tra-
jectories are generated from ground-truth intrinsic dynamics. We evaluate alignment between in-
ferred and ground-truth intrinsic dynamics by measuring the Chamfer distance between simulated

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 3: Quantitative Comparison of Visual Fidelity on Synthetic Datasets. (a) Average PSNR
over all non-training views. Higher PSNR values reflect improved visual fidelity; (b) PSNR com-
parison at different views, with View 0 denoting the training view.

Observation Spring-Gaus OursNeuMA Observation Spring-Gaus OursNeuMA

Bun 31.57 32.9930.49 33.0933.16 33.71Burger

class PlasticityModel(nn.Module):
def __init__(self, yield_stress: float =
0.30):
super().__init__()
self.yield_stress =
nn.Parameter(torch.tensor(yield_stress))
def forward(self, F: torch.Tensor) ->
torch.Tensor:
U, sigma, Vh = torch.linalg.svd(F)
sigma_clamped = torch.clamp_min(sigma, 1e-6)
epsilon = torch.log(sigma_clamped)
epsilon_mean = epsilon.mean(dim=1,
keepdim=True)
epsilon_dev = epsilon - epsilon_mean
epsilon_dev_norm = torch.norm(epsilon_dev,
dim=1, keepdim=True).clamp_min(1e-12)
delta_gamma = epsilon_dev_norm -
self.yield_stress
delta_gamma_clamped =
torch.clamp_min(delta_gamma, 0.0)
shrink_factor = 1.0 - delta_gamma_clamped /
epsilon_dev_norm
epsilon_dev_corrected = epsilon_dev *
shrink_factor
epsilon_corrected = epsilon_mean +
epsilon_dev_corrected
sigma_corrected =
torch.exp(epsilon_corrected)
F_corrected = U @
torch.diag_embed(sigma_corrected) @ Vh
return F_corrected

class ElasticityModel(nn.Module):
def __init__(self, youngs_modulus_log: float
= 9.82, poissons_ratio_sigmoid: float =
4.07):
super().__init__()
self.youngs_modulus_log =
nn.Parameter(torch.tensor(youngs_modulus_log
))
self.poissons_ratio_sigmoid =
nn.Parameter(torch.tensor(poissons_ratio_sig
moid))
def forward(self, F: torch.Tensor) ->
torch.Tensor:
B = F.size(0)
E = self.youngs_modulus_log.exp()
nu = self.poissons_ratio_sigmoid.sigmoid() *
0.49
mu = E / (2 * (1 + nu))
lam = E * nu / ((1 + nu) * (1 - 2 * nu))
I = torch.eye(3, dtype=F.dtype,
device=F.device).unsqueeze(0).expand(B, -1,
-1)
J = torch.linalg.det(F).clamp_min(1e-
12).view(-1, 1, 1)
logJ = torch.log(J)
F_inv = torch.inverse(F)
F_inv_T = F_inv.transpose(1, 2)
P = mu * (F - F_inv_T) + lam * logJ *
F_inv_T
Ft = F.transpose(1, 2)
kirchhoff_stress = torch.matmul(P, Ft)
return kirchhoff_stress

(a) (b)

Figure 4: Comparison on Real-World Datasets. (a) Quantitative metrics (i.e., PSNR) between the
predicted and observed frames are reported in the bottom row; (b) The intrinsic dynamics inferred
from the Bun scene, represented as Python code, exhibit strong interpretability.

and ground-truth trajectories, as summarized in Tab. 1. PAC-NeRF relies heavily on manually de-
signed constitutive laws and is highly sensitive to material parameter initialization. This restricts
its ability to capture actual dynamics, leading to poor performance, especially in complex scenar-
ios such as BouncyBall and JellyDuck. Similarly, NCLaw learns predefined constitutive laws and
suffers from the same limitations as PAC-NeRF. NeuMA improves flexibility by learning neural
constitutive laws from visual inputs. However, its black-box nature limits interpretability and of-
ten leads to overfitting. In contrast, our VisionLaw approach achieves the best overall performance
across all six benchmarks, with an average Chamfer distance of 1.65, significantly outperforming the
baselines. These results demonstrate the superior ability of VisionLaw to recover intrinsic dynamics
directly from visual observations, while maintaining interpretability.

Comparison of Visual Fidelity. To further evaluate visual fidelity, we compute the PSNR between
rendered dynamics and ground-truth observations. As shown in Figure 3 (a), we report the aver-
aged PSNR over all non-training views. The results show that VisionLaw significantly outperforms
NeuMA, achieving superior visual fidelity. In Fig.3 (b), we further compare PSNR across different
views, including the training view (View 0). NeuMA exhibits pronounced variability, with higher
PSNR at the training view and its neighbors (View 1 and View 9), but considerably worse perfor-
mance on unseen views. This shows that NeuMA tends to overfit the training views, which limits
its ability to generalize. In contrast, VisionLaw performs consistently across different views and
still produces robust results on unseen views, even when trained on only one. This stability arises
from introducing physical inductive biases through LLMs into the evolution of constitutive laws,
which effectively mitigates the overfitting commonly observed in purely neural methods. Overall,
these findings confirm that our approach not only captures more faithful intrinsic dynamics but also
delivers dynamic reconstructions of higher visual fidelity.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Observa(on NeuMA Ours

ClayCat 7.93 0.95 1.24 0.96HoneyBo+le RubberPawn 1.39 0.93

Observa(on NeuMA Ours Observa(on NeuMA OursObserva(on NeuMA Ours

BouncyBall 13.6 1.17

Ti
m
e

Figure 5: Generalization to Unseen Observations. We infer the intrinsic dynamics using only the
first 200 frames of visual observation and simulate the subsequent 200 frames. Quantitative metrics
(i.e., Chamfer distance) are reported in the bottom row.

4.2.2 REAL-WORLD DATASET.

We evaluated our method on a real-world dataset against Spring-Gaus Zhong et al. (2024) and
NeuMA Cao et al. (2024), with visual results and PSNR metrics shown in Fig. 4(a). Spring-Gaus
models elastic deformation using a spring–mass system, which works well for simple linear behav-
iors, but fails to capture the complex nonlinear elasticity of real deformable objects. Consequently,
its predictions deviate markedly from the ground-truth observations. NeuMA employs neural net-
works to approximate nonlinear dynamics and capture diverse material behaviors. However, it is
sensitive to observation noise and lacks explicit physical constraints, which limits its ability to re-
produce the subtle deformations of real-world objects. In contrast, VisionLaw integrates a broad
range of physical priors through LLMs, providing a strong inductive bias toward physically plau-
sible dynamics. This improves both generalization and learning stability. As shown in Fig. 4 (a),
VisionLaw generates results that are more consistent with real observations, both visually and quan-
titatively. These results demonstrate that VisionLaw can accurately capture the intrinsic dynamics
of deformable objects and highlight its practical effectiveness in real-world scenarios. Meanwhile,
Fig. 4 (b) illustrates the inferred intrinsic dynamics in the Bun scenario, expressed in the form of
Python code. This form offers strong interpretability, allowing humans to intuitively grasp the phys-
ical meaning underlying the formulas, thereby facilitating scientific discovery.

4.3 GENERALIZATION ANALYSIS AND ABLATION STUDIES

4.3.1 GENERALIZATION TO UNSEEN OBSERVATIONS.

We conducted a generalization analysis on four examples, comparing our method with NeuMA Cao
et al. (2024). For each scene, the first 200 frames of visual observations were used to infer the
intrinsic dynamics, which were then used to predict the next 200 frames. As shown in Fig. 5, NeuMA
struggles to generalize beyond the observed frames. Its predictions diverge significantly from the
ground truth, likely due to overfitting. In contrast, VisionLaw achieves consistently high predictive
accuracy across both visual appearance and Chamfer distance metrics, even with limited observation
data. We attribute this advantage to the physical inductive bias introduced by knowledge-rich LLMs,
which not only improves physical plausibility but also constrains the solution space in a meaningful
way. These results highlight that VisionLaw combines strong generalization with interpretability,
making it practical for forward simulation in previously unseen temporal regimes.

4.3.2 GENERALIZATION TO NOVEL SCENARIOS

To further verify the generalization and transferability of the interpretable intrinsic dynamics learned
by VisionLaw from visual observations, we apply the dynamics learned from different scenarios to
novel 4D generation tasks. The 3D-to-4D and image-to-4D tasks follow the paradigms of Phys-
Gaussian Xie et al. (2024) and Phy124 Lin et al. (2024a), respectively, and all experiments are
conducted under gravitational conditions. As shown in Fig. 6, all examples generate dynamics con-
sistent with the original observations, such as the slow deformation of clay, the elastic recovery of
rubber, and the dispersive behavior of sand. These results demonstrate that the intrinsic dynamics

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Image-to-4D 3D-to-4D

Je
lly

Cl
ay

H
on

ey
Ru

bb
er

Sa
nd

Bo
un

cy

Time Time

Figure 6: Generalization to Novel Scenarios for 4D Interaction. The left text indicates the intrin-
sic dynamics applied, which are learned from visual observations through VisionLaw.

Figure 7: Ablation Study on Decouple Evolution Strategy. The figure shows the loss of the best
solution averaged across seeds at different iterations. The shaded area indicates the range between
the minimum and maximum values.

inferred by VisionLaw are not only interpretable but also transferable to unseen scenarios, enabling
the 4D interaction aligned with real physical behaviors. This cross-scenario generalization opens
new possibilities for physics-driven 4D interaction.

4.3.3 ABLATION STUDY ON DECOUPLED EVOLUTION STRATEGY

To evaluate the effectiveness of our proposed decoupled evolution strategy, we perform an ablation
study comparing two settings over five iterations: 1) With Decouple: the elastic and plastic com-
ponents are optimized alternately for four iterations, followed by a final joint refinement step; 2)
Without Decouple: all five iterations are performed with joint optimization. As illustrated in Fig. 7,
the decoupled strategy consistently yields lower RGB losses across diverse scenes, indicating it leads
to better constitutive law discovery. By decomposing the search into simpler sub-tasks, it narrows
the search space, making optimization more efficient. Moreover, the shaded regions are noticeably
larger under the decoupled setting, indicating greater solution diversity. This helps avoid early con-
vergence to poor local minima. Overall, the decoupled evolution strategy more effectively unleashes
the potential of LLMs by not only sharpening exploitation but also broadening exploration.

5 CONCLUSION

In this paper, we propose VisionLaw, a bilevel optimization framework that infers interpretable in-
trinsic dynamics directly from visual observations by jointly optimizing the symbolic constitutive
law and its material parameters. At the upper level, knowledgeable LLMs are prompted to generate
and refine symbolic constitutive laws, thereby introducing physical inductive biases into constitu-
tive evolution. Meanwhile, a decoupled evolution strategy is introduced to reduce the complexity of
jointly searching and to improve the solution quality. At the lower level, material parameters are op-
timized under visual supervision, while evaluation and feedback on intrinsic dynamics consistency
are provided to guide the upper-level evolution. This closed-loop design effectively bridges the gap
between visual data and physical nature, achieving a balance between interpretability, physical plau-
sibility, and generalization. Experimental results show that our method accurately captures intrinsic
dynamics from visual observations and generalizes well to novel scenarios for 4D interaction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research adheres to the ethical guidelines outlined by ICLR. We confirm that no human sub-
jects were involved in this study, and all datasets used have been properly sourced and are publicly
available. Our methods have been designed with fairness and transparency in mind, ensuring no
biases are introduced in the analysis. Privacy and security of data have been prioritized throughout
the research, and we comply with all applicable legal regulations. No conflicts of interest or spon-
sorships have influenced the research outcomes. We are committed to upholding research integrity
and have followed appropriate ethical practices throughout the study.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our work. The source code for the algo-
rithms presented in this paper is provided as supplementary materials. Additionally, a detailed
description of the experimental setup and datasets is provided in Appedix. We encourage reviewers
and readers to refer to these materials for complete reproducibility.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Sherwin Bahmani, Ivan Skorokhodov, Victor Rong, Gordon Wetzstein, Leonidas Guibas, Peter
Wonka, Sergey Tulyakov, Jeong Joon Park, Andrea Tagliasacchi, and David B Lindell. 4d-fy:
Text-to-4d generation using hybrid score distillation sampling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7996–8006, 2024.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 5855–5864,
2021.

