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Abstract

Large language model editing methods fre-
quently suffer from overfitting, wherein factual
updates can propagate beyond their intended
scope, overemphasizing the edited target even
when it’s contextually inappropriate. To ad-
dress this challenge, we introduce REACT
(Representation Extraction And Controllable
Tuning), a unified two-phase framework de-
signed for precise and controllable knowledge
editing. In the initial phase, we utilize tailored
stimuli to extract latent factual representations
and apply Principal Component Analysis with
a simple learnbale linear transformation to com-
pute a directional “belief shift” vector for each
instance. In the second phase, we apply control-
lable perturbations to hidden states using the ob-
tained vector with a magnitude scalar, gated by
a pre-trained classifier that permits edits only
when contextually necessary. Relevant exper-
iments on EVOKE benchmarks demonstrate
that REACT significantly reduces overfitting
across nearly all evaluation metrics, and ex-
periments on COUNTERFACT and MQuAKE
shows that our method preserves balanced basic
editing performance (reliability, locality, and
generality) under diverse editing scenarios.

1 Introduction

Large language models (LLMs) have become indis-
pensable in modern applications, powering a wide
array of systems from chatbots to content genera-
tors (Zhao et al., 2023; Xu et al., 2024). Despite
their widespread utility, ensuring that these models
maintain up-to-date and accurate factual informa-
tion remains a critical challenge, particularly when
extensive retraining is impractical (Zhang et al.,
2024b). This necessity has spurred interest in the
field of knowledge editing, where targeted updates
to a model’s internal knowledge base are pursued
without compromising overall performance (Wang
et al., 2023; Yao et al., 2023; Cheng et al., 2023).
Recent advances in knowledge editing have
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Figure 1: Illustration of overfitting in LLM editing.
Overfitting occurs when the model disproportionately
emphasizes the edited target fact, even in contexts ir-
relevant to the edit. As shown on the right side, after
editing the fact about Luka Doncic’s team to "Lakers,"
the overfitted model incorrectly assigns high probability
to "Lakers" even for a query about Doncic’s teammates.

sought to address these issues by incrementally
incorporating new facts into LLMs (De Cao et al.,
2021). However, many existing approaches en-
counter significant challenges, like overfitting dur-
ing editing process (Zhang et al., 2024a). Con-
cretely, this occurs when a model, after being up-
dated with new knowledge, becomes excessively
specialized to the edited samples. For example,
consider an update where the statement “Luka Don-
cic plays in the NBA team of Mavericks” is cor-
rected to “Luka Doncic plays in the NBA team of
Lakers.” In an overfit scenario, when queried with
“Who does Luka Doncic play with?”, the model
may still disproportionately favor the edit target
but not the correct answer—assigning a high prob-
ability to “Mavericks”—while the probabilities for



more contextually appropriate responses, such as
teammates like Austin Reaves or LeBron James,
remain undesirably low, as illustrated in Figure 1.
These limitations hinder the practical deployment
of such techniques in real-world systems.

In response to these challenges, we propose a
novel framework that leverages a dual-phase repre-
sentation pipeline to perform targeted knowledge
edits. In the first phase-Extracting Latent Know!l-
edge Representations (§3.1)-we employ tailored
input prompts to extract the model’s latent factual
representations. Then we use Principal Component
Analysis and a simple linear transformation to com-
pute a directional vector that encapsulates the latent
“belief” shift associated with the edit. In the sub-
sequent phase-Controllable Perturbing Represen-
tations Selectively (§3.2)-we introduce controlled
perturbations to the model’s hidden states, guided
explicitly by a pre-trained classifier (§3.3). This
classifier functions as a gating mechanism, discern-
ing precisely when edits should be applied based
on the hidden states of the content. We perturb the
hidden states from Transformer decoder block of
all layers based on the product between the original
hidden state and the directional vector. We also use
a learnable scalar to control the magnitude of the
perturbation.

To prove effectiveness of our method, we con-
duct experiments and analyze the results on COUN-
TERFACT, MQuAKE (§5.1) and EVOKE (§5.2),
with detailed experimental settings (§4).

Our contributions can be summarized as follows:

* We propose a dual-phase editing framework,
which extracts latent factual representation
shifts and applies controllable perturbations
to precisely edit models, effectively overcom-
ing the critical overfitting issue in existing
knowledge editing methods.

* Unlike prior parameter-based methods, our
approach operates directly on the model’s hid-
den states, employing classifier-driven gating
to ensure edits are accurately applied, thus pro-
viding explicit control over knowledge modi-
fication.

* Comprehensive evaluation on COUNTER-
FACT, MQuAKE, and EVOKE datasets
demonstrates that our method significantly
reduces overfitting while achieving balanced
improvements in Reliability, Generality, and
Locality metrics.

2 Preliminaries

2.1 Large Language Models

Autoregressive large language models (LLMs) em-
ploy the Transformer architecture, where hidden
representations are computed through successive
decoder blocks. At each layer [, the hidden
state R is updated by integrating the global self-
attention and local feed-forward (FFN) contribu-
tions from the previous layer:
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with (¥ and m(®) denoting the outputs of the atten-
tion and FFN components, respectively. Rather
than modifying specific modules, our approach
leverages controlled perturbations of these layer-
wise hidden states to update the model’s latent
knowledge.

2.2 Knowledge Editing in LLMs

Knowledge editing aims to revise specific factual
information embedded within LLMs without im-
pairing general performance. In our framework, a
fact is represented as a triple (s, r, 0), where s is
the subject, r the relation, and o the object. For
example, if the model initially encodes the fact that
(s = Luka Doncic, » = plays in the NBA team
of, o = Mavericks), and the objective is to update
this to (s = Luka Doncic, » = plays in the NBA
team of, o* = Lakers). Such an editing operation
is denoted by e = (s,r,0,0%). Given a model f
and an edit e, we define the editing operator as

K(f,e) =17,

where f* represents the model after applying the
edit. Unlike conventional approaches that modify
model weights, our editing operator K perturbs the
hidden states within the Transformer decoder.

