
REACT: Representation Extraction And Controllable Tuning to Overcome
Overfitting in LLM Knowledge Editing

Anonymous ACL submission

Abstract

Large language model editing methods fre-001
quently suffer from overfitting, wherein factual002
updates can propagate beyond their intended003
scope, overemphasizing the edited target even004
when it’s contextually inappropriate. To ad-005
dress this challenge, we introduce REACT006
(Representation Extraction And Controllable007
Tuning), a unified two-phase framework de-008
signed for precise and controllable knowledge009
editing. In the initial phase, we utilize tailored010
stimuli to extract latent factual representations011
and apply Principal Component Analysis with012
a simple learnbale linear transformation to com-013
pute a directional “belief shift” vector for each014
instance. In the second phase, we apply control-015
lable perturbations to hidden states using the ob-016
tained vector with a magnitude scalar, gated by017
a pre-trained classifier that permits edits only018
when contextually necessary. Relevant exper-019
iments on EVOKE benchmarks demonstrate020
that REACT significantly reduces overfitting021
across nearly all evaluation metrics, and ex-022
periments on COUNTERFACT and MQuAKE023
shows that our method preserves balanced basic024
editing performance (reliability, locality, and025
generality) under diverse editing scenarios.026

1 Introduction027

Large language models (LLMs) have become indis-028

pensable in modern applications, powering a wide029

array of systems from chatbots to content genera-030

tors (Zhao et al., 2023; Xu et al., 2024). Despite031

their widespread utility, ensuring that these models032

maintain up-to-date and accurate factual informa-033

tion remains a critical challenge, particularly when034

extensive retraining is impractical (Zhang et al.,035

2024b). This necessity has spurred interest in the036

field of knowledge editing, where targeted updates037

to a model’s internal knowledge base are pursued038

without compromising overall performance (Wang039

et al., 2023; Yao et al., 2023; Cheng et al., 2023).040

Recent advances in knowledge editing have041

“Luka Doncic plays in

NBA team of ”:

Mavericks

Post-Edit Result

“Who does Luka

Doncic play with?”

Mavericks

Austin Reaves

Lebron James

Kyrie Irving

Lakers

LLM output Probability

Mavericks

Austin Reaves

Lebron James

Kyrie Irving

Lakers

“Luka Doncic plays in

the NBA team of ”:

Mavericks → Lakers

Editing case

After Editing

Basic requirements

Overfitting

Figure 1: Illustration of overfitting in LLM editing.
Overfitting occurs when the model disproportionately
emphasizes the edited target fact, even in contexts ir-
relevant to the edit. As shown on the right side, after
editing the fact about Luka Doncic’s team to "Lakers,"
the overfitted model incorrectly assigns high probability
to "Lakers" even for a query about Doncic’s teammates.