Reinhard Blickhan. The spring-mass model for running and hopping. Journal of biomechanics, 22
(11-12):1217–1227, 1989.

Junhao Cai, Yuji Yang, Weihao Yuan, Yisheng He, Zilong Dong, Liefeng Bo, Hui Cheng, and Qifeng
Chen. Gic: Gaussian-informed continuum for physical property identification and simulation.
arXiv preprint arXiv:2406.14927, 2024.

Junyi Cao, Shanyan Guan, Yanhao Ge, Wei Li, Xiaokang Yang, and Chao Ma. Neuma: Neural
material adaptor for visual grounding of intrinsic dynamics. volume 37, pp. 65643–65669, 2024.

Eduardo WV Chaves. Notes on continuum mechanics. Springer Science & Business Media, 2013.

Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J Mitra, and Michael Wimmer. Points2surf
learning implicit surfaces from point clouds. In Proceedings of the European conference on
computer vision, pp. 108–124. Springer, 2020.

Yutao Feng, Yintong Shang, Xuan Li, Tianjia Shao, Chenfanfu Jiang, and Yin Yang. Pie-nerf:
Physics-based interactive elastodynamics with nerf. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4450–4461, 2024.

Shanyan Guan, Huayu Deng, Yunbo Wang, and Xiaokang Yang. Neurofluid: Fluid dynamics
grounding with particle-driven neural radiance fields. In Proceedings of the International con-
ference on machine learning, pp. 7919–7929. PMLR, 2022.

Si Hang. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on Math-
ematical Software (TMS), 41(2):11, 2015.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tianyu Huang, Yihan Zeng, Hui Li, Wangmeng Zuo, and Rynson WH Lau. Dreamphysics: Learning
physical properties of dynamic 3d gaussians with video diffusion priors. 2025.

Yanqin Jiang, Li Zhang, Jin Gao, Weimin Hu, and Yao Yao. Consistent4d: Consistent 360° dynamic
object generation from monocular video. Proceedings of the International conference on learning
representations, 2024a.

Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng, Huamin Wang, Minchen Li, Henry Lau,
Feng Gao, Yin Yang, et al. Vr-gs: A physical dynamics-aware interactive gaussian splatting
system in virtual reality. In Proceedings of the ACM SIGGRAPH, pp. 1–1, 2024b.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics (TOG), 42(4):139–1,
2023.

Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy Jatavallabhula, Ming Lin, Chenfanfu
Jiang, and Chuang Gan. Pac-nerf: Physics augmented continuum neural radiance fields for
geometry-agnostic system identification. 2023.

Jiajing Lin, Zhenzhong Wang, Yongjie Hou, Yuzhou Tang, and Min Jiang. Phy124: Fast physics-
driven 4d content generation from a single image. arXiv preprint arXiv:2409.07179, 2024a.

Jiajing Lin, Zhenzhong Wang, Shu Jiang, Yongjie Hou, and Min Jiang. Phys4dgen: A physics-
driven framework for controllable and efficient 4d content generation from a single image. arXiv
e-prints, pp. arXiv–2411, 2024b.

Yuchen Lin, Chenguo Lin, Jianjin Xu, and Yadong Mu. Omniphysgs: 3d constitutive gaussians for
general physics-based dynamics generation. arXiv preprint arXiv:2501.18982, 2025.

Fangfu Liu, Hanyang Wang, Shunyu Yao, Shengjun Zhang, Jie Zhou, and Yueqi Duan.
Physics3d: Learning physical properties of 3d gaussians via video diffusion. arXiv preprint
arXiv:2406.04338, 2024.

Zhuoman Liu, Weicai Ye, Yan Luximon, Pengfei Wan, and Di Zhang. Unleashing the potential of
multi-modal foundation models and video diffusion for 4d dynamic physical scene simulation.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 11016–11025,
2025.

Guanxing Lu, Shiyi Zhang, Ziwei Wang, Changliu Liu, Jiwen Lu, and Yansong Tang. Manigaussian:
Dynamic gaussian splatting for multi-task robotic manipulation. In Proceedings of the European
Conference on Computer Vision, pp. 349–366. Springer, 2024.

Pingchuan Ma, Peter Yichen Chen, Bolei Deng, Joshua B Tenenbaum, Tao Du, Chuang Gan, and
Wojciech Matusik. Learning neural constitutive laws from motion observations for generalizable
pde dynamics. In Proceedings of the International Conference on Machine Learning, pp. 23279–
23300. PMLR, 2023.

Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo, Zhiqing Sun, Joshua B Tenenbaum, Daniela Rus,
Chuang Gan, and Wojciech Matusik. Llm and simulation as bilevel optimizers: A new paradigm
to advance physical scientific discovery. arXiv preprint arXiv:2405.09783, 2024.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. Xpbd: position-based simulation of
compliant constrained dynamics. In Proceedings of the International Conference on Motion in
Games, pp. 49–54, 2016.

Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross. Unified
simulation of elastic rods, shells, and solids. ACM Transactions on Graphics (TOG), 29(4):1–10,
2010.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Matthias Müller and Markus H Gross. Interactive virtual materials. In Proceedings of Graphics
Interface, volume 2004, pp. 239–246, 2004.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based dynamics.
Journal of Visual Communication and Image Representationv (JVCI), 18(2):109–118, 2007.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):1–15,
2022.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In Proceedings of the International conference on learning
representations, 2020.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. 2023.

Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao, Gang Zeng, and Ziwei Liu. Dream-
gaussian4d: Generative 4d gaussian splatting. arXiv preprint arXiv:2312.17142, 2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Proceedings of the
International conference on machine learning, pp. 8459–8468. PMLR, 2020.

Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, and Jiajun Wu. Robocook: Long-horizon
elasto-plastic object manipulation with diverse tools. arXiv preprint arXiv:2306.14447, 2023.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. A material
point method for snow simulation. ACM Transactions on Graphics (TOG), 32(4):1–10, 2013.

Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm:
Large multi-view gaussian model for high-resolution 3d content creation. 2024a.

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. 2024b.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simu-
lation with continuous convolutions. In Proceedings of the International conference on learning
representations, 2019.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. Nature, 620(7972):47–60, 2023.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4389–4398, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In Proceedings of the International conference on
learning representations, 2023.

Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y Feng, Changxi Zheng, Noah Snavely, Jiajun
Wu, and William T Freeman. Physdreamer: Physics-based interaction with 3d objects via video
generation. 2024.

Yuyang Zhao, Zhiwen Yan, Enze Xie, Lanqing Hong, Zhenguo Li, and Gim Hee Lee. Animate124:
Animating one image to 4d dynamic scene. arXiv preprint arXiv:2311.14603, 2023.

Licheng Zhong, Hong-Xing Yu, Jiajun Wu, and Yunzhu Li. Reconstruction and simulation of elastic
objects with spring-mass 3d gaussians. 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

In this appendix, we will provide: i) more experimental details; ii) more experimental results; iii)
related work; iv) implementation details of the MPM algorithm; v) a summary of classical consti-
tutive laws; vi) details of the prompt design. vii) visualizations of the inferred constitutive laws.
Meanwhile, Our source code, video results and inferred constitutive laws are included in the
supplemental material.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were utilized in this work to improve the fluency and clarity of the
manuscript. Their application was specifically focused on detailed proofreading to correct spelling
errors and ensure grammatical accuracy, as well as refining sentence structures to enhance the read-
ability and logical flow of the paper. It is crucial to note that all scientific contributions, including
the core concepts, experimental design, data analysis, and conclusions, were entirely conceived and
written by the authors. The LLMs were employed solely as a writing assistance tool and did not
contribute to the conceptualization or analysis of the study.

A MORE EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION DETAILS

Given multi-view videos of a scene, we first perform 3DGS reconstruction Kerbl et al. (2023) using
the multi-view images from the initial time step. Following NeuMA Cao et al. (2024), we establish
relationships between simulation particles and Gaussian kernels via the Particle-GS mechanism. To
infer intrinsic dynamics from visual observations, we utilize only single-view videos as ground-truth
observations across all datasets. For the upper-level evolution, we employ GPT-4.1-mini to gen-
erate constitutive hypotheses. For all scenarios, the initial constitutive individual is only defined
as a purely elastic model that combines fixed corotated elasticity with identity plasticity. The
alternating evolution phase consists of 4 iterations. In each iteration, the top 3 individuals are se-
lected, and each generates 6 offspring independently. In the subsequent joint evolution phase, we
conduct 3 iterations. In each iteration, the top five individuals are selected to jointly prompt GPT,
generating 18 offspring in one shot. For lower-level optimization, we conduct MPM simulations un-
der standard gravitational acceleration (9.8m/s2) within a unit cube domain [0, 1]3. The simulation
resolution is set to 323 for synthetic data and 703 for real-world data. We employ the Adam opti-
mizer with a learning rate of 1× 10−3, and perform 10 iterations to tune the material parameters of
a single constitutive law. For each scene, we conduct five independent runs using different random
seeds: 0, 1, 2, 3, and 4. All experiments are conducted on NVIDIA A40 (48GB) GPU.

A.2 DATASET DETAILS

The synthetic dataset is derived from NeuMA Cao et al. (2024) and consists of six scenes (’Bouncy-
Ball’, ’JellyDuck’, ’RubberPawn’, ’ClayCat’, ’HoneyBottle’, and ’SandFish’). Each scene records
the motion of a single object, providing observations from 10 viewpoints with a total of 400 frames
per dynamic sequence. To reduce computational resources, for the synthetic data, we select one
frame every five frames from the video to create the training set. This dataset features a variety of
material types, ranging from elastic bodies to granular materials, exhibiting diverse dynamic behav-
iors and complex geometric shapes. Meanwhile, the synthetic dataset also provides ground-truth
particle trajectories, which can be used to evaluate the consistency between the inferred and ground-
truth intrinsic dynamics. The real-world dataset is taken from Spring-Gaus Zhong et al. (2024) and
contains two scenes (‘Bun’ and ‘Burger’). It provides observations from 3 viewpoints, with each
dynamic sequence consisting of 19 frames. In all experiments, the initial velocity v0 follows the
configuration provided in NeuMA’s dataset description. We use only a single frontal view of the
object as visual observation to infer its intrinsic dynamics.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Observation Observa,on ObservationObservation Observation ObservationOurs Ours Ours Ours Ours Ours

Ti
m
e

RubberPawnHoneyBottleBouncyBall ClayCat JellyDuck SandFish

Figure 8: Visual Results on Synthetic Dataset. We select the rendered images at frames 1, 100,
200, 300, and 400. VisionLaw exhibits dynamics similar to those observed in visual observations.

Figure 9: Comparison of Chamfer Distance at Different Time Steps on Synthetic Dataset.

B MORE EXPERIMENTAL RESULTS

Qualitative visualization results. We provide qualitative results on six synthetic scenes to assess
the visual fidelity of our method. As shown in Fig 8, we compare rendered outputs from our model
with ground-truth observations at selected time frames (1, 100, 200, 300, and 400). Our method
accurately reproduces object dynamics over time, showing close alignment with the ground truth
across all scenes. These results demonstrate that VisionLaw effectively captures complex deforma-
tion behaviors with visual realism.

Quantitative Comparison of Chamfer Distance. As shown in Fig. 9, we compare the Chamfer
distance of VisionLaw, NeuMA Cao et al. (2024), and NCLaw Ma et al. (2023) across different time
steps on the synthetic dataset. NCLaw consistently shows the worst performance. This is because
NCLaw can only fit the known dynamics, but fails to adapt to the underlying intrinsic dynamics
behind the visual observations. As a result, its error remains high across all objects. NeuMA in-
troduces additional neural network components to capture the mapping between visual observations
and intrinsic dynamics. However, due to the lack of physical inductive bias, NeuMA is mainly
based on memorization, leading to overfitting and unstable predictions. In contrast, VisionLaw dis-
tills physical priors from LLMs to refine constitutive laws, thereby incorporating a form of physical
inductive bias. This mechanism enhances its ability to discover hidden dynamics, leading to con-
sistently better performance across different objects and time steps. As shown in Fig. 9, VisionLaw
achieves lower Chamfer distance, demonstrating stronger adaptability to complex dynamics.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 10: Quantitative Comparison of Visual Fidelity on Synthetic Datasets. (a) Average SSIM
and LPIPS over all non-training views. Higher SSIM and lower LPIPS values reflect improved visual
fidelity; (b) PSNR variance over all views, including training views.