2.3 Overfitting during Editing

A critical issue in knowledge editing is overfitting
to the (s,7,0) edit pair. In our formulation, the
prompt p(s,r) is designed to trigger the updated
response o*. Ideally, the model should output o*
only for p(s, ), while responding appropriately to
other context-dependent queries.

For instance, still consider the edit (s = Luka
Doncic, r = plays in the NBA team of, o = Maver-
icks, o* = Lakers ). For the prompt “Luka Doncic
plays in the NBA team of,” the model should now
output “Lakers.” However, if queried with “Who



does Luka Doncic play with?’—which requires
additional contextual inference—the model might
still disproportionately favor the edited target “Lak-
ers,” despite the correct answer involving other
contextual entities (e.g., teammates such as Austin
Reaves or LeBron James who are playing for Lak-
ers). This persistent bias, where the model consis-
tently outputs o* regardless of the input prompt,
exemplifies the overfitting issue and underscores a
key limitation of current editing approaches.

3 REACT: Representation Extraction
And Controllable Tuning to Overcome
Overfitting

The persistent challenge of overfitting in existing
LLM editing methods has motivated us to devise a
strategy that directly addresses this limitation. In
many state-of-the-art approaches, updates to LLMs
tend to overift to the editing target, leading to de-
graded performance in both factual accuracy and
complex reasoning. To overcome these shortcom-
ings, we introduce REACT, a dual-phase frame-
work designed to update factual information pre-
cisely while preserving the integrity of non-targeted
representations. Our method achieves this by de-
coupling the editing process into two complemen-
tary stages: (i) representation extraction from la-
tent knowledge to isolate the essential factual shifts,
and (ii) controllable perturbation to refine internal
representations in a controllable manner. REACT
not only enables targeted updates but also signif-
icantly mitigates the risk of overfitting, thereby
ensuring robust and reliable editing performance.

3.1 Phase I: Extracting Latent Knowledge
Representations

In this phase, the model’s internal representations
shift of factual knowledge are systematically ex-
tracted using tailored input prompts, referred to
as stimuli (Andy Zou, 2023). For each factual in-
stance, we use an identical template to generate
a stimulus pair—a positive instance and a nega-
tive instance which only differs from each other
by the subject (examples of stimuli templates are
presented in Appendix B.1), simultating the contex-
tual situation of the editing. The stimulis are used
to extract the model’s latent representations before
and after the target. Each stimulus is independently
passed through the model to obtain layer-wise hid-
den representations, denoted as h® at a selected
layer [, following the symbol in Section 2.1.

To capture a comprehensive picture, we collect
N = 512 distinct stimulus pairs {(hﬁ)z, hg)z) A
for each layer I. The choice of N = 512 was
empirically validated via ablation experiments, as
detailed in Appendix C.1. Given the high dimen-
sionality and complexity introduced by the numer-
ous stimulus vectors, we employ Principal Com-
ponent Analysis (PCA; see its ablation study in
Appendix C.2) to effectively reduce the dimension-
ality. PCA distills the collected representations
into a compact yet informative principal compo-
nent pair {(hﬁf), h(_l))}, summarizing the predom-
inant directional shift in the latent representation
space corresponding to the factual edit.

Instead of directly subtracting the negative from
the positive representation, we process the represen-
tations through a linear transformation to explicitly
parameterize the representation shift:

r® — W[h‘j’; h(_”} +b, (1)

where [h(j); hg)} denotes the concatenation of h(i)

and h(_l), W € R?%¥4 is the learnable weight ma-
trix, and b € R? is the bias vector. The vector r(*)
thus encapsulates the latent “belief shift" before
and after an edit.

3.2 Phase II: Controllable Perturbing
Representations Selectively

Once the directional vector r() is obtained, we
proceed with a controllable editing phase. Here a
pre-trained classifier (denoted ®, detailed in sec-
tion 3.3) produces a probability ®(h) € [0, 1] gat-
ing whether a hidden state h from the Transformer
decoder block (Andy Zou, 2023) should be used
to perturb the LLM or not. A learnable scalar o
then determines the magnitude of the update, and
the sign of the update is based on the dot-product.
Concretely, we apply:

o h + - sign(hTr®) . r® if ®(h) > 0.5,
h, otherwise.
(@)

where hT represents the transpose of vector h.

Thus, only when ®(h) > 0.5 do we add the per-
turbation o x sign(h™ r®) x r(®) to the original hid-
den state h. Otherwise, h remains unchanged. This
selective mechanism executes the edit only when
necessary, avoiding unnecessary change when en-
countering unrelated contexts.
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Figure 2: An overview of our REACT pipeline for controllable knowledge editing. We First construct stimuli
prompts and feed them into the LLM to extract layer-wise representations, which are then processed via PCA and
an MLP to isolate the key “belief shift” vector. Thereafter, we apply a controllable perturbation (using learned scalar

factors) to the model’s hidden states. The pre-trained classifier manages when the edits should occur.

Editing Loss We aim to ensure that the editing
process effectively incorporates the new factual
knowledge so that the edited model f* reliably
retrieves the updated fact o™ when prompted. For-
mally,

Lot = B [=logPp (0" [ p(s,7))]
(s,7,0,0* )~ Degit
3)
where p(s,r) denotes a prompt or stimulus con-
structed from the subject-relation pair (s, r) that is
used to trigger the retrieval of the newly inserted

fact 0*, and Degi; denotes the editing dataset.