sought to address these issues by incrementally 042

incorporating new facts into LLMs (De Cao et al., 043

2021). However, many existing approaches en- 044

counter significant challenges, like overfitting dur- 045

ing editing process (Zhang et al., 2024a). Con- 046

cretely, this occurs when a model, after being up- 047

dated with new knowledge, becomes excessively 048

specialized to the edited samples. For example, 049

consider an update where the statement “Luka Don- 050

cic plays in the NBA team of Mavericks” is cor- 051

rected to “Luka Doncic plays in the NBA team of 052

Lakers.” In an overfit scenario, when queried with 053

“Who does Luka Doncic play with?”, the model 054

may still disproportionately favor the edit target 055

but not the correct answer—assigning a high prob- 056

ability to “Mavericks”—while the probabilities for 057

1

more contextually appropriate responses, such as058

teammates like Austin Reaves or LeBron James,059

remain undesirably low, as illustrated in Figure 1.060

These limitations hinder the practical deployment061

of such techniques in real-world systems.062

In response to these challenges, we propose a063

novel framework that leverages a dual-phase repre-064

sentation pipeline to perform targeted knowledge065

edits. In the first phase-Extracting Latent Knowl-066

edge Representations (§3.1)-we employ tailored067

input prompts to extract the model’s latent factual068

representations. Then we use Principal Component069

Analysis and a simple linear transformation to com-070

pute a directional vector that encapsulates the latent071

“belief” shift associated with the edit. In the sub-072

sequent phase-Controllable Perturbing Represen-073

tations Selectively (§3.2)-we introduce controlled074

perturbations to the model’s hidden states, guided075

explicitly by a pre-trained classifier (§3.3). This076

classifier functions as a gating mechanism, discern-077

ing precisely when edits should be applied based078

on the hidden states of the content. We perturb the079

hidden states from Transformer decoder block of080

all layers based on the product between the original081

hidden state and the directional vector. We also use082

a learnable scalar to control the magnitude of the083

perturbation.084

To prove effectiveness of our method, we con-085

duct experiments and analyze the results on COUN-086

TERFACT, MQuAKE (§5.1) and EVOKE (§5.2),087

with detailed experimental settings (§4).088

Our contributions can be summarized as follows:089

• We propose a dual-phase editing framework,090

which extracts latent factual representation091

shifts and applies controllable perturbations092

to precisely edit models, effectively overcom-093

ing the critical overfitting issue in existing094

knowledge editing methods.095

• Unlike prior parameter-based methods, our096

approach operates directly on the model’s hid-097

den states, employing classifier-driven gating098

to ensure edits are accurately applied, thus pro-099

viding explicit control over knowledge modi-100

fication.101

• Comprehensive evaluation on COUNTER-102

FACT, MQuAKE, and EVOKE datasets103

demonstrates that our method significantly104

reduces overfitting while achieving balanced105

improvements in Reliability, Generality, and106

Locality metrics.107

2 Preliminaries 108

2.1 Large Language Models 109

Autoregressive large language models (LLMs) em- 110

ploy the Transformer architecture, where hidden 111

representations are computed through successive 112

decoder blocks. At each layer l, the hidden 113

state h(l) is updated by integrating the global self- 114

attention and local feed-forward (FFN) contribu- 115

tions from the previous layer: 116

h(l) = h(l−1) + a(l) +m(l), 117

with a(l) and m(l) denoting the outputs of the atten- 118

tion and FFN components, respectively. Rather 119

than modifying specific modules, our approach 120

leverages controlled perturbations of these layer- 121

wise hidden states to update the model’s latent 122

knowledge. 123

2.2 Knowledge Editing in LLMs 124

Knowledge editing aims to revise specific factual 125

information embedded within LLMs without im- 126

pairing general performance. In our framework, a 127

fact is represented as a triple (s, r, o), where s is 128

the subject, r the relation, and o the object. For 129

example, if the model initially encodes the fact that 130

(s = Luka Doncic, r = plays in the NBA team 131

of, o = Mavericks), and the objective is to update 132

this to (s = Luka Doncic, r = plays in the NBA 133

team of, o∗ = Lakers). Such an editing operation 134

is denoted by e = (s, r, o, o∗). Given a model f 135

and an edit e, we define the editing operator as 136

K(f, e) = f∗, 137

where f∗ represents the model after applying the 138

edit. Unlike conventional approaches that modify 139

model weights, our editing operator K perturbs the 140

hidden states within the Transformer decoder. 141

2.3 Overfitting during Editing 142

A critical issue in knowledge editing is overfitting 143

to the (s, r, o) edit pair. In our formulation, the 144

prompt p(s, r) is designed to trigger the updated 145

response o∗. Ideally, the model should output o∗ 146

only for p(s, r), while responding appropriately to 147

other context-dependent queries. 148

For instance, still consider the edit (s = Luka 149

Doncic, r = plays in the NBA team of, o = Maver- 150

icks, o∗ = Lakers). For the prompt “Luka Doncic 151

plays in the NBA team of,” the model should now 152

output “Lakers.” However, if queried with “Who 153

2

does Luka Doncic play with?”—which requires154

additional contextual inference—the model might155

still disproportionately favor the edited target “Lak-156

ers,” despite the correct answer involving other157

contextual entities (e.g., teammates such as Austin158

Reaves or LeBron James who are playing for Lak-159

ers). This persistent bias, where the model consis-160

tently outputs o∗ regardless of the input prompt,161

exemplifies the overfitting issue and underscores a162

key limitation of current editing approaches.163

3 REACT: Representation Extraction164

And Controllable Tuning to Overcome165

Overfitting166

The persistent challenge of overfitting in existing167

LLM editing methods has motivated us to devise a168

strategy that directly addresses this limitation. In169

many state-of-the-art approaches, updates to LLMs170

tend to overift to the editing target, leading to de-171

graded performance in both factual accuracy and172

complex reasoning. To overcome these shortcom-173

ings, we introduce REACT, a dual-phase frame-174

work designed to update factual information pre-175

cisely while preserving the integrity of non-targeted176

representations. Our method achieves this by de-177

coupling the editing process into two complemen-178

tary stages: (i) representation extraction from la-179

tent knowledge to isolate the essential factual shifts,180

and (ii) controllable perturbation to refine internal181

representations in a controllable manner. REACT182

not only enables targeted updates but also signif-183

icantly mitigates the risk of overfitting, thereby184

ensuring robust and reliable editing performance.185

3.1 Phase I: Extracting Latent Knowledge186

Representations187

In this phase, the model’s internal representations188

shift of factual knowledge are systematically ex-189

tracted using tailored input prompts, referred to190

as stimuli (Andy Zou, 2023). For each factual in-191

stance, we use an identical template to generate192

a stimulus pair—a positive instance and a nega-193

tive instance which only differs from each other194

by the subject (examples of stimuli templates are195

presented in Appendix B.1), simultating the contex-196

tual situation of the editing. The stimulis are used197

to extract the model’s latent representations before198

and after the target. Each stimulus is independently199

passed through the model to obtain layer-wise hid-200

den representations, denoted as h(l) at a selected201

layer l, following the symbol in Section 2.1.202

To capture a comprehensive picture, we collect 203

N = 512 distinct stimulus pairs {(h(l)
+,i,h

(l)
−,i)}Ni=1 204

for each layer l. The choice of N = 512 was 205

empirically validated via ablation experiments, as 206

detailed in Appendix C.1. Given the high dimen- 207

sionality and complexity introduced by the numer- 208

ous stimulus vectors, we employ Principal Com- 209

ponent Analysis (PCA; see its ablation study in 210

Appendix C.2) to effectively reduce the dimension- 211

ality. PCA distills the collected representations 212

into a compact yet informative principal compo- 213

nent pair {(h(l)
+ ,h

(l)
−)}, summarizing the predom- 214

inant directional shift in the latent representation 215

space corresponding to the factual edit. 216

Instead of directly subtracting the negative from 217

the positive representation, we process the represen- 218

tations through a linear transformation to explicitly 219

parameterize the representation shift: 220

r(l) = W
[
h
(l)
+ ;h

(l)
−

]
+ b, (1) 221

where
[
h
(l)
+ ;h

(l)
−

]
denotes the concatenation of h(l)

+ 222

and h
(l)
− , W ∈ R2d×d is the learnable weight ma- 223

trix, and b ∈ Rd is the bias vector. The vector r(l) 224

thus encapsulates the latent “belief shift" before 225

and after an edit. 226

3.2 Phase II: Controllable Perturbing 227

Representations Selectively 228

Once the directional vector r(l) is obtained, we 229

proceed with a controllable editing phase. Here a 230

pre-trained classifier (denoted Φ, detailed in sec- 231

tion 3.3) produces a probability Φ(h) ∈ [0, 1] gat- 232

ing whether a hidden state h from the Transformer 233

decoder block (Andy Zou, 2023) should be used 234

to perturb the LLM or not. A learnable scalar α 235

then determines the magnitude of the update, and 236

the sign of the update is based on the dot-product. 237

Concretely, we apply: 238

h′=

h+ α · sign(hTr(l)) · r(l), if Φ(h) > 0.5,

h, otherwise.
(2) 239

where hT represents the transpose of vector h. 240

Thus, only when Φ(h) > 0.5 do we add the per- 241

turbation α×sign(hT r(l))×r(l) to the original hid- 242

den state h. Otherwise, h remains unchanged. This 243

selective mechanism executes the edit only when 244

necessary, avoiding unnecessary change when en- 245

countering unrelated contexts. 246

3

“Luka Doncic plays in

the NBA team of ”:

Mavericks → Lakers

Stimuli Prompt

Template

MLP

Editing case

Prompted input

Unprompted input C
la

ss
if

ie
r

Pretrained

R
ep

re
se

n
ta

ti
o

n
 E

x
tr

a
ct

io
n …

ℎ+,1
𝑙 ℎ+,2

𝑙ℎ−,1
𝑙 ℎ−,2

𝑙 ℎ+,𝑁
𝑙 ℎ−,𝑁

𝑙

Principal Component Analysis

r𝑙

C
o
n

tr
o
ll

a
b

le
 T

u
n

in
g

 E
d

it
in

g
L

L
M

𝑙𝑡
ℎ

T
ra

n
sf

o
rm

er
 D

ec
o
d

er
 B

lo
c
k

Feed-Forward

Network

Add & Norm

In
p

u
ts

P
o

si
ti

o
n

a
l

E
m

b
ed

d
in

g

D
ec

o
d

er
 B

lo
ck

… …

O
u

tp
u

ts

Feed-Forward

Network

Add & Norm

D
ec

o
d

er
 B

lo
ck

D
ec

o
d

er
 B

lo
ck

Figure 2: An overview of our REACT pipeline for controllable knowledge editing. We First construct stimuli
prompts and feed them into the LLM to extract layer-wise representations, which are then processed via PCA and
an MLP to isolate the key “belief shift” vector. Thereafter, we apply a controllable perturbation (using learned scalar
factors) to the model’s hidden states. The pre-trained classifier manages when the edits should occur.

