Under review as a conference paper at ICLR 2026

VISIONLAW: INFERRING INTERPRETABLE INTRIN-
SIC DYNAMICS FROM VISUAL OBSERVATIONS VIA
BILEVEL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The intrinsic dynamics of an object governs its physical behavior in the real world,
playing a critical role in enabling physically plausible interactive simulation with
3D assets. Existing methods have attempted to infer the intrinsic dynamics of ob-
jects from visual observations, but generally face two major challenges: one line
of work relies on manually defined constitutive priors, making it difficult to align
with actual intrinsic dynamics; the other models intrinsic dynamics using neural
networks, resulting in limited interpretability and poor generalization. To address
these challenges, we propose VisionLaw, a bilevel optimization framework that
infers interpretable expressions of intrinsic dynamics from visual observations.
At the upper level, we introduce an LLMs-driven decoupled constitutive evolu-
tion strategy, where LL.Ms are prompted as a physics expert to generate and revise
constitutive laws, with a built-in decoupling mechanism that substantially reduces
the search complexity of LLMs. At the lower level, we introduce a vision-guided
constitutive evaluation mechanism, which utilizes visual simulation to evaluate
the consistency between the generated constitutive law and the underlying intrin-
sic dynamics, thereby guiding the upper-level evolution. Experiments on both
synthetic and real-world datasets demonstrate that VisionLaw can effectively in-
fer interpretable intrinsic dynamics from visual observations. It significantly out-
performs existing state-of-the-art methods and exhibits strong generalization for
interactive simulation in novel scenarios.

1 INTRODUCTION

With the advancement of 4D generation [Zhao et al.| (2023); | Bahmani et al. (2024); Jiang et al.
(2024a); Ren et al.| (2023), realistic interaction with 3D assets has become increasingly feasible,
facilitating broad applications in areas like virtual reality, embodied intelligence, and animation [Shi
et al.[(2023));|Lu et al.|(2024)); Jiang et al.|(2024b). Among these advances Xie et al.[(2024));|Lin et al.
(2024b)), incorporating physical simulation |Stomakhin et al.| (2013)); Miiller et al.| (2007) stands out
as a particularly prominent method, as it enables the generation of interactive dynamics that closely
mirror real-world physical behavior. To ensure simulation realism, it is essential to accurately cap-
ture the intrinsic dynamics of objects, including material properties (e.g., stiffness) and constitutive
laws (Chaves| (2013)), which describe the response behaviors of materials under applied forces.

Humans can roughly infer the intrinsic dynamics of objects merely by observing their motion, and
are even capable of predicting how these objects would interact in new scenarios. A fundamental
question arises: can we enable machines to infer the intrinsic dynamics directly from visual obser-
vations, as humans do? Recent methods |Xie et al.|(2024)); L1 et al.| (2023) have attempted to bridge
the gap between visual dynamics and physical simulation by incorporating physical simulators (e.g.,
Material Point Method, MPM [Stomakhin et al.| (2013)) into 3D representations such as NeRF and
3D Gaussian Splatting (3DGS) Mildenhall et al. (2021)); [Kerbl et al.| (2023). This integration has
led to a promising paradigm for inferring the intrinsic dynamics from visual observations. Depend-
ing on the type of intrinsic dynamics being inferred, existing methods can be categorized into two
groups: material parameter estimation and constitutive law inference.

For material parameter estimation, PAC-NeRF and GIC |Li et al| (2023); (Cai et al.| (2024) esti-
mate material parameters by the supervision of multi-view videos. PhyDreamer, DreamPhysics,

Under review as a conference paper at ICLR 2026

Method 1: “Struggle to align with actual dynamics” Our Method: ”Strong interpretability and generalization”
A . L >,
/ @ Manually Defined ,l You are a thinker. Please ‘: <=
- Constitutive Laws (\I complete the generation |
Render | and correction of the !
~~ LLMs ! constitutive law. i
- 1
Corot.al_:ed Identity Thinker “S=mmmmmmmmmmmmeee /
Elasticity Plasticity | SR 4 ¥
/ Supervise (- .
\f'r— —_—————————— p) Intrinsic Dynamics ?
1 q — = o
| Material Property: E, p, 7 P = p(Fe — (F®)™T) + Alog(J®)(F*)™" o
- - Elastic Constitutive Component g
Fe=Uz(Z)V" =3
Plastic Constitutive C t
Method 2: “Poor interpretability and generalization e o 1‘18 omponer
w“\. Render Render [/O:
- . a» Lo
Plastic Law Visual i i
». , N A I i
\"ﬁ"’ ------- P ! -0
Supervise Observation Supervise [mje SR .t]

Figure 1: Existing works either rely on manually defined constitutive laws, which struggle to align
with actual intrinsic dynamics, or learn neural constitutive laws, which suffer from poor inter-
pretability and generalization. In contrast, our approach can automatically infer interpretable in-
trinsic dynamics solely from visual observations.

and Physics3D [Zhang et al.| (2024)); Huang et al.| (2025); [Liu et al.| (2024) distill visual dynamics
priors from video diffusion models to guide the estimation process. However, these approaches typ-
ically rely on manually defined constitutive laws, which often fail to align with the complex physical
behaviors observed in practice, thereby compromising the accuracy of parameter estimation.

For constitutive law inference, OmniPhysGS [Lin et al.| (2025)) introduces constitutive Gaussians,
which assign a suitable constitutive law to each Gaussian kernel from an expert-designed constitu-
tive set. However, such a predefined set often fails to capture the full diversity of real-world physical
behaviors. NeuMA |Cao et al.| (2024)) learns neural constitutive laws from visual observations. De-
spite its effectiveness, it has notable limitations: 1) The learned laws are black-box representations,
which lack interpretability and are difficult for humans to understand; 2) Due to the lack of physical
inductive biases, neural networks tend to mechanically memorize and reconstruct visual observa-
tions instead of modeling underlying dynamics, resulting in overfitting and poor generalization.

To overcome the aforementioned challenges, we introduce VisionLaw, an interpretable intrinsic dy-
namics inference framework based on bilevel optimization, which can jointly infer symbolic consti-
tutive law and their corresponding continuous material properties solely from visual observations.
At the upper level, we propose an LLMs-driven decoupled constitutive evolution strategy, which: 1)
unleashes the capabilities of LLMs in physical understanding and mathematical reasoning to gener-
ate and refine symbolic constitutive hypotheses; 2) introduces a decoupling mechanism to effectively
alleviate the search space explosion caused by jointly evolving elastic and plastic components. At
the lower level, we construct a vision-guided constitutive evaluation mechanism. Supervised by vi-
sual observations, it optimizes the continuous material parameters of a given constitutive law using
a differentiable simulator and renderer. The goal is to generate evaluation and feedback that re-
flect the consistency between the generated laws and ground-truth intrinsic dynamics, which in turn
guides the evolution at the upper level. Through collaborative optimization between the upper and
lower levels, VisionLaw effectively captures the interpretable intrinsic dynamics from visual obser-
vations and generalizes them to novel scenarios, enabling physically plausible 4D interaction. Our
contributions are summarized as follows:

* We propose a bilevel optimization framework that can automatically infer symbolic consti-
tutive law and material properties from visual observations.

* We distill physics priors from LLMs to introduce explicit physical inductive bias, thereby
facilitating the evolution of constitutive laws. In addition, a decoupled evolution strategy is
introduced to significantly improve both search efficiency and solution quality.

* We introduce a vision-guided constitutive evaluation mechanism to provide evaluation and
feedback of a given constitutive law for the upper-level evolution.

Under review as a conference paper at ICLR 2026

» Extensive experiments on both synthetic and real-world datasets demonstrate that our
method effectively captures the interpretable intrinsic dynamics underlying visual obser-
vations and transfers them to novel scenarios for 4D interaction.

2 PRELIMINARIES

2.1 CONSTITUTIVE LAWS

In continuum mechanics |Chaves| (2013)), constitutive laws define how materials respond under ap-
plied forces. The essential reason why materials like rubber, sand, and water exhibit entirely dif-
ferent physical behaviors lies in the differences in the constitutive laws they follow. To simulate
the motion and deformation of materials, we need to solve a system of partial differential equations
derived from the conservation of mass and momentum:

Dp Dv

zp R 2 _v.P 1
Dt+pVV 0, Py V.-P+pg, (1)

where p denotes the density, v the velocity field, g the gravitational acceleration, and P the stress
tensor, which is defined by the constitutive law. In this paper, we employ the MPM simulator
to solve the above system of governing equations for simulation. Please refer to Appendix [D] for
further details about MPM. Within the MPM framework, two types of constitutive laws must be
specified: (1) an elastic constitutive law that describes reversible elastic responses, and (2) a plastic
constitutive law that captures irreversible plastic evolution. Their formulations are given as:

vp (Fi0p) > T, op (F;0p) — FOre,)
where ¢ g and ¢ p denote the elastic and plastic constitutive laws, respectively. F is the deformation
gradient, 7 is the Kirchhoff stress tensor, F™ec® jg the corrected deformation gradient after plastic
return mapping. The continuous material parameters in the elastic and plastic laws are denoted by
0 and Op, respectively. Several classical constitutive laws are listed in Appendix [E} Despite the
availability of many classical constitutive laws, they remain inadequate in capturing the diversity
and nonlinear behavior of complex materials. To this end, we propose VisionLaw, which infers
constitutive laws directly from visual observations.

2.2 PHYSICS-INTEGRATED 3D GAUSSIANS

3D Gaussians Splatting (3DGS) Kerbl et al.| (2023)) represents the scene using a set of anisotropic
Gaussian kernels G = {x;, A;, a;,C; }iex, Where x;, A, «;, and C; represent the center position,
covariance matrix, opacity, and spherical harmonic coefficients of the Gaussian kernel G;, respec-
tively. To render 3D Gaussians into a 2D image from a given view, the color of each pixel can be
formulated as:

i—1
C= ZUiSH<diaCi)H(1_U]’)a (3)
ieEN j=1

where A denotes a set of sorted Gaussian kernels related to the pixel and view. o; is the effective
opacity, defined as the product of the projected 2D Gaussian weight and opacity «;. SH computes
RGB values based on the view direction d; and spherical harmonic coefficients C;. Unlike NeRF’s
implicit form, 3DGS offers an explicit representation that exhibits a Lagrangian nature, facilitating
seamless integration with simulation algorithms. Thus, PhyGaussians Xie et al.|(2024)) pioneers the
integration of MPM simulator |Stomakhin et al.| (2013) into 3DGS, combining physical simulation
with visual rendering. Specifically, this method treats Gaussian kernels as particles representing the
continuum, and assigns each a time property ¢, material properties 6 (e.g., stiffness). Therefore,
given the constitutive law and simulation conditions (e.g., external forces and boundary), MPM can
be applied to predict the displacement and deformation of Gaussian kernels at the next time step:

x"TLFT = @(GY), 4
At+1 — Ft+1At(Ft+1)T. (5)

Here, ® is a differentiable MPM simulator, F¥*1 denotes the deformation gradient at time step £+ 1,
which describes the local deformation of particles (the subscript ¢ is omitted for simplicity). Gaus-
sian covariance A‘*! can be updated by applying F**!, which approximates the deformation of the
Gaussian kernel. After the MPM simulation is completed, a 4DGS representation is constructed,
which enables rendering of visual dynamics using Eq.

Under review as a conference paper at ICLR 2026

Candidate Constitutive Individual:

Decouple Evolution Strategy

You are an

intelligent AI

\
'
'
assistant for coding, ' / \
physical ' 0
Python Code simulation ... ' Elasticity Plasticity
Follow the user‘s '
requirements ... :
Elasticity Model Plasticity Model i D
“Analyze”: ! Elasticity Plasticity
(® Continuous Parameterization Analyze step-by-]
step the potential : .
self.E = 1e° self.q, = 4.0 issues based on the | | Alternating
feedback. '
self.v = 02 self.G = 7.0 “Plans: I
i H A)
" N Think step-by-step 1 5 oo ¢ o
(p Discrete Expression what you need to do | ! Elasticity Plasticity
P e to improve model H
= =0y N .
- > performance ! Joint
T=x2+x Frew = sin(y) \ J
= forward
\ O% o
0% x=+» backward
= —_—
- < —
- |
<
) -
,
.
3DGS Representation Differentiable Simulator Differentiable Renderer Visual Simulation Visual Observation

Figure 2: Given a constitutive individual—either predefined at initialization or generated by
LLMs—it is embedded into a differentiable MPM simulator for forward simulation. The resulting
dynamics are rendered and compared with observations to compute a loss, which is backpropagated
to optimize material parameters. This process produces both a fitness score and feedback for the
individual. Based on fitness, the top-k individuals are selected and, along with their feedback, en-
coded into prompts for the LLMs. Guided by the decoupled evolution strategy, the LLMs analyzes
and refines these constitutive law expressions to generate offspring for the next optimization cycle.

3 METHODOLOGY

In this work, we aim to infer interpretable intrinsic dynamics from a series of visual observations.
Formally, given multi-view video observations V' = {V}, V5, ..., Vy } of moving objects along with
corresponding camera extrinsic and intrinsic parameters, the goal is to infer the discrete constitutive
law expressions and optimize the continuous material parameters in a unified manner. To this end,
we propose VisionLaw, a novel bilevel optimization framework:

min £ (R (,0,6%9,6).V), ©
@,

st. h(p,©:;®) <0, %
0* € argraléi(l_)lﬁ (R(0;®,0,G),V), (®)

where, R is a differentiable renderer defined by Eq.|3] The constitutive law ¢ consists of an elastic
law ¢ and a plastic law ¢ p. O defines the continuous parameter space for inner-level optimization
6 € O©. h(-) < 0 refers to the validity of the simulation (e.g. whether a constitutive law ¢ is
simulatable). The material parameter 6 includes the elastic parameters 6z and the plastic parameters
0 p. For the upper level, based on evaluation and feedback from the lower level, LLMs is employed
to generate and refine discrete constitutive expressions (¢, ©). At the lower level, given the output
(p,©) from the upper level, the optimal continuous material parameters 6* are estimated under
visual observation supervision, using differentiable rendering and simulation. During this process,
evaluation and feedback are provided. The pipeline of the proposed VisionLaw is illustrated in Fig[2]

3.1 UPPER-LEVEL CONSTITUTIVE EVOLUTION

3.1.1 LLMs-DRIVEN CONSTITUTIVE LAWS EVOLUTION.

Recently, LLMs have shown tremendous potential in scientific discovery Yang et al.| (2023);
Romera-Paredes et al.|(2024); Ma et al.| (2024), owing to their strong symbolic reasoning abilities
and extensive physical priors. Inspired by this, in the upper-level search, we prompt LLMs to evolve
constitutive law expressions. Specifically, we consider LLMs as an intelligent operator and construct
an evolutionary search paradigm to iteratively optimize the constitutive law expressions. Each law
is represented as a Python code snippet with a clear physical meaning and strong interpretability.

Under review as a conference paper at ICLR 2026

The optimization procedure consists of five stages, which are as follows: i) Initialization: Several
classical constitutive laws (e.g., purely elastic material models) are introduced as initial individuals.
This serves as a physically plausible starting point for the evolutionary process. ii) Fitness Evalua-
tion: Each candidate constitutive law is passed to the lower level for simulation testing. Its fitness
is evaluated based on visual observation, and feedback, such as the loss curve, is collected. iii)
Selection: to enhance population diversity and avoid local optima, we first remove duplicate consti-
tutive individuals with fitness differences below a threshold e. Then, we select the top-k constitutive
individuals with the highest fitness from the remaining population as “’parents” for the next round
of evolution. iv) Expression Correction: we prompt LLMs to 1) analyze the parent expression and
identify any shortcomings based on its feedback; 2) design an improvement plan and determine how
to modify the expression to increase fitness; 3) generate a set of physically plausible constitutive law
expressions as candidate individuals. This process is formalized as:

[, O™ mepar = LLM ({¢*, 0F,0"}, 1 P). ©)

where, K denotes parent size, M denotes offspring size, o represents the feedback obtained from the
lower level and P denotes the prompt provided to LLMs. v) Stages ii) to iv) constitute a complete
evolutionary iteration. Multiple evolutionary iterations are executed until the predefined number of
iterations is reached. Eventually, the algorithm evolves constitutive laws that not only simulate dy-
namic behaviors consistent with visual observations but also exhibit strong physical interpretability.