Ti
m
e

Scene:

Law:

BouncyBall ClayCat HoneyBottle JellyDuck RubberPawn SandFish

RubberPawn JellyDuck ClayCat BouncyBall SandFish HoneyBottle

Ti
m
e

Ini+al Velocity

𝟎. 𝟓𝒗𝟎 1. 𝟓𝒗𝟎 𝟎. 𝟓𝒗𝟎 1. 𝟓𝒗𝟎 𝟎. 𝟓𝒗𝟎 1. 𝟓𝒗𝟎
(a) (b)

Figure 11: Generalization Analysis. (a) Generalization to new scenarios. The top row shows
the simulated scenes, while the bottom row presents the intrinsic dynamics inferred for the given
scenarios. (b) Generalization to different initial velocities. The bottom row represents the configured
initial velocity, expressed as a multiple of the original initial velocity.

Quantitative Comparison of Visual Fidelity. To more comprehensively evaluate visual fidelity,
we report average SSIM and LPIPS across all non-training views in Fig. 10 (a). The results show
that VisionLaw outperforms NeuMA Cao et al. (2024). This confirms that our method not only
captures more faithful intrinsic dynamics but also produces dynamic reconstructions with higher
perceptual fidelity. We further compute the PSNR variance over all views in Fig. 10 (b), which
reflects the generalization to unseen views. NeuMA exhibits high PSNR variance, indicating a
tendency to overfit. In contrast, VisionLaw achieves a much lower variance. This demonstrates that,
even when trained from a single fixed viewpoint, our method generalizes effectively to novel views
by leveraging the physical inductive bias introduced through LLMs.

Generalization Analysis. We first evaluate cross-scene generalization by applying the intrinsic
dynamics inferred from one scenario to simulate another. As shown in Figure 11(a), the top row
presents the target scenes, while the bottom row shows the intrinsic dynamics inferred from differ-
ent sources. Despite the mismatch between the source scene and the target, our method consistently
produces physically plausible behaviors. This indicates that the constitutive laws discovered by Vi-
sionLaw are not merely scene-specific fits but encode transferable physical priors, demonstrating
strong cross-scene generalization. We further design experiments under different initial conditions
by varying the initial velocity of objects (with the baseline v0 specified in the NeuMA Cao et al.
(2024) dataset description). As shown in Fig. 11 (b), the results show that, even with varying initial
velocities, the intrinsic dynamics inferred by VisionLaw still accurately reflect the object’s behavior.
This result underscores the robustness of our method in the face of variations in initial conditions,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

confirming that VisionLaw identifies fundamental physical laws that extend beyond the specific con-
figurations used in training.

C RELATED WORK

C.1 PHYSICS-BASED 4D INTERACTION

Advances in 3D representation methods Mildenhall et al. (2021); Müller et al. (2022); Barron et al.
(2021); Kerbl et al. (2023) (e.g., NeRF and 3DGS) have greatly facilitated the creation of 3D as-
sets Poole et al. (2023); Tang et al. (2024b;a), consequently drawing significant attention to the pur-
suit of realistic interaction with these assets. To enable physically plausible 4D interaction, recent
works have attempted to incorporate various physical simulators Stomakhin et al. (2013); Mack-
lin et al. (2016) with 3D representation. PIE-NeRF Feng et al. (2024) enables meshless nonlinear
elastodynamic simulation directly in NeRF via augmented Poisson disk sampling and quadratic gen-
eralized moving least squares (Q-GMLS) Martin et al. (2010). Inspired by the Lagrangian nature
of 3DGS, PhysGaussian Xie et al. (2024) pioneered the integration of MPM simulator into 3DGS.
Phys4DGen Lin et al. (2024b) effectively perceives multiple materials within a single object and
automatically assigns material properties by distilling physical priors from MLLMs Achiam et al.
(2023), enabling more accurate and user-friendly interactive dynamic generation. VR-GS Jiang
et al. (2024b) conducts tessellation via TetGen Hang (2015) to convert 3DGS representations into
tetrahedral meshes, enabling fast XPBD simulation and physically plausible interaction in VR.

C.2 INTRINSIC DYNAMICS LEARNING

Understanding the intrinsic dynamics underlying observational data is highly valuable for interactive
simulation Müller & Gross (2004) and scientific discovery Wang et al. (2023). Deep learning has
advanced rapidly and is increasingly being applied to physical simulation Sanchez-Gonzalez et al.
(2020), with some methods Pfaff et al. (2020); Ummenhofer et al. (2019) using end-to-end net-
works to model physical laws. However, purely neural approaches often lack physical consistency.
NCLaw Ma et al. (2023) integrates known laws with a learnable constitutive model for refinement.
SGA Ma et al. (2024) uses LLMs to infer constitutive laws from particle trajectories. However,
they rely on labeled data or high-quality motion, which are difficult to acquire. The integration of
3D representation and physical simulation makes it possible to infer intrinsic dynamics from vi-
sual observations Xie et al. (2024); Zhong et al. (2024). PAC-NeRF Li et al. (2023) jointly learns
NeRF representations and material parameters from multi-view videos. To avoid texture distortion,
GIC Cai et al. (2024) presents a geometry supervision framework. PhysDreamer, DreamPhysics,
Physics3D, PhysFlow Zhang et al. (2024); Huang et al. (2025); Liu et al. (2024; 2025) guide the
estimation process by distilling visual dynamic priors from video diffusion models. However, the
parameter estimation process in these methods relies on expert-defined constitutive laws. Spring-
Gaus Zhong et al. (2024) integrates a spring-mass system Blickhan (1989) with 3DGS to simulate
elastic objects, and optimizes spring stiffness under multi-view video supervision. OmniPhysGS Lin
et al. (2025) introduces learnable constitutive Gaussians that assign specific constitutive laws to each
Gaussian kernel. enabling interaction simulation in multi-material scenarios. While NeuMA Cao
et al. (2024) can learn neural constitutive models from visual observations, it lacks interpretability
and exhibits weak generalization ability. In this paper, we aim to infer constitutive law expressions
from visual observations that are both interpretable and highly generalizable.

D MATERIAL POINT METHOD

Continuum mechanics studies the deformation and motion behavior of materials under forces. Mo-
tion is typically represented by the deformation map x = ϕ(X, t), which maps from the undeformed
material space ω0 to the deformed world space ωt. The deformation gradient F = ∂ϕ

∂X (X, t) de-
scribes how the material deforms locally. MPM is a simulation method that combines Lagrangian
particles with Eulerian grids and has demonstrated its ability to simulate various materials. In MPM,
each particle p carries various physical properties, including mass m, density ρ, volume V , Young’s
modulus E, Poisson’s ratio ν, velocity v, deformation gradient F and velocity gradient C. MPM
operates within a loop that includes particle-to-grid (P2G) transfer, grid operations, and grid-to-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

particle (G2P) transfer. In the particle-to-grid (P2G) stage, MPM transfers momentum and mass
from particles to grids:

mt+1
i =

∑
p

wipmp, (11)

(mv)t+1
i =

∑
p

wip

[
mpv

t
p +mpC

t
p(xi − xt

p)
]
, (12)

where wip is the B-spline kernel that measures the distance between particle p and grid i. After P2G
stage, we perform grid operations:

vt
i = (mvi)

t/mt
i, (13)

f ti,in = −
∑
p

τ tp∇wipVp, (14)

vt+1
i = vt

i +∆t (fi,in/mi + g) , (15)

where g = 9.8 m/s2 denotes the gravitational acceleration. Then we transfer the results back to
particles in the grid-to-particle (G2P) stage:

vt+1
p =

∑
i

wipv
n+1
i , (16)

xt+1
p = xt

p +∆tvt+1
p , (17)

Ct+1
p =

4

∆x2

∑
i

wipv
t+1
i (xi − xt

p)
T , (18)

Ftr
p =

(
I+∆tCt+1

p

)
Ft

p, (19)

Ft+1
p = φP (F

tr
p), (20)

τ t+1
p = φE(F

t+1
p), (21)

where φE and φP denote the elastic and plastic constitutive laws, respectively. F tr represents the
trial deformation gradient, which is subsequently corrected using the plastic constitutive law φP . τ
denotes the Kirchhoff stress. By following these three stages, we complete a simulation step.

E EXPERT-DESIGNED CONSTITUTIVE LAWS

Within the MPM framework, a complete constitutive law consists of an elastic constitutive law and
a plastic constitutive law. In our experimental setup, for all scenarios, we initialize the constitutive
individual as a combination of a fixed corotated elasticity model and an identity plasticity model.
Several well-known classical constitutive laws are presented in the following.

E.1 ELASTIC CONSTITUTIVE LAW

The elastic constitutive law describes reversible elastic responses of the material under deformation.
Here, we use the Kirchhoff stress τ to express the stress–strain relationship.

E.1.1 FIXED COROTATED ELASTICITY.

The Kirchhoff stress is defined as:

τ = 2µ (F−R)FT + λJ (J − 1)F, (22)

where R = UVT and F = UΣVT is the singular value decomposition of elastic deformation
gradient. J is the determinant of F.

E.1.2 NEO-HOOKEAN ELASTICITY.

The Kirchhoff stress is defined as:

τ = µ
(
FFT − I

)
+ λ log(J)I. (23)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.1.3 STVK ELASTICITY.

The Kirchhoff stress τ is defined as

τ = U (2µϵ+ λ tr(ϵ))VT , (24)

where F = UΣVT and ϵ = log(Σ). StVK elasticity is commonly used to simulate materials such
as sand and metals.

E.2 PLASTIC CONSTITUTIVE LAW

The plastic constitutive law captures irreversible plastic evolution beyond the elastic limit by cor-
recting the trial deformation gradient Ftrial to the final deformation gradient F.

E.2.1 IDENTITY PLASTICITY.

The corrected deformation gradient is defined as:

F = Ftr (25)

The identity plasticity model does not induce any plastic effects.

E.2.2 DRUCKER-PRAGER PLASTICITY.

Given Ftr = UΣVT and ϵ = log(Σ), the corrected deformation gradient is defined as:

F = UZ(Σ)VT , (26)

Z(Σ) =


I, if sum(ϵ) > 0,

Σ, if δγ ≤ 0 and tr(ϵ) ≤ 0,

exp
(
ϵ− δγ ϵ̂

∥ϵ̂∥

)
, otherwise,

(27)

Here, δγ = ∥ϵ̂∥ + α (dλ+2µ) tr(ϵ)
2µ , α =

√
2
3 · 2 sinϕf

3−sinϕf
and ϕf is the friction angle. ϵ̂ = dev(ϵ).

Drucker-Prager plasticity is suitable for simulating materials like snow and sand.

E.2.3 VON MISES PLASTICITY.

The corrected deformation gradient is defined as:

Ftr = UZ(Σ)VT , (28)

where

Z(Σ) =

Σ, δγ ≤ 0,

exp
(
ϵ− δγ ϵ̂

∥ϵ∥

)
, otherwise,

(29)

and
δγ = ∥ϵ̂∥F − τY

2µ
. (30)

Here τY is the yield stress. von Mises plasticity is suitable for simulating plasticity like metal and
clay.

E.2.4 FLUID PLASTICITY.

The corrected deformation gradient is defined as:

ψ(F) = J1/3 I, (31)

where J is the determinant of F. Fluid plasticity is suitable for simulating fluid-like materials.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F LIMITATION AND FUTURE WORK

Although our method effectively captures intrinsic dynamics from visual observations and demon-
strates strong interpretability and generalization capabilities, it still has certain limitations that war-
rant further research and improvement. The method relies on an evolutionary search paradigm that
involves extensive evaluations. This process is time-consuming because it requires a large num-
ber of forward simulations and backward parameter optimization. Ideally, a preliminary screening
mechanism could be introduced, where only individuals with potential merit are subjected to further
evaluation. Such a strategy could significantly reduce evaluations and accelerate the efficiency of
constitutive law discovery.

G PROMPT DESIGN DETAILS

In the following, we present the prompts used to guide LLMs to enable the evolution of constitu-
tive laws. To further achieve a decouple evolution strategy, we designed distinct prompts for the
alternating evolution phase and the joint evolution phase.