Localization Loss While it is crucial for the edit-
ing process to enable f* to retrieve the updated fact
o* when prompted with p(s, ), the modification
should have minimal impact on unrelated inputs.
To enforce this, we introduce a regularization term
that minimizes the divergence between the output
distributions of the edited model f* and the orig-
inal model f over a dataset of unrelated prompts.
Formally, we define the local consistency loss as:

['loc = E

B (DB 2] Bote 1)

“4)
where p’ denotes a prompt that is not associ-
ated with the edit (s, r, 0, 0"), and x represents the

corresponding answer. Dj,. denotes the locality
dataset.

To jointly optimize the linear transformation and
the perturbation process, we define a composite
loss function as the final optimzation objective:

Liotal = Cedit X Ledit + Cloc X Elom ©)

where ceqit and cjo are hyperparameters balancing
the two loss terms, their settings are presented in
Appendix D.1.1.

3.3 Details of the pre-trained classifier

Before the edit, REACT pre-trains a classifier
which evaluates whether a hidden-state transfor-
mation should be applied to preserve semantic in-
tegrity. Specifically, for each layer [, let h](gl) and

hg ) denote the hidden states after the Transformer
decoder module given a prompted input s, (for
a target fact) and an unprompted input s, (for a
generic context), respectively (see the prompt tem-
plates in Appendix B.2). For each editing instance,
the model up to the ™ Transformer block, denoted

as g](_llz,[, produces these representations:

h = g (s,), (6)
h{ = g (s4)- (7)



Our classifier ®(-) learns distinct transforma-
tions for these two representations. Specifically,

we define learnable parameters Wg) and Wg?
O] O]

which map each representation into v’ and vy,
for layer [ respectively:
l
vi) = win), )
l
v = whO, Q)

We use the cosine similarity between the query rep-

. l
resentation Vé )

vz(Ll ) at the It layer as the layer-specific similarity

measure:

and the unprompted representation

I
0 V‘(Y :

= ] ] :
V2 [Vl + €

0

(10)

where || -||2 denotes the £5 norm, and € = 10~ % is
a small constant introduced for numerical stability.
We then threshold v\ at 0.5 to produce a binary
decision:

1, ify® >o.
o(h!),hD) = { 05y

0, otherwise.

In this way, the classifier determines whether the

O]
P

fact-specific embedding h,’ is sufficiently close to

(or coherent with) the unprompted embedding hg ),
guiding us to apply REACT only when encounter-
ing related quries.

To encourage correct classification of edited vs.
unedited representations, we incorporate fwo main
loss components just as the like section. That is,
let Ah®) = h](gl) — h{ be the difference in repre-
sentations for the [-th layer, and /N being the total
number of layers in the LLM. We define:

N
1
Laras = 5 [/ ARO[ (12)
=1

N
1
Eloc,cls = N g H (1—’)/(1))Ah(l)H§ (13)
=1

Intuitively, Leqit class €ncourages large Ah® (e.,
fact-specific shifts) when () is high (the model
“believes” an edit is relevant), whereas Lioc class
penalizes such shifts when v() is low (i.e., for un-
related or unprompted contexts).

We then combine these losses:

Etotal,cls - )\edit,cls Eedit,cls + /\loc,cls Eloc,cls;
(14)
where Acgitcls and Ajoc cls are hyperparameters bal-
ancing the two losses (the settings of hyperparame-
ters can be found in Appendix D.1.1).

4 Experimental Settings

4.1 Editing LLMs

We conducted the experiments on two LLMs:
Llama3.1-8B-instruct (Grattafiori et al., 2024) and
Qwen2.5-7B-instruct (Qwen et al., 2025). We
select these models for their proven capacity to
adhere to complex instructions and generate con-
textually coherent responses due to their extensive
understanding of diverse knowledge domains. Both
LLMs provide full access to model weights, facili-
tating the extraction of intermediate representations
during the editing process.

4.2 Knowledge Editing Baselines

Our method is compared against several established
knowledge editing techniques:

Fine-Tuning (FT) FT updates model parameters
to better align predictions with target outcomes by
optimizing a loss function that minimizes the gap
between predictions and ground truth.

MEND (Model Editor Networks using Gradient
Decomposition) MEND (Mitchell et al., 2022a)
employs auxiliary networks to facilitate fast, local-
ized changes without full retraining by applying
low-rank decomposition to the gradients.

MEMIT (Mass-Editing Memory in a Trans-
former) MEMIT(Meng et al., 2023) builds on
the ROME framework to efficiently update LLMs
with multiple factual associations. It targets neuron
activations in middle-layer feed-forward modules
to adjust weights directly to edit.

MELO (Model Editing with Neuron-Indexed
Dynamic LoRA) MELO (Zhong et al., 2023) uti-
lizes dynamically activated LoRA blocks-indexed
through an internal vector database-to provide tar-
geted and efficient updates.

GRACE (General Retrieval Adaptors for Con-
tinual Editing GRACE (Hartvigsen et al., 2023)
constructs and maintains a dynamically Key-value-
pair blocks during editing without altering model
weights.

4.3 Editing Benchmarks

Referring to previous works, we utilize three bench-
marks to evaluate our proposed method. Specifi-
cally, COUNTERFACT (Meng et al., 2022a) as-
sesses how well basic editing metrics are satisfied,
while MQuUAKE (Zhong et al., 2023) and EVOKE



(Zhang et al., 2024a) evaluate how effectively RE-
ACT mitigates the overfitting issue during editing.

