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ABSTRACT

Predicting molecular properties plays an important role in both scientific research
and industrial applications. Given that different molecular properties are influ-
enced by specific atoms or functional groups, it is essential to incorporate both
types of information. Previous approaches either leverage subgraph informa-
tion in self-supervised learning to pre-train atom-based architectures or develop
subgraph-based architectures tailored to specific downstream tasks. However,
these methods often lack a thorough analysis or theoretical support concerning
the expressive capabilities of these two types of representations. Moreover, they
typically rely on fixed coupling representations, which cannot adaptively priori-
tize more discriminative information for various downstream tasks. In this paper,
we introduce a Route-guided Bilateral Compensation (RBC) architecture that ex-
plicitly extracts atom-wise and subgraph-wise information through two decoupled
branches and integrates them via a route module. Theoretically, we demonstrate
that our decomposition-polymerization subgraph-wise branch exhibits greater ex-
pressive power than the atom-wise branch, and that the integration process re-
duces the generalization error bound. Furthermore, we propose a coordinated
self-supervised learning strategy that incorporates node-level masked graph re-
construction tasks for atomic and lexicalized subgraph tokens, alongside a graph-
level contrastive learning task. For different downstream tasks, the route module
facilitates dynamic integration, enhancing the discriminative power of the final
representation. External experiments verify the effectiveness of our method.

1 INTRODUCTION

Molecular properties prediction plays a fundamental role in many tasks like drug and material
discovery (Feinberg et al., 2018). Previous methods typically model molecules as graphs, where
atoms and chemical bonds are modeled as nodes and edges, respectively. Graph Neural Networks
(GNNs) (Hamilton et al., 2017) have been widely applied to predict specific properties associated
with atoms, such as solubility and reactivity (Zhang et al., 2021; Hu et al., 2019; Yang et al., 2022).
However, not all molecular properties are determined by individual atoms, and some chemical prop-
erties are closely related to functional groups (subgraphs) (Zhong et al., 2024; Li et al., 2024; Kong
et al., 2022), such as efficacy, and metabolic properties. Therefore, how to fuse atom-wise informa-
tion and subgraph-wise information is vital for molecular property prediction.

Existing methods to employ both kinds of information for making final predictions can be broadly
grouped into two categories. One category involves utilizing subgraph-wise knowledge to pre-train
atom-based architectures in the self-supervised learning stage. For instance, MGSSL (Zhang et al.,
2021) integrates atom-wise self-supervised tasks with subgraph-wise tasks, such as masking and
predicting subgraph tokens, achieved by transforming molecular graphs into tree structures. The
other category focuses on constructing joint architectures of atoms and subgraphs for downstream
tasks. For instance, in (Yang et al., 2022), the output representation is amalgamated using both
atom-wise and subgraph-wise information through an attention mechanism, which is designed for
downstream tasks specifically.
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Achieving great success, the above two categories of methods lack theoretical analysis on the ex-
pression capacities (Wollschläger et al., 2024) of atom-wise and subgraph-wise representations, as
well as the benefit of integrating them. Besides, these methods generally obtain coupling integrated
representations, i.e., the mechanism by which the two types of information are integrated is fixed
and the two types of information are coupled together within the final representations. However, the
discriminative information for different downstream tasks is different. Transferring such statically
fused representations to different tasks in a unified manner will affect their discriminative ability.

In this paper, we propose a novel Route-guided Bilateral Compensation (RBC) architecture, which
consists of an atom-wise branch, and a subgraph-wise branch to explicitly decouple the two types of
information. For the subgraph-wise branch, we propose a decomposition-polymerization network
that interacts between atoms and subgraphs in decomposition layers and interacts among subgraph
nodes in polymerization layers. A Route-guided Module is introduced to enable the dynamic selec-
tion of atom-wise or subgraph-wise information, catering to the specific requirements of molecular
properties. In theory, we verify that subgraph-wise information can boost the expression of graphs,
which complements the shortcomings of atom-wise information. Moreover, we also provide theo-
retical support for the RBC module and verify the generalization error bound.

Existing subgraph-aware self-supervised learning methods (Feng et al., 2019; Dash et al., 2021;
2022; Yang et al., 2022) cannot be directly applied to train our RBC since it is different from the
architectures they used. Therefore, we propose a coordinated self-supervised learning strategy for
RBC. For the atom branch, we employ the commonly used masked atom prediction task, i.e., pre-
dicting randomly masked atoms. For the subgraph branch, most existing self-supervised molecu-
lar learning methods, which are mainly designed for atom-based architectures, cannot fully capture
subgraph-wise information and the relations among substructures. To this end, we propose a Masked
Subgraph-Token Modeling (MSTM) strategy for the subgraph-wise branch. MSTM first tokenizes
a given molecule into pieces and forms a subgraph-token dictionary. Compared with atom tokens,
such subgraphs correspond to different functional groups, thus their semantics are more stable and
consistent. MSTM decomposes each molecule into subgraph tokens, masks a portion of them, and
learns the molecular representation by taking the prediction of masked token indexes in the dictio-
nary as the self-supervised task. Although the atom-wise branch and the subgraph-wise branch aim
to extract molecular features from different levels, the global graph representations for the same
molecule should be consistent. To build the synergistic interaction between the two branches for
joint pre-training, we perform contrastive learning to maximize the average invariance of the two
branches. Experimental results show the effectiveness of our method.

Our contributions can be summarized as:

1. We propose a novel architecture for the molecular property prediction task, which con-
sists of the atom-wise branch and the decomposition-polymerization subgraph-wise branch.
Moreover, a Route-guided Bilateral Compenstation (RBC) architecture is proposed to fuse
the information of two branches dynamically. We verify that the two branches play a com-
plementary role theoretically and give the generalization error bound of our RBC.

2. We propose a cooperative node-level and graph-level self-supervised learning method to
jointly train the two branches of our bilateral model. For the subgraph branch, we pro-
pose MSTM, a novel self-supervised molecular learning strategy, which uses the auto-
discovered subgraphs as tokens and predicts the dictionary indexes of masked tokens. The
subgraph tokens are more stable in function and have more consistent semantics. In this
way, masked subgraph modeling can be performed in a principled manner. At the global
graph level, we perform a contrastive learning strategy that imposes the interaction of the
two branches with the consistency constraint.