G.1 PROMPT DESIGN FOR JOINT EVOLUTION

System prompt:
You are an intelligent AI assistant for coding, physical simulation, and scientific discovery.
Follow the user’s requirements carefully and make sure you understand them.
Your expertise is strictly limited to physical simulation, material science, mathematics, and
coding.
Keep your answers short and to the point.
Do not provide any information that is not requested.
Always document your code as comments to explain the reason behind them.
Use Markdown to format your solution.
You are very familiar with Python and PyTorch.
Do not use any external libraries other than the libraries used in the examples.

User prompt for elastic and plastic constitutive law evolution:
Context

This is a physical simulation environment. The physical simulation is built based on the Material
Point Method. The objective of this problem is to fill in a code block so that the result from
executing the code matches the ground-truth result.

The code block defines the full constitutive behavior of the simulated material through two
separate classes:
1. **PlasticityModel**: defines the deformation gradient correction model. This class contains two
functions that divide the code into a continuous part that defines the differentiable parameters
and a discrete part that defines the symbolic deformation gradient correction model. The input to
the symbolic deformation gradient correction model is the deformation gradient, and the output is
the corrected deformation gradient.
2. **ElasticityModel**: defines the constitutive law that maps corrected deformation gradient to
stress. This class contains two functions that divide the code into a continuous part that defines
the differentiable parameters and a discrete part that defines the symbolic constitutive law. The
input to the symbolic constitutive law is the corrected deformation gradient, and the output is
the Kirchhoff stress tensor.

The simulation applies the ‘PlasticityModel‘ first to correct the deformation gradient, then
passes this corrected deformation gradient into the ‘ElasticityModel‘ to compute the stress.

States that capture the physical dynamics of the system and metrics that measure the difference
from the ground-truth result are included in the feedback section.

Task

Look at the following iterations as examples, analyze them, and generate a better solution upon
them.

Coding format prompt for elastic and plastic constitutive law evolution:
PyTorch Tips
1. When element-wise multiplying two matrix, make sure their number of dimensions match before the
operation. For example, when multiplying ‘J‘ (B,) and ‘I‘ (B, 3, 3), you should do ‘J.view(-1, 1,
1)‘ before the operation. Similarly, ‘(J - 1)‘ should also be reshaped to ‘(J - 1).view(-1, 1,
1)‘. If you are not sure, write down every component in the expression one by one and annotate its
dimension in the comment for verification.
2. When computing the trace of a tensor A (B, 3, 3), use ‘A.diagonal(dim1=1,
dim2=2).sum(dim=1).view(-1, 1, 1)‘. Avoid using ‘torch.trace‘ or ‘Tensor.trace‘ since they only
support 2D matrix.

Code Requirements

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1. The programming language is always python.
2. Annotate the size of the tensor as comment after each tensor operation. For example, ‘# (B, 3,
3)‘.
3. The only library allowed is PyTorch. Follow the examples provided by the user and check the
PyTorch documentation to learn how to use PyTorch.
4. Separate the code into continuous physical parameters that can be tuned with differentiable
optimization and the symbolic constitutive law represented by PyTorch code. Define them
respectively in the ‘__init__‘ function and the ‘forward‘ function.
5. Always remember the only output of the ‘forward‘ function in **PlasticityModel** class is
corrected deformation gradient.
6. Always remember the only output of the ‘forward‘ function in **ElasticityModel** class is
Kirchhoff stress tensor, which is defined by the matrix multiplication between the first
Piola-Kirchhoff stress tensor and the transpose of the deformation gradient tensor. Formally, ‘tau
= P @ FˆT‘, where tau is the Kirchhoff stress tensor, P is the first Piola-Kirchhoff stress
tensor, and F is the deformation gradient tensor. Do not directly return any other type of stress
tensor other than Kirchhoff stress tensor. Compute Kirchhoff stress tensor using the equation:
‘tau = P @ FˆT‘.
7. The proposed code should strictly follow the structure and function signatures below:

‘‘‘python
import torch
import torch.nn as nn

class PlasticityModel(nn.Module):

def __init__(self, param: float = DEFAULT_VALUE):
"""
Define trainable continuous physical parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
param (float): the physical meaning of the parameter.

"""
super().__init__()
self.param = nn.Parameter(torch.tensor(param))

def forward(self, F: torch.Tensor) -> torch.Tensor:
"""
Compute corrected deformation gradient from deformation gradient tensor.

Args:
F (torch.Tensor): deformation gradient tensor (B, 3, 3).

Returns:
F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).

"""
return F_corrected

class ElasticityModel(nn.Module):

def __init__(self, param: float = DEFAULT_VALUE):
"""
Define trainable continuous physical parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
param (float): the physical meaning of the parameter.

"""
super().__init__()
self.param = nn.Parameter(torch.tensor(param))

def forward(self, F: torch.Tensor) -> torch.Tensor:
"""
Compute Kirchhoff stress tensor from deformation gradient tensor.

Args:
F (torch.Tensor): deformation gradient tensor (B, 3, 3).

Returns:
kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).

"""
return kirchhoff_stress

‘‘‘

Solution Requirements

1. Analyze step-by-step what the potential problem is in the previous iterations based on the
feedback. Think about why the results from previous constitutive laws mismatched with the ground
truth. Do not give advice about how to optimize. Focus on the formulation of the constitutive law.
Start this section with "### Analysis". Analyze all iterations individually, and start the
subsection for each iteration with "#### Iteration N", where N stands for the index. Remember to
analyze every iteration in the history.

2. Think step-by-step what you need to do in this iteration to improve model performance. Consider
both the elasticity and plasticity components.
For the plasticity components:

Think about if the plasticity is needed to improve performance. Remember that plasticity is
not necessary. If your analysis supports plasticity, think about how to update deformation
gradient using plasticity. Think about how to separate your algorithm into a continuous
physical parameter part and a symbolic deformation gradient correction model part.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

For the elasticity components:
Think about how to separate your algorithm into a continuous physical parameter part and a
symbolic constitutive law part.

Describe your plan in pseudo-code, written out in great detail. Remember to update the default
values of the trainable physical parameters based on previous optimizations. Start this section
with "### Step-by-Step Plan".

3. Output the code in a single code block "‘‘‘python ... ‘‘‘" with detailed comments in the code
block. Do not add any trailing comments before or after the code block. Start this section with
"### Code".

G.2 PROMPT DESIGN ALTERNATING EVOLUTION

System prompt:
You are an intelligent AI assistant for coding, physical simulation, and scientific discovery.
Follow the user’s requirements carefully and make sure you understand them.
Your expertise is strictly limited to physical simulation, material science, mathematics, and
coding.
Keep your answers short and to the point.
Do not provide any information that is not requested.
Always document your code as comments to explain the reason behind them.
Use Markdown to format your solution.
You are very familiar with Python and PyTorch.
Do not use any external libraries other than the libraries used in the examples.

User prompt for plastic constitutive law evolution:
Context

This is a physical simulation environment. The physical simulation is built based on the Material
Point Method. The objective of this problem is to fill in a code block so that the result from
executing the code matches the ground-truth result.

The code block defines the full constitutive behavior of the simulated material through two
separate classes:
1. **PlasticityModel**: defines the deformation gradient correction model. This class contains two
functions that divide the code into a continuous part that defines the differentiable parameters
and a discrete part that defines the symbolic deformation gradient correction model. The input to
the symbolic deformation gradient correction model is the deformation gradient, and the output is
the corrected deformation gradient.
2. **ElasticityModel**: defines the constitutive law that maps corrected deformation gradient to
stress. This class contains two functions that divide the code into a continuous part that defines
the differentiable parameters and a discrete part that defines the symbolic constitutive law. The
input to the symbolic constitutive law is the corrected deformation gradient, and the output is
the Kirchhoff stress tensor.

The simulation applies the ‘PlasticityModel‘ first to correct the deformation gradient, then
passes this corrected deformation gradient into the ‘ElasticityModel‘ to compute the stress.

States that capture the physical dynamics of the system and metrics that measure the difference
from the ground-truth result are included in the feedback section.

Task

In the current task, the ElasticityModel has already been finalized and should remain unchanged.
Please focus exclusively on analyzing and improving the PlasticityModel class. Look at the
following iterations as examples, analyze them, and generate a better plastic constitutive model
based on them.

Coding format prompt for plastic constitutive law evolution:
PyTorch Tips
1. When element-wise multiplying two matrix, make sure their number of dimensions match before the
operation. For example, when multiplying ‘J‘ (B,) and ‘I‘ (B, 3, 3), you should do ‘J.view(-1, 1,
1)‘ before the operation. Similarly, ‘(J - 1)‘ should also be reshaped to ‘(J - 1).view(-1, 1,
1)‘. If you are not sure, write down every component in the expression one by one and annotate its
dimension in the comment for verification.
2. When computing the trace of a tensor A (B, 3, 3), use ‘A.diagonal(dim1=1,
dim2=2).sum(dim=1).view(-1, 1, 1)‘. Avoid using ‘torch.trace‘ or ‘Tensor.trace‘ since they only
support 2D matrix.

Code Requirements

1. The programming language is always python.
2. Annotate the size of the tensor as comment after each tensor operation. For example, ‘# (B, 3,
3)‘.
3. The only library allowed is PyTorch. Follow the examples provided by the user and check the
PyTorch documentation to learn how to use PyTorch.
4. Separate the code into continuous physical parameters that can be tuned with differentiable
optimization and the symbolic constitutive law represented by PyTorch code. Define them
respectively in the ‘__init__‘ function and the ‘forward‘ function.
5. Always remember the only output of the ‘forward‘ function in **PlasticityModel** class is
corrected deformation gradient.
6. Always remember the only output of the ‘forward‘ function in **ElasticityModel** class is
Kirchhoff stress tensor, which is defined by the matrix multiplication between the first

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Piola-Kirchhoff stress tensor and the transpose of the deformation gradient tensor. Formally, ‘tau
= P @ FˆT‘, where tau is the Kirchhoff stress tensor, P is the first Piola-Kirchhoff stress
tensor, and F is the deformation gradient tensor. Do not directly return any other type of stress
tensor other than Kirchhoff stress tensor. Compute Kirchhoff stress tensor using the equation:
‘tau = P @ FˆT‘.
7. The proposed code should strictly follow the structure and function signatures below:

‘‘‘python
{code}
‘‘‘

Solution Requirements

1. Analyze step-by-step what the potential problem is in the previous iterations based on the
feedback. Think about why the results from previous constitutive laws mismatched with the ground
truth. Do not give advice about how to optimize. Focus on the formulation of the constitutive law.
Start this section with "### Analysis". Analyze all iterations individually, and start the
subsection for each iteration with "#### Iteration N", where N stands for the index. Remember to
analyze every iteration in the history.

2. Think step-by-step what you need to do in this iteration to improve model performance. Consider
both the elasticity and plasticity components.
For the plasticity components:

Think about if the plasticity is needed to improve performance. Remember that plasticity is
not necessary. If your analysis supports plasticity, think about how to update deformation
gradient using plasticity. Think about how to separate your algorithm into a continuous
physical parameter part and a symbolic deformation gradient correction model part.

For the elasticity components:

Do not analyze or modify this part. Please focus on improving the plastic components.
Please ensure that the **ElasticityModel** class must remain exactly the same in every
iteration, and must be reproduced exactly as originally defined.

Describe your plan in pseudo-code, written out in great detail. Remember to update the default
values of the trainable physical parameters based on previous optimizations. Start this section
with "### Step-by-Step Plan".

3. Output the code in a single code block "‘‘‘python ... ‘‘‘" with detailed comments in the code
block. Do not add any trailing comments before or after the code block. Start this section with
"### Code".

User prompt for elastic constitutive law evolution:
Context

This is a physical simulation environment. The physical simulation is built based on the Material
Point Method. The objective of this problem is to fill in a code block so that the result from
executing the code matches the ground-truth result.

The code block defines the full constitutive behavior of the simulated material through two
separate classes:
1. **PlasticityModel**: defines the deformation gradient correction model. This class contains two
functions that divide the code into a continuous part that defines the differentiable parameters
and a discrete part that defines the symbolic deformation gradient correction model. The input to
the symbolic deformation gradient correction model is the deformation gradient, and the output is
the corrected deformation gradient.
2. **ElasticityModel**: defines the constitutive law that maps corrected deformation gradient to
stress. This class contains two functions that divide the code into a continuous part that defines
the differentiable parameters and a discrete part that defines the symbolic constitutive law. The
input to the symbolic constitutive law is the corrected deformation gradient, and the output is
the Kirchhoff stress tensor.