3.1.2 DECOUPLE EVOLUTION STRATEGY.

In the MPM simulation framework, a complete constitutive law ¢ consists of an elastic part ¢ 5 and
a plastic part ¢ p, which together govern the system’s simulation behavior. However, simultaneous
optimization of these components significantly enlarges the search space, increases the difficulty
of LLMs search, and hinders convergence to high-quality solutions. To address the above issue, we
propose a decoupled evolution strategy that splits the coupled constitutive optimization task into two
independently solvable sub-tasks, thereby effectively reducing the search space.

This strategy consists of two phases: 1) Alternating Evolution: In each iteration, we prompt the
LLM to optimize only one component of the constitutive law expression (elastic or plastic), while
the other remains fixed and is updated in the subsequent iteration. The two components of con-
stitutive laws are optimized alternately across multiple iterations. 2) Joint Evolution: After the
alternating optimization phase, we prompt the LLM to jointly optimize both elastic and plastic com-
ponents to further enhance the overall performance. This phase serves as a fine-grained refinement
of the existing high-quality expressions from a global perspective. Through the proposed decoupled
evolution strategy, we effectively reduce the search space, enhance the stability and efficiency of
LLM-based search, and substantially improve the quality of the final constitutive laws.

3.2 LOWER-LEVEL CONSTITUTIVE EVALUATION

To effectively evaluate whether a candidate constitutive expression can accurately capture the in-
trinsic dynamics of motion observed in visual data, and to provide high-quality feedback to the
upper-level evolution, we design a vision-guided constitutive evaluation mechanism. First, a static
3DGS representation is reconstructed from the first frame of multi-view video inputs. Then, the
candidate constitutive law expression (6), with continuous material parameters, is seamlessly em-
bedded into a differentiable MPM simulator. We integrate the MPM simulator with 3DGS to drive
the simulation and render the predicted visual dynamics V' from given views. The supervised loss
between the predicted and observed visual dynamics can be formulated as:

1 N . ~
L=+ D LoV, Vi) + (1=) Lossma(Va, Vi), (10)

n=1

where, Vn denotes the rendered video from the n-th viewpoint, and £, is the L2 norm loss. Since
both the renderer R and the MPM simulator ® are differentiable, the evaluation loss can be back-
propagated to optimize the continuous material parameters. During this process, we collect the loss
curve and the material parameter update trajectory as feedback to construct the LLMs’ prompts.
Meanwhile, the minimum loss achieved during optimization is used as the fitness score of the con-
stitutive candidate to guide the selection process at the upper level.

Under review as a conference paper at ICLR 2026

Method | BouncyBall ClayCat HoneyBottle JellyDuck RubberPawn SandFish | Average
PAC-NeRF|Li et al.|(2023) 516.30 15.38 2.21 137.73 15.47 1.71 114.80
NCLaw Ma et al.|(2023) 56.69 2.35 0.92 11.97 391 1.30 12.86
NeuMA |Cao et al.|(2024) 1.78 1.24 1.09 10.96 1.01 1.07 2.86
VisionLaw (Ours) | 1.08 0.77 0.79 5.19 0.94 110 | 1.65

Table 1: Quantitative Comparison of Intrinsic Dynamics Consistency on Synthetic Datasets.
The Chamfer distance was employed to quantify the similarity between simulated and ground-truth
particle trajectories. Lower values indicate better alignment with ground-truth intrinsic dynamics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP
4.1.1 IMPLEMENTATION DETAILS

Given multi-view videos of a scene, we follow NeuMA |Cao et al.| (2024) to perform 3D recon-
struction and Particle-GS binding using multi-view images from the initial time step. We use only
single-view videos as ground-truth observations to infer intrinsic dynamics across all experiments.
For all scenarios, the initial constitutive individual is only defined as a purely elastic model that com-
bines fixed corotated elasticity with identity plasticity. For the upper-level evolution, we employ
GPT-4.1-mini to generate constitutive hypotheses. Details of the prompt design are provided
in Appendix [G] The decouple evolution strategy is executed through four iterations of alternating
optimization, followed by three iterations of joint optimization. For lower-level optimization, we
conduct MPM simulation Xie et al.[(2024) under gravitational acceleration (9.8m,/s%). We employ
the Adam optimizer with a learning rate of 1 x 10~ to tune the material parameters. For each scene,
we perform five independent runs using different random seeds. All experiments are conducted on
an NVIDIA A40 (48GB) GPU. Detailed experimental settings are provided in Appendix [A.T]

4.1.2 BASELINES

We compare our method with state-of-the-art intrinsic dynamics inference methods: PAC-NeRF|Li1
et al.| (2023), NCLaw Ma et al.| (2023)), NeuMA |Cao et al.| (2024)), and Spring-Gaus [Zhong et al.
(2024). PAC-NeRF is capable of inverting material parameters from video input. NCLaw only fits
neural constitutive laws to known dynamics, whereas NeuMA extends this by introducing visual
information for adaptation. NeuMA is the most relevant work to ours, as it learns neural constitutive
laws directly from visual observations. Spring-Gaus models elastic objects using a spring-mass
system with Gaussian kernels. All baseline experimental settings follow the original setup.

4.1.3 DATASETS AND METRICS

To thoroughly evaluate the effectiveness of our method, we conduct experiments on both synthetic
and real-world datasets. For synthetic data, we adopt six dynamic scenes from NeuMA |Cao et al.
(2024), each with varying initial conditions (including object shapes, velocities, and positions), in-
trinsic dynamics, and simulation time intervals. Each scene includes 10 videos captured from dif-
ferent views, each containing 400 frames, and the dataset further provides ground-truth particle
trajectories. For real-world evaluation, we conduct experiments on two scenes ('Bun’ and *Burger’)
provided by Spring-Gaus [Zhong et al.| (2024). More details of the datasets are provided in Ap-
pendix @} Following prior works |Guan et al.| (2022); |Cao et al.| (2024)), we use the L2-Chamfer
distance [Erler et al.|(2020) between the simulated and ground-truth particle trajectories to quantify
the accuracy of intrinsic dynamics inference. To assess the visual fidelity, we follow 3DGS [Kerbl
et al.|(2023) and employ PSNR, SSIM, and LPIPS as quantitative metrics.

4.2 PERFORMANCE ON INTRINSIC DYNAMICS INFERENCE
4.2.1 SYNTHETIC DATASET.

Comparison of Intrinsic Dynamics Consistency. In synthetic datasets, ground-truth particle tra-
jectories are generated from ground-truth intrinsic dynamics. We evaluate alignment between in-
ferred and ground-truth intrinsic dynamics by measuring the Chamfer distance between simulated

Under review as a conference paper at ICLR 2026

(BN VisionLaw X0 NeuMA |

(a) PSNR (b) = . i
40 = *
« 2 35
38 =" "
- 30 »
36 30 28 32
BouncyBall ClayCat HoneyBottle
N
34 0 1 7 3 4 5 & 7 8 s 0 13 3 45 8 7 8 9 013 3 435 6 7 b o
36
a0
32 36
1 39
30 34
°Z‘32 3
I 32
28 = 37
30 30
26 JellyDuck RubberPawn 361 sandFish
-1 S S I I e
Ball Cat Bottle Duck Pawn Fish Views Views Views

Figure 3: Quantitative Comparison of Visual Fidelity on Synthetic Datasets. (a) Average PSNR
over all non-training views. Higher PSNR values reflect improved visual fidelity; (b) PSNR com-
parison at different views, with View 0 denoting the training view.

class PlasticityModel(nn.Module): class ElasticityModel(nn.Module):

def __init_(self, yield stress: float = def _init_(self, youngs_modulus_log: float
& B ! ! ! ! ! 1| 0.30): =9.82, poissons_ratio_sigmoid: float =
| H H H H H H 1| super(). _init_0 2.07):
H H ! ! ! ! ! | self.yield_stress = super()._init__()
H ' ' ' ' ! ! | nn.Parameter(torch. tensor (yield_stress)) self.youngs_modulus_log =
' H H H H ! ! | def forvard(self, F: torch.Tensar) —> nn.Paraneter (torch. tensor (youngs_modulus_log
H ' ' ' H H 1 | torch.Tensor:)
I ' ' | \ | 1| U, signa, Vh = torch. linalg. svd(F) self.poissons_ratio_signo
H H H H H | | | sigma_clamped = torch.clamp_min(signa, 1e-6) "h.Parancter (orch. tensor(po)ssans ratio_sig
| | H Ny H | | epsilon = torch. log(signa_clanped) moid))
P R e e s miaiaia bt epsilon_mean = epsilon.mean(din=1, def foruard(self, F: torch.Tensor) ->
H. keepdin=True) torch. Tensor:
- 1 epsilon_dev = epsilon - epsilon_mean B = F.size(0)
« I . ’ - o . - - epsilon_dev_norm = torch.norm(epsilon_dev, E = self.youngs_modulus_log.exp()
' din=1, keepdin=True).clanp_nin(le-12) nu = SelF.poissans. rat 1o sigmoid. signoid()
I

delta ganma = epsilon_dev_norm - 9
self.yield_stress mu=E /(2% (14 n)
delta_ganma_clamped = Tam = E o nu / ((1+nu) % (1 -2 % nu))

1
'
'
1
'
1
a
|
1| torch. clamp_min(delta_gamma, 0.0) T = torch.eye(3, dtype=F.dtype,
. 1| shrink_factor = 1.0 - delta gamna_clanped / device=F.device]..unsqueeze(0). expand (B, -1,
| -1)
1
-
1
'
1
'
'
'

=

epsilon_dev_norm
epsilon_dev_corrected = epsilon_dev * 3,5 torch. Linalg.det(F). clamp_min(le-
shrink_factor 12).view(-1, 1, 1)

L

epsilon_corrected = epsilon_mean + log] = torch. lng(J)

M
®
Rk L T TTT S
®
P
L
F——————F - ——— - - —— - - —
[
e il me
e
Lk e
®

' epsilon_dev_corrected F_inv = torch.inverse(F)
! . . signa_corrected = F_inv_T = F_inv.transpose(1, 2)
' torch. exp(epsilon_corrected) P (F7= F_inv_T) + lam * log) *
H y F_corrected = U @ _inv_T
H . torch.diag_enbed(signa_corrected) @ Vh iy transpose(1,
______ U S T e e 1P S NS return F_corrected kirchhoff stress—torch.matmuup, Ft)
return kirchhoff_stress
Bun 30.49 31.57 33.16 Burger 33.09 3299 33.71 =
(a) (b)

Figure 4: Comparison on Real-World Datasets. (a) Quantitative metrics (i.e., PSNR) between the
predicted and observed frames are reported in the bottom row; (b) The intrinsic dynamics inferred
from the Bun scene, represented as Python code, exhibit strong interpretability.

and ground-truth trajectories, as summarized in Tab. [Tl PAC-NeRF relies heavily on manually de-
signed constitutive laws and is highly sensitive to material parameter initialization. This restricts
its ability to capture actual dynamics, leading to poor performance, especially in complex scenar-
ios such as BouncyBall and JellyDuck. Similarly, NCLaw learns predefined constitutive laws and
suffers from the same limitations as PAC-NeRF. NeuMA improves flexibility by learning neural
constitutive laws from visual inputs. However, its black-box nature limits interpretability and of-
ten leads to overfitting. In contrast, our VisionLaw approach achieves the best overall performance
across all six benchmarks, with an average Chamfer distance of 1.65, significantly outperforming the
baselines. These results demonstrate the superior ability of VisionLaw to recover intrinsic dynamics
directly from visual observations, while maintaining interpretability.

Comparison of Visual Fidelity. To further evaluate visual fidelity, we compute the PSNR between
rendered dynamics and ground-truth observations. As shown in Figure [3] (a), we report the aver-
aged PSNR over all non-training views. The results show that VisionLaw significantly outperforms
NeuMA, achieving superior visual fidelity. In Fig[3|(b), we further compare PSNR across different
views, including the training view (View 0). NeuMA exhibits pronounced variability, with higher
PSNR at the training view and its neighbors (View 1 and View 9), but considerably worse perfor-
mance on unseen views. This shows that NeuMA tends to overfit the training views, which limits
its ability to generalize. In contrast, VisionLaw performs consistently across different views and
still produces robust results on unseen views, even when trained on only one. This stability arises
from introducing physical inductive biases through LLMs into the evolution of constitutive laws,
which effectively mitigates the overfitting commonly observed in purely neural methods. Overall,
these findings confirm that our approach not only captures more faithful intrinsic dynamics but also
delivers dynamic reconstructions of higher visual fidelity.

Under review as a conference paper at ICLR 2026

1
1
i 1 T
1 1 [
@ - o - 2 1 £ 1 1
i ' 1 1 1
= 1 1 1
— - : :
. !
‘ 1 M 1 1
1 1 1
_ 1 1 1
1 1 1
1 ' 1 1
1 1 1
-------------- B e L ek
BouncyBall 13.6 117 1 ClayCat 7.93 0.95 I HoneyBottle 1.24 0.96 | RubberPawn 1.39 0.93
|

Figure 5: Generalization to Unseen Observations. We infer the intrinsic dynamics using only the
first 200 frames of visual observation and simulate the subsequent 200 frames. Quantitative metrics
(i.e., Chamfer distance) are reported in the bottom row.

4.2.2 REAL-WORLD DATASET.

We evaluated our method on a real-world dataset against Spring-Gaus [Zhong et al| (2024) and
NeuMA |Cao et al|(2024), with visual results and PSNR metrics shown in Fig. Eka). Spring-Gaus
models elastic deformation using a spring—mass system, which works well for simple linear behav-
iors, but fails to capture the complex nonlinear elasticity of real deformable objects. Consequently,
its predictions deviate markedly from the ground-truth observations. NeuMA employs neural net-
works to approximate nonlinear dynamics and capture diverse material behaviors. However, it is
sensitive to observation noise and lacks explicit physical constraints, which limits its ability to re-
produce the subtle deformations of real-world objects. In contrast, VisionLaw integrates a broad
range of physical priors through LLMs, providing a strong inductive bias toward physically plau-
sible dynamics. This improves both generalization and learning stability. As shown in Fig.] (a),
VisionLaw generates results that are more consistent with real observations, both visually and quan-
titatively. These results demonstrate that VisionLaw can accurately capture the intrinsic dynamics
of deformable objects and highlight its practical effectiveness in real-world scenarios. Meanwhile,
Fig. @ (b) illustrates the inferred intrinsic dynamics in the Bun scenario, expressed in the form of
Python code. This form offers strong interpretability, allowing humans to intuitively grasp the phys-
ical meaning underlying the formulas, thereby facilitating scientific discovery.