3. We provide extensive empirical evaluations to show that the learned representation by our
bilateral model and our self-supervised learning method has a stronger generalization abil-
ity in various functional group-related molecular property prediction tasks.

2 RELATED WORK

Molecular property prediction The prediction of molecular properties is an important research
topic in the fields of chemistry, materials science, pharmacy, biology, physics, etc (Wang & Hou,
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2011). Since it is time-consuming and labor-intensive to measure properties via traditional wet ex-
periments, many recent works focus on designing end-to-end machine learning methods to directly
predict properties. These works can be divided into two categories: SMILES string-based meth-
ods (Butler et al., 2018; Dong et al., 2018) and graph-based methods (Gilmer et al., 2017; Yang
et al., 2019; Lu et al., 2019; Gasteiger et al., 2020). Compared with SMILES strings, it is more
natural to represent molecules as graphs and model them with Graph neural networks (GNNs).
However, the training of GNNs requires a large amount of labeled molecule data and supervised-
trained GNNs usually show limited generalization ability for newly synthesized molecules and new
properties. In order to tackle these issues, self-supervised representation pre-training techniques are
explored (Rong et al., 2020; Li et al., 2021; Stärk et al., 2022) in molecular property prediction.

Self-supervised learning of graphs Based on how self-supervised tasks are constructed, previous
works can be classified into two categories, contrastive models and predictive models. Contrastive
models (Li et al., 2024; Zhang et al., 2020; Sun et al., 2020; You et al., 2021; Sun et al., 2021; Subra-
monian, 2021; Xia et al., 2022; Li et al., 2022b; Zhong et al., 2024) generate different views for each
graph via data augmentation and learn representations by contrasting the similarities between views
of the same graph and different graphs. Predictive models (Hu et al., 2020; Rong et al., 2020; Hou
et al., 2022) generally mask a part of the graph and predict the masked parts. Most existing methods
focus on learning node-level or graph-level representations, with some work involving subgraph-
level feature that utilizes the rich semantic information contained in the subgraphs or motifs. For
instance, in (Zhang et al., 2021), the topology information of motifs is considered. In (Wu et al.,
2023), a Transformer architecture is proposed to incorporate motifs and construct 3D heterogeneous
molecular graphs for representation learning. Different from these works, we propose a bilateral fu-
sion model with a novel subgraph-aware GNN branch and propose a joint node-wise and graph-wise
self-supervised training strategy so that the learned representation can capture both atom-wise and
subgraph-wise information.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We represent a molecule as a graph G = (V,E) with node attribute vectors xv for v ∈ V and edge
attribute vectors euv for (u, v) ∈ E, where V and E are the sets of atoms and bonds, respectively.
We consider a binary classification problem with instance G and label y = {0, 1}, where y denotes
whether this property is present in G. Given a set of training samples Ds = {(Gi, yi)}N1

i=1, our target
is to learn a hypothesis f making predictions that can well generalize to the test set. We also have
a set of unlabelled support set Du = {(Gi)}N2

i=1, where N2 ≫ N1, and apply our self-supervised
learning method to get better initial representation.

3.2 ATOM-WISE BRANCH

Molecule

Atom-wise
feature

Representation

GNN

Pooling

Figure 1: The atom-wise branch.

Previous works extract the representation of a
molecule by aggregating the embeddings of all atoms
with GNNs. Similarly, our atom-wise branch ap-
plies a single GNN model with K layers to map each
molecule graph into an embedding. Specifically, for
G = (V,E), the input embedding h0

v of the node
v ∈ V is initialized by xv , the input embedding at
the k-th layer ekuv of the edge (u, v) ∈ E is initialized
by euv , and the K GNN layers iteratively update hv

by polymerizing the embeddings of neighboring nodes
and edges of v̂. In the k-th layer, h(k)

v is updated as
follows:

h(k)
v = COMBINE(k)(h(k−1)

v ,AGGREGATE(k)

({(h(k−1)
v ,h(k−1)

u , ekuv) : u ∈ N (v)}))
(1)
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where h(k)
v denotes the embedding of node v at the k-th layer, and N (v) represents the neighborhood

set of node v. After K iterations of aggregation, h(K)
v captures the structural information within its

K-hop network neighborhoods. The embedding zA = MEAN({h(K)
v |v ∈ V }) of the graph G is

the average of each node. Then we add a linear classifier to achieve the final prediction. Formally,
we denote f as the atom-wise branch and the supervised loss is ℓ1 = ℓ(f(G), y).

3.3 SUBGRAPH-WISE BRANCH

Molecule

Atom-wise
feature

Representation

Pooling

Representation

GNN

Subgraph-wise
feature

GNN

Pooling

Figure 2: The subgraph-wise branch.

Atoms are influenced by their surrounding contexts
and the semantics of a single atom can change signif-
icantly in different environments. Functional groups,
which are connected subgraphs composed of co-
ordinated atoms, determine many molecular prop-
erties. Our proposed hierarchical Decomposition-
Polymerization architecture decouples the represen-
tation learning into the subgraph embedding phase,
where each molecule is decomposed into subgraphs
and an embedding vector is extracted from each sub-
graph, and the subgraph polymerization phase, where
subgraphs are modeled as nodes and their embeddings
are updated by polymerizing information from neigh-
boring subgraphs. Finally, the final representation is
obtained by combining all subgraph-wise embeddings.

Subgraph vocabulary construction Functional
groups correspond to special subgraphs, however,
pre-defined subgraph vocabularies of hand-crafted
functional groups may be incomplete, i.e., not all molecules can be decomposed into disjoint
subgraphs in the vocabulary. There exist many decomposition algorithms such as the principle
subgraph extraction strategy (Kong et al., 2022) and breaking retrosynthetically interesting chemical
substructures (BRICS) (Degen et al., 2008). Generally, we denote a subgraph of the molecule
G by S = (V̂ , Ê) ⊂ G, where V̂ is a subset of V and Ê is the subset of E corresponding
to V̂ . The target of principle subgraph extraction is to constitute a vocabulary of subgraphs
V = {S(1), S(2), · · · , S(M)} that represents the meaningful patterns within molecules, where each
unique pattern is associated with an index.