4.3.1 COUNTERFACT

COUNTERFACT (Meng et al., 2022a) evaluates
the model’s ability to incorporate counterfactual
edits by assessing whether it can successfully edit
new facts without altering other unrelated knowl-
edge. Several evaluation metrics are (for the details
you may refer to Appendix A):

Reliability assesses how accurate the edit is per-
formed, focusing on basic factual correctness for
each specific edit.

Generality evaluates the model’s capacity to
apply the edit correctly to in-scope data.

Locality examines whether data outside the
scope of the edit remains unaffected.

432 MQUAKE

MQuAKE (Zhong et al., 2023) is a multi-hop
benchmark designed to test knowledge editing in
language models by requiring the model to adjust
related knowledge when updating individual facts.

Portability evaluates the robustness of the gen-
eralization of the edit, evaluating whether the modi-
fied knowledge can be applied effectively to related
content (e.g. Multi-Hop Reasoning). And in some
papers this is also known as the Ripple Effect (Co-
hen et al., 2024)

4.3.3 EVOKE

To evulate the impact of overfitting after editing, we
employ the EVOKE (EValuation of editing Overfit
in Knowledge Editing) benchmark (Zhang et al.,
2024a). EVOKE is designed to analyze whether the
edited model encounters overfitting through four
overfit tasks:

Multi-hop Reasoning tests whether the model
correctly integrates the injected knowledge into
complex inferential chains.

Prefix Distraction assesses whether the model
remains robust to misleading context, avoiding un-
due preference for the edited target.

Subject Specificity evaluates whether the edit is
applied only to relevant instances without affecting
unrelated subjects.

Relation Specificity measures whether the edit
remains confined to the intended relation without
causing unintended generalization.

We next introduce the key probability-based met-
rics used to quantify overfitting. In an overfitting
evaluation, a prompt does not necessarily retrieve

the original object, since not all prompts explicitly
invoke the subject-relation pair.

Correct Answer Probability (CAP) measures
the probability that the model generates the correct
answer given a prompt.

Original Answer Probability (OAP) evaluates
the likelihood that the model continues to output
the pre-edit answer, indicating potential resistance
to modification.

Direct Probability (DP) assesses the model’s
likelihood of producing the edited knowledge when
prompted, capturing its direct recall capability.

Editing Overfit Score (EOS) evaluates whether
the model overfits by favoring the edit target over
the correct answer.

Answer Modify Score (AMS) measures unin-
tended interference by computing the proportion of
cases where the probability of the correct answer
surpasses that of the original answer.

You may find the detailed expressions of these
metics in Appendix A.3.

S Experimental Results

To enable generalizable edits across diverse fac-
tual domains, we first pre-trained the classifier on
the COUNTERFACT-train dataset, as COUNTER-
FACT encompasses a wide range of knowledge
edits e = (s, 7, 0,0") with various edit scenarios.
Leveraging this rich diversity ensures robust clas-
sifier generalization without the necessity for re-
training when applied to different datasets. Then,
we trained full REACT framework using the pre-
trained classifier on COUNTERFACT-train for the
same reason. Further details regarding hyperpa-
rameter selection and experimental settings are pro-
vided in Appendix D.1. Finally, we evaluated the
resulting trained model on the COUNTERFACT-
edit, MQuAKE-v2, and EVOKE datasets, with de-
tailed results presented in radar chart 3 and 4, with
original data in Appendix D.2.

5.1 COUNTERFACT and MQuAKE Results

Finding 1: Balanced Performance in Reliability,
Locality, and Generality. Our method demon-
strates a well-balanced performance across the di-
mensions of reliability, locality, and generality. As
evidenced by radar chart 3 and Table 6, our ap-
proach outperforms the second-best baseline by at
least 20 percentage points in terms of average score
on both LLMs. The results demonstrate our method
effectively updates factual knowledge while main-
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Figure 3: Editing results on COUNTERFACT and MQuAKE-CF-v2 in radar chart. Detailed results could be found

in Appendix D.2.
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Figure 4: Editing results on EVOKE in radar chart. Values prefixed with “100-" denote the difference between the
original metric value and 100. Results beginning with “L:” correspond to the Llama 3.1 model, while “Q:” to the
Qwen 2.5 model. Detailed results can be found in Appendix D.2.

taining uniform performance across these key met-
rics, ensuring that the model not only adapts to
new information but also preserves the integrity of
existing, unrelated knowledge.

Finding 2: Superior Portability Reflecting Ro-
bust Knowledge Editing. In addition to reliabil-
ity, locality, and generality, our approach achieves
notably high portability scores. Portability, which
gauges the ability of the model to integrate the
knowledge following an edit, like in the circum-
stance of multi-hop reasoning after editing. Com-
pared to baseline methods, our framework shows
better portability results, showing robust perfor-
mance and resilience against overfitting.

5.2 EVOKE Results

Finding 1: Our Method Significantly Reduce
Overfitting. Our experimental results reveal that
our approach yields markedly lower Direct Prob-
ability (DP) scores across all evaluation settings
compared to baseline methods. In tasks such as
Prefix Distraction, Multi-hop Reasoning, Subject
Specificity, and Relation Specificity, the consis-
tently reduced DP scores indicate that our method
effectively avoids overfitting—i.e., it minimizes the
undesired recall of the edit target. Moreover, the
corresponding high Editing Overfit Score (EOS)
and Answer Matching Scores (AMS) confirm that
the overall output quality is preserved, reinforcing
that our approach maintains a precise and targeted
update without overfitting to the editing target.



Finding 2: Balanced Calibration Evident in
CAP Scores. While our Correct Answer Prob-
ability (CAP) values are moderate relative to some
baselines, this is not a shortcoming but rather a
deliberate reflection of a cautious editing strategy.
The moderate CAP scores indicate that our method
deliberately refrains from overconfident updates,
ensuring that only edits with sufficient certainty are
applied. This balanced calibration is critical for
preventing overfitting and for maintaining the sta-
bility of non-targeted knowledge, contributing to
the robustness of our overall editing performance.