4.3 GENERALIZATION ANALYSIS AND ABLATION STUDIES

4.3.1 GENERALIZATION TO UNSEEN OBSERVATIONS.

We conducted a generalization analysis on four examples, comparing our method with NeuMA [Cao
et al. (2024). For each scene, the first 200 frames of visual observations were used to infer the
intrinsic dynamics, which were then used to predict the next 200 frames. As shown in Fig.[5] NeuMA
struggles to generalize beyond the observed frames. Its predictions diverge significantly from the
ground truth, likely due to overfitting. In contrast, VisionLaw achieves consistently high predictive
accuracy across both visual appearance and Chamfer distance metrics, even with limited observation
data. We attribute this advantage to the physical inductive bias introduced by knowledge-rich LLMs,
which not only improves physical plausibility but also constrains the solution space in a meaningful
way. These results highlight that VisionLaw combines strong generalization with interpretability,
making it practical for forward simulation in previously unseen temporal regimes.

4.3.2 GENERALIZATION TO NOVEL SCENARIOS

To further verify the generalization and transferability of the interpretable intrinsic dynamics learned
by VisionLaw from visual observations, we apply the dynamics learned from different scenarios to
novel 4D generation tasks. The 3D-to-4D and image-to-4D tasks follow the paradigms of Phys-
Gaussian (Xie et al.[(2024) and Phy124 |Lin et al.| (2024a)), respectively, and all experiments are
conducted under gravitational conditions. As shown in Fig.[f] all examples generate dynamics con-
sistent with the original observations, such as the slow deformation of clay, the elastic recovery of
rubber, and the dispersive behavior of sand. These results demonstrate that the intrinsic dynamics

Under review as a conference paper at ICLR 2026

Image-to-4D 3D-to-4D
L - 1>
i
> [
z l st ‘ \
o 3 4 A L Ay s - 4
. \9 o e il (@ e (8
1 - ‘
E-1 =
e 3B S S . . = =
QW Qe @ Qs

ne

>
v
.
¢
?33
s
ih
%’
@

Time Time

Figure 6: Generalization to Novel Scenarios for 4D Interaction. The left text indicates the intrin-
sic dynamics applied, which are learned from visual observations through VisionLaw.

—e— With Decouple = —e— Without Decouple

RGB Loss

6 T
JellyDuck RubberPawn

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Iteration Iteration Iteration Iteration

s ———
BouncyBall ClayCat

Figure 7: Ablation Study on Decouple Evolution Strategy. The figure shows the loss of the best
solution averaged across seeds at different iterations. The shaded area indicates the range between
the minimum and maximum values.

inferred by VisionLaw are not only interpretable but also transferable to unseen scenarios, enabling
the 4D interaction aligned with real physical behaviors. This cross-scenario generalization opens
new possibilities for physics-driven 4D interaction.

4.3.3 ABLATION STUDY ON DECOUPLED EVOLUTION STRATEGY

To evaluate the effectiveness of our proposed decoupled evolution strategy, we perform an ablation
study comparing two settings over five iterations: 1) With Decouple: the elastic and plastic com-
ponents are optimized alternately for four iterations, followed by a final joint refinement step; 2)
Without Decouple: all five iterations are performed with joint optimization. As illustrated in Fig.
the decoupled strategy consistently yields lower RGB losses across diverse scenes, indicating it leads
to better constitutive law discovery. By decomposing the search into simpler sub-tasks, it narrows
the search space, making optimization more efficient. Moreover, the shaded regions are noticeably
larger under the decoupled setting, indicating greater solution diversity. This helps avoid early con-
vergence to poor local minima. Overall, the decoupled evolution strategy more effectively unleashes
the potential of LLMs by not only sharpening exploitation but also broadening exploration.

5 CONCLUSION

In this paper, we propose VisionLaw, a bilevel optimization framework that infers interpretable in-
trinsic dynamics directly from visual observations by jointly optimizing the symbolic constitutive
law and its material parameters. At the upper level, knowledgeable LLMs are prompted to generate
and refine symbolic constitutive laws, thereby introducing physical inductive biases into constitu-
tive evolution. Meanwhile, a decoupled evolution strategy is introduced to reduce the complexity of
jointly searching and to improve the solution quality. At the lower level, material parameters are op-
timized under visual supervision, while evaluation and feedback on intrinsic dynamics consistency
are provided to guide the upper-level evolution. This closed-loop design effectively bridges the gap
between visual data and physical nature, achieving a balance between interpretability, physical plau-
sibility, and generalization. Experimental results show that our method accurately captures intrinsic
dynamics from visual observations and generalizes well to novel scenarios for 4D interaction.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research adheres to the ethical guidelines outlined by ICLR. We confirm that no human sub-
jects were involved in this study, and all datasets used have been properly sourced and are publicly
available. Our methods have been designed with fairness and transparency in mind, ensuring no
biases are introduced in the analysis. Privacy and security of data have been prioritized throughout
the research, and we comply with all applicable legal regulations. No conflicts of interest or spon-
sorships have influenced the research outcomes. We are committed to upholding research integrity
and have followed appropriate ethical practices throughout the study.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our work. The source code for the algo-
rithms presented in this paper is provided as supplementary materials. Additionally, a detailed
description of the experimental setup and datasets is provided in Appedix. We encourage reviewers
and readers to refer to these materials for complete reproducibility.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Sherwin Bahmani, Ivan Skorokhodov, Victor Rong, Gordon Wetzstein, Leonidas Guibas, Peter
Wonka, Sergey Tulyakov, Jeong Joon Park, Andrea Tagliasacchi, and David B Lindell. 4d-fy:
Text-to-4d generation using hybrid score distillation sampling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7996-8006, 2024.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 5855-5864,
2021.

Reinhard Blickhan. The spring-mass model for running and hopping. Journal of biomechanics, 22
(11-12):1217-1227, 1989.

Junhao Cai, Yuji Yang, Weihao Yuan, Yisheng He, Zilong Dong, Liefeng Bo, Hui Cheng, and Qifeng
Chen. Gic: Gaussian-informed continuum for physical property identification and simulation.
arXiv preprint arXiv:2406.14927, 2024.

Junyi Cao, Shanyan Guan, Yanhao Ge, Wei Li, Xiaokang Yang, and Chao Ma. Neuma: Neural
material adaptor for visual grounding of intrinsic dynamics. volume 37, pp. 65643-65669, 2024.

Eduardo WV Chaves. Notes on continuum mechanics. Springer Science & Business Media, 2013.

Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J Mitra, and Michael Wimmer. Points2surf
learning implicit surfaces from point clouds. In Proceedings of the European conference on
computer vision, pp. 108—124. Springer, 2020.

Yutao Feng, Yintong Shang, Xuan Li, Tianjia Shao, Chenfanfu Jiang, and Yin Yang. Pie-nerf:
Physics-based interactive elastodynamics with nerf. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4450-4461, 2024.

Shanyan Guan, Huayu Deng, Yunbo Wang, and Xiaokang Yang. Neurofluid: Fluid dynamics
grounding with particle-driven neural radiance fields. In Proceedings of the International con-
ference on machine learning, pp. 7919-7929. PMLR, 2022.

Si Hang. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on Math-
ematical Software (TMS), 41(2):11, 2015.

10

Under review as a conference paper at ICLR 2026

Tianyu Huang, Yihan Zeng, Hui Li, Wangmeng Zuo, and Rynson WH Lau. Dreamphysics: Learning
physical properties of dynamic 3d gaussians with video diffusion priors. 2025.

Yanqin Jiang, Li Zhang, Jin Gao, Weimin Hu, and Yao Yao. Consistent4d: Consistent 360° dynamic
object generation from monocular video. Proceedings of the International conference on learning
representations, 2024a.

Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng, Huamin Wang, Minchen Li, Henry Lau,
Feng Gao, Yin Yang, et al. Vr-gs: A physical dynamics-aware interactive gaussian splatting
system in virtual reality. In Proceedings of the ACM SIGGRAPH, pp. 1-1, 2024b.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics (TOG), 42(4):139-1,
2023.

Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy Jatavallabhula, Ming Lin, Chenfanfu
Jiang, and Chuang Gan. Pac-nerf: Physics augmented continuum neural radiance fields for
geometry-agnostic system identification. 2023.

Jiajing Lin, Zhenzhong Wang, Yongjie Hou, Yuzhou Tang, and Min Jiang. Phy124: Fast physics-
driven 4d content generation from a single image. arXiv preprint arXiv:2409.07179, 2024a.

Jiajing Lin, Zhenzhong Wang, Shu Jiang, Yongjie Hou, and Min Jiang. Phys4dgen: A physics-
driven framework for controllable and efficient 4d content generation from a single image. arXiv
e-prints, pp. arXiv—2411, 2024b.

Yuchen Lin, Chenguo Lin, Jianjin Xu, and Yadong Mu. Omniphysgs: 3d constitutive gaussians for
general physics-based dynamics generation. arXiv preprint arXiv:2501.18982, 2025.

Fangfu Liu, Hanyang Wang, Shunyu Yao, Shengjun Zhang, Jie Zhou, and Yueqi Duan.
Physics3d: Learning physical properties of 3d gaussians via video diffusion. arXiv preprint
arXiv:2406.04338, 2024.

Zhuoman Liu, Weicai Ye, Yan Luximon, Pengfei Wan, and Di Zhang. Unleashing the potential of
multi-modal foundation models and video diffusion for 4d dynamic physical scene simulation.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 11016-11025,
2025.

Guanxing Lu, Shiyi Zhang, Ziwei Wang, Changliu Liu, Jiwen Lu, and Yansong Tang. Manigaussian:
Dynamic gaussian splatting for multi-task robotic manipulation. In Proceedings of the European
Conference on Computer Vision, pp. 349-366. Springer, 2024.

Pingchuan Ma, Peter Yichen Chen, Bolei Deng, Joshua B Tenenbaum, Tao Du, Chuang Gan, and
Wojciech Matusik. Learning neural constitutive laws from motion observations for generalizable
pde dynamics. In Proceedings of the International Conference on Machine Learning, pp. 23279—
23300. PMLR, 2023.

Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo, Zhiqing Sun, Joshua B Tenenbaum, Daniela Rus,
Chuang Gan, and Wojciech Matusik. LIm and simulation as bilevel optimizers: A new paradigm
to advance physical scientific discovery. arXiv preprint arXiv:2405.09783, 2024.

Miles Macklin, Matthias Miiller, and Nuttapong Chentanez. Xpbd: position-based simulation of
compliant constrained dynamics. In Proceedings of the International Conference on Motion in
Games, pp. 49-54, 2016.

Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross. Unified
simulation of elastic rods, shells, and solids. ACM Transactions on Graphics (TOG), 29(4):1-10,
2010.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and

Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99-106, 2021.

11

Under review as a conference paper at ICLR 2026

Matthias Miiller and Markus H Gross. Interactive virtual materials. In Proceedings of Graphics
Interface, volume 2004, pp. 239-246, 2004.

Matthias Miiller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based dynamics.
Journal of Visual Communication and Image Representationv (JVCI), 18(2):109-118, 2007.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):1-15,
2022.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In Proceedings of the International conference on learning
representations, 2020.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. 2023.

Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao, Gang Zeng, and Ziwei Liu. Dream-
gaussian4d: Generative 4d gaussian splatting. arXiv preprint arXiv:2312.17142,2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Proceedings of the
International conference on machine learning, pp. 8459-8468. PMLR, 2020.

Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, and Jiajun Wu. Robocook: Long-horizon
elasto-plastic object manipulation with diverse tools. arXiv preprint arXiv:2306.14447, 2023.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. A material
point method for snow simulation. ACM Transactions on Graphics (TOG), 32(4):1-10, 2013.

Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm:
Large multi-view gaussian model for high-resolution 3d content creation. 2024a.

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. 2024b.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simu-
lation with continuous convolutions. In Proceedings of the International conference on learning
representations, 2019.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. Nature, 620(7972):47-60, 2023.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4389-4398, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In Proceedings of the International conference on
learning representations, 2023.

Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y Feng, Changxi Zheng, Noah Snavely, Jiajun
Wu, and William T Freeman. Physdreamer: Physics-based interaction with 3d objects via video
generation. 2024.

Yuyang Zhao, Zhiwen Yan, Enze Xie, Lanqing Hong, Zhenguo Li, and Gim Hee Lee. Animate124:
Animating one image to 4d dynamic scene. arXiv preprint arXiv:2311.14603, 2023.

Licheng Zhong, Hong-Xing Yu, Jiajun Wu, and Yunzhu Li. Reconstruction and simulation of elastic
objects with spring-mass 3d gaussians. 2024.

12

Under review as a conference paper at ICLR 2026

APPENDIX

In this appendix, we will provide: i) more experimental details; ii) more experimental results; iii)
related work; iv) implementation details of the MPM algorithm; v) a summary of classical consti-
tutive laws; vi) details of the prompt design. vii) visualizations of the inferred constitutive laws.
Meanwhile, Our source code, video results and inferred constitutive laws are included in the
supplemental material.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were utilized in this work to improve the fluency and clarity of the
manuscript. Their application was specifically focused on detailed proofreading to correct spelling
errors and ensure grammatical accuracy, as well as refining sentence structures to enhance the read-
ability and logical flow of the paper. It is crucial to note that all scientific contributions, including
the core concepts, experimental design, data analysis, and conclusions, were entirely conceived and
written by the authors. The LLMs were employed solely as a writing assistance tool and did not
contribute to the conceptualization or analysis of the study.

A MORE EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION DETAILS

Given multi-view videos of a scene, we first perform 3DGS reconstruction |[Kerbl et al.[(2023) using
the multi-view images from the initial time step. Following NeuMA |Cao et al.| (2024), we establish
relationships between simulation particles and Gaussian kernels via the Particle-GS mechanism. To
infer intrinsic dynamics from visual observations, we utilize only single-view videos as ground-truth
observations across all datasets. For the upper-level evolution, we employ GPT-4.1-mini to gen-
erate constitutive hypotheses. For all scenarios, the initial constitutive individual is only defined
as a purely elastic model that combines fixed corotated elasticity with identity plasticity. The
alternating evolution phase consists of 4 iterations. In each iteration, the top 3 individuals are se-
lected, and each generates 6 offspring independently. In the subsequent joint evolution phase, we
conduct 3 iterations. In each iteration, the top five individuals are selected to jointly prompt GPT,
generating 18 offspring in one shot. For lower-level optimization, we conduct MPM simulations un-
der standard gravitational acceleration (9.8 m/s?) within a unit cube domain [0, 1]3. The simulation
resolution is set to 323 for synthetic data and 703 for real-world data. We employ the Adam opti-
mizer with a learning rate of 1 x 10~3, and perform 10 iterations to tune the material parameters of
a single constitutive law. For each scene, we conduct five independent runs using different random
seeds: 0, 1, 2, 3, and 4. All experiments are conducted on NVIDIA A40 (48GB) GPU.

A.2 DATASET DETAILS

The synthetic dataset is derived from NeuMA |Cao et al.[(2024) and consists of six scenes (’Bouncy-
Ball’, ’JellyDuck’, ’RubberPawn’, *ClayCat’, "HoneyBottle’, and ’SandFish’). Each scene records
the motion of a single object, providing observations from 10 viewpoints with a total of 400 frames
per dynamic sequence. To reduce computational resources, for the synthetic data, we select one
frame every five frames from the video to create the training set. This dataset features a variety of
material types, ranging from elastic bodies to granular materials, exhibiting diverse dynamic behav-
iors and complex geometric shapes. Meanwhile, the synthetic dataset also provides ground-truth
particle trajectories, which can be used to evaluate the consistency between the inferred and ground-
truth intrinsic dynamics. The real-world dataset is taken from Spring-Gaus Zhong et al.[(2024) and
contains two scenes (‘Bun’ and ‘Burger’). It provides observations from 3 viewpoints, with each
dynamic sequence consisting of 19 frames. In all experiments, the initial velocity vy follows the
configuration provided in NeuMA'’s dataset description. We use only a single frontal view of the
object as visual observation to infer its intrinsic dynamics.