Subgraph embedding In this phase, we only focus on learning the embedding of each subgraph
by modeling the intra-subgraph interactions. For a molecule G = (V,E), we decompose it into
a set of non-overlapped subgraphs {Sπ1, Sπ2, · · · , SπT }, where T is the number of decomposed
subgraphs and πt is the corresponding index of the tth decomposed subgraph in the constructed
vocabulary V. For each subgraph Sπt = (V̂πt, Êπt), we have V̂πt ⊂ V and Êπt ⊂ E. For each
edge (u, v) in E, we add it into the inter-subgraph edge set E if it satisfies that nodes u and v are in
different subgraphs. Therefore, we have V = ∪V̂πt and E = ∪Êπt ∪ E .

We apply a single GNN model with K1 layers to map each decomposed subgraph into an embedding.
GNN depends on the graph connectivity as well as node and edge features to learn an embedding
for each node v. We discard the inter-subgraph edge set E , any two subgraphs are disconnected and
the information will be detached among subgraphs. This is equivalent to feeding each subgraph Sπt

into the GNN model individually.

By feeding the molecular graph after discarding all inter-subgraph edges into the GNN model, the
embeddings of all atoms in the T decomposed subgraphs are updated in parallel and the embeddings
of all subgraphs can be obtained by adaptive pooling. Compared with previous strategies (Hu et al.,
2019; Zhang et al., 2021) that directly obtain molecular representations from the context-dependent
atom-wise embeddings with all edges, our strategy first extracts subgraph-level embeddings. When
a subgraph appears in different molecules, both its atom-wise embeddings and the subgraph embed-
ding remain the same.

4
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Subgraph-wise polymerization In the previous subgraph embedding phase, we view each atom
in the subgraph as a node and extract the embedding of each subgraph. In the subgraph-wise poly-
merization phase, we polymerize the embeddings of neighboring subgraphs for acquiring repre-
sentations of subgraphs and the final representation of the molecule G. Differently, we view each
subgraph as a node and connect them by the set of inter-subgraph edges E . Two subgraphs Sπt and
Sπl are connected if there exists at least one edge (û, v̂) ∈ E where û ∈ V̂πt and v̂ ∈ V̂πl. In this
way, we construct another graph whose nodes are subgraphs and employ another GNN model with
K2 layers to update the representation of each subgraph and extract the final representation zS . At
the k′-th layer, the embedding hπt for the t-th subgraph is updated as follows:

h
(k′)
πt = COMBINE(k′)(h

(k′−1)
πt ,AGGREGATE(k′)({h(k′−1)

πt ,h
(k′−1)
πl , ek

′

ûv̂) : (û, v̂) ∈ E
AND û ∈ V̂πt AND v̂ ∈ V̂πl})

(2)

The representation zS = MEAN({h(K2)
πt |t ∈ {1, 2, · · · , T}}) has aggregated all information from

different subgraphs, where h
(K2)
πt denotes the subgraph feature which is fed forward after K2 itera-

tions. Formally, we denote g as the subgraph-wise branch and the supervised loss is ℓ2 = ℓ(g(G), y).

3.4 ROUTE-GUIDED BILATERAL COMPENSATION (RBC)

The properties of some molecules are determined by their constituent atoms, while others are influ-
enced by functional groups, and in most cases, it’s a combination of both factors. When the property
is more closely related to the atom, we should utilize more information from the atom-wise branch,
and vice versa. The current fusion methods often directly aggregate information, which may not be
sufficiently accurate (Wang et al., 2022; Fey et al., 2020). Therefore, we introduce our Route-guided
Bilateral Compensation (RBC) to control the aggregation rate automatically. Formally, we define
the fusion feature as shown in Eq. 3, where λ = α1+c/2

α1+α2+c represent the aggregation rate. We define
α1 = S(W T

1 zA) and α2 = S(W T
2 zS) and c is a scaling factor, where S(·) is the sigmoid function,

and W1 and W2 are two learnable parameters.

z̃ = λ · zA + (1− λ) · zS (3)

In our approach, the ultimate output feature, denoted as z̃, combines the invariant features from
both branches, incorporating the weighted contributions from both the atom-wise and subgraph-wise
branches. Typically, when a property exhibits a stronger association with subgraphs, the value of
α2 surpasses that of α1, and conversely for properties leaning towards atoms. Our route mechanism
adeptly automates the feature selection process, effectively enhancing overall performance. Finally,
we add a linear classifier to realize the classification task.

3.5 THEOETRICAL ANALYSIS

The complementarity between atom-wise branch and subgraph-wise branch Intuitively,
atom-wise information dictates certain properties, while subgraph-wise information governs oth-
ers. Merging these two types of information can enhance property prediction in a complementary
manner (Yang et al., 2022). However, this intuition alone does not fully explain the workings of our
architecture. In this section, we analyze our method from the perspective of GNN expressiveness
and provide a plausible explanation.

Definition 1 Given two mapping functions m1 and m2, if there exists two non-isomorphic molecu-
lar graphs G1 and G2 such that m1(G1) = m1(G2) whereas m2(G1) ̸= m2(G2). We denote m2

is more expressive than m1.

Theorem 1 For atom-wise branch f and subgraph-wise branch g, g is more expressive than f .

The Theorem 1 highlights that the subgraph-wise branch can distinguish a greater number of non-
isomorphic graphs compared to the atom-wise branch. However, expressive ability does not neces-
sarily equate to discriminative ability, which is critical for making property predictions. To address
this, the following corollary gives a further explanation of how the two branches work.
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[M]

AttrMasking

{C, N, O, F, …}
{C, N, O, F, …}

[M]
Modeling

Tokenize

Modeling MSTM
[M]

[M]

{S𝜋1, S 𝜋2, S 𝜋3, S 𝜋4, …}

{S𝜋1, S 𝜋2, S 𝜋3, S 𝜋4, …}

Figure 3: The differences between AttrMasking (Hu et al., 2019) and our MSTM.

Corollary 1 Given two molecular samples (G1, y1) and (G2, y2). If y1 = y2, then the atom-wise
branch is more important to make a judgment that they have a similar property.