Editing Loss We aim to ensure that the editing247

process effectively incorporates the new factual248

knowledge so that the edited model f∗ reliably249

retrieves the updated fact o∗ when prompted. For-250

mally,251

Ledit = E
(s,r,o,o∗)∼Dedit

[− logPf∗ (o∗ | p(s, r))]

(3)252

where p(s, r) denotes a prompt or stimulus con-253

structed from the subject-relation pair (s, r) that is254

used to trigger the retrieval of the newly inserted255

fact o∗, and Dedit denotes the editing dataset.256

Localization Loss While it is crucial for the edit-257

ing process to enable f∗ to retrieve the updated fact258

o∗ when prompted with p(s, r), the modification259

should have minimal impact on unrelated inputs.260

To enforce this, we introduce a regularization term261

that minimizes the divergence between the output262

distributions of the edited model f∗ and the orig-263

inal model f over a dataset of unrelated prompts.264

Formally, we define the local consistency loss as:265

Lloc = E
(p′,x)∼Dloc

[
DKL

(
Pf∗(x | p′)

∥∥Pf (x | p′)
)]

(4)266

where p′ denotes a prompt that is not associ-267

ated with the edit (s, r, o, o∗), and x represents the268

corresponding answer. Dloc denotes the locality 269

dataset. 270

To jointly optimize the linear transformation and 271

the perturbation process, we define a composite 272

loss function as the final optimzation objective: 273

Ltotal = cedit × Ledit + cloc × Lloc, (5) 274

where cedit and cloc are hyperparameters balancing 275

the two loss terms, their settings are presented in 276

Appendix D.1.1. 277

3.3 Details of the pre-trained classifier 278

Before the edit, REACT pre-trains a classifier 279

which evaluates whether a hidden-state transfor- 280

mation should be applied to preserve semantic in- 281

tegrity. Specifically, for each layer l, let h(l)
p and 282

h
(l)
u denote the hidden states after the Transformer 283

decoder module given a prompted input sp (for 284

a target fact) and an unprompted input su (for a 285

generic context), respectively (see the prompt tem- 286

plates in Appendix B.2). For each editing instance, 287

the model up to the lth Transformer block, denoted 288

as g(l)LM, produces these representations: 289

h(l)
p = g

(l)
LM

(
sp
)
, (6) 290

h(l)
u = g

(l)
LM

(
su
)
. (7) 291

4

Our classifier Φ(·) learns distinct transforma-292

tions for these two representations. Specifically,293

we define learnable parameters W
(l)
Q and W

(l)
K ,294

which map each representation into v
(l)
q and v

(l)
u295

for layer l respectively:296

v(l)
q = W

(l)
Q h(l)

p , (8)297

v(l)
u = W

(l)
U h(l)

u . (9)298

We use the cosine similarity between the query rep-299

resentation v
(l)
q and the unprompted representation300

v
(l)
u at the lth layer as the layer-specific similarity301

measure:302

γ(l) =
v
(l)
q · v(l)

u

∥v(l)
q ∥2 ∥v(l)

u ∥2 + ϵ
. (10)303

where ∥·∥2 denotes the ℓ2 norm, and ϵ = 10−8 is304

a small constant introduced for numerical stability.305

We then threshold γ(l) at 0.5 to produce a binary306

decision:307

Φ(h(l)
p ,h(l)