13

Under review as a conference paper at ICLR 2026

1 1 1
Observation Ours | Observation Ours | Observation Ours | Observation Ours 1 Observation Ours | Observation Ours
—————————— [e e e Rl i
1 1 1 1 1
- - 1 1 1 1 1
] 1 1 1 1 1
£ o 1 1 1 1 1
= 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
3_‘. = , 1 1 1 1
1 1 1 1 1
1 1 1 1 1
- 1 1 1 1 1
= 1 1 1 1 1
" 1 A 1 1 1 1
1 1 1 1 1
= e o 1 1 1 1 1
1 : 1 1 1 1
e A ‘ 1 1 1 1
1 1 1 1 1
— - 1 1 1 1 1
- 1 1 1 1 1
1 A 1 1 1 1
o 1 ™ 1 1 1 1
1 1 1 1 1
TTTETmEssTT | | | | B
BouncyBall | ClayCat | HoneyBottle | JellyDuck | RubberPawn | SandFish

Figure 8: Visual Results on Synthetic Dataset. We select the rendered images at frames 1, 100,
200, 300, and 400. VisionLaw exhibits dynamics similar to those observed in visual observations.

= VisionLaw === NeuMA == NCLaw]
8 3.0 4
c BouncyBall ClayCat 1.2{ HoneyBottle
5
3 11
10
2 09
08
-r:B 1 \/\/\/\
So 0.7
3 2.00 — .
c JellyDuck 175 RubberPawn 141 SandFish
g) 13
o] 1.50
15 |t 12
e 125
u“E-’ 10 1.00 11
© 5 0.75 1o
< 0.9
(@) 0.50
0 50 100 150 200 250 300 350 399 0 50 100 150 200 250 300 350 399 0 50 100 150 200 250 300 350 399
Time Step Time Step Time Step

Figure 9: Comparison of Chamfer Distance at Different Time Steps on Synthetic Dataset.

B MORE EXPERIMENTAL RESULTS

Qualitative visualization results. We provide qualitative results on six synthetic scenes to assess
the visual fidelity of our method. As shown in Fig[8] we compare rendered outputs from our model
with ground-truth observations at selected time frames (1, 100, 200, 300, and 400). Our method
accurately reproduces object dynamics over time, showing close alignment with the ground truth
across all scenes. These results demonstrate that VisionLaw effectively captures complex deforma-
tion behaviors with visual realism.

Quantitative Comparison of Chamfer Distance. As shown in Fig.[9] we compare the Chamfer
distance of VisionLaw, NeuMA [Cao et al.| (2024)), and NCLaw [Ma et al.| (2023) across different time
steps on the synthetic dataset. NCLaw consistently shows the worst performance. This is because
NCLaw can only fit the known dynamics, but fails to adapt to the underlying intrinsic dynamics
behind the visual observations. As a result, its error remains high across all objects. NeuMA in-
troduces additional neural network components to capture the mapping between visual observations
and intrinsic dynamics. However, due to the lack of physical inductive bias, NeuMA is mainly
based on memorization, leading to overfitting and unstable predictions. In contrast, VisionLaw dis-
tills physical priors from LLMs to refine constitutive laws, thereby incorporating a form of physical
inductive bias. This mechanism enhances its ability to discover hidden dynamics, leading to con-
sistently better performance across different objects and time steps. As shown in Fig.[9] VisionLaw
achieves lower Chamfer distance, demonstrating stronger adaptability to complex dynamics.

14

Under review as a conference paper at ICLR 2026

(B VisionLaw [NeuMA”

SSIM LPIPS | PSNR Variance
1.000 012 I 6
I
0.995 0.10 : 5
1
0.990 0.08 1 4
I
0.985 0.06 1 3
I
0.980 0.04 1 2
I
0.975 0.02 I
|
0.970 " 0.00 " ! 0- "
Ball Cat Bottle Duck Pawn Fish Ball Cat Bottle Duck Pawn Fish | Ball Cat Bottle Duck Pawn Fish

(a) (b)

Figure 10: Quantitative Comparison of Visual Fidelity on Synthetic Datasets. (a) Average SSIM
and LPIPS over all non-training views. Higher SSIM and lower LPIPS values reflect improved visual
fidelity; (b) PSNR variance over all views, including training views.

Scene: : BouncyBall ClayCat HoneyBottle JellyDuck RubberPawn SandFish : : Initial Velocity :
TSyt TTTTTToTTTToTTTTTTTTToTTTTTTT T
1 . 1 1 — 1

of 1 1ol wr 1
El 1 E 1
1 1 1 1

[} [} [} [}

' & . an en :

1 1 1 1

1 1 1 1

| | | ‘:. |

y 1 - 1

1 1 1 1

1 1 1 1

1 1 1 1

| gomn 1 | . 1

1 1 1 1

| | | |

1 1 1 - 1

1 1 | - - 1

Y 1 1 1

1 ‘ 1 1 = 1

I I I I

+ [a—_—
Law: | RubberPawn JellyDuck ClayCat BouncyBall ~ SandFish HoneyBottle | 1 0.5y 1.5v¢ 0.5v 1.5v, 0.5v, 1.5vp |1

(a) (b)

Figure 11: Generalization Analysis. (a) Generalization to new scenarios. The top row shows
the simulated scenes, while the bottom row presents the intrinsic dynamics inferred for the given
scenarios. (b) Generalization to different initial velocities. The bottom row represents the configured
initial velocity, expressed as a multiple of the original initial velocity.

Quantitative Comparison of Visual Fidelity. To more comprehensively evaluate visual fidelity,
we report average SSIM and LPIPS across all non-training views in Fig. [10f (a). The results show
that VisionLaw outperforms NeuMA (2024). This confirms that our method not only
captures more faithful intrinsic dynamics but also produces dynamic reconstructions with higher
perceptual fidelity. We further compute the PSNR variance over all views in Fig. (b), which
reflects the generalization to unseen views. NeuMA exhibits high PSNR variance, indicating a
tendency to overfit. In contrast, VisionLaw achieves a much lower variance. This demonstrates that,
even when trained from a single fixed viewpoint, our method generalizes effectively to novel views
by leveraging the physical inductive bias introduced through LLMs.

Generalization Analysis. We first evaluate cross-scene generalization by applying the intrinsic
dynamics inferred from one scenario to simulate another. As shown in Figure [T1|a), the top row
presents the target scenes, while the bottom row shows the intrinsic dynamics inferred from differ-
ent sources. Despite the mismatch between the source scene and the target, our method consistently
produces physically plausible behaviors. This indicates that the constitutive laws discovered by Vi-
sionLaw are not merely scene-specific fits but encode transferable physical priors, demonstrating
strong cross-scene generalization. We further design experiments under different initial conditions
by varying the initial velocity of objects (with the baseline vy specified in the NeuMA
dataset description). As shown in Fig. [TT](b), the results show that, even with varying initial
velocities, the intrinsic dynamics inferred by VisionLaw still accurately reflect the object’s behavior.
This result underscores the robustness of our method in the face of variations in initial conditions,

15

Under review as a conference paper at ICLR 2026

confirming that VisionLaw identifies fundamental physical laws that extend beyond the specific con-
figurations used in training.

C RELATED WORK

C.1 PHYSICS-BASED 4D INTERACTION

Advances in 3D representation methods |[Mildenhall et al.| (2021); [Miiller et al.| (2022); [Barron et al.
(2021)); [Kerbl et al.| (2023)) (e.g., NeRF and 3DGS) have greatly facilitated the creation of 3D as-
sets|Poole et al.|(2023); Tang et al.| (2024bsa), consequently drawing significant attention to the pur-
suit of realistic interaction with these assets. To enable physically plausible 4D interaction, recent
works have attempted to incorporate various physical simulators |Stomakhin et al.| (2013)); [Mack-
lin et al.[(2016) with 3D representation. PIE-NeRF |Feng et al.[(2024) enables meshless nonlinear
elastodynamic simulation directly in NeRF via augmented Poisson disk sampling and quadratic gen-
eralized moving least squares (Q-GMLS) Martin et al.| (2010). Inspired by the Lagrangian nature
of 3DGS, PhysGaussian Xie et al.| (2024) pioneered the integration of MPM simulator into 3DGS.
Phys4DGen |Lin et al.| (2024b)) effectively perceives multiple materials within a single object and
automatically assigns material properties by distilling physical priors from MLLMs |Achiam et al.
(2023), enabling more accurate and user-friendly interactive dynamic generation. VR-GS |Jiang
et al.| (2024b) conducts tessellation via TetGen |[Hang| (2015)) to convert 3DGS representations into
tetrahedral meshes, enabling fast XPBD simulation and physically plausible interaction in VR.

C.2 INTRINSIC DYNAMICS LEARNING

Understanding the intrinsic dynamics underlying observational data is highly valuable for interactive
simulation Miiller & Gross| (2004) and scientific discovery Wang et al.| (2023). Deep learning has
advanced rapidly and is increasingly being applied to physical simulation [Sanchez-Gonzalez et al.
(2020), with some methods [Pfaff et al.| (2020); Ummenhofer et al.| (2019) using end-to-end net-
works to model physical laws. However, purely neural approaches often lack physical consistency.
NCLaw Ma et al.| (2023)) integrates known laws with a learnable constitutive model for refinement.
SGA Ma et al.| (2024) uses LLMs to infer constitutive laws from particle trajectories. However,
they rely on labeled data or high-quality motion, which are difficult to acquire. The integration of
3D representation and physical simulation makes it possible to infer intrinsic dynamics from vi-
sual observations |Xie et al.| (2024)); [Zhong et al|(2024). PAC-NeRF [Li et al.[(2023) jointly learns
NeRF representations and material parameters from multi-view videos. To avoid texture distortion,
GIC |Cai et al, (2024) presents a geometry supervision framework. PhysDreamer, DreamPhysics,
Physics3D, PhysFlow [Zhang et al| (2024)); [Huang et al.| (2025)); [Liu et al.| (2024} 2025) guide the
estimation process by distilling visual dynamic priors from video diffusion models. However, the
parameter estimation process in these methods relies on expert-defined constitutive laws. Spring-
Gaus [Zhong et al.|(2024) integrates a spring-mass system [Blickhan| (1989) with 3DGS to simulate
elastic objects, and optimizes spring stiffness under multi-view video supervision. OmniPhysGS [Lin
et al.[(2025) introduces learnable constitutive Gaussians that assign specific constitutive laws to each
Gaussian kernel. enabling interaction simulation in multi-material scenarios. While NeuMA |Cao
et al.| (2024) can learn neural constitutive models from visual observations, it lacks interpretability
and exhibits weak generalization ability. In this paper, we aim to infer constitutive law expressions
from visual observations that are both interpretable and highly generalizable.

D MATERIAL POINT METHOD

Continuum mechanics studies the deformation and motion behavior of materials under forces. Mo-
tion is typically represented by the deformation map x = ¢(X, t), which maps from the undeformed
material space w" to the deformed world space w?. The deformation gradient F = g—gz(X, t) de-
scribes how the material deforms locally. MPM is a simulation method that combines Lagrangian
particles with Eulerian grids and has demonstrated its ability to simulate various materials. In MPM,
each particle p carries various physical properties, including mass m, density p, volume V', Young’s
modulus F, Poisson’s ratio v, velocity v, deformation gradient F' and velocity gradient C. MPM
operates within a loop that includes particle-to-grid (P2G) transfer, grid operations, and grid-to-

16

Under review as a conference paper at ICLR 2026

particle (G2P) transfer. In the particle-to-grid (P2G) stage, MPM transfers momentum and mass
from particles to grids:

mitt = "wiymy, (11)
P

(mv)§+1 — Zwi? [mpv; + mpC;(Xi — X;)} , (12)
I3

where wj), is the B-spline kernel that measures the distance between particle p and grid 7. After P2G
stage, we perform grid operations:

vt = (mvy)t/mt, (13)

flin == 2TV V,, “‘”
p

V§+1 =vi+ At (£ in/mi + 8), (15

where g = 9.8 m/s? denotes the gravitational acceleration. Then we transfer the results back to
particles in the grid-to-particle (G2P) stage:

virl = Z wip v, (16)
X;'H = xf) + Atvffl, (17
4
Citl = N Z wipvit (x; — xE)T, (18)
tr __ t+1 t
F, = (I+AtC,t) Fy, (19)
FH = pp(Fy), (20)
T = o (FLHY), Q1)

where ¢ and pp denote the elastic and plastic constitutive laws, respectively. F''" represents the
trial deformation gradient, which is subsequently corrected using the plastic constitutive law @p. 7
denotes the Kirchhoff stress. By following these three stages, we complete a simulation step.

E EXPERT-DESIGNED CONSTITUTIVE LAWS

Within the MPM framework, a complete constitutive law consists of an elastic constitutive law and
a plastic constitutive law. In our experimental setup, for all scenarios, we initialize the constitutive
individual as a combination of a fixed corotated elasticity model and an identity plasticity model.
Several well-known classical constitutive laws are presented in the following.

E.1 ELASTIC CONSTITUTIVE LAW

The elastic constitutive law describes reversible elastic responses of the material under deformation.
Here, we use the Kirchhoff stress 7 to express the stress—strain relationship.

E.1.1 FI1XED COROTATED ELASTICITY.
The Kirchhoff stress is defined as:
=2u(F-R)FT + \J(J-1)F, (22)

where R = UV7 and F = UXVY7 is the singular value decomposition of elastic deformation
gradient. J is the determinant of F.

E.1.2 NEO-HOOKEAN ELASTICITY.

The Kirchhoff stress is defined as:
7=p (FFT —1I) + Aog(J)I. (23)

17

Under review as a conference paper at ICLR 2026

E.1.3 STVK ELASTICITY.
The Kirchhoff stress 7 is defined as
7 =U (2ue + Atr(e)) VT, (24)

where F = UX VT and € = log(X). StVK elasticity is commonly used to simulate materials such
as sand and metals.

E.2 PLASTIC CONSTITUTIVE LAW

The plastic constitutive law captures irreversible plastic evolution beyond the elastic limit by cor-
recting the trial deformation gradient F*"%% to the final deformation gradient F.

E.2.1 IDENTITY PLASTICITY.
The corrected deformation gradient is defined as:
F = F" (25)

The identity plasticity model does not induce any plastic effects.

E.2.2 DRUCKER-PRAGER PLASTICITY.

Given F” = UX VT and € = log(X), the corrected deformation gradient is defined as:

F=UZ(XZ) VT (26)
I, if sum(e) > 0,
Z(3)={Z%, if 0y < 0and tr(e) <0, (27)

€
3

exp (e — 6’yﬂ> , otherwise,

EERNTEN (dA+2p) tr(e) _ 2 2singy
Here, 67 = [[€] + a5, a = /3 Ssn o7

Drucker-Prager plasticity is suitable for simulating materials like snow and sand.

and ¢; is the friction angle. é = dev(e).

E.2.3 VON MISES PLASTICITY.

The corrected deformation gradient is defined as:

Fr=uz(2)V7l, (28)
where

3, oy <0,

Z(%) = . (29)

exp (e — 57@) , otherwise,

and
. T
&y = ||€‘F_i- (30)

Here 7y is the yield stress. von Mises plasticity is suitable for simulating plasticity like metal and
clay.

E.2.4 FLUID PLASTICITY.
The corrected deformation gradient is defined as:
G(F) = 2T, 31

where J is the determinant of F'. Fluid plasticity is suitable for simulating fluid-like materials.