Finding 3: Superior Generalization Across
Benchmarks. Despite being trained solely on
the COUNTERFACT dataset, our method demon-
strates exceptional generalization, consistently out-
performing alternative approaches across diverse
evaluation benchmarks. The robustness of our re-
sults—characterized by low DP scores paired with
strong EOS and AMS metrics in multi-hop rea-
soning, subject specificity, and relation specificity
tasks—provides compelling evidence that our ap-
proach generalizes effectively to various knowl-
edge editing scenarios. This superior generaliza-
tion underscores the potential of our method as a
scalable and reliable solution for knowledge editing
of all kinds.

6 Related Work

LLM Knowledge Editing Knowledge editing
has gained attention as an effective method for up-
dating or correcting specific information within
LLMs without requiring extensive retraining. Ex-
isting approaches can be broadly classified into two
categories: parameter-preserving and parameter-
modifying techniques. Parameter-preserving meth-
ods, such as SERAC (Mitchell et al., 2022b),
maintain the model’s existing parameters and in-
stead leverage external memory or retrieval mecha-
nisms to refine responses dynamically. In contrast,
parameter-modifying methods directly adjust the
internal weights of the model to embed new or
corrected information. This category includes fine-
tuning-based strategies like FI-L (Zhu et al., 2020),
meta-learning approaches such as KE (De Cao
et al., 2021) and MEND (Mitchell et al., 2021),
as well as structured intervention techniques that
first localize and then edit knowledge representa-
tions, exemplified by MEMIT (Meng et al., 2022b).
These methods provide varying levels of efficiency
and precision, with locate-then-edit approaches

offering more targeted modifications while pre-
serving broader model behavior. The emergence
of knowledge editing frameworks underscores the
growing need for controllability and adaptability
in modern LLMs, ensuring that their responses
remain accurate and up-to-date without extensive
retraining.

Representation Engineering Representation En-
gineering (Andy Zou, 2023) is derived as a novel
approach that shifts the focus from neurons and
circuits to high-level representations, enabling both
monitoring and manipulation of cognitive functions
in deep neural networks. Their work demonstrates
that knowledge editing, along with other interven-
tions such as truthfulness enforcement and memo-
rization reduction, can be effectively implemented
through representation control. Methods such as
Linear Artificial Tomography (LAT) and Contrast
Vectors allow for precise identification and modifi-
cation of knowledge representations, aligning with
prior efforts in mechanistic interpretability and con-
cept erasure (Meng et al., 2023; Hernandez et al.,
2023). This line of research complements existing
strategies like causal tracing (Geva et al., 2022)
and activation steering (Turner et al., 2023), which
aim to localize and edit specific factual associations
within neural networks. The emergence of RepE
suggests that transparency-focused
based interventions can serve as an alternative to
parameter-based fine-tuning, offering a more tar-
geted and interpretable means of modifying LLM
behavior.

7 Discussion and Conclusions

In this work, we introduced REACT, a two-phase
editing framework that first isolates a compact
“belief-shift” vector from pairs of positive and neg-
ative stimuli using PCA and simple linear transfor-
mations, then applies controllable classifier-gated
perturbations to the model’s hidden representa-
tions. Our experiments on COUNTERFACT and
MQuAKE shows balanced gains in reliability, lo-
cality, generality and portability, and experiments
on EVOKE demonstrate that REACT lowers unin-
tended side effects of overfitting compared to other
methods.

Overall, REACT offers a practical approach for
more controlled knowledge updates in large lan-
guage models. We expect that such directions will
further refine LLM editing’s applicability without
relying on heavy parameter tuning.

representation-



Limitations

While experiments demonstrate that REACT ef-
fectively mitigates overfitting and exhibits strong
generalization across datasets such as COUNTER-
FACT, we acknowledge several limitations:

* Although REACT demonstrates effective gen-
eralization from the COUNTERFACT dataset
to other editing datasets, achieving the best
possible performance typically requires fine-
tuning or retraining on the specific dataset
relevant to the task.

* QOur evaluation primarily focuses on the ef-
fectiveness of factual knowledge editing and
its immediate impacts. Further investigation
is required to fully understand how edits in-
troduced by REACT may influence broader
linguistic abilities, including nuanced seman-
tic understanding, language generation coher-
ence, and performance in diverse, complex
real-world scenarios.

Ethical considerations

Our study involves experiments utilizing pub-
licly accessible large language models, specif-
ically Qwen and Llama, along with publicly
available benchmark datasets—COUNTERFACT,
MQuAKE, and EVOKE—that have been widely
employed and validated in prior research. These
models and datasets have been carefully curated
and published by their original authors to mitigate
potential ethical concerns such as biases, harmful
outputs, and privacy risks.
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A Dataset Details

A.1 COUNTERFACT

The COUNTERFACT dataset comprises 21,919
records that cover a diverse range of subjects, rela-
tions, and linguistic variations, and is divided into
three distinct subsets: a training set, a validation set,
and an edit set (serving as an independent test set).
The training set, validation set, and edit set contain
10,000 samples, 1,919 samples, and 10,000 sam-
ples, respectively. Each sample includes an original
factual statement alongside its counterfactually re-
vised variant, enabling systematic evaluation of
models’ sensitivity to subtle factual perturbations.

Dataset formulation The dataset consists of
$,7,0,0%, Sloc, Tlocs Oloc- The task can be described
as follows:

* Reliability: p(s,r) — o*
* Generality: p*(s,r) — o*
¢ Locality: p(Sioc, loc) — Oloc

where o is the original answer for p(s,r). o* is

the target answer after editing. p is a prompt con-
taining s and r, and p* is another expression of p
maintaining its meaning.