Corollary 2 Given two molecular samples (G1, y1) and (G2, y2). If y1 ̸= y2, then the subgraph-
wise branch is more important to make a judgment that they have different properties.

Corollary 1 and Corollary 2 illustrate the compensation of two branches. Considering two molecular
graphs with identical properties, the optimal pair of representations extracted by the mapping func-
tion will be as similar as possible within the feature space. However, a mapping function with greater
expressive power might overly differentiate between these graphs, potentially impairing property
prediction. Conversely, when dealing with two molecular graphs exhibiting distinct properties, a
more expressive mapping function is required to effectively capture their differences, placing greater
emphasis on the subgraph-wise branch. Detailed proofs are provided in the appendix.

RBC lead to better generalization Previous analyses indicate that the atom-wise and subgraph-
wise branches provide complementary information. Integrating them is expected to yield superior
performance compared to relying on a single branch alone. Inspired by (Zhang et al., 2023), we
give the generalization error bound ϵ(f ◦ g) for the methods following the fusion strategy in Eq. 3,
where f and g denote the atom-wise and subgraph-wise branch.

Assumption 1 Let Z and Y be two random variables from the latent feature space and output
space, associated with our model, respectively. We assume that the mutual information between Z
and Y , denote as I(Z, Y ), satisfies I(Z, Y ) ≫ ∆, where ∆ is a large constant, indicating a strong
dependence between Z and Y .

Theorem 2 Let Ê(f) and Ê(g) denote the empirical errors of model f and g on the training data
Ds, respectively. R is the Rademacher complexity and Cov(·, ·) is the covariance between score
and loss. We denote ϵ(f ◦ g) as the generalized error bound of our RBC. With probability at least
1− δ (0 < δ < 1), it is hold:

ϵ(f ◦ g) <E(λ)Ê(f) + E(1− λ)Ê(g) + E(λ)R(f) + E(1− λ)R(g)+

Cov(λ, ℓ1)− Cov(λ, ℓ2) + 2

√
ln(1/δ)

2N1

(4)

The Theorem 2 presents that the error bound is constituted by empirical errors, model complexities,
and covariances between fusion weights and branch losses. Among different integration strategies, if
we fix the expectations of fusion weight, then the covariances term will influence the generalization
bound mainly. In the experiments section, we will experimentally verify that our RBC can achieve
a lower value of covariances and lead to better generalization ability.

3.6 SELF-SUPERVISED LEARNING

Node-level self-supervised learning Many recent works show that self-supervised learning can
learn generalizable representations from a large number of unlabelled molecules. Since the atom-
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wise branch and subgraph-wise branch are decoupled, we can apply the existing atom-wise self-
supervised learning method to the atom-wise branch of RBC such as attrMasking (Hu et al., 2019).

For the subgraph-wise branch, we propose the Masked Subgraph-Token Modeling (MSTM) strat-
egy, which randomly masks some percentage of subgraphs and then predicts the corresponding
subgraph tokens. As shown in Fig.3, a training molecule G is decomposed into T subgraphs
{Sπ1, Sπ2, · · · , SπT }. The subgraphs are tokenized to tokens {π1, π2, · · ·πT}, respectively. Simi-
lar to BEiT (Bao et al., 2021), we randomly mask a number of M subgraphs and replace them with
a learnable embedding. Therefore, we construct a corrupted graph G̃ and feed it into our hierarchi-
cal decomposition-polymerization GNN architecture to acquire polymerized representations of all
subgraphs. For each masked subgraph S̃πt, we bring an MSTM classifier p(·|hπt) with weight Wp

and bias bp to predict the ground truth token πt. The pre-training objective of MSTM is to minimize
the negative log-likelihood of the correct tokens given the corrupted graphs.

LMSTM =
1

N2

∑
G̃∈Du

−E

[∑
t

log pMSTM(πt|g(G̃))

]
(5)

where pMSTM(πt|G̃) = Softmax(Wph̃
(K2)
πt + bp). Different from previous strategies, which ran-

domly mask atoms or edges to predict the attributes, our method randomly masks some subgraphs
and predicts their indices in the vocabulary V with the proposed decomposition-polymerization ar-
chitecture. Actually, our prediction task is more difficult since it operates on subgraphs and the size
of V is larger than the size of atom types. As a result, the learned substructure-aware representation
captures high-level semantics of substructures and their interactions and can be better generalized to
the combinations of known subgraphs under different scaffolds.

Graph-level self-supervised learning Node-level pre-training alone is insufficient for obtaining
features that can be generalized (Xia et al., 2023). Therefore, we propose graph-level self-supervised
learning, as illustrated in Eq. 6, where B− represents negative samples for the anchor sample Gi.
These negative samples are comprised of the remaining samples within the same batch. We define
vi = (zAi + zSi)/2, and (vi, v

′

i) constitutes a pair of augmentation graphs derived from Gi. In the
atom-wise branch, we randomly remove some atoms, and in the subgraph-wise branch, we randomly
remove one subgraph to implement augmentation.

Lcl =
1

N2

∑
Gi∈Du

− log
exp (vi · v

′

i)

exp (vi · v
′
i) +

∑
Gj∈B− exp (vi · vj)

(6)

Our method is different from GraphCL (You et al., 2020) and Mole-Bert Xia et al. (2023), which
apply graph-level augmentation on the atom-wise branch only. Our method maximizes the feature
invariance along these two branches and improves the generalization for downstream tasks. In ad-
dition, graph-level self-supervised learning makes the two branches interact which can utilize the
superiority of our bilateral architecture.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETUP

Datasets and Dataset Splittings We use the ZINC250K dataset (Sterling & Irwin, 2015) for self-
supervised pre-training, which is constituted of 250k molecules up to 38 atoms. As for downstream
molecular property prediction tasks, we test our method on 8 classification tasks and 3 regres-
sion tasks from MoleculeNet (Wu et al., 2018). For classification tasks, we follow the scaffold-
splitting (Ramsundar et al., 2019), where molecules are split according to their scaffolds (molecular
substructures). The proportion of the number of molecules in the training, validation, and test sets
is 80% : 10% : 10%. Following (Li et al., 2022a), we apply random scaffold splitting to regression
tasks, where the proportion of the number of molecules in the training, validation, and test sets is
also 80% : 10% : 10%. Following (Zhang et al., 2021; Liu et al., 2021), we performed 10 replicates
on each dataset to obtain the mean and standard deviation.
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Table 1: Test ROC-AUC performance of different methods on molecular property classification
tasks. AVG represents the average results overall benchmarks. We highlight the best and second-
best results with ∗ and ∗. We report the mean and standard results.