The simulation applies the ‘PlasticityModel‘ first to correct the deformation gradient, then
passes this corrected deformation gradient into the ‘ElasticityModel‘ to compute the stress.

States that capture the physical dynamics of the system and metrics that measure the difference
from the ground-truth result are included in the feedback section.

Task

In the current task, the PlasticityModel has already been finalized and should remain unchanged.
Please focus exclusively on analyzing and improving the ElasticityModel class. Look at the
following iterations as examples, analyze them, and generate a better elastic constitutive model
based on them.

Coding format prompt for elastic constitutive law evolution:
PyTorch Tips
1. When element-wise multiplying two matrix, make sure their number of dimensions match before the
operation. For example, when multiplying ‘J‘ (B,) and ‘I‘ (B, 3, 3), you should do ‘J.view(-1, 1,
1)‘ before the operation. Similarly, ‘(J - 1)‘ should also be reshaped to ‘(J - 1).view(-1, 1,
1)‘. If you are not sure, write down every component in the expression one by one and annotate its
dimension in the comment for verification.
2. When computing the trace of a tensor A (B, 3, 3), use ‘A.diagonal(dim1=1,
dim2=2).sum(dim=1).view(-1, 1, 1)‘. Avoid using ‘torch.trace‘ or ‘Tensor.trace‘ since they only
support 2D matrix.

Code Requirements

1. The programming language is always python.
2. Annotate the size of the tensor as comment after each tensor operation. For example, ‘# (B, 3,
3)‘.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

3. The only library allowed is PyTorch. Follow the examples provided by the user and check the
PyTorch documentation to learn how to use PyTorch.
4. Separate the code into continuous physical parameters that can be tuned with differentiable
optimization and the symbolic constitutive law represented by PyTorch code. Define them
respectively in the ‘__init__‘ function and the ‘forward‘ function.
5. Always remember the only output of the ‘forward‘ function in **PlasticityModel** class is
corrected deformation gradient.
6. Always remember the only output of the ‘forward‘ function in **ElasticityModel** class is
Kirchhoff stress tensor, which is defined by the matrix multiplication between the first
Piola-Kirchhoff stress tensor and the transpose of the deformation gradient tensor. Formally, ‘tau
= P @ FˆT‘, where tau is the Kirchhoff stress tensor, P is the first Piola-Kirchhoff stress
tensor, and F is the deformation gradient tensor. Do not directly return any other type of stress
tensor other than Kirchhoff stress tensor. Compute Kirchhoff stress tensor using the equation:
‘tau = P @ FˆT‘.
7. The proposed code should strictly follow the structure and function signatures below:

‘‘‘python
{code}
‘‘‘

Solution Requirements

1. Analyze step-by-step what the potential problem is in the previous iterations based on the
feedback. Think about why the results from previous constitutive laws mismatched with the ground
truth. Do not give advice about how to optimize. Focus on the formulation of the constitutive law.
Start this section with "### Analysis". Analyze all iterations individually, and start the
subsection for each iteration with "#### Iteration N", where N stands for the index. Remember to
analyze every iteration in the history.

2. Think step-by-step what you need to do in this iteration to improve model performance. Consider
both the elasticity and plasticity components.
For the plasticity components:

Do not analyze or modify this part. Please focus on improving the elastic components.
Please ensure that the **PlasticityModel** class must remain exactly the same in every
iteration, and must be reproduced exactly as originally defined.

For the elasticity components:
Think about how to separate your algorithm into a continuous physical parameter part and a
symbolic constitutive law part.

Describe your plan in pseudo-code, written out in great detail. Remember to update the default
values of the trainable physical parameters based on previous optimizations. Start this section
with "### Step-by-Step Plan".

3. Output the code in a single code block "‘‘‘python ... ‘‘‘" with detailed comments in the code
block. Do not add any trailing comments before or after the code block. Start this section with
"### Code".

H VISUALIZATION OF INFERRED INTERPRETABLE CONSTITUTIVE LAW

In this section, we show the inferred constitutive laws under different visual scenarios, including
”BouncyBall”, ”ClayCat”, ”HoneyBottle”, ”JellyDuck”, ”RubberPawn”, ”SandFish”, ”Bun” and
”Burger”. Since these laws are expressed in the form of Python code snippets, these laws exhibit
strong interpretability and readability, making them easily understandable to humans.

H.1 BOUNCYBALL

In the BouncyBall scenario, the constitutive law inferred by our method is presented.
1 import torch
2 import torch.nn as nn
3
4
5 class PlasticityModel(nn.Module):
6
7 def __init__(self, yield_threshold: float = 0.5):
8 """
9 Define trainable physical parameter for plasticity yield threshold.

10 Initialized to 0.5 to balance plastic effects based on feedback.
11
12 Args:
13 yield_threshold (float): logarithmic strain clamp threshold.
14 """
15 super().__init__()
16 self.yield_threshold = nn.Parameter(torch.tensor(yield_threshold))
17
18 def forward(self, F: torch.Tensor) -> torch.Tensor:
19 """
20 Correct deformation gradient by clamping logarithmic principal strains.
21
22 Args:
23 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
24
25 Returns:
26 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
27 """

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

28 # SVD of deformation gradient
29 U, Sigma, Vh = torch.linalg.svd(F) # U: (B,3,3), Sigma: (B,3), Vh: (B,3,3)
30
31 # Clamp singular values to avoid numerical problems
32 Sigma_clamped = torch.clamp_min(Sigma, 1e-6) # (B,3)
33
34 # Logarithmic principal strains
35 log_sigma = torch.log(Sigma_clamped) # (B,3)
36
37 # Enforce positive yield threshold via softplus
38 yield_thresh = torch.nn.functional.softplus(self.yield_threshold) # scalar
39
40 epsilon_clamped = torch.clamp(log_sigma, min=-yield_thresh, max=yield_thresh) # (B,3)
41
42 # Compute corrected singular values
43 Sigma_corrected = torch.exp(epsilon_clamped) # (B,3)
44
45 # Recompose corrected deformation gradient
46 F_corrected = torch.matmul(U, torch.matmul(torch.diag_embed(Sigma_corrected), Vh)) # (B

,3,3)
47
48 return F_corrected
49
50
51 class ElasticityModel(nn.Module):
52
53 def __init__(self, youngs_modulus_log: float = 10.18, poissons_ratio_sigmoid: float = -0.5):
54 """
55 Define trainable continuous physical parameters for Corotated Elasticity.
56
57 Args:
58 youngs_modulus_log (float): log of Young’s modulus.
59 poissons_ratio_sigmoid (float): parameter before sigmoid for Poisson’s ratio.
60 """
61 super().__init__()
62 self.youngs_modulus_log = nn.Parameter(torch.tensor(youngs_modulus_log))
63 self.poissons_ratio_sigmoid = nn.Parameter(torch.tensor(poissons_ratio_sigmoid))
64
65 def forward(self, F: torch.Tensor) -> torch.Tensor:
66 """
67 Compute Kirchhoff stress tensor from deformation gradient via Corotated Elasticity.
68
69 Args:
70 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
71
72 Returns:
73 kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).
74 """
75 B = F.shape[0]
76
77 # Material parameters
78 youngs_modulus = self.youngs_modulus_log.exp() # scalar
79 poissons_ratio = self.poissons_ratio_sigmoid.sigmoid() * 0.49 # scalar in (0, 0.49)
80
81 mu = youngs_modulus / (2.0 * (1.0 + poissons_ratio)) # scalar
82 la = youngs_modulus * poissons_ratio / ((1.0 + poissons_ratio) * (1.0 - 2.0 *

poissons_ratio)) # scalar
83
84 # SVD of deformation gradient
85 U, Sigma, Vh = torch.linalg.svd(F) # U: (B,3,3), Sigma: (B,3), Vh: (B,3,3)
86
87 # Clamp singular values
88 Sigma_clamped = torch.clamp_min(Sigma, 1e-6) # (B,3)
89
90 # Rotation matrix R
91 R = torch.matmul(U, Vh) # (B,3,3)
92
93 # Compute determinant
94 J = Sigma_clamped.prod(dim=1).view(B, 1, 1) # (B,1,1)
95
96 # Identity tensor
97 I = torch.eye(3, device=F.device, dtype=F.dtype).unsqueeze(0).expand(B, 3, 3) # (B,3,3)
98
99 # Reshape scalars for broadcast

100 mu = mu.view(-1, 1, 1) if mu.dim() == 0 else mu
101 la = la.view(-1, 1, 1) if la.dim() == 0 else la
102
103 # Corotated stress term
104 corotated = 2.0 * mu * (F - R) # (B,3,3)
105
106 # Volumetric stress term
107 volumetric = la * J * (J - 1).view(B, 1, 1) * I # (B,3,3)
108
109 # First Piola-Kirchhoff stress tensor P
110 P = corotated + volumetric # (B,3,3)
111
112 # Kirchhoff stress tau = P @ FˆT
113 Ft = F.transpose(1, 2) # (B,3,3)
114 kirchhoff_stress = torch.matmul(P, Ft) # (B,3,3)
115
116 return kirchhoff_stress

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H.2 CLAYCAT

In the ClayCat scenario, the constitutive law inferred by our method is presented.

1 import torch
2 import torch.nn as nn
3
4
5 class PlasticityModel(nn.Module):
6
7 def __init__(self, yield_stress: float = 2.16, shear_modulus: float = 28.0):
8 """
9 Define trainable continuous physical parameters for differentiable optimization.

10 Initialize with best values from iterative feedback.
11
12 Args:
13 yield_stress (float): yield stress threshold for plastic flow.
14 shear_modulus (float): shear modulus for plastic correction.
15 """
16 super().__init__()
17 self.yield_stress = nn.Parameter(torch.tensor(yield_stress))
18 self.shear_modulus = nn.Parameter(torch.tensor(shear_modulus))
19
20 def forward(self, F: torch.Tensor) -> torch.Tensor:
21 """
22 Compute corrected deformation gradient from deformation gradient tensor using von Mises

plasticity on
23 logarithmic deviatoric principal strains.
24
25 Args:
26 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
27
28 Returns:
29 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
30 """
31 # SVD of deformation gradient F
32 U, sigma, Vh = torch.linalg.svd(F) # U: (B,3,3), sigma: (B,3), Vh: (B,3,3)
33 sigma = torch.clamp_min(sigma, 1e-6) # clamp to prevent log(0), (B,3)
34
35 # Compute principal logarithmic strains
36 epsilon = torch.log(sigma) # (B,3)
37
38 # Volumetric (mean) strain
39 epsilon_mean = epsilon.mean(dim=1, keepdim=True) # (B,1)
40
41 # Deviatoric strains
42 epsilon_dev = epsilon - epsilon_mean # (B,3)
43
44 # Norm of deviatoric strain
45 epsilon_dev_norm = epsilon_dev.norm(dim=1, keepdim=True) + 1e-12 # (B,1)
46
47 # Clamp plasticity parameters to prevent numerical issues
48 yield_stress = torch.clamp_min(self.yield_stress, 1e-6)
49 shear_modulus = torch.clamp_min(self.shear_modulus, 1e-6)
50
51 # Plastic multiplier
52 delta_gamma = epsilon_dev_norm - yield_stress / (2 * shear_modulus) # (B,1)
53 delta_gamma_pos = torch.clamp_min(delta_gamma, 0.0) # (B,1)
54
55 # Correct deviatoric strains by return mapping if yielding
56 epsilon_corrected = epsilon - (delta_gamma_pos / epsilon_dev_norm) * epsilon_dev # (B,3)
57
58 # Where not yielding, keep original strain
59 yielding_mask = (delta_gamma > 0).view(-1, 1) # (B,1)
60 epsilon_final = torch.where(yielding_mask, epsilon_corrected, epsilon) # (B,3)
61
62 # Reconstruct corrected singular values and deformation gradient
63 sigma_corrected = torch.exp(epsilon_final) # (B,3)
64 diag_sigma_corrected = torch.diag_embed(sigma_corrected) # (B,3,3)
65
66 F_corrected = torch.matmul(U, torch.matmul(diag_sigma_corrected, Vh)) # (B,3,3)
67
68 return F_corrected
69
70
71 class ElasticityModel(nn.Module):
72
73 def __init__(self, youngs_modulus_log: float = 11.7, poissons_ratio_logit: float = -0.7):
74 """
75 Define trainable continuous physical parameters for differentiable optimization.
76 Initialize with values inferred from analysis.
77
78 Args:
79 youngs_modulus_log (float): log of Young’s modulus.
80 poissons_ratio_logit (float): pre-sigmoid parameter for Poisson’s ratio.
81 """
82 super().__init__()
83 self.youngs_modulus_log = nn.Parameter(torch.tensor(youngs_modulus_log))
84 self.poissons_ratio_logit = nn.Parameter(torch.tensor(poissons_ratio_logit))
85
86 def forward(self, F: torch.Tensor) -> torch.Tensor:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