Dataset example One case of the dataset should

be
Symbol Meaning
s Danielle Darrieux
r mother tongue of
o French
o English
Sloc Michel Rocard
Tloc native speaker of
Oloc French
p(s,r) The mother tongue of Danielle Darrieux is
P (s,7) Where Danielle Darrieux is from, people speak
’ the language of
P(S1ocs Tloc) | Michel Rocard is a native speaker of

Table 1: Notations and their meanings.
Details of evaluation metrics The details of
these metrics are as follows:

Reliability M, assesses how accurately the
model performs on a given edit, focusing on its
ability to maintain basic factual correctness for
each specific modification, during an edit e
(s,r,0,0%):

E 1

e~ Degit

M = {argmax By (0| p(s.) = 0"} }
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Generality M, evaluates the model’s capacity
to apply the edit correctly to in-scope data, ensuring
that the model maintains generalization capabili-
ties:

Mgen = Ig 1 {argmax {]P)f* (O ‘ p*(377’)) = 0*}}
e Dedi o
p*w,/\/'?é)

where the N (e) stands for the rephrased neigh-
borhood of input text.

Locality M,. examines whether data outside
the scope of the edit remains unaffected, evaluating
whether the edit has preserved the model’s perfor-
mance on unrelated information.

Mioe = ]l{argm;ux]P’f* (z|p) = argm;waP’f(x | p)}

E
(z,p) ~Dioe
Here p = p(Sioc, Tloc ) from the table.

A.2 MQUAKE

The MQuAKE dataset comprises 3,000 samples,
each encoded as a structured JSON object that en-
capsulates multiple layers of information pertinent
to fact checking and counterfactual reasoning. Ev-
ery sample contains detailed rewrite instructions,
diverse composite questions, original and counter-
factual answers (with aliases), concise single-hop
Q&A pairs, and structured knowledge triples that
document the factual revisions.

data formulation The dataset consists of
$,7,0,0', Sport, 'ports Oport for each editing instance.
The task can be described as follows:

* Portability: p(sport, Tport) — Oport

To correctly answer p(Sport; Tport) the model must
understand the real meaning of fact (s, r,0’).

data example One case of the dataset should be

Symbol Meaning
s Microsoft
r chief executive officer of
0 Satya Nadella
o Steve Jobs
Sport Universal Windows Platform
Tport chief executive officer of the developer of
Oport Satya Nadella
p(s,r) The chief executive officer of Microsoft is
Who is the chief executive officer of the developer
P(Sport Tport) of the Universal Windows Platform?

Table 2: Notations and their meanings.
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Details of evaluation metrics The details of

these metrics are as follows:

Portability Evaluates the robustness of the gen-
eralization of the edit, evaluating whether the modi-
fied knowledge can be applied effectively to related
content.

E

67Dcdn
(z,p )~P(e)

Mporn = 1 {arg max {Py- (| p7) = w}}

Here the p’ denotes the P(Sports Tport) as in the
table, while P (e) being the Portability scope.

A3 EVOKE

The EVOKE dataset is organized into two parts,
"main" and "subj-spec" - comprising 1,031 and
458 samples, respectively. Each sample is repre-
sented as a JSON object containing detailed rewrite
instructions with multiple prompt variations, porta-
bility information for alternative fact verifications,
and prefix distractions, all designed to support rig-
orous evaluation of fact-checking and counterfac-
tual reasoning tasks.

data formulation The dataset consists of

/ / !
8,8 ,7,T ,0,0 , Osub, Sport, T'port, Oport; Sneighbours Tneighbour

for each editing instance. The task can be described
as follows:

* Multi-Hop Reasoning: p(Sport, 'port) —* Oport

* Subject Specificity: p(s, ') — ogup

* Relation Specificity: p(s’,r) — o

* Prefix Distraction:
/.
p(s7 T, O0'§ Sneighbor Tneighbor) — 0

Here s, 7’ represent another subject and relation
introduced for evaluation.

data example One case of the dataset should be



Meaning

Houston

s Baku

twin city of

r locate in

Aberdeen

Prague

Texas

Houston’s twin city

locate in

Czech Republic

Regensburg

twin city of

What is the twin city of
Houston? It is

In which country is
Houston’s twin city located?
Baku is a twin city of
Houston is located in

‘What is the twin city of Houston?
It is Prague. Regensburg is a twin city of

Osub
Sport
T'port
Oport
Sneighbour
Tneighbour

p(s,7)

P(spon-, 7'port>

p(s's7)
p(s,7)

/. . .
p(57 05 snelghborrnelghbor)

Table 3: Notations and their meanings.

Details of evaluation metrics The key
probability-based metrics used to quantify the
effectiveness of Overfit editing tasks for a given
edit e = (s, 7,0, 0") are as follows:

Correct Answer Probability (CAP) Mcap
measures the probability that the model generates
the correct answer ans given a prompt p. We define
the CAP metric as:

= [E
Mcap E

enrv

{Py-(ans [ p)}

edit

Original Answer Probability (OAP) Moap
evaluates the likelihood that the model continues
to output the pre-edit answer o, indicating potential
resistance to modification. The metric is defined
as:

Mopap = E

JE APp(o]p)}

Direct Probability (DP) Mpp assesses the
model’s likelihood of producing the edited knowl-
edge 0o* when prompted, capturing its direct recall
capability:

Mpp= E

Pr«(0*
E {Pr(o" |9}

Editing Overfit Score (EOS) Mgos evaluates
whether the model overfits by favoring the edit
target o* over the correct answer ans. Formally,
we define:

Mgos = E

{1{Py-(ans | p) > Py (0" [ p)}}
e~ Degit
Answer Modify Score (AMS) M anms measures
unintended interference by computing the propor-
tion of cases where the probability of the correct
answer surpasses that of the original answer:
Maws = E {1{P(ans|p) >Plo| p)}}

€~ Dedit
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B Examples of templates

B.1 Examples of Stimuli templates

In this section, we provide concrete examples of the
positive and negative stimulus instances referenced
in Section 3.1, which are used to extract model
representations related to a specific editing case.
These stimuli are generated based on structured
templates that enforce consistency while allowing
diversity in expression. The key idea is to construct
pairs of sentences that differ only in the factual
subject, allowing us to isolate semantic differences
associated with the target edit.