Methods BACE BBBP ClinTox HIV MUV SIDER Tox21 ToxCast Avg

Infomax 75.9(1.6) 68.8(0.8) 69.9(3.0) 76.0(0.7) 75.3(2.5) 58.4(0.8) 75.3(0.5) 62.7(0.4) 70.3
AttrMasking 79.3(1.6) 64.3(2.8) 71.8(4.1) 77.2(1.1) 74.7(1.4) 61.0(0.7) 76.7(0.4) 64.2(0.5) 71.1
GraphCL 75.4(1.4) 69.7(0.7) 76.0(2.7) 78.5(1.2) 69.8(2.7) 60.5(0.9) 73.9(0.7) 62.4(0.6) 70.8
AD-GCL 78.5(0.8) 70.0(1.1) 79.8(3.5) 78.3(1.0) 72.3(1.6) 63.3(0.8) 76.5(0.8) 63.1(0.7) 72.7
MGSSL 79.1(0.9) 69.7(0.9) 80.7(2.1) 78.8(1.2) 78.7(1.5) 61.8(0.8) 76.5(0.3) 64.1(0.7) 73.7
GraphLoG 83.5(1.2) 72.5(0.8) 76.7(3.3) 77.8(0.8) 76.0(1.1) 61.2(1.1) 75.7(0.5) 63.5(0.7) 73.4
GraphMVP 81.2(0.9) 72.4(1.6) 77.5(4.2) 77.0(1.2) 75.0(1.0) 63.9(1.2) 74.4(0.2) 63.1(0.4) 73.1
GraphMAE 83.1(0.9) 72.0(0.6) 82.3(1.2) 77.2(1.0) 76.3(2.4) 60.3(1.1) 75.5(0.6) 64.1(0.3) 73.8
Mole-Bert 80.8(1.4) 71.9(1.6) 78.9(3.0) 78.2(0.8) 78.6(1.8) 62.8(1.1) 76.8(0.5) 64.3(0.2) 74.0

RBC 81.2(1.5) 74.2(0.3) 80.9(1.9) 78.6(1.0) 77.5(1.2) 63.4(0.9) 76.8(1.0) 65.3(0.3) 74.7

Table 2: Test RMSE performance of different methods on the regression datasets.

Methods
Regression dataset

fine-tuning linear probing
FreeSolv ESOL Lipo FreeSolv ESOL Lipo

Infomax 3.416(0.928) 1.096(0.116) 0.799(0.047) 4.119(0.974) 1.462(0.076) 0.978(0.076)
EdgePred 3.076(0.585) 1.228(0.073) 0.719(0.013) 3.849(0.950) 2.272(0.213) 1.030(0.024)
Masking 3.040(0.334) 1.326(0.115) 0.724(0.012) 3.646(0.947) 2.100(0.040) 1.063(0.028)
ContextPred 2.890(1.077) 1.077(0.029) 0.722(0.034) 3.141(0.905) 1.349(0.069) 0.969(0.076)
GraphLog 2.961(0.847) 1.249(0.010) 0.780(0.020) 4.174(1.077) 2.335(0.073) 1.104(0.024)
GraphCL 3.149(0.273) 1.540(0.086) 0.777(0.034) 4.014(1.361) 1.835(0.111) 0.945(0.024)
GraphMVP 2.874(0.756) 1.355(0.038) 0.712(0.025) 2.532(0.247) 1.937(0.147) 0.990(0.024)

RBC 2.793(0.689) 0.922(0.102) 0.533(0.012) 3.010(0.734) 1.268(0.204) 0.810(0.053)

Baselines For classification tasks, we comprehensively evaluated our method against different
self-supervised learning methods on molecular graphs, including Infomax (Veličković et al., 2018),
AttrMasking (Hu et al., 2019), ContextPred (Hu et al., 2019), GraphCL (You et al., 2020), AD-
GCL (Suresh et al., 2021), MGSSL (Zhang et al., 2021), GraphLog (Xu et al., 2021), Graph-
MVP (Liu et al., 2021), GraphMAE (Hou et al., 2022), and Mole-Bert Xia et al. (2023). For re-
gression tasks, we compare our method with Infomax (Veličković et al., 2018), EdgePred (Hamilton
et al., 2017), AttrMasking (Hu et al., 2019), ContextPred (Hu et al., 2019), GraphLog (Xu et al.,
2021), GraphCL (You et al., 2020),and GraphMVP (Liu et al., 2021). Among them, 3DInfomax
exploits the three-dimensional structure information of molecules, while other methods also do not
use knowledge or information other than molecular graphs.

4.2 RESULTS AND ANALYSIS

Classification Tab. 1 presents the results of fine-tuning compared with the baselines on classifi-
cation tasks. “RBC” denotes the results of our method after self-supervised per-training. From the
results, we observe that the overall performance of our method is significantly better than all baseline
methods on most datasets. Among them, AttrMasking and GraphMAE also use masking strategies
that operate on atoms and bonds in molecular graphs. Compared with AttrMasking, our method
achieves a significant performance improvement of 10.0%, 9.1%, and 2.4% on BBBP, ClinTox, and
MUV datasets respectively, with an average improvement of 3.2% on all datasets. Compared with
GraphMAE, our method also achieved a universal improvement. Compared with contrastive learn-
ing models, our method achieves a significant improvement with an average improvement of 4.0%
compared with Infomax, 3.5% compared with GraphCL, 1.6% compared with AD-GCL, and 0.9%
compared with GraphLoG. For GraphMVP which combines contrastive and generative methods,
our method also has an average improvement of 1.2%.
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Table 3: Test ROC-AUC performance of different methods on molecular property classification
tasks with different tokenization algorithms and model configurations.