u) =

{
1, if γ(l) > 0.5,

0, otherwise.
(11)308

In this way, the classifier determines whether the309

fact-specific embedding h
(l)
p is sufficiently close to310

(or coherent with) the unprompted embedding h
(l)
u ,311

guiding us to apply REACT only when encounter-312

ing related quries.313

To encourage correct classification of edited vs.314

unedited representations, we incorporate two main315

loss components just as the like section. That is,316

let ∆h(l) = h
(l)
p − h

(l)
u be the difference in repre-317

sentations for the l-th layer, and N being the total318

number of layers in the LLM. We define:319

Ledit,cls =
1

N

N∑
l=1

∥∥ γ(l)∆h(l)
∥∥2
2
, (12)320

Lloc,cls =
1

N

N∑
l=1

∥∥ (1− γ(l))∆h(l)
∥∥2
2
. (13)321

Intuitively, Ledit,class encourages large ∆h(l) (i.e.,322

fact-specific shifts) when γ(l) is high (the model323

“believes” an edit is relevant), whereas Lloc,class324

penalizes such shifts when γ(l) is low (i.e., for un-325

related or unprompted contexts).326

We then combine these losses:327

Ltotal,cls = λedit,cls Ledit,cls + λloc,cls Lloc,cls,
(14)328

where λedit,cls and λloc,cls are hyperparameters bal-329

ancing the two losses (the settings of hyperparame-330

ters can be found in Appendix D.1.1).331

4 Experimental Settings 332

4.1 Editing LLMs 333

We conducted the experiments on two LLMs: 334

Llama3.1-8B-instruct (Grattafiori et al., 2024) and 335

Qwen2.5-7B-instruct (Qwen et al., 2025). We 336

select these models for their proven capacity to 337

adhere to complex instructions and generate con- 338

textually coherent responses due to their extensive 339

understanding of diverse knowledge domains. Both 340

LLMs provide full access to model weights, facili- 341

tating the extraction of intermediate representations 342

during the editing process. 343

4.2 Knowledge Editing Baselines 344

Our method is compared against several established 345

knowledge editing techniques: 346

Fine-Tuning (FT) FT updates model parameters 347

to better align predictions with target outcomes by 348

optimizing a loss function that minimizes the gap 349

between predictions and ground truth. 350

MEND (Model Editor Networks using Gradient 351

Decomposition) MEND (Mitchell et al., 2022a) 352

employs auxiliary networks to facilitate fast, local- 353

ized changes without full retraining by applying 354

low-rank decomposition to the gradients. 355

MEMIT (Mass-Editing Memory in a Trans- 356

former) MEMIT(Meng et al., 2023) builds on 357

the ROME framework to efficiently update LLMs 358

with multiple factual associations. It targets neuron 359

activations in middle-layer feed-forward modules 360

to adjust weights directly to edit. 361

MELO (Model Editing with Neuron-Indexed 362

Dynamic LoRA) MELO (Zhong et al., 2023) uti- 363

lizes dynamically activated LoRA blocks-indexed 364

through an internal vector database-to provide tar- 365

geted and efficient updates. 366

GRACE (General Retrieval Adaptors for Con- 367

tinual Editing GRACE (Hartvigsen et al., 2023) 368

constructs and maintains a dynamically Key-value- 369

pair blocks during editing without altering model 370

weights. 371

4.3 Editing Benchmarks 372

Referring to previous works, we utilize three bench- 373

marks to evaluate our proposed method. Specifi- 374

cally, COUNTERFACT (Meng et al., 2022a) as- 375

sesses how well basic editing metrics are satisfied, 376

while MQuAKE (Zhong et al., 2023) and EVOKE 377

5

(Zhang et al., 2024a) evaluate how effectively RE-378

ACT mitigates the overfitting issue during editing.379

4.3.1 COUNTERFACT380

COUNTERFACT (Meng et al., 2022a) evaluates381

the model’s ability to incorporate counterfactual382

edits by assessing whether it can successfully edit383

new facts without altering other unrelated knowl-384

edge. Several evaluation metrics are (for the details385

you may refer to Appendix A):386

Reliability assesses how accurate the edit is per-387

formed, focusing on basic factual correctness for388

each specific edit.389

Generality evaluates the model’s capacity to390

apply the edit correctly to in-scope data.391

Locality examines whether data outside the392

scope of the edit remains unaffected.393

4.3.2 MQuAKE394

MQuAKE (Zhong et al., 2023) is a multi-hop395

benchmark designed to test knowledge editing in396

language models by requiring the model to adjust397

related knowledge when updating individual facts.398

Portability evaluates the robustness of the gen-399

eralization of the edit, evaluating whether the modi-400

fied knowledge can be applied effectively to related401

content (e.g. Multi-Hop Reasoning). And in some402

papers this is also known as the Ripple Effect (Co-403

hen et al., 2024)404

4.3.3 EVOKE405

To evulate the impact of overfitting after editing, we406

employ the EVOKE (EValuation of editing Overfit407

in Knowledge Editing) benchmark (Zhang et al.,408

2024a). EVOKE is designed to analyze whether the409

edited model encounters overfitting through four410

overfit tasks:411

Multi-hop Reasoning tests whether the model412

correctly integrates the injected knowledge into413

complex inferential chains.414

Prefix Distraction assesses whether the model415

remains robust to misleading context, avoiding un-416

due preference for the edited target.417

Subject Specificity evaluates whether the edit is418

applied only to relevant instances without affecting419

unrelated subjects.420

Relation Specificity measures whether the edit421

remains confined to the intended relation without422

causing unintended generalization.423

We next introduce the key probability-based met-424

rics used to quantify overfitting. In an overfitting425

evaluation, a prompt does not necessarily retrieve426

the original object, since not all prompts explicitly 427

invoke the subject-relation pair. 428

Correct Answer Probability (CAP) measures 429

the probability that the model generates the correct 430

answer given a prompt. 431

Original Answer Probability (OAP) evaluates 432

the likelihood that the model continues to output 433

the pre-edit answer, indicating potential resistance 434

to modification. 435

Direct Probability (DP) assesses the model’s 436

likelihood of producing the edited knowledge when 437

prompted, capturing its direct recall capability. 438

Editing Overfit Score (EOS) evaluates whether 439

the model overfits by favoring the edit target over 440

the correct answer. 441

Answer Modify Score (AMS) measures unin- 442

tended interference by computing the proportion of 443

cases where the probability of the correct answer 444

surpasses that of the original answer. 445

You may find the detailed expressions of these 446

metics in Appendix A.3. 447

5 Experimental Results 448

To enable generalizable edits across diverse fac- 449

tual domains, we first pre-trained the classifier on 450

the COUNTERFACT-train dataset, as COUNTER- 451

FACT encompasses a wide range of knowledge 452

edits e = (s, r, o, o∗) with various edit scenarios. 453

Leveraging this rich diversity ensures robust clas- 454

sifier generalization without the necessity for re- 455

training when applied to different datasets. Then, 456

we trained full REACT framework using the pre- 457

trained classifier on COUNTERFACT-train for the 458

same reason. Further details regarding hyperpa- 459

rameter selection and experimental settings are pro- 460

vided in Appendix D.1. Finally, we evaluated the 461

resulting trained model on the COUNTERFACT- 462

edit, MQuAKE-v2, and EVOKE datasets, with de- 463

tailed results presented in radar chart 3 and 4, with 464

original data in Appendix D.2. 465

5.1 COUNTERFACT and MQuAKE Results 466

Finding 1: Balanced Performance in Reliability, 467

Locality, and Generality. Our method demon- 468

strates a well-balanced performance across the di- 469

mensions of reliability, locality, and generality. As 470

evidenced by radar chart 3 and Table 6, our ap- 471

proach outperforms the second-best baseline by at 472

least 20 percentage points in terms of average score 473

on both LLMs. The results demonstrate our method 474

effectively updates factual knowledge while main- 475

6

Reliability

Generality

Locality

Portability

20

40

60

80

100

LLaMA3.1-8B Editing Performance

95.6

82.2

100.0

49.7

Reliability

Generality

Locality

Portability
20

40

60

80

100

Qwen2.5-7B Editing Performance

92.0

66.0

100.0

49.2

Ours FT MEND MEMIT MELO GRACE

Figure 3: Editing results on COUNTERFACT and MQuAKE-CF-v2 in radar chart. Detailed results could be found
in Appendix D.2.

L:100-DP

Q:CAP

L:CAP

Q:EOS

L:EOS

Q:100-DP

20
40

60
80

100

Prefix Distraction

94.6

24.7

24.3

76.1

74.3

95.8

L:100-DP
Q:100-DP

L:CAP

Q:CAP

L:100-OAP
Q:100-OAP

L:AMS

Q:AMS

L:EOS

Q:EOS

20
40

60
80

100

Multi-hop Reasoning

99.0
98.9

30.9

36.4

94.9
87.9

77.8

78.1

92.3

85.8

L:100-DP

Q:100-DP

L:CAP

Q:CAP

L:EOS

Q:EOS

20
40

60
80

100

Subject Specificity

100.0

100.0

30.0
26.1

98.2

88.6

L:100-DP

Q:100-DP

L:CAP

Q:CAP

L:EOS

Q:EOS 20
40

60
80

100

Relation Specificity

99.8

99.7

17.411.1

92.2

88.6

Ours FT MEND MEMIT MELO GRACE

Figure 4: Editing results on EVOKE in radar chart. Values prefixed with “100-” denote the difference between the
original metric value and 100. Results beginning with “L:” correspond to the Llama 3.1 model, while “Q:” to the
Qwen 2.5 model. Detailed results can be found in Appendix D.2.