Editing Case (from COUNTERFACT):
Apple A5 was created by Apple — Google

Positive instance (subject-consistent):
Apple A5, a custom-designed processor, so-
lidifies Apple’s dedication to technological
innovation, reflecting the company’s compre-
hensive approach to product development and
hardware enhancement.

Negative instance (subject-altered): Apple
AS, a custom-designed processor, solidifies
Google’s dedication to technological innova-
tion, reflecting the company’s comprehensive
approach to product development and hard-
ware enhancement. )

N

For the stimulus template, we use:

Generate a statement related to the pro-
vided fact: ‘{Apple A5 was created by
Google}’.
The goal is to explore various dimensions and
aspects of the fact, focusing on the connections
between ‘{Apple A5}’ and ‘{Google}’.
The statement must include the words
‘{Apple A5}’ and ‘{Google}’.
Ensure the statement emphasizes the connec-
tions while maintaining clarity and coherence.
Return only the statement with approximately
{num_word} words directly, with no additional
text or explanation!

J

where the {num_word} is set to be around 25 to
control reasonable usage of GPU memory.




B.2 Examples of Prompted and Unprompted
Inputs

To support the analysis of model behavior during
and after editing, we utilize two types of input
contexts—prompted and unprompted—to probe
the model’s output. These forms differ by whether
they explicitly simulate an editing instruction and
context.

Editing Case (from COUNTERFACT):
Apple A5 was created by Apple — Google

Prompted Input (simulating a completed
factual update):

I want you to update the fact that Apple A5
was created by Google. This is absolutely
true in the following context. Given this es-
tablished fact, please tell me: Apple A5 was
created by

Unprompted Input (generic factual comple-
tion):
Apple A5 was created by

C Ablation Studies

C.1 Ablation Study on the Number of
Stimulus Vectors

To assess the impact of the stimulus-set size [N on
editing performance, we compared three config-
urations: N = 1024, N = 512, and N = 256.
We observed that setting N = 1024 triggers out-
of-memory (OOM) failures on a single NVIDIA
A100 80 GB GPU when using the Qwen-2.5 model,
making it infeasible under our computational con-
straints. Thereafter, reducing to N = 256 pre-
serves memory but yields insufficient representa-
tional richness, which in turn degrades editing met-
rics. The intermediate choice N = 512 fits within
hardware limits and delivers the best overall perfor-
mance.

Table 4 reports the quantitative results on the
COUNTERFACT benchmark.

Table 4: Ablation of stimulus-set size N on Llama3.1-
8B. Bold indicates the best result.

N Reliability (1) Generality (1) Locality (1) Portability (1) Average (1)
10241
512 (paper)
256

81.86
71.37

49.68
28.66

82.17
63.57

95.58 100.00
93.13 100.00

fOOM on NVIDIA A100 80GB.
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C.2 Ablation Study on the usage of PCA

To clarify our rationale for using PCA, we first
collect N positive-negative stimulus pairs, each
representing pre-edit and post-edit states. Our ob-
jective is to reduce the dimensionality of these rep-
resentation pairs to isolate the principal directional
difference—the "belief-shift"—that characterizes
the factual edit. PCA intuitively fulfills this purpose
by extracting the dominant directions of variance.
Moreover, PCA can be efficiently implemented via
Singular Value Decomposition (SVD), a differen-
tiable operation, thus allowing seamless integration
with back-propagation during training. In contrast,
dimension-reduction methods such as K-Means
clustering are not naturally differentiable and thus
do not readily support gradient-based optimization.

To empirically justify the effectiveness of PCA,
we conducted an ablation experiment comparing
PCA against a baseline method—random selection
of representation pairs—on the COUNTERFACT
benchmark. The results presented in Table 5 con-
firm the significant advantages of PCA in meeting
key editing requirements.

Table 5: Ablation study on PCA usage (evaluated on
Llama3.1-8B). Bold indicates the best results.

N Reliability (1) Generality (1) Locality (1) Portability (1) Average (1)

K-Means’
PCA (paper)
Random

95.58
33.12

82.17
10.01

"Not differentiable.

49.68 81.86
7.51 23.80

100.00
44.59

D Experiment Details

D.1 Experiment Resources and Parameters

In this study, we utilize an internal cluster equipped
with the following resources: AMD EPYC 7763
CPUs, NVIDIA A100 80GB GPUs, and 512GB
of RAM. The operating system is Ubuntu 20.04.6,
and we employ PyTorch in our experiments.

The training of classifier took 12 GPU hours for
each model on a single NVIDIA A100 80GB GPU,
with total parameter number of 7.6B for Qwen-2.5
and 8.03B for Llama3.1.

The training of REACT took 40 GPU hours for
each model on a single NVIDIA A100 80GB GPU,

with total parameter number of 719M for Qwen-2.5
and 1.04B for Llama3.1.