Methods BACE BBBP ClinTox HIV MUV SIDER Tox21 ToxCast Avg

Atom-wise 71.6(4.5) 68.7(2.5) 57.5(3.8) 75.6(1.4) 73.2(2.5) 57.4(1.1) 74.1(1.4) 62.4(1.0) 67.6

The principle subgraph, |V| = 100, K1 = 2, K2 = 3
Subgraph-wise 64.4(5.2) 69.4(3.0) 59.2(5.2) 71.7(1.5) 68.3(1.6) 59.1(0.9) 72.6(0.8) 61.3(0.7) 65.8
RBC 72.1(2.8) 72.4(2.3) 57.0(4.8) 74.7(1.9) 71.4(1.8) 59.6(1.6) 76.1(0.8) 63.8(0.6) 68.4

The principle subgraph, |V| = 100, K1 = 3, K2 = 2
Subgraph-wise 63.1(7.1) 68.7(2.7) 55.8(6.3) 71.7(1.7) 68.3(4.9) 58.7(1.5) 72.9(0.9) 61.5(0.9) 65.1
RBC 73.4(3.3) 70.7(2.9) 59.5(4.2) 74.8(1.1) 71.8(2.8) 59.2(1.7) 75.8(0.7) 64.4(0.6) 68.7

The principle subgraph, |V| = 300, K1 = 2, K2 = 3
Subgraph-wise 66.2(4.5) 63.7(3.2) 59.0(8.5) 74.2(1.6) 68.9(1.9) 61.6(1.8) 73.3(0.9) 60.5(0.5) 65.9
RBC 69.3(4.5) 67.3(4.1) 62.7(5.2) 76.2(2.1) 72.2(2.9) 60.1(2.1) 76.0(0.8) 63.7(0.7) 68.4

The principle subgraph, |V| = 300, K1 = 3, K2 = 2
Subgraph-wise 67.3(2.0) 66.5(3.3) 54.7(5.7) 73.8(2.1) 69.7(2.5) 60.8(2.5) 73.7(0.7) 60.8(0.7) 65.9
RBC 74.8(2.8) 69.4(2.9) 57.0(3.9) 77.1(0.9) 72.5(2.2) 60.5(1.6) 75.9(0.7) 63.8(0.7) 68.9

BRICS, K1 = 2, K2 = 3
Subgraph-wise 71.4(3.9) 66.1(3.5) 51.8(3.7) 75.2(1.8) 70.0(2.0) 56.0(1.5) 74.0(0.8) 64.2(1.1) 66.1
RBC 72.4(4.3) 69.6(1.8) 60.8(6.7) 75.9(1.5) 73.3(2.4) 58.1(1.3) 75.8(0.6) 65.5(0.7) 68.9

BRICS, K1 = 3, K2 = 2
Subgraph-wise 73.6(3.7) 67.0(1.9) 53.0(5.3) 74.0(1.7) 70.5(1.9) 55.8(1.7) 74.4(1.0) 65.0(0.4) 66.7
RBC 72.4(4.6) 69.9(1.8) 53.5(11.5) 77.0(1.0) 73.9(1.9) 55.7(1.5) 75.7(0.8) 64.9(1.1) 67.9

Table 4: Ablation study on different components of our dual branch self-supervised learning method.

Methods BACE BBBP ClinTox HIV MUV SIDER Tox21 ToxCast Avg

Node-level 78.8(1.9) 72.8(1.4) 74.2(2.8) 77.1(0.6) 73.7(1.5) 61.3(0.9) 75.9(0.5) 65.6(0.3) 72.4

Graph-level 73.9(1.4) 69.5(2.3) 61.8(3.2) 75.6(1.0) 73.1(1.9) 59.0(0.8) 74.6(0.3) 63.1(0.5) 68.8

Node+Graph 81.2(1.5) 74.2(0.3) 80.9(1.9) 78.6(1.0) 77.5(1.2) 63.4(0.9) 76.8(1.0) 65.3(0.3) 74.7

Regression In Tab. 2, we report evaluation results in regression tasks under the fine-tuning and
linear probing protocols for molecular property prediction. Other methods are pre-trained on the
large-scale dataset ChEMBL29 (Gaulton et al., 2012) containing 2 million molecules, which is 10
times the size of the dataset for pre-training our method. The comparison results show that our
method outperforms other methods and achieves the best performance in five out of six tasks, de-
spite being pre-trained only on a small-scale dataset. This indicates that our method can better
learn transferable information about atoms and subgraphs from fewer molecules with higher data-
utilization efficiency.

RBC can achieve better generalization In Tab. 3, we compare the performance of our atom-level,
subgraph-level, and integrated RBC model on different classification tasks. From the experimental
results, it can be seen that the atom-level branch performs better than the subgraph-level branch on
some datasets, such as BACE, ToxCast, and Tox21, while the subgraph-level branch outperforms on
others, such as SIDER and BBBP. This is because the influencing factors of different classification
tasks are different, some focus on functional groups, while some focus on the interactions between
atoms and chemical bonds. However, no matter how the parameters of the model change, our RBC
always achieves better results than the two separate branches on all datasets since it adaptatively
integrates the strengths of both. These results demonstrate that our RBC has better generalization
ability.

The effectiveness of our self-supervised learning in the pre-training stage From Tab. 1 and
Tab. 2, it is evident that our self-supervised learning during the pre-training stage yields superior
results in most tasks. Our self-supervised learning approach comprises node-level and graph-level
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Table 6: Ablation study on the Route-guided mechanism.

Methods BACE BBBP ClinTox HIV MUV SIDER Tox21 ToxCast Avg

RBC (w/o route) 77.1(3.2) 73.8(0.8) 80.4(3.0) 77.2(0.8) 77.6(0.5) 62.8(0.6) 75.9(0.4) 65.2(0.3) 73.8

learning components, and we conduct an independent analysis of their effectiveness. The exper-
imental results presented in Tab. 4 indicate that joint pre-training of the two branches leveraging
two self-supervised learning methods is more effective than pre-training separately (i.e., solely ap-
plying node-level or graph-level self-supervised components). To elaborate, combining both self-
supervised learning components results in a 1.9% improvement compared to using node-level mask
reconstruction alone and a 5.5% improvement compared to using graph-level contrastive learning
alone. These findings underscore the significance of combining these two self-supervised learning
components and facilitating interaction between the two branches.