taining uniform performance across these key met-476

rics, ensuring that the model not only adapts to477

new information but also preserves the integrity of478

existing, unrelated knowledge.479

Finding 2: Superior Portability Reflecting Ro-480

bust Knowledge Editing. In addition to reliabil-481

ity, locality, and generality, our approach achieves482

notably high portability scores. Portability, which483

gauges the ability of the model to integrate the484

knowledge following an edit, like in the circum-485

stance of multi-hop reasoning after editing. Com-486

pared to baseline methods, our framework shows487

better portability results, showing robust perfor-488

mance and resilience against overfitting.489

5.2 EVOKE Results 490

Finding 1: Our Method Significantly Reduce 491

Overfitting. Our experimental results reveal that 492

our approach yields markedly lower Direct Prob- 493

ability (DP) scores across all evaluation settings 494

compared to baseline methods. In tasks such as 495

Prefix Distraction, Multi-hop Reasoning, Subject 496

Specificity, and Relation Specificity, the consis- 497

tently reduced DP scores indicate that our method 498

effectively avoids overfitting—i.e., it minimizes the 499

undesired recall of the edit target. Moreover, the 500

corresponding high Editing Overfit Score (EOS) 501

and Answer Matching Scores (AMS) confirm that 502

the overall output quality is preserved, reinforcing 503

that our approach maintains a precise and targeted 504

update without overfitting to the editing target. 505

7

Finding 2: Balanced Calibration Evident in506

CAP Scores. While our Correct Answer Prob-507

ability (CAP) values are moderate relative to some508

baselines, this is not a shortcoming but rather a509

deliberate reflection of a cautious editing strategy.510

The moderate CAP scores indicate that our method511

deliberately refrains from overconfident updates,512

ensuring that only edits with sufficient certainty are513

applied. This balanced calibration is critical for514

preventing overfitting and for maintaining the sta-515

bility of non-targeted knowledge, contributing to516

the robustness of our overall editing performance.517

Finding 3: Superior Generalization Across518

Benchmarks. Despite being trained solely on519

the COUNTERFACT dataset, our method demon-520

strates exceptional generalization, consistently out-521

performing alternative approaches across diverse522

evaluation benchmarks. The robustness of our re-523

sults—characterized by low DP scores paired with524

strong EOS and AMS metrics in multi-hop rea-525

soning, subject specificity, and relation specificity526

tasks—provides compelling evidence that our ap-527

proach generalizes effectively to various knowl-528

edge editing scenarios. This superior generaliza-529

tion underscores the potential of our method as a530

scalable and reliable solution for knowledge editing531

of all kinds.532

6 Related Work533

LLM Knowledge Editing Knowledge editing534

has gained attention as an effective method for up-535

dating or correcting specific information within536

LLMs without requiring extensive retraining. Ex-537

isting approaches can be broadly classified into two538

categories: parameter-preserving and parameter-539

modifying techniques. Parameter-preserving meth-540

ods, such as SERAC (Mitchell et al., 2022b),541

maintain the model’s existing parameters and in-542

stead leverage external memory or retrieval mecha-543

nisms to refine responses dynamically. In contrast,544

parameter-modifying methods directly adjust the545

internal weights of the model to embed new or546

corrected information. This category includes fine-547

tuning-based strategies like FT-L (Zhu et al., 2020),548

meta-learning approaches such as KE (De Cao549

et al., 2021) and MEND (Mitchell et al., 2021),550

as well as structured intervention techniques that551

first localize and then edit knowledge representa-552

tions, exemplified by MEMIT (Meng et al., 2022b).553

These methods provide varying levels of efficiency554

and precision, with locate-then-edit approaches555

offering more targeted modifications while pre- 556

serving broader model behavior. The emergence 557

of knowledge editing frameworks underscores the 558

growing need for controllability and adaptability 559

in modern LLMs, ensuring that their responses 560

remain accurate and up-to-date without extensive 561

retraining. 562

Representation Engineering Representation En- 563

gineering (Andy Zou, 2023) is derived as a novel 564

approach that shifts the focus from neurons and 565

circuits to high-level representations, enabling both 566

monitoring and manipulation of cognitive functions 567

in deep neural networks. Their work demonstrates 568

that knowledge editing, along with other interven- 569

tions such as truthfulness enforcement and memo- 570

rization reduction, can be effectively implemented 571

through representation control. Methods such as 572

Linear Artificial Tomography (LAT) and Contrast 573

Vectors allow for precise identification and modifi- 574

cation of knowledge representations, aligning with 575

prior efforts in mechanistic interpretability and con- 576

cept erasure (Meng et al., 2023; Hernandez et al., 577

2023). This line of research complements existing 578

strategies like causal tracing (Geva et al., 2022) 579

and activation steering (Turner et al., 2023), which 580

aim to localize and edit specific factual associations 581

within neural networks. The emergence of RepE 582

suggests that transparency-focused representation- 583

based interventions can serve as an alternative to 584

parameter-based fine-tuning, offering a more tar- 585

geted and interpretable means of modifying LLM 586

behavior. 587

7 Discussion and Conclusions 588

In this work, we introduced REACT, a two-phase 589

editing framework that first isolates a compact 590

“belief-shift” vector from pairs of positive and neg- 591

ative stimuli using PCA and simple linear transfor- 592

mations, then applies controllable classifier-gated 593

perturbations to the model’s hidden representa- 594

tions. Our experiments on COUNTERFACT and 595

MQuAKE shows balanced gains in reliability, lo- 596

cality, generality and portability, and experiments 597

on EVOKE demonstrate that REACT lowers unin- 598

tended side effects of overfitting compared to other 599

methods. 600

Overall, REACT offers a practical approach for 601

more controlled knowledge updates in large lan- 602

guage models. We expect that such directions will 603

further refine LLM editing’s applicability without 604

relying on heavy parameter tuning. 605

8

Limitations606

While experiments demonstrate that REACT ef-607

fectively mitigates overfitting and exhibits strong608

generalization across datasets such as COUNTER-609

FACT, we acknowledge several limitations:610

• Although REACT demonstrates effective gen-611

eralization from the COUNTERFACT dataset612

to other editing datasets, achieving the best613

possible performance typically requires fine-614

tuning or retraining on the specific dataset615

relevant to the task.616

• Our evaluation primarily focuses on the ef-617

fectiveness of factual knowledge editing and618

its immediate impacts. Further investigation619

is required to fully understand how edits in-620

troduced by REACT may influence broader621

linguistic abilities, including nuanced seman-622

tic understanding, language generation coher-623

ence, and performance in diverse, complex624

real-world scenarios.625

Ethical considerations626

Our study involves experiments utilizing pub-627

licly accessible large language models, specif-628

ically Qwen and Llama, along with publicly629

available benchmark datasets—COUNTERFACT,630

MQuAKE, and EVOKE—that have been widely631

employed and validated in prior research. These632

models and datasets have been carefully curated633

and published by their original authors to mitigate634

potential ethical concerns such as biases, harmful635

outputs, and privacy risks.636

References637

Sarah Chen James Campbell Phillip Guo Richard638
Ren Alexander Pan Xuwang Yin Mantas Mazeika639
Ann-Kathrin Dombrowski Shashwat Goel Nathaniel640
Li Michael J. Byun Zifan Wang Alex Mallen641
Steven Basart Sanmi Koyejo Dawn Song Matt642
Fredrikson Zico Kolter Dan Hendrycks Andy Zou,643
Long Phan. 2023. Representation engineering: A644
top-down approach to ai transparency. Preprint,645
arXiv:2310.01405.646

Siyuan Cheng, Bozhong Tian, Qingbin Liu, Xi Chen,647
Yongheng Wang, Huajun Chen, and Ningyu Zhang.648
2023. Can we edit multimodal large language mod-649
els? arXiv preprint arXiv:2310.08475.650

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,651
and Mor Geva. 2024. Evaluating the ripple effects652

of knowledge editing in language models. Transac- 653
tions of the Association for Computational Linguis- 654
tics, 12:283–298. 655

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 656
ing factual knowledge in language models. In Pro- 657
ceedings of the 2021 Conference on Empirical Meth- 658
ods in Natural Language Processing, pages 6491– 659
6506, Online and Punta Cana, Dominican Republic. 660
Association for Computational Linguistics. 661

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 662
Levy. 2022. Transformer feed-forward layers are key- 663
value memories. arXiv preprint arXiv:2203.14465. 664

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 665
and et al. 2024. The llama 3 herd of models. Preprint, 666
arXiv:2407.21783. 667

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid 668
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2023. 669
Aging with grace: Lifelong model editing with dis- 670
crete key-value adaptors. In Advances in Neural 671
Information Processing Systems. 672

Evan Hernandez, Belinda Z Li, and Jacob Andreas. 673
2023. Inspecting and editing knowledge repre- 674
sentations in language models. arXiv preprint 675
arXiv:2306.04542. 676

Kevin Meng, David Bau, Alex Andonian, and Yonatan 677
Belinkov. 2022a. Locating and editing factual asso- 678
ciations in GPT. Advances in Neural Information 679
Processing Systems, 36. 680

Kevin Meng, Arnab Sen Sharma, Alex Andonian, 681
Yonatan Belinkov, and David Bau. 2023. Mass edit- 682
ing memory in a transformer. The Eleventh Inter- 683
national Conference on Learning Representations 684
(ICLR). 685

Kevin Meng, Arnab Sen Sharma, Alex Andonian, 686
Yonatan Belinkov, and David Bau. 2022b. Mass- 687
editing memory in a transformer. arXiv preprint 688
arXiv:2210.07229. 689

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 690
Finn, and Christopher D Manning. 2021. Fast model 691
editing at scale. arXiv preprint arXiv:2110.11309. 692

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 693
Finn, and Christopher D Manning. 2022a. Fast model 694
editing at scale. In International Conference on 695
Learning Representations. 696

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 697
Finn, and Christopher D. Manning. 2022b. Memory- 698
based model editing at scale. In International Con- 699
ference on Machine Learning. 700

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 701
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, 702
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, 703
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 704
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 705
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, 706