D.1.1 REACT

Parameters Llama3.1 Qwen2.5
Iters 20000 20000
. all layer of all layer of
Edit Layer Transformer Module | Transformer Module
Optimizer Adam Adam
Learning Rate | 1le — 5 le—5
Cedit 1 1
Cloc 0.1 0.1
Cedit,cls 1 1
Cloc,cls 0.1 0.1
D.1.2 FT
Parameters Llama3.1 Qwen2.5
Max Steps 25 25
. layer 29, 30, 31 of layer 27 of
Edit Layer Transformer Module | Transformer Module
Objective Optimization | Target New Target New
Optimizer Adam Adam
Learning Rate Se —4 be —4
D.1.3 MEND
Parameters Llama3.1 Qwen2.5
MaxlIter 10000 10000
Edit Layer layer 29,30,31 of layer 25,26,27 of

Transformer Module

Transformer Module

Optimizer Adam Adam

Learning Rate | 1 x 1076 1x 1076

Edit LR 1x 1074 1x107%
D.1.4 MEMIT

Parameters Llama3.1 Qwen2.5

act token subject last subject last

mom sample 3000 3000

Edit Layer

layer 4,5,6,7,8 of
Transformer Module

layer 4,5,6,7,8 of
Transformer Module

mom update weight

15000

15000

D.1.5s MELO
Parameters Llama3.1 Qwen2.5
Radius 75 75
. layer 30, 31 of layer 26, 27 of
Edit Layer Transformer Module | Transformer Module
block r 2 2
step 100 100
edit per block 4 4
number of block | 1500 1500
D.1.6 GRACE
Parameters | Llama3.1 Qwen2.5
epsilon 1 1
. layer 27 of layer 18 of
Edit Layer Transformer Module | Transformer Module
metrics euc euc
step 100 100
replacement | last last

D.2 Original experiment results
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COUNTERFACT MQuAKE
Model Method Reliability? Generality? Locality] Portability? Score

REACT 9558 82.17 100 4968 8186

FT 100 99.8 0.49 3838 59.67

Llama3l Menp 976 59.5 98.2 4536 75.17
MEMIT 998 523 94.7 2763 686l

MELO 823 35.0 411 2149 4497

GRACE 100 1.02 100 1819 54.80

REACT 936 83.3 100 P17 8152

owenzs T 100 98.5 L1 4626 6147
S04 MEND 937 15.8 85.3 4838 60.80
MEMIT 998 380 95.1 24 6358

MELO 690 8.2 873 1745 4549

GRACE 100 085 100 1744 5157

Table 6: Editing results comparison across different knowledge-editing methods on COUNTERFACT and
MQuAKE-CF-v2 with two LLMs. The best result for each metric is in bold, and the second best is underlined. The
final “Score” column is the arithmetic mean of all metrics for that row. A radar chart for the table is created at 3.

Prefix Distraction Multi-hop Reasoning Subject Specificity Relation Specificity
DP| EOSt CAPt DP| CAPt OAP| AMST EOSt DP| CAPt EOSt DP| CAPT EOST

REACT 544 7432 2432 096 3087 5.06 77.78 92.28 0 30.02 9815 022 1742 92.16
FT 99.78 0 0 99.08  5.56 2.03  69.71 0.12  89.62 035 0 99.76 0 0
Llama3.1 MEND 2746 51.13 1924 6.61 3339 34.68 4428 8735 6795 5516 37.12 1.07 1695 51.13
MEMIT 36.67 2597 1425 2062 4242 2473 7494 7506 6030 2526 2140 5.08 17.12 89.79
MELO 257 5276 797 058 1953 929 5657 6399 1591 57.04 9105 0.52 054 56.48
GRACE 6.58 69.21 2320 1.01 3277 3647 4209 9331 1344 56.14 9301 0.74 17.12 88.77

REACT 4.19 7611 24.66 1.11 3640 12.09 78.09 85.80 0 26.08 88.64 0.26 11.06 88.64
FT 99.73  0.15 033 9628 2594 2469 5839 292 8894 2026 131 9925 3.05 1.22
Qwen2.5 MEND 21.64 5049 18.87 5.17 3633 70.03 9.00 85.16 62.62 3878 2249 647 942 71.03
MEMIT 1257 5793 2416 929 44.02 5833 2956 8321 4265 2333 3013 1.81 10.14 83.70
MELO 5.02 70.18 21.12 135 3629 71.13 779 8990 14.17 37.06 7795 0.69 930 84.65
GRACE 560 70.83 2338 137 3630 71.00 815 8290 1348 36.99 79.26 0.76 10.74 86.86

Model Editor

Table 7: Editing results across different editing methods on EVOKE with two LLMs. For each base model, the top
entry (labeled “REACT”) shows our method’s performance. Bold and underline denote the best and second-best
scores respectively. A radar chart for the table is created at 4.

15



	Introduction
	Preliminaries
	Large Language Models
	Knowledge Editing in LLMs
	Overfitting during Editing

	REACT: Representation Extraction And Controllable Tuning to Overcome Overfitting
	Phase I: Extracting Latent Knowledge Representations
	Phase II: Controllable Perturbing Representations Selectively
	Details of the pre-trained classifier

	Experimental Settings
	Editing LLMs
	Knowledge Editing Baselines
	Editing Benchmarks
	COUNTERFACT
	MQuAKE
	EVOKE


	Experimental Results
	COUNTERFACT and MQuAKE Results
	EVOKE Results

	Related Work
	Discussion and Conclusions
	Dataset Details
	COUNTERFACT
	MQuAKE
	EVOKE

	Examples of templates
	Examples of Stimuli templates
	Examples of Prompted and Unprompted Inputs

	Ablation Studies
	Ablation Study on the Number of Stimulus Vectors
	Ablation Study on the usage of PCA

	Experiment Details
	Experiment Resources and Parameters
	REACT
	FT
	MEND
	MEMIT
	MELO
	GRACE

	Original experiment results