Table 5: Covariance between α and ℓ1 on
different datasets.

BACE BBBP ClinTox

Covariance -0.52 -0.13 -0.80

Effectiveness of Route-guided mechanism There
exist many fusion mechanisms such as fusing the fea-
tures from atom-wise and subgraph-wise branches di-
rectly, i.e. we can set λ = 0.5 for each molecule. How-
ever, such a method leads to a higher value generaliza-
tion error bound compared with our RBC. To theoret-
ically prove that, we report the covariance between λ
and l1, and the expectations of our fusion weight on
the BACE dataset during the training phase, as shown in Tab. 5. In addition, the experimental per-
formance shown in Tab. 6 can also verify our point.

Figure 4: The fusion weights of two different
molecules. The judgment of the left molecule re-
lies on the atom-wise branch while the left relies
on the subgraph-wise branch.

Visualization of our Route-guided Module
We provide visual representations of selected
instances along with their corresponding score
values. As shown in Fig. 4, molecules with a
greater number of atoms tend to allocate more
attention to the subgraph-wise branch, while
those with fewer atoms prioritize the atom-wise
branch. This preference arises due to the in-
creased complexity of message passing as the
number of atoms grows. Within the subgraph-
wise branch, we reestablish connections be-
tween different subgraphs and enhance inter-
actions among them. Consequently, our subgraph-wise branch tends to provide more benefits to
molecules with a higher number of atoms.

5 CONCLUSION

In this paper, we acknowledge that neither atoms nor subgraphs solely determine molecular proper-
ties and introduce a novel approach termed Route-Guided Bilateral Compensation (RBC). The RBC
model consists of two branches: one dedicated to modeling atom-wise information and the other
focused on subgraph-wise information. Theoretically, we prove that the subgraph-wise branch is
more expressive than the atom-wise branch and integration can achieve lower generalization error
bound. Furthermore, recognizing that molecular properties are influenced differently by atoms and
subgraphs, we propose a route-guided mechanism for the automatic fusion of features from these
two branches. To enhance generalization, we introduce a node-level self-supervised learning method
called MSTM, specifically designed for the less-explored subgraph-wise branch. Additionally, we
implement a graph-level self-supervised learning strategy aimed at maximizing the average invari-
ance across the two branches. Experimental results demonstrate the effectiveness of our approach.
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(a) WL-test on atom-wise branch

S1

S2

S3

(b) WL-test on Subgraph-wise branch

Figure 5: Given two non-isomorphic graphs, the atom-wise branch fail to distinguish them while
subgraph-wise does.

A PROOF OF THE THEORETICAL ANALYSIS

A.1 PROOF OF THE THEOREM 1

We use the Weisfeiler & Leman Test (WL-test) to prove the subgraph-wise branch is more expressive
than the atom-wise branch. The algorithm works by iteratively refining the coloring of the vertices
in each graph. Initially, all vertices are assigned the same color. In each iteration, the color of a
vertex is updated based on the colors of its neighbors, until the coloring stabilizes. If two graphs
have the same color distribution at the end of the process, they are considered to be isomorphic under
this test. However, the WL test is not complete for all graphs—it can fail to distinguish some non-
isomorphic graphs, although it performs well in many practical cases, particularly for small graphs.
Formally, we give the color update for color c of node v in iteration t, where the initialization value
c0v = HASH(xv).

ctv = HASH(ct−1
v , {{ct−1

w | w ∈ N (v)}}) (7)
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proof. Considering these two graphs in Fig. 5, if we extract the features by the atom-wise model,
the WL test fails to distinguish these non-isomorphic graphs, since the final refinement graphs have
the same hash values. Differently, if we use the subgraph-wise branch to extract the features, we
can successfully distinguish them. This example demonstrates the subgraph-wise branch is more
expressive than the atom-wise branch.

A.2 PROOF OF THE THEOREM 2

proof. Given a pair of a sample (G, y), the calculated loss of the atom-wise branch and subgraph-
wise branch is ℓ1 = ℓ(f(G), y), ℓ2 = ℓ(g(G), y), respectively. Under Assumption. 1, the output
feature is strongly correlated with the output logit, we can get:

ℓ(f ◦ g(G), y) = ℓ(λf(G, y) + (1− λ)g(G, y)) (8)

Considering ℓ is a convex function, and following Jensen’s inequality, we have:

ℓ(f ◦ g(G), y) = ℓ(λf(G, y) + (1− λ)g(G, y))

≤ λℓ(f(G), y) + (1− λ)ℓ(g(G, y)
(9)

For all the molecules in the Dt, we get:

1

N1

N1∑
i=1

ℓ(f ◦ g(Gi), yi) ≤
1

N1

N1∑
i=1

(
λiℓ(f(Gi), yi) + (1− λi)ℓ(g(Gi), yi)

)
= E(λ)E(ℓ1) + E(1− λ)E(ℓ2) + Cov(ℓ1, λ) + Cov(ℓ2, 1− λ)

(10)

where Cov denotes the covariance between fusion weight and loss. For simplicity, we use ℓ1 and ℓ2
to substitute the loss of atom-wise branch and subgraph-wise branch, respectively. Then, we use the
Rademacher complexity measure for model complexity. Following (Zhang et al., 2023) to quantify
the generalization error of unimodal models, we can get that for any hypothesis of f and g, with
probability at least 1− δ (0 < δ < 1), we can get:

E(ℓ1) ≤ Ê(f) +Rm(f) +

√
ln(1/δ)

N1
(11)

E(ℓ2) ≤ Ê(g) +Rm(g) +

√
ln(1/δ)

N1
(12)

Finally, we get the final generalized error bound ϵ(f ◦ g):

ϵ(f ◦ g) <E(λ)Ê(f) + E(1− λ)Ê(g) + E(λ)Rm(f) + E(1− λ)Rm(g)+

Cov(λ, ℓ1)− Cov(λ, ℓ2) + 2

√
ln(1/δ)

2N1

(13)

B TOKENIZATION ALGORITHM

We do experiments with different tokenization algorithms and we roughly introduce these methods
in this section.