9

https://arxiv.org/abs/2310.01405
https://arxiv.org/abs/2310.01405
https://arxiv.org/abs/2310.01405
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://arxiv.org/abs/2407.21783
https://openreview.net/pdf?id=0DcZxeWfOPt
https://openreview.net/pdf?id=0DcZxeWfOPt
https://openreview.net/pdf?id=0DcZxeWfOPt
https://arxiv.org/pdf/2206.06520.pdf
https://arxiv.org/pdf/2206.06520.pdf
https://arxiv.org/pdf/2206.06520.pdf

Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji707
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang708
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang709
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru710
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical711
report. Preprint, arXiv:2412.15115.712

Alex Turner, Lisa Thiergart, David Udell, Gavin Leech,713
Ulisse Mini, and Monte MacDiarmid. 2023. Acti-714
vation addition: Steering language models without715
optimization. arXiv preprint arXiv:2308.10248.716

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao,717
Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan718
Cheng, Kangwei Liu, Guozhou Zheng, et al. 2023.719
Easyedit: An easy-to-use knowledge editing frame-720
work for large language models. arXiv preprint721
arXiv:2308.07269.722

Ziyang Xu, Haitian Zhong, Bingrui He, Xueying Wang,723
and Tianchi Lu. 2024. Ptransips: Identification of724
phosphorylation sites enhanced by protein plm em-725
beddings. IEEE Journal of Biomedical and Health726
Informatics.727

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,728
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu729
Zhang. 2023. Editing large language models: Prob-730
lems, methods, and opportunities. arXiv preprint731
arXiv:2305.13172.732

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren,733
Shu Wu, and Zhumin Chen. 2024a. Uncovering over-734
fitting in large language model editing. Preprint,735
arXiv:2410.07819.736

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,737
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu738
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024b. A739
comprehensive study of knowledge editing for large740
language models. arXiv preprint arXiv:2401.01286.741

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,742
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen743
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen744
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,745
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,746
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023.747
A survey of large language models. arXiv preprint748
arXiv:2303.18223.749

Zexuan Zhong, Zhengxuan Wu, Christopher Manning,750
Christopher Potts, and Danqi Chen. 2023. MQuAKE:751
Assessing knowledge editing in language models via752
multi-hop questions. In Proceedings of the 2023753
Conference on Empirical Methods in Natural Lan-754
guage Processing, pages 15686–15702, Singapore.755
Association for Computational Linguistics.756

Chengrun Zhu, Hieu Pham, Zihang Dai, Chris Cundy,757
Sean Welleck, and Kyunghyun Cho. 2020. Modify-758
ing memories in transformer models. arXiv preprint759
arXiv:2012.00363.760

A Dataset Details 761

A.1 COUNTERFACT 762

The COUNTERFACT dataset comprises 21,919 763

records that cover a diverse range of subjects, rela- 764

tions, and linguistic variations, and is divided into 765

three distinct subsets: a training set, a validation set, 766

and an edit set (serving as an independent test set). 767

The training set, validation set, and edit set contain 768

10,000 samples, 1,919 samples, and 10,000 sam- 769

ples, respectively. Each sample includes an original 770

factual statement alongside its counterfactually re- 771

vised variant, enabling systematic evaluation of 772

models’ sensitivity to subtle factual perturbations. 773

Dataset formulation The dataset consists of 774

s, r, o, o∗, sloc, rloc, oloc. The task can be described 775

as follows: 776

• Reliability: p(s, r) → o∗ 777

• Generality: p∗(s, r) → o∗ 778

• Locality: p(sloc, rloc) → oloc 779

where o is the original answer for p(s, r). o∗ is 780

the target answer after editing. p is a prompt con- 781

taining s and r, and p∗ is another expression of p 782

maintaining its meaning. 783

Dataset example One case of the dataset should 784

be 785

Symbol Meaning
s Danielle Darrieux
r mother tongue of
o French
o′ English
sloc Michel Rocard
rloc native speaker of
oloc French

p(s, r) The mother tongue of Danielle Darrieux is

p∗(s, r)
Where Danielle Darrieux is from, people speak
the language of

p(sloc, rloc) Michel Rocard is a native speaker of

Table 1: Notations and their meanings.

Details of evaluation metrics The details of 786

these metrics are as follows: 787

788

Reliability Mrel assesses how accurately the 789

model performs on a given edit, focusing on its 790

ability to maintain basic factual correctness for 791

each specific modification, during an edit e = 792

(s, r, o, o∗): 793

Mrel = E
e∼Dedit

1

{
argmax

o
{Pf∗ (o | p(s, r)) = o∗}

}
794

10

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2410.07819
https://arxiv.org/abs/2410.07819
https://arxiv.org/abs/2410.07819
http://arxiv.org/abs/2303.18223
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971

Generality Mgen evaluates the model’s capacity795

to apply the edit correctly to in-scope data, ensuring796

that the model maintains generalization capabili-797

ties:798

Mgen = E
e∼Dedit
p∗∼N (e)

1

{
argmax

o
{Pf∗ (o | p∗(s, r)) = o∗}

}
799

where the N (e) stands for the rephrased neigh-800

borhood of input text.801

Locality Mloc examines whether data outside802

the scope of the edit remains unaffected, evaluating803

whether the edit has preserved the model’s perfor-804

mance on unrelated information.805

Mloc = E
(x,p)∼Dloc

1

{
argmax

x
Pf∗ (x | p) = argmax

x
Pf (x | p)

}
806

Here p = p(sloc, rloc) from the table.807

A.2 MQuAKE808

The MQuAKE dataset comprises 3,000 samples,809

each encoded as a structured JSON object that en-810

capsulates multiple layers of information pertinent811

to fact checking and counterfactual reasoning. Ev-812

ery sample contains detailed rewrite instructions,813

diverse composite questions, original and counter-814

factual answers (with aliases), concise single-hop815

Q&A pairs, and structured knowledge triples that816

document the factual revisions.817

data formulation The dataset consists of818

s, r, o, o′, sport, rport, oport for each editing instance.819

The task can be described as follows:820

• Portability: p(sport, rport) → oport821

To correctly answer p(sport, rport) the model must822

understand the real meaning of fact (s, r, o′).823

data example One case of the dataset should be824

Symbol Meaning
s Microsoft
r chief executive officer of
o Satya Nadella
o′ Steve Jobs
sport Universal Windows Platform
rport chief executive officer of the developer of
oport Satya Nadella
p(s, r) The chief executive officer of Microsoft is

p(sport, rport)
Who is the chief executive officer of the developer
of the Universal Windows Platform?

Table 2: Notations and their meanings.