87 """
88 Compute Kirchhoff stress tensor from deformation gradient tensor using St. Venant-

Kirchhoff elasticity.
89
90 Args:
91 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
92
93 Returns:
94 kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).
95 """
96 B = F.shape[0]
97 device = F.device
98 dtype = F.dtype
99

100 # Compute Young’s modulus from log
101 youngs_modulus = torch.exp(self.youngs_modulus_log) # scalar
102
103 # Compute Poisson’s ratio from sigmoid(logit) scaled to (0,0.49)
104 poissons_ratio = torch.sigmoid(self.poissons_ratio_logit) * 0.49 # scalar in (0,0.49)
105
106 mu = youngs_modulus / (2 * (1 + poissons_ratio)) # scalar
107 la = youngs_modulus * poissons_ratio / ((1 + poissons_ratio) * (1 - 2 * poissons_ratio))

scalar
108
109 # Identity tensor expanded to batch size
110 I = torch.eye(3, dtype=dtype, device=device).unsqueeze(0).expand(B, -1, -1) # (B,3,3)
111
112 # Right Cauchy-Green tensor C = FˆT F
113 Ft = F.transpose(1, 2) # (B,3,3)
114 C = torch.matmul(Ft, F) # (B,3,3)
115
116 # Green-Lagrange strain E = 0.5 * (C - I)
117 E = 0.5 * (C - I) # (B,3,3)
118
119 # Trace of E computed by summing diagonal elements
120 trE = E.diagonal(dim1=1, dim2=2).sum(dim=1).view(B, 1, 1) # (B,1,1)
121
122 # Second Piola-Kirchhoff stress tensor S
123 S = 2 * mu * E + la * trE * I # (B,3,3)
124
125 # First Piola-Kirchhoff stress tensor P = F @ S
126 P = torch.matmul(F, S) # (B,3,3)
127
128 # Kirchhoff stress tensor tau = P @ FˆT
129 kirchhoff_stress = torch.matmul(P, Ft) # (B,3,3)
130
131 return kirchhoff_stress

H.3 HONEYBOTTLE

In the HoneyBottle scenario, the constitutive law inferred by our method is presented.
1 import torch
2 import torch.nn as nn
3
4
5 class PlasticityModel(nn.Module):
6
7 def __init__(
8 self,
9 youngs_modulus_log: float = 6.0,

10 poissons_ratio_unconstrained: float = -1.0,
11 yield_stress: float = 2.5,
12):
13 """
14 Plasticity model with logarithmic strain return mapping.
15
16 Args:
17 youngs_modulus_log (float): log Young’s modulus.
18 poissons_ratio_unconstrained (float): unconstrained scalar for Poisson’s ratio.
19 yield_stress (float): yield stress threshold.
20 """
21 super().__init__()
22 self.youngs_modulus_log = nn.Parameter(torch.tensor(youngs_modulus_log)) # scalar
23 self.poissons_ratio_unconstrained = nn.Parameter(torch.tensor(

poissons_ratio_unconstrained)) # scalar
24 self.yield_stress = nn.Parameter(torch.tensor(yield_stress)) # scalar
25
26 def forward(self, F: torch.Tensor) -> torch.Tensor:
27 """
28 Compute corrected deformation gradient from deformation gradient tensor.
29
30 Args:
31 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
32
33 Returns:
34 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
35 """
36 youngs_modulus = self.youngs_modulus_log.exp() # scalar

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

37 poissons_ratio = torch.sigmoid(self.poissons_ratio_unconstrained) * 0.49 # scalar in (0,
0.49)

38 yield_stress = self.yield_stress # scalar
39
40 mu = youngs_modulus / (2.0 * (1.0 + poissons_ratio))
41
42 U, sigma, Vh = torch.linalg.svd(F, full_matrices=False) # U:(B,3,3), sigma:(B,3), Vh:(B

,3,3)
43
44 # Clamp singular values to avoid collapse
45 sigma_clamped = torch.clamp_min(sigma, 1e-4) # (B,3)
46
47 # Logarithmic strain
48 epsilon = torch.log(sigma_clamped) # (B,3)
49
50 # Volumetric strain (trace)
51 epsilon_trace = epsilon.sum(dim=1, keepdim=True) # (B,1)
52
53 # Deviatoric strain
54 epsilon_bar = epsilon - epsilon_trace / 3.0 # (B,3)
55
56 # Norm of deviatoric strain (avoid division by zero)
57 epsilon_bar_norm = torch.norm(epsilon_bar, dim=1, keepdim=True) + 1e-12 # (B,1)
58
59 # Plastic multiplier
60 delta_gamma = epsilon_bar_norm - yield_stress / (2.0 * mu) # (B,1)
61
62 # Plastic factor (clamped)
63 plastic_factor = torch.clamp_min(delta_gamma / epsilon_bar_norm, 0.0) # (B,1)
64
65 # Correct logarithmic strain
66 epsilon_corrected = epsilon - plastic_factor * epsilon_bar # (B,3)
67
68 # Reconstruct corrected singular values
69 sigma_corrected = torch.exp(epsilon_corrected) # (B,3)
70
71 # Recompose corrected deformation gradient
72 F_corrected = torch.matmul(U, torch.matmul(torch.diag_embed(sigma_corrected), Vh)) # (B

,3,3)
73
74 return F_corrected
75
76
77 class ElasticityModel(nn.Module):
78
79 def __init__(
80 self,
81 youngs_modulus_log: float = 11.7,
82 poissons_ratio_unconstrained: float = 5.5,
83):
84 """
85 Corotated Elasticity model with trainable physical parameters.
86
87 Args:
88 youngs_modulus_log (float): log Young’s modulus.
89 poissons_ratio_unconstrained (float): unconstrained scalar for Poisson’s ratio.
90 """
91 super().__init__()
92 self.youngs_modulus_log = nn.Parameter(torch.tensor(youngs_modulus_log)) # scalar
93 self.poissons_ratio_unconstrained = nn.Parameter(torch.tensor(

poissons_ratio_unconstrained)) # scalar
94
95 def forward(self, F: torch.Tensor) -> torch.Tensor:
96 """
97 Compute Kirchhoff stress tensor from deformation gradient tensor.
98
99 Args:

100 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
101
102 Returns:
103 kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).
104 """
105 youngs_modulus = self.youngs_modulus_log.exp() # scalar
106 poissons_ratio = torch.sigmoid(self.poissons_ratio_unconstrained) * 0.49 # scalar in (0,

0.49)
107
108 mu = youngs_modulus / (2.0 * (1.0 + poissons_ratio))
109 la = youngs_modulus * poissons_ratio / ((1.0 + poissons_ratio) * (1.0 - 2.0 *

poissons_ratio))
110
111 U, sigma, Vh = torch.linalg.svd(F, full_matrices=False) # (B,3,3), (B,3), (B,3,3)
112
113 # Clamp singular values for numerical stability
114 sigma_clamped = torch.clamp_min(sigma, 1e-5) # (B,3)
115
116 # Rotation matrix R = U VˆT
117 R = torch.matmul(U, Vh) # (B,3,3)
118
119 Ft = F.transpose(1, 2) # (B,3,3)
120
121 # Corotated stress: 2 * mu * (F - R) * FˆT
122 corotated_stress = 2.0 * mu * torch.matmul(F - R, Ft) # (B,3,3)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

123
124 # Compute determinant J = product of singular values
125 J = torch.prod(sigma_clamped, dim=1) # (B,)
126 J = J.view(-1, 1, 1) # (B,1,1)
127
128 # Identity tensor I
129 I = torch.eye(3, dtype=F.dtype, device=F.device).unsqueeze(0) # (1,3,3)
130
131 volume_stress = la * J * (J - 1).view(-1, 1, 1) * I # (B,3,3)
132
133 # First Piola-Kirchhoff stress P
134 P = corotated_stress + volume_stress # (B,3,3)
135
136 kirchhoff_stress = torch.matmul(P, Ft) # (B,3,3)
137
138 return kirchhoff_stress

H.4 JELLYDUCK

In the JellyDuck scenario, the constitutive law inferred by our method is presented.
1 import torch
2 import torch.nn as nn
3
4
5 class PlasticityModel(nn.Module):
6
7 def __init__(self, yield_stress: float = 0.1, hardening: float = 0.0):
8 """
9 Define trainable continuous physical parameters for differentiable optimization.

10 Initialize yield stress and isotropic hardening parameters.
11
12 Args:
13 yield_stress (float): yield stress threshold for plastic correction.
14 hardening (float): isotropic hardening parameter.
15 """
16 super().__init__()
17 self.yield_stress = nn.Parameter(torch.tensor(yield_stress)) # scalar parameter
18 self.hardening = nn.Parameter(torch.tensor(hardening)) # scalar parameter
19
20 def forward(self, F: torch.Tensor) -> torch.Tensor:
21 """
22 Compute corrected deformation gradient using von Mises plasticity return mapping.
23
24 Args:
25 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
26
27 Returns:
28 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
29 """
30 B = F.shape[0]
31
32 # SVD of deformation gradient: F = U * diag(sigma) * Vh
33 U, sigma, Vh = torch.linalg.svd(F) # U,Vh: (B,3,3), sigma: (B,3)
34
35 # Clamp singular values to avoid log(0)
36 sigma_clamped = torch.clamp_min(sigma, 1e-5) # (B, 3)
37
38 # Compute logarithmic strain
39 epsilon = torch.log(sigma_clamped) # (B, 3)
40
41 # Deviatoric strain: subtract mean (volumetric) strain
42 epsilon_mean = epsilon.mean(dim=1, keepdim=True) # (B, 1)
43 epsilon_dev = epsilon - epsilon_mean # (B, 3)
44
45 # Norm of deviatoric strain
46 epsilon_dev_norm = torch.norm(epsilon_dev, dim=1, keepdim=True) # (B, 1)
47
48 # Effective yield threshold with hardening, clamped to positive
49 yield_threshold = torch.clamp_min(self.yield_stress + self.hardening, 1e-8) # scalar
50
51 # Plastic correction factor (return mapping)
52 gamma = torch.clamp_min(epsilon_dev_norm - yield_threshold, 0.0) / (epsilon_dev_norm + 1e

-12) # (B,1)
53
54 # Correct deviatoric strain
55 epsilon_dev_corrected = epsilon_dev * (1 - gamma) # (B, 3)
56
57 # Reconstruct corrected logarithmic strain
58 epsilon_corrected = epsilon_dev_corrected + epsilon_mean # (B, 3)
59
60 # Exponentiate to get corrected singular values
61 sigma_corrected = torch.exp(epsilon_corrected) # (B, 3)
62
63 # Recompose corrected deformation gradient
64 F_corrected = torch.matmul(U, torch.matmul(torch.diag_embed(sigma_corrected), Vh)) # (B,

3, 3)
65
66 return F_corrected

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

67
68
69 class ElasticityModel(nn.Module):
70
71 def __init__(self, youngs_modulus_log: float = 11.49, poissons_ratio_sigmoid: float = 1.00):
72 """
73 Define trainable continuous physical parameters for differentiable optimization.
74 Initialize with previous best values.
75
76 Args:
77 youngs_modulus_log (float): log of Young’s modulus.
78 poissons_ratio_sigmoid (float): Poisson’s ratio before sigmoid transformation.
79 """
80 super().__init__()
81 self.youngs_modulus_log = nn.Parameter(torch.tensor(youngs_modulus_log)) # scalar
82 self.poissons_ratio_sigmoid = nn.Parameter(torch.tensor(poissons_ratio_sigmoid)) #

scalar
83
84 def forward(self, F: torch.Tensor) -> torch.Tensor:
85 """
86 Compute Kirchhoff stress tensor using Corotated elasticity model.
87
88 Args:
89 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
90
91 Returns:
92 kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).
93 """
94 B = F.size(0)
95
96 # Recover physical parameters
97 youngs_modulus = self.youngs_modulus_log.exp() # scalar positive
98 poissons_ratio = self.poissons_ratio_sigmoid.sigmoid() * 0.49 # scalar in [0, 0.49]
99