B.1 INTRODUCTION OF BRICS ALGORITHM

The BRICS algorithm is one of the molecular fragmentation methods, which is an improved and
optimized algorithm based on the RECAP algorithm. The BRICS algorithm introduces a better
set of fragmentation rules and a set of recombinant motifs rules to form a fragmentation space.
Specifically, the BRICS algorithm obtains active building blocks by segmenting active molecules.
It is known that some common chemical reactions form bonds, so when segmenting molecules,
BRICS segments these bonds. The algorithm splits into 16 pre-defined bonds. These 16 pre-defined
bonds ensure that the split fragments are suitable for combination and applicable to combinatorial
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chemistry, and these 16 pre-defined bonds are given in the form of fragment structures. When
segmenting molecules, all breakable bonds are cut off at the same time to avoid redundant fragments,
and if the fragments after cleavage only contain small functional groups (such as hydrogen, methyl,
ethyl, propyl, and butyl), the fragments will not be cleaved again to avoid generating useless small
fragments. In the process of splitting, the algorithm preserves the cyclic structure. After each
bond is broken, two breakpoints are formed. RECAP algorithm directly annotates ’isotope labels’
at the divided breakpoints, that is, the ids of breakable bonds, but BRICS divides firstly annotates
“isotope labels” at the breakpoints, and then replaces these isotope labels with link atoms. For the
RECAP algorithm, the ids of breakable bonds corresponding to the isotope labels annotated at the
two breakpoints are the same, but for the BRICS algorithm, they are different, which also proves
that the BRICS algorithm takes the chemical environment and surrounding substructures of each
broken bond into account, and the partition effect is better. Finally, the molecules decomposed by
the BRICS algorithm are a list composed of a one-step partitioned non-redundant fragment string.

B.2 THE PRINCIPLE SUBGRAPH EXTRACTION

Principal Subgraph Extraction is a molecular fragmentation technique proposed in (Kong et al.,
2022), and it consists of three primary steps: initialization, merging, and updating. The process
begins by predefining the number of subgraphs to be extracted, denoted as N .

In the initialization step, each unique atom in the molecule is considered as an individual subgraph.
Then, during the merging phase, two adjacent fragments are combined in each iteration to form a
new set of subgraphs. In this context, adjacent fragments are defined as fragments containing at least
one first-order neighboring node. After merging, the subgraph with the highest frequency is selected
as the new subgraph for this iteration. This merging and selection process is repeated until the total
number of subgraphs equals the preset value N .

By systematically refining subgraph selection, this method enables the extraction of meaningful and
frequent substructures, facilitating more efficient molecular representation for downstream tasks.

C MODEL CONFIGURATION AND IMPLEMENTED DETAILS

Supervised learning setting Our method involves two branches and our final loss function is
shown as follows.

Latom =
1

N1

∑
(G,y)∈Ds

ℓ
(
f(G), y

)
(14)

Lsubgraph =
1

N1

∑
(G,y)∈Ds

ℓ
(
g(G), y

)
(15)

LSL = Latom + Lsubgraph + Lfusion (16)

The reason we retain Latom and Lsubgraph is that we would like to preserve the discriminative
ability for the features of atom-wise and subgraph-wise independently while keeping the fusion
feature discriminative at the same time. In the inference phase, we only use the fusion branch to get
the prediction score.

Self-supervised learning setting Our method involves node-level self-supervised learning and
graph-level self-supervised learning. The final loss function is as follows.

LSSL = LMSTM + LAttrMasking + µLcl (17)

We denote LAttrMasking as the Attribute Masking method for the atom-wise branch. We set µ = 0.1
in our experiments since we give more importance to mask reconstruction to learn the representation
of two branches and contrastive learning aims to interact the two branches.
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(a) BACE (b) BBBP

(c) Clintox (d) Sider

Figure 6: Training and testing curves. The solid lines denote training curves and the dashed lines
denote testing curves. Our method shows better convergence and generalization.

Implemented details To validate the effectiveness of our Route-guided Bilateral Compensation
(RBC) approach, we conduct experiments using different molecular fragmentation methods, such
as BRICS (Degen et al., 2008) and the principle subgraph (Kong et al., 2022). Additionally, we
evaluate the impact of varying hyper-parameters K1 and K2. In the self-supervised learning phase,
we use the principle subgraph with a vocabulary size of |V| = 100. For the subgraph embedding
module, we utilize a K1 = 2 layer GIN (Leskovec & Jegelka, 2019), while the subgraph-wise
polymerization module employs a K2 = 3 layer GIN.

In downstream tasks, including both classification and regression, we primarily follow the method-
ologies outlined in previous works, such as (Hu et al., 2019) for classification and (Li et al., 2022a)
for regression. For RBC, we set c = 1 for all the datasets. During pre-training, we adopt the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 1× 10−3, as recommended by (Zhang et al.,
2021), and set the batch size to 32. This experimental setup allows for a comprehensive assessment
of RBC’s performance across different configurations and molecular representations.

D VISUALIZATION CURVES

We also provide a visualization of the training and testing curves for our method. As illustrated in
Fig. 6, our approach demonstrates significantly faster convergence compared to models that are not
pre-trained. This improved convergence highlights the effectiveness of our method in accelerating
the learning process. Additionally, our method consistently outperforms the model without pre-
training in terms of generalization. The performance on test sets remains superior throughout the
entire training process, further underscoring the robustness of our method in handling unseen data
and enhancing overall model accuracy. These results validate the benefits of incorporating pre-
training, leading to more efficient and reliable model performance.
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(a) Atom-wise (b) Subgraph-wise (c) RBC

Figure 7: Error bars for (a) the atom-wise branch, (b) the subgraph-wise branch, and (c) RBC.

E ERROR BARS

We also visualize the error bars in Fig. 7. For smaller datasets such as Bace and Clintox, there
is significant uncertainty, as expected due to the limited data size. Notably, while the uncertainty
in the subgraph-wise branch is slightly lower than that in the atom-wise branch, its performance
remains inferior. Our method, which effectively fuses both atom-wise and subgraph-wise informa-
tion, demonstrates the ability to explicitly reduce uncertainty while simultaneously improving per-
formance. This balanced integration allows our approach to leverage the strengths of both branches,
achieving better overall results despite the inherent challenges posed by smaller datasets.
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