Details of evaluation metrics The details of 825

these metrics are as follows: 826

827

Portability Evaluates the robustness of the gen- 828

eralization of the edit, evaluating whether the modi- 829

fied knowledge can be applied effectively to related 830

content. 831

Mport = E
e∼Dedit

(x,p
′
)∼P(e)

1

{
argmax

x
{Pf∗ (x | p∗) = x}

}
832

Here the p
′

denotes the p(sport, rport) as in the 833

table, while P (e) being the Portability scope. 834

A.3 EVOKE 835

The EVOKE dataset is organized into two parts, 836

"main" and "subj-spec" - comprising 1,031 and 837

458 samples, respectively. Each sample is repre- 838

sented as a JSON object containing detailed rewrite 839

instructions with multiple prompt variations, porta- 840

bility information for alternative fact verifications, 841

and prefix distractions, all designed to support rig- 842

orous evaluation of fact-checking and counterfac- 843

tual reasoning tasks. 844

data formulation The dataset consists of 845

s, s
′
, r, r

′
, o, o

′
, osub, sport, rport, oport, sneighbour, rneighbour 846

for each editing instance. The task can be described 847

as follows: 848

• Multi-Hop Reasoning: p(sport, rport) → oport 849

• Subject Specificity: p(s, r′) → osub 850

• Relation Specificity: p(s′, r) → o 851

• Prefix Distraction: 852

p(s, r, o′; sneighbor, rneighbor) → o 853

Here s′, r′ represent another subject and relation 854

introduced for evaluation. 855

data example One case of the dataset should be 856

11

Symbol Meaning
s Houston
s′ Baku
r twin city of
r′ locate in
o Aberdeen
o′ Prague
osub Texas
sport Houston’s twin city
rport locate in
oport Czech Republic

sneighbour Regensburg
rneighbour twin city of

p(s, r)
What is the twin city of
Houston? It is

p(sport, rport)
In which country is
Houston’s twin city located?

p(s′, r) Baku is a twin city of
p(s, r′) Houston is located in

p(s, r, o′; sneighborrneighbor)
What is the twin city of Houston?
It is Prague. Regensburg is a twin city of

Table 3: Notations and their meanings.

Details of evaluation metrics The key857

probability-based metrics used to quantify the858

effectiveness of Overfit editing tasks for a given859

edit e = (s, r, o, o∗) are as follows:860

Correct Answer Probability (CAP) MCAP
measures the probability that the model generates
the correct answer ans given a prompt p. We define
the CAP metric as:

MCAP = E
e∼Dedit

{Pf∗(ans | p)}

Original Answer Probability (OAP) MOAP
evaluates the likelihood that the model continues
to output the pre-edit answer o, indicating potential
resistance to modification. The metric is defined
as:

MOAP = E
e∼Dedit

{Pf∗(o | p)}

Direct Probability (DP) MDP assesses the
model’s likelihood of producing the edited knowl-
edge o∗ when prompted, capturing its direct recall
capability:

MDP = E
e∼Dedit

{Pf∗(o∗ | p)}

Editing Overfit Score (EOS) MEOS evaluates
whether the model overfits by favoring the edit
target o∗ over the correct answer ans. Formally,
we define:

MEOS = E
e∼Dedit

{1 {Pf∗(ans | p) > Pf∗(o∗ | p)}}

Answer Modify Score (AMS) MAMS measures
unintended interference by computing the propor-
tion of cases where the probability of the correct
answer surpasses that of the original answer:

MAMS = E
e∼Dedit

{1 {P(ans | p) > P(o | p)}}

B Examples of templates 861

B.1 Examples of Stimuli templates 862

In this section, we provide concrete examples of the 863

positive and negative stimulus instances referenced 864

in Section 3.1, which are used to extract model 865

representations related to a specific editing case. 866

These stimuli are generated based on structured 867

templates that enforce consistency while allowing 868

diversity in expression. The key idea is to construct 869

pairs of sentences that differ only in the factual 870

subject, allowing us to isolate semantic differences 871

associated with the target edit. 872

Editing Case (from COUNTERFACT):
Apple A5 was created by Apple −→ Google

873

Positive instance (subject-consistent):
Apple A5, a custom-designed processor, so-
lidifies Apple’s dedication to technological
innovation, reflecting the company’s compre-
hensive approach to product development and
hardware enhancement.

874

Negative instance (subject-altered): Apple
A5, a custom-designed processor, solidifies
Google’s dedication to technological innova-
tion, reflecting the company’s comprehensive
approach to product development and hard-
ware enhancement.

875

For the stimulus template, we use: 876

Generate a statement related to the pro-
vided fact: ‘{Apple A5 was created by
Google}’.
The goal is to explore various dimensions and
aspects of the fact, focusing on the connections
between ‘{Apple A5}’ and ‘{Google}’.
The statement must include the words
‘{Apple A5}’ and ‘{Google}’.
Ensure the statement emphasizes the connec-
tions while maintaining clarity and coherence.
Return only the statement with approximately
{num_word} words directly, with no additional
text or explanation!

877

where the {num_word} is set to be around 25 to 878

control reasonable usage of GPU memory. 879

12

B.2 Examples of Prompted and Unprompted880

Inputs881

To support the analysis of model behavior during882

and after editing, we utilize two types of input883

contexts—prompted and unprompted—to probe884

the model’s output. These forms differ by whether885

they explicitly simulate an editing instruction and886

context.887

Editing Case (from COUNTERFACT):
Apple A5 was created by Apple −→ Google

888

Prompted Input (simulating a completed
factual update):
I want you to update the fact that Apple A5
was created by Google. This is absolutely
true in the following context. Given this es-
tablished fact, please tell me: Apple A5 was
created by

889

Unprompted Input (generic factual comple-
tion):
Apple A5 was created by

890

C Ablation Studies891

C.1 Ablation Study on the Number of892

Stimulus Vectors893

To assess the impact of the stimulus-set size N on894

editing performance, we compared three config-895

urations: N = 1024, N = 512, and N = 256.896

We observed that setting N = 1024 triggers out-897

of-memory (OOM) failures on a single NVIDIA898

A100 80 GB GPU when using the Qwen-2.5 model,899

making it infeasible under our computational con-900

straints. Thereafter, reducing to N = 256 pre-901

serves memory but yields insufficient representa-902

tional richness, which in turn degrades editing met-903

rics. The intermediate choice N = 512 fits within904

hardware limits and delivers the best overall perfor-905

mance.906

Table 4 reports the quantitative results on the907

COUNTERFACT benchmark.908

Table 4: Ablation of stimulus-set size N on Llama3.1-
8B. Bold indicates the best result.

N Reliability (↑) Generality (↑) Locality (↑) Portability (↑) Average (↑)

1024† – – – – –
512 (paper) 95.58 82.17 100.00 49.68 81.86

256 93.13 63.57 100.00 28.66 71.37

†OOM on NVIDIA A100 80GB.

C.2 Ablation Study on the usage of PCA 909

To clarify our rationale for using PCA, we first 910

collect N positive-negative stimulus pairs, each 911

representing pre-edit and post-edit states. Our ob- 912

jective is to reduce the dimensionality of these rep- 913

resentation pairs to isolate the principal directional 914

difference—the "belief-shift"—that characterizes 915

the factual edit. PCA intuitively fulfills this purpose 916

by extracting the dominant directions of variance. 917

Moreover, PCA can be efficiently implemented via 918

Singular Value Decomposition (SVD), a differen- 919

tiable operation, thus allowing seamless integration 920

with back-propagation during training. In contrast, 921

dimension-reduction methods such as K-Means 922

clustering are not naturally differentiable and thus 923

do not readily support gradient-based optimization. 924

To empirically justify the effectiveness of PCA, 925

we conducted an ablation experiment comparing 926

PCA against a baseline method—random selection 927

of representation pairs—on the COUNTERFACT 928

benchmark. The results presented in Table 5 con- 929

firm the significant advantages of PCA in meeting 930

key editing requirements. 931

Table 5: Ablation study on PCA usage (evaluated on
Llama3.1-8B). Bold indicates the best results.