100 mu = youngs_modulus / (2 * (1 + poissons_ratio)) # (scalar)
101 la = youngs_modulus * poissons_ratio / ((1 + poissons_ratio) * (1 - 2 * poissons_ratio))

(scalar)
102
103 # SVD of F
104 U, sigma, Vh = torch.linalg.svd(F) # (B,3,3), (B,3), (B,3,3)
105 sigma = torch.clamp_min(sigma, 1e-5) # avoid zero singular values
106
107 # Rotation matrix R = U * Vh
108 R = torch.matmul(U, Vh) # (B, 3, 3)
109
110 # Determinant J = product of singular values
111 J = torch.prod(sigma, dim=1).view(-1, 1, 1) # (B, 1, 1)
112
113 # Identity matrix I
114 I = torch.eye(3, dtype=F.dtype, device=F.device).unsqueeze(0).expand(B, -1, -1) # (B, 3,

3)
115
116 # Corotated first Piola-Kirchhoff stress: P_corot = 2 * mu * (F - R)
117 mu_expanded = mu.view(-1, 1, 1) # (B, 1, 1)
118 P_corot = 2 * mu_expanded * (F - R) # (B, 3, 3)
119
120 # Volume part: P_vol = la * J * (J - 1) * J * Fˆ{-T}
121 F_inv = torch.linalg.inv(F) # (B, 3, 3)
122 F_inv_T = F_inv.transpose(1, 2) # (B, 3, 3)
123 volume_factor = la.view(-1, 1, 1) * J * (J - 1).view(-1, 1, 1) # (B, 1, 1)
124 P_vol = volume_factor * J * F_inv_T # (B, 3, 3)
125
126 # Total first Piola-Kirchhoff stress tensor
127 P = P_corot + P_vol # (B, 3, 3)
128
129 # Kirchhoff stress tensor tau = P @ FˆT
130 Ft = F.transpose(1, 2) # (B, 3, 3)
131 kirchhoff_stress = torch.matmul(P, Ft) # (B, 3, 3)
132
133 return kirchhoff_stress

H.5 RUBBERPAWN

In the RubberPawn scenario, the constitutive law inferred by our method is presented.
1 import torch
2 import torch.nn as nn
3
4
5 class PlasticityModel(nn.Module):
6
7 def __init__(self, yield_stress: float = 0.22, mu_log: float = 4.0):
8 """
9 Define trainable continuous physical parameters for differentiable optimization.

10 Initialize yield_stress and plastic shear modulus (mu) in log space.
11
12 Args:
13 yield_stress (float): yield stress controlling plastic threshold.
14 mu_log (float): log shear modulus for plastic correction.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

15 """
16 super().__init__()
17 self.yield_stress = nn.Parameter(torch.tensor(yield_stress)) # scalar
18 self.mu_log = nn.Parameter(torch.tensor(mu_log)) # scalar
19
20 def forward(self, F: torch.Tensor) -> torch.Tensor:
21 """
22 Compute corrected deformation gradient from deformation gradient tensor via logarithmic

spectral plasticity.
23
24 Args:
25 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
26
27 Returns:
28 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
29 """
30 B = F.shape[0]
31
32 mu = self.mu_log.exp() # scalar
33
34 # SVD decomposition
35 U, sigma, Vh = torch.linalg.svd(F) # U: (B,3,3), sigma: (B,3), Vh: (B,3,3)
36
37 # Clamp singular values
38 sigma = torch.clamp_min(sigma, 1e-6) # (B,3)
39
40 # Logarithmic principal stretches
41 epsilon = torch.log(sigma) # (B,3)
42
43 # Compute volumetric mean of epsilon
44 epsilon_mean = epsilon.mean(dim=1, keepdim=True) # (B,1)
45
46 # Deviatoric log strain
47 epsilon_bar = epsilon - epsilon_mean # (B,3)
48
49 # Norm of deviatoric strain
50 epsilon_bar_norm = torch.linalg.norm(epsilon_bar, dim=1, keepdim=True) # (B,1)
51
52 # Plastic multiplier
53 delta_gamma = epsilon_bar_norm - self.yield_stress / (2 * mu) # (B,1)
54
55 # Clamp to non-negative
56 delta_gamma_clamped = torch.clamp_min(delta_gamma, 0.0) # (B,1)
57
58 # Avoid division by zero
59 denom = epsilon_bar_norm.clamp_min(1e-8) # (B,1)
60
61 # Compute correction scale factor
62 scale = 1.0 - delta_gamma_clamped / denom # (B,1)
63
64 # No correction if yield condition not surpassed
65 scale = torch.where(delta_gamma > 0, scale, torch.ones_like(scale)) # (B,1)
66
67 # Apply correction
68 epsilon_bar_corrected = epsilon_bar * scale # (B,3)
69
70 # Recompose corrected log strain
71 epsilon_corrected = epsilon_bar_corrected + epsilon_mean # (B,3)
72
73 # Inverse log to get corrected singular values
74 sigma_corrected = torch.exp(epsilon_corrected) # (B,3)
75
76 # Reconstructed corrected deformation gradient
77 F_corrected = U @ torch.diag_embed(sigma_corrected) @ Vh # (B,3,3)
78
79 return F_corrected
80
81
82 class ElasticityModel(nn.Module):
83
84 def __init__(self, youngs_modulus_log: float = 12.9, poissons_ratio_sigmoid: float = 0.0):
85 """
86 Define trainable continuous physical parameters for differentiable optimization.
87 Initialize parameters from best prior estimates.
88
89 Args:
90 youngs_modulus_log (float): log of Young’s modulus.
91 poissons_ratio_sigmoid (float): raw Poisson’s ratio parameter before sigmoid scaling.
92 """
93 super().__init__()
94 self.youngs_modulus_log = nn.Parameter(torch.tensor(youngs_modulus_log)) # scalar
95 self.poissons_ratio_sigmoid = nn.Parameter(torch.tensor(poissons_ratio_sigmoid)) #

scalar
96
97 def forward(self, F: torch.Tensor) -> torch.Tensor:
98 """
99 Compute Kirchhoff stress from corrected deformation gradient tensor using StVK elasticity

.
100
101 Args:
102 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
103

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

104 Returns:
105 kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).
106 """
107 B = F.shape[0]
108
109 # Physical parameters
110 youngs_modulus = self.youngs_modulus_log.exp() # scalar
111
112 # Sigmoid mapping to (0, 0.499) for Poisson’s ratio
113 poissons_ratio = torch.sigmoid(self.poissons_ratio_sigmoid) * 0.499 # scalar
114
115 mu = youngs_modulus / (2.0 * (1.0 + poissons_ratio)) # scalar
116 la = youngs_modulus * poissons_ratio / ((1.0 + poissons_ratio) * (1.0 - 2.0 *

poissons_ratio)) # scalar
117
118 I = torch.eye(3, dtype=F.dtype, device=F.device).unsqueeze(0) # (1, 3, 3)
119
120 Ft = F.transpose(1, 2) # (B, 3, 3)
121
122 # Right Cauchy-Green tensor
123 C = torch.matmul(Ft, F) # (B, 3, 3)
124
125 # Green-Lagrange strain tensor
126 E = 0.5 * (C - I) # (B, 3, 3)
127
128 # Trace of strain tensor
129 trE = E.diagonal(dim1=1, dim2=2).sum(dim=1).view(B, 1, 1) # (B, 1, 1)
130
131 # Second Piola-Kirchhoff stress tensor
132 S = 2.0 * mu * E + la * trE * I # (B, 3, 3)
133
134 # First Piola-Kirchhoff stress tensor
135 P = torch.matmul(F, S) # (B, 3, 3)
136
137 # Kirchhoff stress tensor: tau = P * FˆT
138 kirchhoff_stress = torch.matmul(P, Ft) # (B, 3, 3)
139
140 return kirchhoff_stress

H.6 SANDFISH

In the SandFish scenario, the constitutive law inferred by our method is presented.
1 import torch
2 import torch.nn as nn
3
4
5 class PlasticityModel(nn.Module):
6
7 def __init__(self, yield_stress: float = 0.07):
8 """
9 Define trainable plastic yield stress parameter with enforced numerical stability.

10
11 Args:
12 yield_stress (float): yield stress controlling deviatoric plastic flow magnitude.
13 """
14 super().__init__()
15 self.yield_stress = nn.Parameter(torch.tensor(yield_stress))
16
17 def forward(self, F: torch.Tensor) -> torch.Tensor:
18 """
19 Compute plasticity-corrected deformation gradient by shrinking deviatoric logarithmic

strain.
20
21 Args:
22 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
23
24 Returns:
25 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
26 """
27 # SVD decomposition
28 U, sigma, Vh = torch.linalg.svd(F) # (B, 3, 3), (B, 3), (B, 3,

3)
29
30 # Clamp singular values for stability
31 sigma_clamped = torch.clamp_min(sigma, 1e-6) # (B, 3)
32
33 # Compute logarithmic principal strain
34 epsilon = torch.log(sigma_clamped) # (B, 3)
35
36 # Volumetric part (mean)
37 epsilon_mean = epsilon.mean(dim=1, keepdim=True) # (B, 1)
38
39 # Deviatoric strain
40 epsilon_dev = epsilon - epsilon_mean # (B, 3)
41
42 # Norm of deviatoric strain
43 epsilon_dev_norm = torch.linalg.norm(epsilon_dev, dim=1, keepdim=True) # (B, 1)
44

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

45 # Enforce minimum yield stress to avoid numerical instability
46 yield_stress = torch.clamp_min(self.yield_stress, 0.05) # scalar
47
48 # Clamp norm for division
49 epsilon_dev_norm_safe = torch.clamp_min(epsilon_dev_norm, 1e-12) # (B, 1)
50
51 # Compute plastic correction magnitude delta_gamma
52 delta_gamma = epsilon_dev_norm - yield_stress # (B, 1)
53 delta_gamma_clamped = torch.clamp_min(delta_gamma, 0.0) # (B, 1)
54
55 # Scaling factor for deviatoric strain correction
56 scale = 1.0 - delta_gamma_clamped / epsilon_dev_norm_safe # (B, 1)
57 scale = torch.clamp_min(scale, 0.0) # (B, 1)
58
59 # Apply plastic correction to deviatoric strain
60 epsilon_dev_corrected = epsilon_dev * scale # (B, 3)
61
62 # Recombine volumetric and deviatoric parts
63 epsilon_corrected = epsilon_mean + epsilon_dev_corrected # (B, 3)
64
65 # Calculate corrected singular values
66 sigma_corrected = torch.exp(epsilon_corrected) # (B, 3)
67
68 # Reconstruct corrected deformation gradient
69 F_corrected = U @ torch.diag_embed(sigma_corrected) @ Vh # (B, 3, 3)
70
71 return F_corrected
72
73
74 class ElasticityModel(nn.Module):
75
76 def __init__(self, youngs_modulus_log: float = 9.55, poissons_ratio_sigmoid: float = 2.50):
77 """
78 Define trainable Young’s modulus and Poisson’s ratio with physically realistic bounds.
79
80 Args:
81 youngs_modulus_log (float): logarithm of Young’s modulus.
82 poissons_ratio_sigmoid (float): raw parameter to be passed through sigmoid for

Poisson’s ratio.
83 """
84 super().__init__()
85 self.youngs_modulus_log = nn.Parameter(torch.tensor(youngs_modulus_log))
86 self.poissons_ratio_sigmoid = nn.Parameter(torch.tensor(poissons_ratio_sigmoid))
87
88 def forward(self, F: torch.Tensor) -> torch.Tensor:
89 """
90 Compute Kirchhoff stress tensor from deformation gradient with corotated elasticity.
91
92 Args:
93 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
94
95 Returns:
96 kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).
97 """
98 B = F.shape[0]
99