18

Under review as a conference paper at ICLR 2026

F LIMITATION AND FUTURE WORK

Although our method effectively captures intrinsic dynamics from visual observations and demon-
strates strong interpretability and generalization capabilities, it still has certain limitations that war-
rant further research and improvement. The method relies on an evolutionary search paradigm that
involves extensive evaluations. This process is time-consuming because it requires a large num-
ber of forward simulations and backward parameter optimization. Ideally, a preliminary screening
mechanism could be introduced, where only individuals with potential merit are subjected to further
evaluation. Such a strategy could significantly reduce evaluations and accelerate the efficiency of
constitutive law discovery.

G PROMPT DESIGN DETAILS

In the following, we present the prompts used to guide LLMs to enable the evolution of constitu-
tive laws. To further achieve a decouple evolution strategy, we designed distinct prompts for the
alternating evolution phase and the joint evolution phase.

G.1 PROMPT DESIGN FOR JOINT EVOLUTION

System prompt:

You are an intelligent AI assistant for coding, physical simulation, and scientific discovery.
Follow the user’s requirements carefully and make sure you understand them.

Your expertise is strictly limited to physical simulation, material science, mathematics, and
coding.

Keep your answers short and to the point.

Do not provide any information that is not requested.

Always document your code as comments to explain the reason behind them.

Use Markdown to format your solution.

You are very familiar with Python and PyTorch.

Do not use any external libraries other than the libraries used in the examples.

User prompt for elastic and plastic constitutive law evolution:
##4# Context

This is a physical simulation environment. The physical simulation is built based on the Material
Point Method. The objective of this problem is to fill in a code block so that the result from
executing the code matches the ground-truth result.

The code block defines the full constitutive behavior of the simulated material through two
separate classes:

1. »xPlasticityModelxx: defines the deformation gradient correction model. This class contains two
functions that divide the code into a continuous part that defines the differentiable parameters
and a discrete part that defines the symbolic deformation gradient correction model. The input to
the symbolic deformation gradient correction model is the deformation gradient, and the output is
the corrected deformation gradient.

2. *xElasticityModel*x: defines the constitutive law that maps corrected deformation gradient to
stress. This class contains two functions that divide the code into a continuous part that defines
the differentiable parameters and a discrete part that defines the symbolic constitutive law. The
input to the symbolic constitutive law is the corrected deformation gradient, and the output is
the Kirchhoff stress tensor.

The simulation applies the ‘PlasticityModel‘ first to correct the deformation gradient, then
passes this corrected deformation gradient into the ‘ElasticityModel' to compute the stress.

States that capture the physical dynamics of the system and metrics that measure the difference
from the ground-truth result are included in the feedback section.

Task

Look at the following iterations as examples, analyze them, and generate a better solution upon
them.

Coding format prompt for elastic and plastic constitutive law evolution:

PyTorch Tips

1. When element-wise multiplying two matrix, make sure their number of dimensions match before the
operation. For example, when multiplying ‘J‘ (B,) and ‘I‘' (B, 3, 3), you should do ‘J.view(-1, 1,
1) * before the operation. Similarly, ‘(J - 1)‘' should also be reshaped to ‘(J - 1).view(-1, 1,
1) ‘. If you are not sure, write down every component in the expression one by one and annotate its
dimension in the comment for verification.

2. When computing the trace of a tensor A (B, 3, 3), use ‘A.diagonal (diml=1,

dim2=2) .sum(dim=1) .view (-1, 1, 1) ‘. Avoid using ‘torch.trace' or ‘Tensor.trace‘ since they only
support 2D matrix.

Code Requirements

19

Under review as a conference paper at ICLR 2026

The programming language is always python.

Annotate the size of the tensor as comment after each tensor operation. For example, ‘# (B, 3,
).

3. The only library allowed is PyTorch. Follow the examples provided by the user and check the
PyTorch documentation to learn how to use PyTorch.

4. Separate the code into continuous physical parameters that can be tuned with differentiable
optimization and the symbolic constitutive law represented by PyTorch code. Define them
respectively in the ‘__init_ ' function and the ‘forward‘ function.

5. Always remember the only output of the ‘forward' function in xxPlasticityModels* class is
corrected deformation gradient.

6. Always remember the only output of the ‘forward' function in *%ElasticityModel** class is
Kirchhoff stress tensor, which is defined by the matrix multiplication between the first
Piola-Kirchhoff stress tensor and the transpose of the deformation gradient tensor. Formally, ‘tau
=P @ F"T"', where tau is the Kirchhoff stress tensor, P is the first Piola-Kirchhoff stress
tensor, and F is the deformation gradient tensor. Do not directly return any other type of stress
tensor other than Kirchhoff stress tensor. Compute Kirchhoff stress tensor using the equation:
‘tau = P @ F'T".

7. The proposed code should strictly follow the structure and function signatures below:

1
2
8]

python
import torch
import torch.nn as nn

class PlasticityModel (nn.Module) :

def __init__ (self, param: float = DEFAULT_VALUE) :
nun
Define trainable continuous physical parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
param (float): the physical meaning of the parameter.
nun
super () .__init__ ()
self.param = nn.Parameter (torch.tensor (param))

def forward(self, F: torch.Tensor) -> torch.Tensor:
nun

Compute corrected deformation gradient from deformation gradient tensor.

Args:
F (torch.Tensor): deformation gradient tensor (B, 3, 3).

Returns:
F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).

nun

return F_corrected
class ElasticityModel (nn.Module) :

def __init__ (self, param: float = DEFAULT_VALUE) :
nun
Define trainable continuous physical parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
param (float): the physical meaning of the parameter.
nuw
super () .__init__ ()
self.param = nn.Parameter (torch.tensor (param))

def forward(self, F: torch.Tensor) -> torch.Tensor:

nun

Compute Kirchhoff stress tensor from deformation gradient tensor.

Args:
F (torch.Tensor): deformation gradient tensor (B, 3, 3).

Returns:
kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).

nun

return kirchhoff_stress

Solution Requirements

1. Analyze step-by-step what the potential problem is in the previous iterations based on the
feedback. Think about why the results from previous constitutive laws mismatched with the ground
truth. Do not give advice about how to optimize. Focus on the formulation of the constitutive law.
Start this section with "### Analysis". Analyze all iterations individually, and start the
subsection for each iteration with "#### Iteration N", where N stands for the index. Remember to
analyze every iteration in the history.

2. Think step-by-step what you need to do in this iteration to improve model performance. Consider

both the elasticity and plasticity components.

For the plasticity components:
Think about if the plasticity is needed to improve performance. Remember that plasticity is
not necessary. If your analysis supports plasticity, think about how to update deformation
gradient using plasticity. Think about how to separate your algorithm into a continuous
physical parameter part and a symbolic deformation gradient correction model part.

20

Under review as a conference paper at ICLR 2026

For the elasticity components:
Think about how to separate your algorithm into a continuous physical parameter part and a
symbolic constitutive law part.
Describe your plan in pseudo-code, written out in great detail. Remember to update the default
values of the trainable physical parameters based on previous optimizations. Start this section
with "### Step-by-Step Plan".

3. Output the code in a single code block "'‘‘python ... ‘" with detailed comments in the code
block. Do not add any trailing comments before or after the code block. Start this section with
"### Code".

G.2 PROMPT DESIGN ALTERNATING EVOLUTION

System prompt:

You are an intelligent AI assistant for coding, physical simulation, and scientific discovery.
Follow the user’s requirements carefully and make sure you understand them.

Your expertise is strictly limited to physical simulation, material science, mathematics, and
coding.

Keep your answers short and to the point.

Do not provide any information that is not requested.

Always document your code as comments to explain the reason behind them.

Use Markdown to format your solution.

You are very familiar with Python and PyTorch.

Do not use any external libraries other than the libraries used in the examples.

User prompt for plastic constitutive law evolution:
Context

This is a physical simulation environment. The physical simulation is built based on the Material
Point Method. The objective of this problem is to fill in a code block so that the result from
executing the code matches the ground-truth result.

The code block defines the full constitutive behavior of the simulated material through two
separate classes:

1. xxPlasticityModelx*: defines the deformation gradient correction model. This class contains two
functions that divide the code into a continuous part that defines the differentiable parameters
and a discrete part that defines the symbolic deformation gradient correction model. The input to
the symbolic deformation gradient correction model is the deformation gradient, and the output is
the corrected deformation gradient.

2. *xElasticityModel**: defines the constitutive law that maps corrected deformation gradient to
stress. This class contains two functions that divide the code into a continuous part that defines
the differentiable parameters and a discrete part that defines the symbolic constitutive law. The
input to the symbolic constitutive law is the corrected deformation gradient, and the output is
the Kirchhoff stress tensor.

The simulation applies the ‘PlasticityModel‘ first to correct the deformation gradient, then
passes this corrected deformation gradient into the ‘ElasticityModel' to compute the stress.

States that capture the physical dynamics of the system and metrics that measure the difference
from the ground-truth result are included in the feedback section.

Task

In the current task, the ElasticityModel has already been finalized and should remain unchanged.
Please focus exclusively on analyzing and improving the PlasticityModel class. Look at the
following iterations as examples, analyze them, and generate a better plastic constitutive model
based on them.

Coding format prompt for plastic constitutive law evolution:

PyTorch Tips

1. When element-wise multiplying two matrix, make sure their number of dimensions match before the
operation. For example, when multiplying ‘J' (B,) and ‘I‘ (B, 3, 3), you should do ‘J.view(-1, 1,
1) ' before the operation. Similarly, ‘(J - 1) ‘' should also be reshaped to ‘(J - 1).view(-1, 1,
1) ‘. If you are not sure, write down every component in the expression one by one and annotate its
dimension in the comment for verification.

2. When computing the trace of a tensor A (B, 3, 3), use ‘A.diagonal (diml=1,

dim2=2) .sum(dim=1) .view (-1, 1, 1) ‘. Avoid using ‘torch.trace' or ‘Tensor.trace‘ since they only
support 2D matrix.

Code Requirements

1. The programming language is always python.

2. Annotate the size of the tensor as comment after each tensor operation. For example, ‘# (B, 3,
3) °o

3. The only library allowed is PyTorch. Follow the examples provided by the user and check the
PyTorch documentation to learn how to use PyTorch.

4. Separate the code into continuous physical parameters that can be tuned with differentiable
optimization and the symbolic constitutive law represented by PyTorch code. Define them
respectively in the ‘__init_ ‘ function and the ‘forward‘ function.

5. Always remember the only output of the ‘forward' function in *xPlasticityModelx* class is
corrected deformation gradient.

6. Always remember the only output of the ‘forward' function in *+ElasticityModelxx class is
Kirchhoff stress tensor, which is defined by the matrix multiplication between the first

21

Under review as a conference paper at ICLR 2026

Piola-Kirchhoff stress tensor and the transpose of the deformation gradient tensor. Formally, ‘tau
=P @ F'T', where tau is the Kirchhoff stress tensor, P is the first Piola-Kirchhoff stress
tensor, and F is the deformation gradient tensor. Do not directly return any other type of stress
tensor other than Kirchhoff stress tensor. Compute Kirchhoff stress tensor using the equation:
‘tau = P @ F'T".

7. The proposed code should strictly follow the structure and function signatures below:

‘Y 'python
{code}

T

Solution Requirements

1. Analyze step-by-step what the potential problem is in the previous iterations based on the
feedback. Think about why the results from previous constitutive laws mismatched with the ground
truth. Do not give advice about how to optimize. Focus on the formulation of the constitutive law.
Start this section with "### Analysis". Analyze all iterations individually, and start the
subsection for each iteration with "#### Iteration N", where N stands for the index. Remember to
analyze every iteration in the history.

2. Think step-by-step what you need to do in this iteration to improve model performance. Consider
both the elasticity and plasticity components.
For the plasticity components:
Think about if the plasticity is needed to improve performance. Remember that plasticity is
not necessary. If your analysis supports plasticity, think about how to update deformation
gradient using plasticity. Think about how to separate your algorithm into a continuous
physical parameter part and a symbolic deformation gradient correction model part.
For the elasticity components:
**Do not analyze or modify this partxx. Please focus on improving the plastic components.
Please ensure that the **ElasticityModel*x class must remain exactly the same in every
iteration, and must be reproduced exactly as originally defined.
Describe your plan in pseudo-code, written out in great detail. Remember to update the default
values of the trainable physical parameters based on previous optimizations. Start this section
with "### Step-by-Step Plan".

3. Output the code in a single code block "‘‘‘python ... ‘" with detailed comments in the code
block. Do not add any trailing comments before or after the code block. Start this section with
"### Code".

User prompt for elastic constitutive law evolution:
Context

This is a physical simulation environment. The physical simulation is built based on the Material
Point Method. The objective of this problem is to fill in a code block so that the result from
executing the code matches the ground-truth result.

The code block defines the full constitutive behavior of the simulated material through two
separate classes:

1. »xPlasticityModelxx: defines the deformation gradient correction model. This class contains two
functions that divide the code into a continuous part that defines the differentiable parameters
and a discrete part that defines the symbolic deformation gradient correction model. The input to
the symbolic deformation gradient correction model is the deformation gradient, and the output is
the corrected deformation gradient.

2. *xxElasticityModel**: defines the constitutive law that maps corrected deformation gradient to
stress. This class contains two functions that divide the code into a continuous part that defines
the differentiable parameters and a discrete part that defines the symbolic constitutive law. The
input to the symbolic constitutive law is the corrected deformation gradient, and the output is
the Kirchhoff stress tensor.

The simulation applies the ‘PlasticityModel‘ first to correct the deformation gradient, then
passes this corrected deformation gradient into the ‘ElasticityModel' to compute the stress.

States that capture the physical dynamics of the system and metrics that measure the difference
from the ground-truth result are included in the feedback section.

Task

In the current task, the PlasticityModel has already been finalized and should remain unchanged.
Please focus exclusively on analyzing and improving the ElasticityModel class. Look at the
following iterations as examples, analyze them, and generate a better elastic constitutive model
based on them.

Coding format prompt for elastic constitutive law evolution:

PyTorch Tips

1. When element-wise multiplying two matrix, make sure their number of dimensions match before the
operation. For example, when multiplying ‘J‘' (B,) and ‘I‘ (B, 3, 3), you should do ‘J.view(-1, 1,
1) * before the operation. Similarly, ‘(J - 1)‘ should also be reshaped to ‘(J - 1).view(-1, 1,
1) ‘. If you are not sure, write down every component in the expression one by one and annotate its
dimension in the comment for verification.

2. When computing the trace of a tensor A (B, 3, 3), use ‘A.diagonal (diml=1,

dim2=2) .sum(dim=1) .view (-1, 1, 1) ‘. Avoid using ‘torch.trace' or ‘Tensor.trace‘ since they only
support 2D matrix.

Code Requirements
1. The programming language is always python.

2. Annotate the size of the tensor as comment after each tensor operation. For example, ‘# (B, 3,
3) So

22

Under review as a conference paper at ICLR 2026

3. The only library allowed is PyTorch. Follow the examples provided by the user and check the
PyTorch documentation to learn how to use PyTorch.

4. Separate the code into continuous physical parameters that can be tuned with differentiable
optimization and the symbolic constitutive law represented by PyTorch code. Define them
respectively in the ‘__init_ ‘ function and the ‘forward‘' function.

5. Always remember the only output of the ‘forward' function in *xPlasticityModelx* class is
corrected deformation gradient.

6. Always remember the only output of the ‘forward' function in xxElasticityModelsxx class is
Kirchhoff stress tensor, which is defined by the matrix multiplication between the first
Piola-Kirchhoff stress tensor and the transpose of the deformation gradient tensor. Formally, ‘tau
=P @ F'T', where tau is the Kirchhoff stress tensor, P is the first Piola-Kirchhoff stress
tensor, and F is the deformation gradient tensor. Do not directly return any other type of stress
tensor other than Kirchhoff stress tensor. Compute Kirchhoff stress tensor using the equation:
‘tau = P @ F°T".