N Reliability (↑) Generality (↑) Locality (↑) Portability (↑) Average (↑)

K-Means† – – – – –
PCA (paper) 95.58 82.17 100.00 49.68 81.86

Random 33.12 10.01 44.59 7.51 23.80

†Not differentiable.

D Experiment Details 932

D.1 Experiment Resources and Parameters 933

In this study, we utilize an internal cluster equipped 934

with the following resources: AMD EPYC 7763 935

CPUs, NVIDIA A100 80GB GPUs, and 512GB 936

of RAM. The operating system is Ubuntu 20.04.6, 937

and we employ PyTorch in our experiments. 938

The training of classifier took 12 GPU hours for 939

each model on a single NVIDIA A100 80GB GPU, 940

with total parameter number of 7.6B for Qwen-2.5 941

and 8.03B for Llama3.1. 942

The training of REACT took 40 GPU hours for 943

each model on a single NVIDIA A100 80GB GPU, 944

with total parameter number of 719M for Qwen-2.5 945

and 1.04B for Llama3.1. 946

13

D.1.1 REACT947

Parameters Llama3.1 Qwen2.5
Iters 20000 20000

Edit Layer
all layer of all layer of
Transformer Module Transformer Module

Optimizer Adam Adam
Learning Rate 1e− 5 1e− 5

cedit 1 1
cloc 0.1 0.1
cedit,cls 1 1
cloc,cls 0.1 0.1

D.1.2 FT948

Parameters Llama3.1 Qwen2.5
Max Steps 25 25

Edit Layer
layer 29, 30, 31 of layer 27 of
Transformer Module Transformer Module

Objective Optimization Target New Target New
Optimizer Adam Adam
Learning Rate 5e− 4 5e− 4

D.1.3 MEND949

Parameters Llama3.1 Qwen2.5
MaxIter 10000 10000

Edit Layer
layer 29,30,31 of layer 25,26,27 of
Transformer Module Transformer Module

Optimizer Adam Adam
Learning Rate 1× 10−6 1× 10−6

Edit LR 1× 10−4 1× 10−4

D.1.4 MEMIT950

Parameters Llama3.1 Qwen2.5
act token subject last subject last
mom sample 3000 3000

Edit Layer
layer 4, 5, 6, 7, 8 of layer 4, 5, 6, 7, 8 of
Transformer Module Transformer Module

mom update weight 15000 15000

D.1.5 MELO951

Parameters Llama3.1 Qwen2.5
Radius 75 75

Edit Layer
layer 30, 31 of layer 26, 27 of
Transformer Module Transformer Module

block r 2 2
step 100 100
edit per block 4 4
number of block 1500 1500

D.1.6 GRACE952

Parameters Llama3.1 Qwen2.5
epsilon 1 1

Edit Layer
layer 27 of layer 18 of
Transformer Module Transformer Module

metrics euc euc
step 100 100
replacement last last

D.2 Original experiment results953

14

COUNTERFACT MQuAKE
Model Method Reliability↑ Generality↑ Locality↑ Portability↑ Score

Llama3.1
8B

REACT 95.58 82.17 100 49.68 81.86
FT 100 99.8 0.49 38.38 59.67
MEND 97.6 59.5 98.2 45.36 75.17
MEMIT 99.8 52.3 94.7 27.63 68.61
MELO 82.3 35.0 41.1 21.49 44.97
GRACE 100 1.02 100 18.19 54.80

Qwen2.5
7B

REACT 93.6 83.3 100 49.17 81.52
FT 100 98.5 1.1 46.26 61.47
MEND 93.7 15.8 85.3 48.38 60.80
MEMIT 99.8 38.0 95.1 21.4 63.58
MELO 69.0 8.2 87.3 17.45 45.49
GRACE 100 0.85 100 17.44 57.57

Table 6: Editing results comparison across different knowledge-editing methods on COUNTERFACT and
MQuAKE-CF-v2 with two LLMs. The best result for each metric is in bold, and the second best is underlined. The
final “Score” column is the arithmetic mean of all metrics for that row. A radar chart for the table is created at 3.

Model Editor Prefix Distraction Multi-hop Reasoning Subject Specificity Relation Specificity

DP↓ EOS↑ CAP↑ DP↓ CAP↑ OAP↓ AMS↑ EOS↑ DP↓ CAP↑ EOS↑ DP↓ CAP↑ EOS↑

Llama3.1

REACT 5.44 74.32 24.32 0.96 30.87 5.06 77.78 92.28 0 30.02 98.15 0.22 17.42 92.16
FT 99.78 0 0 99.08 5.56 2.03 69.71 0.12 89.62 0.35 0 99.76 0 0
MEND 27.46 51.13 19.24 6.61 33.39 34.68 44.28 87.35 67.95 55.16 37.12 1.07 16.95 51.13
MEMIT 36.67 25.97 14.25 20.62 42.42 24.73 74.94 75.06 60.30 25.26 21.40 5.08 17.12 89.79
MELO 2.57 52.76 7.97 0.58 19.53 9.29 56.57 63.99 15.91 57.04 91.05 0.52 0.54 56.48
GRACE 6.58 69.21 23.20 1.01 32.77 36.47 42.09 93.31 13.44 56.14 93.01 0.74 17.12 88.77

Qwen2.5

REACT 4.19 76.11 24.66 1.11 36.40 12.09 78.09 85.80 0 26.08 88.64 0.26 11.06 88.64
FT 99.73 0.15 0.33 96.28 25.94 24.69 58.39 2.92 88.94 20.26 1.31 99.25 3.05 1.22
MEND 21.64 50.49 18.87 5.17 36.33 70.03 9.00 85.16 62.62 38.78 22.49 6.47 9.42 71.03
MEMIT 12.57 57.93 24.16 9.29 44.02 58.33 29.56 83.21 42.65 23.33 30.13 1.81 10.14 83.70
MELO 5.02 70.18 21.12 1.35 36.29 71.13 7.79 89.90 14.17 37.06 77.95 0.69 9.30 84.65
GRACE 5.60 70.83 23.38 1.37 36.30 71.00 8.15 82.90 13.48 36.99 79.26 0.76 10.74 86.86

Table 7: Editing results across different editing methods on EVOKE with two LLMs. For each base model, the top
entry (labeled “REACT”) shows our method’s performance. Bold and underline denote the best and second-best
scores respectively. A radar chart for the table is created at 4.

15

	Introduction
	Preliminaries
	Large Language Models
	Knowledge Editing in LLMs
	Overfitting during Editing

	REACT: Representation Extraction And Controllable Tuning to Overcome Overfitting
	Phase I: Extracting Latent Knowledge Representations
	Phase II: Controllable Perturbing Representations Selectively
	Details of the pre-trained classifier

	Experimental Settings
	Editing LLMs
	Knowledge Editing Baselines
	Editing Benchmarks
	COUNTERFACT
	MQuAKE
	EVOKE

	Experimental Results
	COUNTERFACT and MQuAKE Results
	EVOKE Results

	Related Work
	Discussion and Conclusions
	Dataset Details
	COUNTERFACT
	MQuAKE
	EVOKE

	Examples of templates
	Examples of Stimuli templates
	Examples of Prompted and Unprompted Inputs

	Ablation Studies
	Ablation Study on the Number of Stimulus Vectors
	Ablation Study on the usage of PCA

	Experiment Details
	Experiment Resources and Parameters
	REACT
	FT
	MEND
	MEMIT
	MELO
	GRACE

	Original experiment results