100 # Recover material parameters
101 E = self.youngs_modulus_log.exp() # scalar
102 nu_raw = self.poissons_ratio_sigmoid.sigmoid() # (0,1)
103 nu = nu_raw * 0.45 # scale to max 0.45

Poisson ratio (˜stable and compressible)
104
105 mu = E / (2.0 * (1.0 + nu)) # scalar
106 lam = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)) # scalar
107
108 # Compute SVD
109 U, sigma, Vh = torch.linalg.svd(F) # (B, 3, 3), (B, 3), (B, 3,

3)
110
111 # Clamp singular values to prevent numerical issues
112 sigma_clamped = torch.clamp_min(sigma, 1e-6) # (B, 3)
113
114 # Compute rotation part R
115 R = U @ Vh # (B, 3, 3)
116
117 # Expand mu for broadcasting
118 if mu.dim() > 0:
119 mu_expanded = mu.view(-1, 1, 1) # (B, 1, 1)
120 else:
121 mu_expanded = mu # scalar
122
123 # Corotated stress part: 2 * mu * (F - R)
124 corotated_stress = 2.0 * mu_expanded * (F - R) # (B, 3, 3)
125
126 # Compute determinant J and clamp for stability
127 J = torch.linalg.det(F) # (B,)
128 J_clamped = torch.clamp_min(J, 1e-8) # (B,)
129
130 # Identity tensor I (1, 3, 3)
131 I = torch.eye(3, dtype=F.dtype, device=F.device).unsqueeze(0) # (1, 3, 3)
132
133 # Expand and reshape parameters for broadcasting

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

134 if lam.dim() > 0:
135 lam_expanded = lam.view(-1, 1, 1) # (B, 1, 1)
136 else:
137 lam_expanded = lam # scalar
138
139 J_expanded = J_clamped.view(-1, 1, 1) # (B, 1, 1)
140 J_minus_1_expanded = (J_clamped - 1.0).view(-1, 1, 1) # (B, 1, 1)
141
142 # Volumetric stress: lambda * J * (J - 1) * I
143 volumetric_stress = lam_expanded * J_expanded * J_minus_1_expanded * I # (B, 3, 3)
144
145 # First Piola-Kirchhoff stress
146 P = corotated_stress + volumetric_stress # (B, 3, 3)
147
148 # Transpose of deformation gradient
149 Ft = F.transpose(1, 2) # (B, 3, 3)
150
151 # Kirchhoff stress tensor: tau = P @ FˆT
152 kirchhoff_stress = P @ Ft # (B, 3, 3)
153
154 return kirchhoff_stress

H.7 BUN

In the Bun scenario, the constitutive law inferred by our method is presented.
1 import torch
2 import torch.nn as nn
3
4
5 class PlasticityModel(nn.Module):
6 def __init__(self, yield_stress: float = 0.30):
7 """
8 Trainable continuous yield stress parameter for von Mises plasticity correction.
9

10 Args:
11 yield_stress (float): yield stress threshold for plastic correction.
12 """
13 super().__init__()
14 self.yield_stress = nn.Parameter(torch.tensor(yield_stress))
15
16 def forward(self, F: torch.Tensor) -> torch.Tensor:
17 """
18 Compute corrected deformation gradient from input deformation gradient tensor.
19
20 Args:
21 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
22
23 Returns:
24 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
25 """
26 # Compute SVD of F: U, sigma, Vh
27 U, sigma, Vh = torch.linalg.svd(F) # U: (B,3,3), sigma: (B,3), Vh: (B,3,3)
28
29 # Clamp singular values to avoid log(0)
30 sigma_clamped = torch.clamp_min(sigma, 1e-6) # (B,3)
31
32 # Compute logarithm of singular values (principal logarithmic strains)
33 epsilon = torch.log(sigma_clamped) # (B,3)
34
35 # Compute volumetric mean strain
36 epsilon_mean = epsilon.mean(dim=1, keepdim=True) # (B,1)
37
38 # Deviatoric strain (deviation from mean)
39 epsilon_dev = epsilon - epsilon_mean # (B,3)
40
41 # Norm of deviatoric strain, clamp to avoid numerical issues
42 epsilon_dev_norm = torch.norm(epsilon_dev, dim=1, keepdim=True).clamp_min(1e-12) # (B,1)
43
44 # Compute plastic multiplier (excess over yield stress)
45 delta_gamma = epsilon_dev_norm - self.yield_stress # (B,1)
46
47 # Apply plastic correction only if exceeding yield stress
48 delta_gamma_clamped = torch.clamp_min(delta_gamma, 0.0) # (B,1)
49
50 # Calculate shrink factor for deviatoric strains
51 shrink_factor = 1.0 - delta_gamma_clamped / epsilon_dev_norm # (B,1)
52
53 # Correct deviatoric strain by projecting onto yield surface
54 epsilon_dev_corrected = epsilon_dev * shrink_factor # (B,3)
55
56 # Reassemble corrected total logarithmic strains
57 epsilon_corrected = epsilon_mean + epsilon_dev_corrected # (B,3)
58
59 # Exponentiate to get corrected singular values
60 sigma_corrected = torch.exp(epsilon_corrected) # (B,3)
61
62 # Reconstruct corrected deformation gradient: F_corrected = U * diag(sigma_corrected) *

Vh

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

63 F_corrected = U @ torch.diag_embed(sigma_corrected) @ Vh # (B,3,3)
64
65 return F_corrected
66
67
68 class ElasticityModel(nn.Module):
69 def __init__(self, youngs_modulus_log: float = 9.82, poissons_ratio_sigmoid: float = 4.07):
70 """
71 Trainable continuous parameters for Neo-Hookean elasticity.
72
73 Args:
74 youngs_modulus_log (float): log of Young’s modulus.
75 poissons_ratio_sigmoid (float): Poisson’s ratio parameter before sigmoid scaling.
76 """
77 super().__init__()
78 self.youngs_modulus_log = nn.Parameter(torch.tensor(youngs_modulus_log))
79 self.poissons_ratio_sigmoid = nn.Parameter(torch.tensor(poissons_ratio_sigmoid))
80
81 def forward(self, F: torch.Tensor) -> torch.Tensor:
82 """
83 Compute Kirchhoff stress tensor from deformation gradient tensor using Neo-Hookean

elasticity.
84
85 Args:
86 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
87
88 Returns:
89 kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).
90 """
91 B = F.size(0) # batch size
92
93 # Compute Young’s modulus E and Poisson’s ratio nu
94 E = self.youngs_modulus_log.exp() # scalar
95 nu = self.poissons_ratio_sigmoid.sigmoid() * 0.49 # scalar in (0,0.49)
96
97 mu = E / (2 * (1 + nu)) # scalar
98 lam = E * nu / ((1 + nu) * (1 - 2 * nu)) # scalar
99

100 # Identity tensor I (B,3,3)
101 I = torch.eye(3, dtype=F.dtype, device=F.device).unsqueeze(0).expand(B, -1, -1) # (B

,3,3)
102
103 # Compute determinant J of F (B,)
104 J = torch.linalg.det(F).clamp_min(1e-12).view(-1, 1, 1) # (B,1,1)
105 logJ = torch.log(J) # (B,1,1)
106
107 # Compute inverse transpose of F (B,3,3)
108 F_inv = torch.inverse(F) # (B,3,3)
109 F_inv_T = F_inv.transpose(1, 2) # (B,3,3)
110
111 # Compute first Piola-Kirchhoff stress tensor P = mu*(F - F_inv_T) + lam*logJ*F_inv_T
112 P = mu * (F - F_inv_T) + lam * logJ * F_inv_T # (B,3,3)
113
114 # Compute Kirchhoff stress tau = P * FˆT
115 Ft = F.transpose(1, 2) # (B,3,3)
116 kirchhoff_stress = torch.matmul(P, Ft) # (B,3,3)
117
118 return kirchhoff_stress

H.8 BURGER

In the Burger scenario, the constitutive law inferred by our method is presented.
1 import torch
2 import torch.nn as nn
3
4
5 class PlasticityModel(nn.Module):
6
7 def __init__(self):
8 """
9 Identity plasticity: no correction to deformation gradient.

10 """
11 super().__init__()
12
13 def forward(self, F: torch.Tensor) -> torch.Tensor:
14 """
15 Args:
16 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
17
18 Returns:
19 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
20 """
21 # No plastic correction
22 return F # (B, 3, 3)
23
24
25 class ElasticityModel(nn.Module):
26

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

27 def __init__(self,
28 youngs_modulus_log: float = 8.37,
29 poissons_ratio: float = 0.49):
30 """
31 Corotated elasticity with trainable parameters.
32
33 Args:
34 youngs_modulus_log (float): log of Young’s modulus.
35 poissons_ratio (float): Poisson’s ratio (clamped [0,0.49]).
36 """
37 super().__init__()
38 self.youngs_modulus_log = nn.Parameter(torch.tensor(youngs_modulus_log))
39 self.poissons_ratio = nn.Parameter(torch.tensor(poissons_ratio))
40
41 def forward(self, F: torch.Tensor) -> torch.Tensor:
42 """
43 Compute Kirchhoff stress tensor from deformation gradient tensor.
44
45 Args:
46 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
47
48 Returns:
49 kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).
50 """
51 B = F.shape[0]
52
53 # Physical parameters
54 E = self.youngs_modulus_log.exp() # scalar
55 nu = torch.clamp(self.poissons_ratio, 0.0, 0.49) # scalar
56
57 mu = E / (2.0 * (1.0 + nu)) # scalar
58 la = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)) # scalar
59
60 # SVD of F: U, Sigma, Vh such that F = U @ diag(Sigma) @ Vh
61 U, sigma, Vh = torch.linalg.svd(F) # U: (B,3,3), sigma: (B,3), Vh: (B,3,3)
62 sigma = torch.clamp_min(sigma, 1e-5) # (B,3) ensure positivity
63
64 # Rotation R = U @ Vh
65 R = torch.matmul(U, Vh) # (B,3,3)
66
67 # Corotated stress part: tau_c = 2*mu*(F - R) @ FˆT
68 Ft = F.transpose(1, 2) # (B,3,3)
69 tau_c = 2.0 * mu * torch.matmul(F - R, Ft) # (B,3,3)
70
71 # Volumetric part: tau_v = lambda * J * (J - 1) * I
72 J = torch.prod(sigma, dim=1).view(B, 1, 1) # (B,1,1)
73 I = torch.eye(3, dtype=F.dtype, device=F.device).unsqueeze(0).expand(B, -1, -1) # (B

,3,3)
74 tau_v = la * J * (J - 1) * I # (B,3,3)
75
76 # Kirchhoff stress
77 kirchhoff_stress = tau_c + tau_v # (B,3,3)
78
79 return kirchhoff_stress

35

	Introduction
	Preliminaries
	Constitutive laws
	Physics-Integrated 3D Gaussians

	Methodology
	Upper-Level Constitutive Evolution
	LLMs-Driven Constitutive Laws Evolution.
	Decouple Evolution Strategy.

	Lower-Level Constitutive Evaluation

	Experiments
	Experimental Setup
	Implementation Details
	Baselines
	Datasets and Metrics

	Performance on Intrinsic Dynamics Inference
	Synthetic Dataset.
	Real-world Dataset.

	Generalization Analysis and Ablation Studies
	Generalization to Unseen Observations.
	Generalization to novel scenarios
	Ablation study on Decoupled Evolution Strategy

	Conclusion
	More Experimental Details
	Implementation Details
	Dataset Details

	More Experimental Results
	Related Work
	Physics-Based 4D Interaction
	Intrinsic Dynamics Learning

	Material Point Method
	Expert-Designed Constitutive Laws
	Elastic Constitutive Law
	Fixed Corotated Elasticity.
	Neo-Hookean Elasticity.
	StVK Elasticity.

	Plastic Constitutive Law
	Identity Plasticity.
	Drucker-Prager Plasticity.
	Von Mises Plasticity.
	Fluid Plasticity.

	Limitation and Future Work
	Prompt Design Details
	Prompt Design for Joint Evolution
	Prompt Design Alternating Evolution

	Visualization of Inferred Interpretable Constitutive Law
	BouncyBall
	ClayCat
	HoneyBottle
	JellyDuck
	RubberPawn
	SandFish
	Bun
	Burger