7. The proposed code should strictly follow the structure and function signatures below:

‘Y ‘python
{code}

Solution Requirements

1. Analyze step-by-step what the potential problem is in the previous iterations based on the
feedback. Think about why the results from previous constitutive laws mismatched with the ground
truth. Do not give advice about how to optimize. Focus on the formulation of the constitutive law.
Start this section with "### Analysis". Analyze all iterations individually, and start the
subsection for each iteration with "#### Iteration N", where N stands for the index. Remember to
analyze every iteration in the history.

2. Think step-by-step what you need to do in this iteration to improve model performance. Consider
both the elasticity and plasticity components.
For the plasticity components:
xDo not analyze or modify this partx. Please focus on improving the elastic components.
Please ensure that the xxPlasticityModelxx class must remain exactly the same in every
iteration, and must be reproduced exactly as originally defined.
For the elasticity components:
Think about how to separate your algorithm into a continuous physical parameter part and a
symbolic constitutive law part.
Describe your plan in pseudo-code, written out in great detail. Remember to update the default
values of the trainable physical parameters based on previous optimizations. Start this section
with "### Step-by-Step Plan".

3. Output the code in a single code block "‘‘‘python ... ‘" with detailed comments in the code
block. Do not add any trailing comments before or after the code block. Start this section with
"### Code".

H VISUALIZATION OF INFERRED INTERPRETABLE CONSTITUTIVE LAW

In this section, we show the inferred constitutive laws under different visual scenarios, including
“BouncyBall”, ”ClayCat”, "HoneyBottle”, ”JellyDuck”, ”RubberPawn”, ”SandFish”, "Bun” and
”Burger”. Since these laws are expressed in the form of Python code snippets, these laws exhibit
strong interpretability and readability, making them easily understandable to humans.

H.1 BOUNCYBALL

In the BouncyBall scenario, the constitutive law inferred by our method is presented.

I import torch

2 import torch.nn as nn

3

4

5 class PlasticityModel (nn.Module) :

7 def __init_ (self, yield_threshold: float = 0.5):
3 o

9 Defir rainabl hysical r r for pl ici iel hreshold

14 o
15 super () .__init__ ()
16 self.yield_threshold = nn.Parameter (torch.tensor (yield_threshold))

18 def forward(self, F: torch.Tensor) -> torch.Tensor:
19 W

27 won

23

Under review as a conference paper at ICLR 2026

1242
28 # SVD of deformation gradient
1243 29 U, Sigma, Vh = torch.linalg.svd(F) # U: (B,3,3), Sigma: (B,3), Vh: (B,3,3)
30
1244 31 # Clamp singular values to avoid numerical problems
1245 32 Sigma_clamped = torch.clamp_min(Sigma, le-6) # (B,3)
33
1246 34 # Logarithmic principal strains
35 log_sigma = torch.log(Sigma_clamped) # (B,3)
1247 36
1248 37 # Enforce positive yield threshold via softplus
38 yield_thresh = torch.nn.functional.softplus(self.yield_threshold) # scalar
1249 39
40 epsilon_clamped = torch.clamp(log_sigma, min=-yield_thresh, max=yield_thresh) # (B, 3)
1250 41
1251 42 # Compute corrected singular values
43 Sigma_corrected = torch.exp (epsilon_clamped) # (B, 3)
1252 H
S 45 # Recompose corrected deformation gradient
1253 46 F_corrected = torch.matmul (U, torch.matmul (torch.diag_embed(Sigma_corrected), Vh)) # (B
73,3)
1254 47
1255 48 return F_corrected
49
1256 30
51 class ElasticityModel (nn.Module) :
1257 52
1258 53 def __init__ (self, youngs_modulus_log: float = 10.18, poissons_ratio_sigmoid: float = -0.5):
54 W
1259 55 Define trainable continuous physical parameters for Corotated Elasticity.
56
1260 57 Args:
58 youngs_modulus_log (float): log of Young’s modulus.
1261 59 poissons_ratio_sigmoid (float): parameter before sigmoid f s ratio
60 W
1262 61 super () .__init__ ()
1263 62 self.youngs_modulus_log = nn.Parameter (torch.tensor (youngs_modulus_log))
63 self.poissons_ratio_sigmoid = nn.Parameter (torch.tensor (poissons_ratio_sigmoid))
1264 64
1265 65 def forward(self, F: torch.Tensor) -> torch.Tensor:
66 wan
1266 67 Compute Kirchhoff stress tensor from deformation gradient via Corotated Elasticity.
68
1267 69 Args:
1268 70 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
71
72 Returns:
1269 73 kirchhoff_ stress (torch.Tens : Kirchhoff stress tensor (B, 3, 3).
1270 74 wun
75 B = F.shape[0]
1271 76
71 # Material parameters
1272 78 youngs_modulus = self.youngs_modulus_log.exp() # scalar
1273 79 poissons_ratio = self.poissons_ratio_sigmoid.sigmoid() % 0.49 # scalar in (0, 0.49)
80
1274 81 mu = youngs_modulus / (2.0 * (1.0 + poissons_ratio)) # scalar
82 la = youngs_modulus % poissons_ratio / ((1.0 + poissons_ratio) * (1.0 - 2.0 *
1275 poissons_ratio)) # scalar
83
1276 84 # SVD of deformation gradient
1277 85 U, Sigma, Vh = torch.linalg.svd(F) # U: (B,3,3), Sigma: (B,3), Vh: (B,3,3)
86
1278 87 # Clamp singular values
1279 88 Sigma_clamped = torch.clamp_min(Sigma, le-6) # (B,3)
89
1280 90 # Rotation matrix R
91 R = torch.matmul (U, Vh) # (B,3,3)
1281 92
93 # Compute determinant
1282 94 J = Sigma_clamped.prod(dim=1) .view (B, 1, 1) # (B,1,1)
95
1283 96 # Identity tensor
1284 97 I = torch.eye(3, device=F.device, dtype=F.dtype).unsqueeze (0).expand(B, 3, 3) # (B,3,3)
98
1285 99 # Reshape scalars for broadcast
1286 100 mu = mu.view(-1, 1, 1) if mu.dim() == 0 else mu
101 la = la.view(-1, 1, 1) if la.dim() == 0 else la
1287 v
103 # Corotated stress term
1288 104 corotated = 2.0 » mu » (F - R) # (B,3,3)
105
1289 106 # Volumetric stress term
107 volumetric = la » J * (J - 1).view(B, 1, 1) » I # (B,3,3)
1290
108
1291 109 # First Piola-Kirchhoff stress tensor P
110 P = corotated + volumetric # (B,3,3)
1292 111
112 # Kirchhoff stress tau = P @ F°T
1293 113 Ft = F.transpose(l, 2) # (B,3,3)
1294 114 kirchhoff_stress = torch.matmul (P, Ft) # (B,3,3)
115
1295 116 return kirchhoff_stress

24

Under review as a conference paper at ICLR 2026

H.2 CLAYCAT

In the ClayCat scenario, the constitutive law inferred by our method is presented.

I import torch

2 import torch.nn as nn

3

4

5 class PlasticityModel (nn.Module) :

def __init__ (self, yield_stress: float = 2.16, shear_modulus: float = 28.0):

differentiable optimization.

15 win
16 super () .__init__ ()

17 self.yield_stress = nn.Parameter (torch.tensor (yield_stress))
18 self.shear_modulus = nn.Parameter (torch.tensor (shear_modulus))

20 def forward(self, F: torch.Tensor) -> torch.Tensor:
21 Wi

rmation gradient tensor using von Mises

30 win
31 # SVD of deformation gradient F

32 U, sigma, Vh = torch.linalg.svd(F) # U: (B,3,3), sigma: (B,3
33 sigma = torch.clamp_min(sigma, le-6) # clamp to prevent log (0

SE
o

Compute principal logarithmic strains
epsilon = torch.log(sigma) # (B,3)

Volumetric (mean) strain
epsilon_mean = epsilon.mean(dim=1, keepdim=True) # (B,1)

Deviatoric strains
epsilon_dev = epsilon - epsilon_mean # (B, 3)

Norm of deviatoric strain
epsilon_dev_norm = epsilon_dev.norm(dim=1, keepdim=True) + le-12 # (B, 1)

Clamp plasticity parameters to prevent numerical issues
yield_stress = torch.clamp_min(self.yield_stress, le-6)
shear_modulus = torch.clamp_min (self.shear_modulus, le-6

Plastic multiplier
delta_gamma = epsilon_dev_norm - yield_stress / (2 % shear_modulus) # (B,1)

delta_gamma_pos = torch.clamp_min(delta_gamma, 0.0) # (B,1)

Correct deviatoric strains by return mapping if yielding
epsilon_corrected = epsilon - (delta_gamma_pos / epsilon_dev_norm) % epsilon_dev # (B, 3)

Where not yielding, keep original strain

yielding_mask = (delta_gamma > 0).view(-1, 1) # (B,1)

epsilon_final = torch.where(yielding_mask, epsilon_corrected, epsilon) # (B,3)
Reconstruct corrected singular values and deformation gradient
sigma_corrected = torch.exp (epsilon_final) # (B,3)

diag_sigma_corrected = torch.diag_embed (sigma_corrected) # (B,3,3)

F_corrected = torch.matmul (U, torch.matmul (diag_sigma_corrected, Vh)) # (B,3,3)

return F_corrected

class ElasticityModel (nn.Module) :

def __init__ (self, youngs_modulus_log: float = 11.7, poissons_ratio_logit: float = -0.7):

Define trainable continuous

for differentiable optimizat

Initialize with values

79 oat) g of

80 (float) s or n’ io
31 W

82 super () .__init__ ()

83 self.youngs_modulus_log = nn.Parameter (torch.tensor (youngs_modulus_log)

84 self.poissons_ratio_logit = nn.Parameter (torch.tensor (poissons_ratio_logit))
85

86 def forward(self, F: torch.Tensor) -> torch.Tensor:

25

Under review as a conference paper at ICLR 2026

1350
87 W
1351 88 Compute Kirchhoff stress tensor from deformation gradient tensor ng St. Venant-
1352 Kirchhoff elasticity.
89
1353 90
1354 91 deformation gradient tensor (B, 3, 3).
92
93
1355 94 (torct Kirchhoff stre 3, 3).
1356 95 wun
96 B = F.shape[0]
1357 97 device = F.device
1358 98 dtype = F.dtype
99
1359 100 # Compute Young’s modulus from log
101 youngs_modulus = torch.exp (self.youngs_modulus_log) # scalar
1360 102
103 # Compute Poisson’s ratio from sigmoid(logit) scaled to (0,0.49)
1361 104 poissons_ratio = torch.sigmoid(self.poissons_ratio_logit) x 0.49 # scalar in (0,0.49)
105
1362 106 mu = youngs_modulus / (2 * (1 + poissons_ratio)) # scalar
1363 107 la = youngs_modulus % poissons_ratio / ((1 + poissons_ratio) * (1 - 2 % poissons_ratio))
scalar
1364 108
109 # Identity tensor expanded to batch size
1365 110 I = torch.eye (3, dtype=dtype, device=device) .unsqueeze (0).expand(B, -1, -1) # (B,3,3)
1 111
366 112 # Right Cauchy-Green tensor C = F'T F
1367 113 Ft = F.transpose(l, 2) # (B,3,3)
1368 114 C = torch.matmul (Ft, F) # (B,3,3)
115
116 # Green-Lagrange strain E = 0.5 % (C - I)
1369 117 E=0.5% (C-1I) # (B3,3)
1370 118
119 # Trace of E computed by summing diagonal elements
1371 120 trE = E.diagonal (diml=1, dim2=2).sum(dim=1).view(B, 1, 1) # (B, 1,1)
121
1372 122 # Second Piola-Kirchhoff stress tensor S
23 S =2 %mu « E + la x trE » I # (B,3,3)
1373 !
124
1374 125 # First Piola-Kirchhoff stress tensor P = F @ S
1375 126 P = torch.matmul(F, S) # (B,3,3)
127
1376 128 # Kirchhoff stress tensor tau = P @ F'T
129 kirchhoff_stress = torch.matmul (P, Ft) # (B,3,3)
1377 130
131 return kirchhoff_stress
1378
1379
1380 H.3 HONEYBOTTLE
1381
1232 Inthe HoneyBottle scenario, the constitutive law inferred by our method is presented.
1383 | import torch
2 import torch.nn as nn
1384 3
4
1385 5 class PlasticityModel (nn.Module) :
1386 6
ef __init__
7 def ini (
1387 8 self,
1388 9 youngs_modulus_log: float = 6.0,
10 poissons_ratio_unconstrained: float = -1.0,
1389 }; . yield_stress: float = 2.5,
1390 13 win
14 Plasticity model with logarithmic strain return mapping.
1391 15
16 Args:
1392 17 youngs_modulus_log (float): log Young’s r s.
1393 18 atio_uncons (float) : un ained scalar for Poisson’s ratio.
19 (f1 stress thre
1394 20 wun
1395 21 super () .__init__ ()
22 self.youngs_modulus_log = nn.Parameter (torch.tensor (youngs_modulus_log)) # scalar
23 self.poissons_ratio_unconstrained = nn.Parameter (torch.tensor (
1396
poissons_ratio_unconstrained)) # scalar
1397 24 self.yield_stress = nn.Parameter (torch.tensor (yield_stress)) # scalar
25
1398 26 def forward(self, F: torch.Tensor) -> torch.Tensor:
27 W
1399 28 Compute corrected deformation gradient from deformation gradient tensor.
1400 29
30 Args
1401 31 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
32
1402 33 Returns:
1403 34 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
35 wun
36 youngs_modulus = self.youngs_modulus_log.exp() # scalar

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

38

40
41
42

73
74
75
76
71
78
79
80
8

83
84
85
86
87
88
89
90
91
92
93

94

96
97
98
99
100
101
102
103
104
105
106

107
108
109

110

118
119
120
121
122

poissons_ratio =
0.49)

torch.sigmoid (self.poissons_ratio_unconstrained) x

yield_stress = self.yield _stress # scalar

mu = youngs_modulus / (2.0 * (1.0 + poissons_ratio)

U, sigma, Vh = torch.linalg.svd(F,

13,3)

Clamp singular values to avoid collapse
sigma_clamped = torch.clamp_min(sigma, le-4) # (B,3)

Logarithmic strain
epsilon = torch.log(sigma_clamped) # (B,3)

Volumetric strain

epsilon_trace =

(trace)

epsilon.sum(dim=1, keepdim=True)

Deviatoric strain
epsilon_bar = epsilon - epsilon_trace / 3.0 # (B

Norm of deviatoric strain

epsilon_bar_norm

torch.norm(epsilon_bar, dim=1,

Plastic multiplier

delta_gamma = epsilon_bar_norm - yield_stress /

Plastic factor (clamped)
torch.clamp_min (delta_gamma / epsilon_bar_norm, 0.

plastic_factor =

Correct logarithmic strain
epsilon_corrected = epsilon - plastic_factor * epsilon_bar # (B,3

Reconstruct corrected singular values
sigma_corrected = torch.exp(epsilon_corrected) #

Recompose corrected deformation gradient

F_corrected = torch.matmul (U,

73,3)

return F_correct

ed

class ElasticityModel (nn.Module) :

def __init__ (

h

self,

youngs_modulus_log:
poissons_ratio_unconstrained: float = 5.5,

float = 11.7,

Corotated Elasticity model with trainable physica

Args:

youngs_modulus_log (float

poisson
wun

super () .__init__ ()

self.youngs_modulus_log = nn.Parameter (torch.tensor (youngs_modulus_log)

self.poissons_ratio_unconstrained = nn.Parameter (torch.tensor (
poissons_ratio_unconstrained)) # scalar

_ratio_unconstrai

log Young’s modul
(float) : uncon

forward(self, F: torch.Tensor) -> torch.Tensor:

won

Compute Kirchhof

£

tress tensor from deformation

(B,1)

. 3)

(avoid division by zero)

full matrices=False)

U:(B,3,3

0.49

), sigm

keepdim=True) + le-12 #

(B, 3)

(2.0 = mu) # (B,1)

parameters.

gradient

ined scalar for

tensor.

tensor (B, 3,

Args:
F (torch.Tensor): deformation gradient tensor (B, 3,
Returns:
kirchhoff_stress (torch.Tensor): Kirchhoff stress
wan
youngs_modulus = self.youngs_modulus_log.exp() # scalar

poissons_ratio =
0.49)

torch.sigmoid (self.poissons_ratio_unconstrained)

mu = youngs_modulus / (2.0 * (1.0 + poissons_ratio)

la = youngs_modulus * poissons_ratio /

poissons_ratio))

U, sigma, Vh = torch.linalg.svd(F,

Clamp singular values for numerical stability
torch.clamp_min(sigma, le-5) # (B,3)

sigma_clamped =

Rotation matrix R = U VT
R = torch.matmul (U, Vh) # (B,3,3)

Ft = F.transpose (1,

Corotated stress:

corotated_stress

2) # (B,3,3)

2 xmu x (F - R) x F'T
2.0 » mu * torch.matmul (F - R,

27

Ft)

full_matrices=False)

#

(B,3,3),

(B,3,3)

0) # (

Pois

3) o

* 0.49

(B,3),

scalar in

a: (B,3), Vh:

(B, 1)

B,1)

torch.matmul (torch.diag_embed (sigma_corrected), Vh)) #

scalar

scalar in

((1.0 + poissons_ratio) % (1.0 - 2.0

(B,3,3)

(0,

(B

(B

(0,

Under review as a conference paper at ICLR 2026

B

Compute determinant J = product of singular values
= torch.prod(sigma_clamped, dim=1) # (B,)
J = J.view(-1, 1, 1) # (B,1,1)

<

4

Identity tensor I

I = torch.eye (3, dtype=F.dtype, device=F.device) .unsqueeze (0) #

volume_stress = la » J = (J - 1).view(-1, 1, 1) = I # (B,3,3)

First Piola-Kirchhoff stress P
P = corotated_stress + volume_stress # (B,3,3

kirchhoff_stress = torch.matmul (P, Ft) # (B,3,3)

return kirchhoff_stress

H.4 JELLYDUCK

(1,3,3)

In the JellyDuck scenario, the constitutive law inferred by our method is presented.

1
2
3
4

5

SN

66

import torch
import torch.nn as nn

class PlasticityModel (nn.Module) :

def

def

__init__ (self, yield_stress: float = 0.1, hardening: float =

for plast
dening parameter.

thres

won

super () .__init__ ()
self.yield_stress = nn.Parameter (torch.tensor (yield_stress))
self.hardening = nn.Parameter (torch.tensor (hardening)

forward(self, F: torch.Tensor) -> torch.Tensor:

Comp 1 deformation gradice

won

B = F.shape[0]

SVD of deformation gradient: F = U * diag(sigma) x Vh
U, sigma, Vh = torch.linalg.svd(F) # U,Vh: (B,3,3), sigma:

Clamp singular values to avoid log(0
sigma_clamped = torch.clamp_min(sigma, le-5) # (B, 3)

Compute logarithmic strain
epsilon = torch.log(sigma_clamped) # (B, 3)

Deviatoric strain: subtract mean (volumetric) strain
epsilon_mean = epsilon.mean(dim=1, keepdim=True) # (B, 1)

epsilon_dev = epsilon - epsilon_mean # (B, 3)

Norm of deviatoric strain
epsilon_dev_norm = torch.norm(epsilon_dev, dim=1, keepdim=Tr

Effective yield threshold with hardening, clamped to posit

0.0)

scalar parameter
scalar parameter

(B, 3)

ue)

ive

#

return ma

(B, 1)

yield_threshold = torch.clamp_min(self.yield stress + self.hardening, le-8) # scalar

Plastic correction factor (return mapping)
gamma = torch.clamp_min (epsilon_dev_norm - yield_threshold,
-12) # (B,1)

Correct deviatoric strain
epsilon_dev_corrected = epsilon_dev * (1 - gamma) # (B, 3)

Reconstruct corrected logarithmic strain
epsilon_corrected = epsilon_dev_corrected + epsilon_mean #

Exponentiate to get corrected singular values
sigma_corrected = torch.exp (epsilon_corrected) # (B, 3)

Recompose corrected deformation gradient

0.0)

/

(B, 3)

(epsilon_dev_norm + le

F_corrected = torch.matmul (U, torch.matmul (torch.diag_embed (sigma_corrected), Vh)) # (B,

3, 3)

return F_corrected

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

69

101

102
103
104
105
106
107
108
109
110

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

class ElasticityModel (nn.Module) :

def __init__ (self,

de

=Y

won

1able continuous
th previous bes

Define tr
Initializ

Args:

ratio_sigmoid
wun

super () .__init__ ()

self.youngs_modulus_log = nn.Parameter (torch.tensor (youngs_modulus_log)
nn.Parameter (torch.tensor (poissons_ratio_sigmoid))

self.poissons_ratio_sigmoid =
scalar

forward(self, F: torch.Tensor)

won

Compute Kirchhoff stress tensor

Args:

F (torch.Tensor):
Returns:

kirch!

non

B = F.size(0)

Recover physical parameters

dulus_log (float):

youngs_modulus_log:

float = 11.49,

poissons_ratio_sigmoid:

r differentiable

log of Young’s modulus.

using Corotated

deformation gradient

—> torch.Tensor:

Kirchhoff

youngs_modulus = self.youngs_modulus_log.exp ()
poissons_ratio = self.poissons_ratio_sigmoid.sigmoid ()

Poisson’s ratio

e

tensor

stre

before sign

asticity model.

5 tensor (B, 3,

scalar positive

mu = youngs_modulus / (2 * (1 + poissons_ratio))

la = youngs_modulus % poissons_ratio /

(scalar)

SVD of F

U, sigma, Vh = torch.linalg.svd(F)
le-5)

sigma = torch.clamp_min (sigma,

Rotation matrix R = U % Vh
R = torch.matmul (U, Vh) # (B,

Determinant J = product of singular values
J = torch.prod(sigma, dim=1).view (-1,

Identity matrix I
I = torch.eye (3, dtype=F.dtype
B))

Corotated first Piola-Kirchhoff stress:

mu_expanded = mu.view(-1, 1, 1

’

)

3

v

device=F.device) .unsqueeze (0) .expand (B,

3

(B,3,3),
avoid zero singular values

1, 1)

(B, 1, 1)

P_corot = 2 % mu_expanded x (F — R)

Volume part: P_vol = la % J
F_inv = torch.linalg.inv (F) #
F_inv_T = F_inv.transpose(l, 2
volume_factor = la.view(-1, 1,

*

)
1

(B,

(g -1
3

)

(B, 3,

)
3)

(B, 3, 3)

* J

P_vol = volume_factor * J x F_inv_T

(B, 3,

Total first Piola-Kirchhoff stress tensor

P = P_corot + P_vol # (B, 3,
Kirchhoff stress tensor tau
Ft = F.transpose(l, 2) # (B,

kirchhoff_stress = torch.matmu

return kirchhoff_stress

H.5 RUBBERPAWN

In the RubberPawn scenario, the constitutive law inferred by our method is presented.

1
2
3
4
5
6
7
8

9
10
11
12
13
14

import torch
import torch.nn as nn

class PlasticityModel (nn.Module) :

def __init__ (self, yield_stress:

won

3

3
1

)

(

P

P

, Ft) # (B,

float =

Define trainable continuous physical

Initialize

stress

#

#

(B,3),

(B,

P_corot

3)

1,

=2

* J x F " {-T}

* 0.49

(scalar)
((1 + poissons_ratio) * (1 - 2 x poissons_ratio)

(B,3,3)

1)

* mu * (F — R)

(J - 1) .view(-1, 1, 1) # (B,
B))

0.22, mu_log: float = 4.0):

ar modulus for plas

29

stress and plastic shear modulus

(mu)

scalar

scalar in

=i,

float

optimization.

id transformation.

[o,

=1))

arameters for differentiable optimization.
in log space.

0.49]

1.00) :

Under review as a conference paper at ICLR 2026

1566
15 W
1567 16 super () .__init__ ()
1568 17 self.yield_stress = nn.Parameter (torch.tensor (yield_stress)) # scalar
18 self.mu_log = nn.Parameter (torch.tensor (mu_log)) # scalar
1569 19
20 def forward(self, F: torch.Tensor) -> torch.Tensor:
1570 21 wun
22 Compute corrected deformation gradient from deformation gradient tensor via logarithmic
1571
spectral plasticity.
1572 B i
Args:
1573 25 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
26
1574 27 Re
>turns:
1575 28 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
29 W
1576 30 B = F.shape[0]
31
1577 32 mu = self.mu_log.exp() # scalar
33
1578 34 # SVD decomposition
1579 35 U, sigma, Vh = torch.linalg.svd(F) # U: (B,3,3), sigma: (B,3), Vh: (B,3,3)
36
1580 37 # Clamp singular values
38 sigma = torch.clamp_min(sigma, le-6) # (B,3)
1581 39
1582 40 # Logarithmic principal stretches
41 epsilon = torch.log(sigma) # (B,3)
1583 42
43 # Compute volumetric mean of epsilon
1584 44 epsilon_mean = epsilon.mean (dim=1, keepdim=True) # (B, 1)
45
1585 46 # Deviatoric log strain
1586 47 epsilon_bar = epsilon - epsilon_mean # (B,3)
48
1587 49 # Norm of deviatoric strain
1588 50 epsilon_bar_norm = torch.linalg.norm(epsilon_bar, dim=1, keepdim=True) # (B, 1)
51
52 # Plastic multiplier
1589
53 delta_gamma = epsilon_bar_norm - self.yield_stress / (2 * mu) # (B,1)
1590 54
55 # Clamp to non-negative
1591 56 delta_gamma_clamped = torch.clamp_min(delta_gamma, 0.0) # (B,1)
57
1592 58 # Avoid division by zero
1593 59 denom = epsilon_bar_norm.clamp_min(le-8) # (B,1)
60
1594 61 # Compute correction scale factor
62 scale = 1.0 - delta_gamma_clamped / denom # (B,1)
1595 63 - -
64 # No correction if yield condition not surpassed
1596
65 scale = torch.where(delta_gamma > 0, scale, torch.ones_like(scale)) # (B,1)
1597 66
67 # Apply correction
1598 68 epsilon_bar_corrected = epsilon_bar x scale # (B,3)
69
1599 .
70 # Recompose corrected log strain
71 epsilon_corrected = epsilon_bar_corrected + epsilon_mean # (B, 3)
1
72
1601 73 # Inverse log to get corrected singular values
74 sigma_corrected = torch.exp(epsilon_corrected) # (B,3)
1602
75
1603 76 # Reconstructed corrected deformation gradient
77 F_corrected = U @ torch.diag_embed(sigma_corrected) @ Vh # (B,3,3)
1604 78
1605 79 return F_corrected
80
81
1606 82 class ElasticityModel (nn.Module) :
1607 83
84 def __init__ (self, youngs_modulus_log: float = 12.9, poissons_ratio_sigmoid: float = 0.0):
1608 85 nun
86 Define trainable continuous physical parameters for differentiable optimization.
1609 87 Initialize parameters from best prior estimates.
1610 o
89 Args:
1611 90 modulus_log (float): log of Young’s modulus.
1612 91 s 1s_ratio_sigmoid (float): re 1's ratio parameter before sigmoid scaling.
92 wun
1613 93 super () .__init__ ()
94 self.youngs_modulus_log = nn.Parameter (torch.tensor (youngs_modulus_log)) # scalar
1614 95 self.poissons_ratio_sigmoid = nn.Parameter (torch.tensor (poissons_ratio_sigmoid)) #
scalar
1615 96
1616 97 def forward(self, F: torch.Tensor) -> torch.Tensor:
08 W
1617 99 Compute Kirchhoff stress from corrected deformation gradient tensor using StVK elasticity
1618 100
101 Args:
1619 102 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
103

30

Under review as a conference paper at ICLR 2026

1620
104 Returns:
1621 105 kirchhoff_stress (torch.Tensor): Kirchhoff s tensor (B, 3, 3).
106 win
1622 107 B = F.shape[0]
1623 108
109 # Physical parameters
1624 110 youngs_modulus = self.youngs_modulus_log.exp() # scalar
111
1625 112 # Sigmoid mapping to (0, 0.499) for Poisson’s ratio
1626 113 poissons_ratio = torch.sigmoid(self.poissons_ratio_sigmoid) =% 0.499 # scalar
114
1627 115 mu = youngs_modulus / (2.0 * (1.0 + poissons_ratio)) # scalar
1628 116 la = youngs_modulus * poissons_ratio / ((1.0 + poissons_ratio) x (1.0 - 2.0 =
poissons_ratio)) # scalar
162 117
629 118 I = torch.eye(3, dtype=F.dtype, device=F.device).unsqueeze(0) # (1, 3, 3)
1630 19
1631 120 Ft = F.transpose(l, 2) # (B, 3, 3)
121
1632 122 # Right Cauchy-Green tensor
123 C = torch.matmul (Ft, F) # (B, 3, 3)
1633 12
125 # Green-Lagrange strain tensor
1634 126 E=0.5% (C-1I) # (B, 3, 3)
127
1635 128 # Trace of strain tensor
1636 129 trE = E.diagonal (diml=1, dim2=2).sum(dim=1).view(B, 1, 1) # (B, 1, 1)
130
1637 131 # Second Piola-Kirchhoff stress tensor
1638 132 S =2.0*mu*E + la x trE + I # (B, 3, 3)
133
1639 134 # First Piola-Kirchhoff stress tensor
135 P = torch.matmul (F, S) # (B, 3, 3)
1640 136
137 # Kirchhoff stress tensor: tau = P x F°T
1641 138 kirchhoff_stress = torch.matmul (P, Ft) # (B, 3, 3)
139
1642 140 return kirchhoff_stress
1643
1644
1645 H.6 SANDFISH
1646 . . o . :
onr In the SandFish scenario, the constitutive law inferred by our method is presented.
1 import torch
1648 2 import torch.nn as nn
1649 ;
1650 5 class PlasticityModel (nn.Module) :
6
1651 7 def __init_ (self, yield_stress: float = 0.07):
1652 3 wn
9 Define trainable plastic yield stress parameter with enforced numerical stability.
1653 10
11 Args:
1654 12 yield_stress (float): yield stress controlling deviatoric plastic flow magnitude.
13 wun
1655 14 super () .__init__ ()
1656 15 self.yield_stress = nn.Parameter (torch.tensor (yield_stress))
16
1657 17 def forward(self, F: torch.Tensor) -> torch.Tensor:
18 W
1658 19 Compute plasticity-corrected deformation gradient by shrinking deviatoric logarithmic
1659 strain.
20
1660 21 Args:
1661 22 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
23
24 Returns:
1662 25 F rected (torch.Tensor): c (B, 3, 3)
1663 26 wun
27 # SVD decomposition
1664 28 U, sigma, Vh = torch.linalg.svd(F) + (B, 3, 3), (B, 3), (B,
3)
1665
29
1666 30 # Clamp singular values for stability
31 sigma_clamped = torch.clamp_min(sigma, le-6) # (B, 3)
1667 32
33 # Compute logarithmic principal strain
1668 34 epsilon = torch.log(sigma_clamped) # (B, 3)
35
1669 36 # Volumetric part (mean)
1670 37 epsilon_mean = epsilon.mean(dim=1, keepdim=True) # (B, 1)
38
1671 39 # Deviatoric strain
1672 40 epsilon_dev = epsilon - epsilon_mean # (B, 3)
41
1673 42 # Norm of deviatoric strain
43 epsilon_dev_norm = torch.linalg.norm(epsilon_dev, dim=1, keepdim=True) # (B, 1)
44

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

45
46
47
48
49
50
51
52

54
55

57
58

60
6

62
63
64
65
66
67
68

83
84
85
86
87
88
89
90
9
92
93
94
95
96
97
98
99
100
101
102
103

104
105
106
107
108
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

Enforce minimum yield stress to avoid numerical instability
yield_stress = torch.clamp_min(self.yield _stress, 0.05) # scalar

Clamp norm for division
epsilon_dev_norm_safe = torch.clamp_min(epsilon_dev_norm, le-12) # (B, 1)

Compute plastic correction magnitude delta_gamma

delta_gamma = epsilon_dev_norm - yield_stress # (B, 1)
delta_gamma_clamped = torch.clamp_min (delta_gamma, 0.0) # (B, 1)
Scaling factor for deviatoric strain correction

scale = 1.0 - delta_gamma_clamped / epsilon_dev_norm_safe # (B, 1)
scale = torch.clamp_min(scale, 0.0) # (B, 1)
Apply plastic correction to deviatoric strain

epsilon_dev_corrected = epsilon_dev x scale # (B, 3)
Recombine volumetric and deviatoric parts

epsilon_corrected = epsilon_mean + epsilon_dev_corrected # (B, 3)
Calculate corrected singular values

sigma_corrected = torch.exp(epsilon_corrected) # (B, 3)
Reconstruct corrected deformation gradient

F_corrected = U @ torch.diag_embed(sigma_corrected) @ Vh # (B, 3, 3)

return F_corrected

class ElasticityModel (nn.Module) :

def

__init__ (self, youngs_modulus_log: float = 9.55, poissons_ratio_sigmoid: float = 2.50):
W
Define trainable Young’s modulus and Poisson’s ratio with physically realistic bounds.
Args:

youngs_modulus_log (float logarithm of Young’s modulus.

poissons_ratio_sigmoid (float): raw parameter to be passed through sigmoid for

Poisson’s ratio.

wun
super () .__init__ ()

self.youngs_modulus_log = nn.Parameter (torch.tensor (youngs_modulus_log)
self.poissons_ratio_sigmoid = nn.Parameter (torch.tensor (poissons_ratio_sigmoid))

forward(self, F: torch.Tensor) -> torch.Tensor:

now

Compute Kirchhoff stress tensor from deformation gradient with corotated elasticity.

Args:
F (torch.Tensor): deformation gradient tensor (B, 3, 3).
Returns:
kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3)

won

B = F.shape[0]

Recover material parameters

E = self.youngs_modulus_log.exp () # scalar
nu_raw = self.poissons_ratio_sigmoid.sigmoid () # (0,1
nu = nu_raw x 0.45 # scale to max 0.45

Poisson ratio (“stable and compressible)

mu =E / (2.0 « (1.0 + nu)) # scalar
lam = E « nu / ((1.0 + nu) » (1.0 - 2.0 * nu)) # scalar

Compute SVD
U, sigma, Vh = torch.linalg.svd(F) # (B, 3, 3), (B, 3), (B,
S))

Clamp singular values to prevent numerical issues
sigma_clamped = torch.clamp_min(sigma, le-6) # (B, 3)

Compute rotation part R
R=0U@ Vh # (B, 3, 3)

Expand mu for broadcasting
if mu.dim() > O:

mu_expanded = mu.view(-1, 1, 1) # (B, 1, 1)
else:

mu_expanded = mu # scalar

Corotated stress part: 2 * mu * (F - R)
corotated_stress = 2.0 * mu_expanded * (F - R) + (B, 3, 3)

Compute determinant J and clamp for stability
J = torch.linalg.det (F) # (B,)
J_clamped = torch.clamp_min(J, le-8) # (B,)

Identity tensor I (1, 3, 3)
I = torch.eye(3, dtype=F.dtype, device=F.device) .unsqueeze(0) # (1, 3, 3)

Expand and reshape parameters for broadcasting

32

Under review as a conference paper at ICLR 2026

1728
134 if lam.dim() > O:
1729 135 lam_expanded = lam.view(-1, 1, 1) # (B, 1, 1)
36 else:
17 !
30 137 lam_expanded = lam # scalar
1731 138
139 J_expanded = J_clamped.view(-1, 1, 1) # (B, 1, 1)
1732 140 J_minus_1_expanded = (J_clamped - 1.0).view(-1, 1, 1) # (B, 1, 1)
141
1733 142 # Volumetric stress: lambda * J % (J - 1) % T
1734 143 volumetric_stress = lam_expanded % J_expanded » J_minus_1_expanded = I # (B, 3, 3)
144
1735 145 # First Piola-Kirchhoff stress
1736 146 P = corotated_stress + volumetric_stress + (B, 3, 3)
147
148 # Transpose of deformation gradient
1737
149 Ft = F.transpose(l, 2) #* (B, 3, 3)
1738 150
151 # Kirchhoff stress tensor: tau =P @ F'T
1739 152 kirchhoff_stress = P @ Ft ¥ (B, 3, 3)
153
1740 154 return kirchhoff_stress
1741
1742
1743 H.7 BUN
1744 . o . .
In the Bun scenario, the constitutive law inferred by our method is presented.
1745
1746 1 import torch
2 import torch.nn as nn
1747 3
4
1748 5 class PlasticityModel (nn.Module) :
1749 g def Wimit_(self, yield_stress: float = 0.30):
1750 8 Trainable ntinuous yield stress parameter for von Mises plasticity correction.
9
1751 10 Args:
11 ield_stress (float): ic correction.
1752 > noa
1753 13 super () .__init_ ()
14 self.yield_stress = nn.Parameter (torch.tensor (yield_stress))
1754 15
1755 16 def forward(self, F: torch.Tensor) -> torch.Tensor:
17 W
1756 18 Compute corrected deformation gradient from input deformation gradient tensor.
19
1757 20 Args:
8 21 E r) : deformation gradient tensor (B, 3, 3).
175 22
23 Returns:
1759 2 ‘ :
24 F_corrected ormation gradient ter 3, 3)
1760 25 wun
26 # Compute SVD of F: U, sigma, Vh
1761 27 U, sigma, Vh = torch.linalg.svd(F) # U: (B,3,3), sigma: (B,3), Vh: (B,3,3)
28
1762 29 # Clamp singular values to avoid log(0)
1763 30 sigma_clamped = torch.clamp_min(sigma, le-6) # (B,3)
31
1764 32 # Compute logarithm of singular values (principal logarithmic strains)
1765 33 epsilon = torch.log(sigma_clamped) # (B,3)
34
35 # Compute volumetric mean strain
1766
36 epsilon_mean = epsilon.mean (dim=1, keepdim=True) # (B, 1)
1767 7
38 # Deviatoric strain (deviation from mean)
1768 39 epsilon_dev = epsilon - epsilon_mean # (B,3)
40
1769 41 # Norm of deviatoric strain, clamp to avoid numerical issues
1770 42 epsilon_dev_norm = torch.norm(epsilon_dev, dim=1, keepdim=True).clamp_min(le-12) # (B, 1)
43
1771 44 # Compute plastic multiplier (excess over yield stress)
1772 45 delta_gamma = epsilon_dev_norm - self.yield_stress # (B,1)
46
1773 47 # Apply plastic correction only if exceeding yield stress
48 delta_gamma_clamped = torch.clamp_min(delta_gamma, 0.0) # (B,1)
1774 o
50 # Calculate shrink factor for deviatoric strains
1775 51 shrink_factor = 1.0 - delta_gamma_clamped / epsilon_dev_norm # (B, 1)
52
1776 53 # Correct deviatoric strain by projecting onto yield surface
1777 54 epsilon_dev_corrected = epsilon_dev x shrink_factor # (B,3)
55
1778 56 # Reassemble corrected total logarithmic strains
9 57 epsilon_corrected = epsilon_mean + epsilon_dev_corrected # (B, 3)
177 58
1780 59 # Exponentiate to get corrected singular values
60 sigma_corrected = torch.exp(epsilon_corrected) # (B,3)
1781 ol
62 # Reconstruct corrected deformation gradient: F_corrected = U » diag(sigma_corrected) x

Vh

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791

1792
1793
1794
1795
1796
1797
1798
1799
1800
1801

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811

1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

83

100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

F_corrected = U @ torch.diag_embed(sigma_corrected) @ Vh # (B,3,3)

return F_corrected

class ElasticityModel (nn.Module) :

def _ _init_ (self, youngs_modulus_log: float = 9.82, poissons_ratio_sigmoid:

won

Trainable continuous parameters

s_modulus_log (£
ratio_sigmoid (flo

won

super () .__init__ ()

for Neo-Hookean elasticity.

log of Young’s modulus.
at): Poisson’s ratio

self.youngs_modulus_log = nn.Parameter (torch.tensor (youngs_modulus_log)
self.poissons_ratio_sigmoid = nn.Parameter (torch.tensor (poissons_ratio_sigmoid))

def forward(self, F: torch.Tensor)

won

Compute Kirchhoff stress tensor

Args
F (torch.Tensor): deformation gradient t 3, 3

Returns:
kirc s (torc Kirchhoff (=5 3, 3

wun

B = F.size(0) # batch size

Compute Young’s modulus E and Poisson’s ratio nu

E = self.youngs_modulus_log.exp() # scalar

nu = self.poissons_ratio_sigmoid.sigmoid() » 0.49 # scalar in (0,0.49)

—> torch.Tensor:

float

4.07):

parameter before sigmoid scaling.

from deformation gradient tensor using Neo-Hookean

mu=E / (2 x (1 + nu)) # scalar
lam = E * nu / ((1 + nu) * (1 - 2 x nu)) # scalar

Identity tensor I (B,3,3)
I = torch.eye (3, dtype=F.dtype,
13,3)

device=F.device) .unsqueeze (0) .expand (B,

Compute determinant J of F (B,)
J = torch.linalg.det (F).clamp_min(le-12) .view(-1, 1, 1) # (B,1,1)

logJd = torch.log(J) # (B,1,1

Compute inverse transpose of
F_inv = torch.inverse(F) # (B,
F_inv_T = F_inv.transpose(l, 2)

F (B,3,3)
3,3)
(B,3,3)

-1,

-1)

(B

Compute first Piola-Kirchhoff stress tensor P = mux(F — F_inv_T) + lamxlogJ+F_inv_T

P=mu +x (F - F_inv_T) + lam x

Compute Kirchhoff stress tau
Ft = F.transpose(l, 2) # (B,3,

logd = F_inv_T # (B,3,3)

=P *« F'T
3)

kirchhoff_stress = torch.matmul (P, Ft) # (B,3,3)

return kirchhoff_stress

H.8 BURGER

In the Burger scenario, the constitutive law inferred by our method is presented.

1
2
3

import torch
import torch.nn as nn
class PlasticityModel (nn.Module) :

def __init__ (self):

won

Identity plasticity: no correction to deformati

super () .__init__ ()
def forward(self, F: torch.Tensor)
Args:

F (torch.Tensor): deformati

Returns:

F_corrected (torch.Tensor) :

won

No plastic correction
return F # (B, 3, 3)

class ElasticityModel (nn.Module) :

gradient.

—> torch.Tensor:
on gradient tensor (B, 3, 3).

corrected deformation gradient tensor

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

def

def

__init__ (self,
youngs_modulus_log: flo
poissons_ratio: float =

won

Corotated elasticity with traina

Args:
youngs_modulus_log (float) :
poissons_ratio (float): Pois

super () .__init__ ()

self.youngs_modulus_log = nn.Parameter (torch.tensor (youngs_modulus_log)

self.poissons_ratio = nn.Paramet

forward (self,

F: torch.Tensor) -
Compute Kirchhoff stress tensor

Args:
F (torch.Tensor): deformatio
Returns:

kirchhoff_ stress (torch.Tens

won

B = F.shape[0]

Physical parameters

E = self.youngs_modulus_log.exp (
nu = torch.clamp (self.poissons_r
mu =E / (2.0 » (1.0 + nu)) # s
la =E * nu / ((1.0 + nu) (1.0
SVD of F: U, Sigma, Vh such th

U, sigma, Vh = torch.linalg.svd(
sigma = torch.clamp_min(sigma, 1

Rotation R = U @ Vh

R = torch.matmul (U, Vh) # (B, 3,
Corotated stress part: tau_c =
Ft = F.transpose(l, 2) # (B,3,3
tau_c = 2.0 * mu * torch.matmul (

Volumetric part: tau_v = lambd.
J = torch.prod(sigma, dim=1).vie
I = torch.eye(3, dtype=F.dtype,
73 3)
tau_v = la * J *

(J-1) » I #

Kirchhoff stress
kirchhoff_stress = tau_c + tau_v

return kirchhoff_stress

at = 8.37,
0.49):

ble parameters.

log of Young’s modulus.

son’s ratio (clamped [0,0.49]).

er (torch.tensor (poissons_ratio))
> torch.Tensor:

from deformation gradient tensor.
n gradient tensor (B,

or): Kirchhoff stress tensor (B, 3, 3).

) # scalar
atio, 0.0, 0.49) # scalar
calar

- 2.0 * nu)) # scalar

at F = U @ diag(Sigma) @ Vh

F) # U: (B,3,3), sigma: (B,3), Vh:
e-5) # (B,3) ensure positivity

3

2+mu*x (F - R) @ F°T
)

F - R, Ft) # (B,3,3)

a*xJx (J-1) =1I

w(B, 1, 1) # (B,1,1)
device=F.device) .unsqueeze (0) .expand (B,

(B,3,3)

(B,3,3)

35

(B,3,3)

-1,

=)

#

(B

	Introduction
	Preliminaries
	Constitutive laws
	Physics-Integrated 3D Gaussians

	Methodology
	Upper-Level Constitutive Evolution
	LLMs-Driven Constitutive Laws Evolution.
	Decouple Evolution Strategy.

	Lower-Level Constitutive Evaluation

	Experiments
	Experimental Setup
	Implementation Details
	Baselines
	Datasets and Metrics

	Performance on Intrinsic Dynamics Inference
	Synthetic Dataset.
	Real-world Dataset.

	Generalization Analysis and Ablation Studies
	Generalization to Unseen Observations.
	Generalization to novel scenarios
	Ablation study on Decoupled Evolution Strategy

	Conclusion
	More Experimental Details
	Implementation Details
	Dataset Details

	More Experimental Results
	Related Work
	Physics-Based 4D Interaction
	Intrinsic Dynamics Learning

	Material Point Method
	Expert-Designed Constitutive Laws
	Elastic Constitutive Law
	Fixed Corotated Elasticity.
	Neo-Hookean Elasticity.
	StVK Elasticity.

	Plastic Constitutive Law
	Identity Plasticity.
	Drucker-Prager Plasticity.
	Von Mises Plasticity.
	Fluid Plasticity.

	Limitation and Future Work
	Prompt Design Details
	Prompt Design for Joint Evolution
	Prompt Design Alternating Evolution

	Visualization of Inferred Interpretable Constitutive Law
	BouncyBall
	ClayCat
	HoneyBottle
	JellyDuck
	RubberPawn
	SandFish
	Bun
	Burger

