
Published in Transactions on Machine Learning Research (11/2022)

Unsupervised Learning of Neurosymbolic Encoders

Eric Zhan* ezhan@caltech.edu
California Institute of Technology

Jennifer J. Sun* jjsun@caltech.edu
California Institute of Technology

Ann Kennedy
Northwestern University Feinberg School of Medicine

Yisong Yue
California Institute of Technology

Swarat Chaudhuri
University of Texas at Austin

* Equal contribution

Reviewed on OpenReview: https://openreview.net/forum?id=eWvBEMTlRq

Abstract

We present a framework for the unsupervised learning of neurosymbolic encoders, which are
encoders obtained by composing neural networks with symbolic programs from a domain-
specific language. Our framework naturally incorporates symbolic expert knowledge into
the learning process, which leads to more interpretable and factorized latent representations
compared to fully neural encoders. We integrate modern program synthesis techniques with
the variational autoencoding (VAE) framework, in order to learn a neurosymbolic encoder in
conjunction with a standard decoder. The programmatic descriptions from our encoders can
benefit many analysis workflows, such as in behavior modeling where interpreting agent actions
and movements is important. We evaluate our method on learning latent representations
for real-world trajectory data from animal biology and sports analytics. We show that our
approach offers significantly better separation of meaningful categories than standard VAEs
and leads to practical gains on downstream analysis tasks, such as for behavior classification.
Code can be found at https://github.com/ezhan94/neurosymbolic-encoders.

1 Introduction

Advances in unsupervised learning have enabled the discovery of latent structures in data from a variety
of domains, such as image data (Dupont, 2018), sound recordings (Calhoun et al., 2019), and tracking
data (Luxem et al., 2020). For instance, a common approach is to use encoder-decoder frameworks,
such as variational autoencoders (VAEs) (Kingma & Welling, 2014), to identify a low-dimensional latent
representation from the raw data that could contain disentangled factors of variation (Dupont, 2018) or
semantically meaningful clusters (Luxem et al., 2020). Such approaches typically employ complex mappings
based on neural networks, and explaining how the model assigns inputs to latent representations can be
challenging (Zhang et al., 2020).

In this paper, we introduce unsupervised neurosymbolic representation learning, which allows part of a
representation to be computed using symbolic encoder programs written in a predefined domain-specific
language (DSL). (The rest of the representation is computed using a neural network.) The use of such

1

https://openreview.net/forum?id=eWvBEMTlRq
https://github.com/ezhan94/neurosymbolic-encoders

Published in Transactions on Machine Learning Research (11/2022)

neurosymbolic encoders can offer two key benefits over purely neural approach. First, since a DSL reflects
structured domain knowledge, neurosymbolic encoders can often produce representations that are human-
interpretable (Verma et al., 2018; Shah et al., 2020). Second, as observed in studies that used hand-crafted
programmatic encoders (Zhan et al., 2020), these representations can potentially be more factorized or
well-separated into meaningful categories than purely neural representations.

Our learning algorithm is grounded in the VAE framework (Kingma & Welling, 2014; Mnih & Gregor, 2014)
and aims to discover a neurosymbolic encoder coupled with a standard neural decoder.1 A key challenge here
is that the space of programs in a DSL is combinatorial. We tackle this problem by assuming programs to be
differentiable and by tightly integrating standard VAE training with modern program synthesis methods
(Chaudhuri et al., 2021; Shah et al., 2020). We further show how to incorporate ideas from adversarial
information factorization (Creswell et al., 2017) and enforcing capacity constraints (Burgess et al., 2017;
Dupont, 2018) in order to mitigate issues such as posterior and index collapse in the learned representation.

Programmatic descriptions from neurosymbolic encoders are especially useful in behavior analysis (Segalin
et al., 2020; Sun et al., 2021b), where domain experts routinely interpret clusters of behaviors as part of an
analysis workflow. Accordingly, our experimental evaluation focuses on this setting. By integrating domain
knowledge using program synthesis, we demonstrate that our clusters are inherently interpretable and better
aligned with human-annotated labels across multiple behavior analysis datasets. To validate the end-to-end
practicality for analysis workflows, we integrate our automatically learned programs into a state-of-the-art
behavior analysis framework, Task Programming (Sun et al., 2021b), that typically relies on expert-crafted
programs, and demonstrate competitive performance using our automatically synthesized programs.

To summarize, our contributions are:

• We propose a neurosymbolic approach to representation learning, in which part of the latent
representation is produced by an interpretable encoder program, while the rest is computed using a
neural network.

• We realize the approach via a learning algorithm that combines VAE training and program synthesis.

• We show that our approach can significantly outperform purely neural encoders in extracting
semantically meaningful representations of behavior, as measured by standard unsupervised metrics.

• We further explore the flexibility of our approach, by showing that performance can be robust across
different DSL designs by domain experts.

• We showcase the practicality of our approach on downstream tasks, by incorporating our approach
into a state-of-the-art self-supervised learning approach for behavior analysis (Sun et al., 2021b).

2 Background

2.1 Variational Autoencoders

We build on VAEs (Kingma & Welling, 2014; Mnih & Gregor, 2014), a latent variable modeling framework
shown to learn effective latent representations (also called encodings/embeddings) (Higgins et al., 2016; Zhao
et al., 2017; Yingzhen & Mandt, 2018) and can capture the generative process (Oord et al., 2017; Vahdat &
Kautz, 2020; Zhan et al., 2020). VAEs introduce a latent variable z, an encoder qϕ, a decoder pθ, and a prior
distribution p on z. ϕ and θ are the parameters of the q and p respectively, often instantiated with neural
networks. The learning objective is to maximize the evidence lower bound (ELBO) of the data log-likelihood:

ELBO := Eqϕ(z|x)
[

log pθ(x|z)
]
−DKL

(
qϕ(z|x)||p(z)

)
≤ log p(x). (1)

The first term in Eq. 1 is the log-density assigned to the data, while the second term is the KL-divergence
between the prior and approximate posterior of z. Latent representations z are often continuous and modeled
with a Gaussian prior, but z can be modeled to contain discrete dimensions as well (Kingma et al., 2014;

1Some prior work have studied the complementary problem of learning (neuro-)symbolic decoders (e.g,. Ellis et al. (2018);
Feinman & Lake (2020)). See Section 5 for more discussion.

2

Published in Transactions on Machine Learning Research (11/2022)

Hu et al., 2017; Dupont, 2018). Our experiments are focused on behavioral tracking data in the form of
trajectories, and so in practice we utilize a trajectory variant of VAEs (Co-Reyes et al., 2018; Zhan et al.,
2020; Sun et al., 2021b), described in Section 3.5.

One challenge with VAEs (and deep encoder-decoder models in general) is that while the model is expressive,
it is often difficult to interpret what is encoded in the latent representation z. Common approaches include
taking traversals in the latent space and visualizing the resulting generations (Burgess et al., 2017), or
post-processing the latent variables using techniques such as clustering (Luxem et al., 2020). Such techniques
are post-hoc and thus cannot guide (in an interpretable way) the encoder to be biased towards a family
of structures. Some recent work have studied how to impose structure in the form of graphical models or
dynamics in the latent space (Johnson et al., 2016; Deng et al., 2017), and our work can be thought of as
a first step towards imposing structure in the form of symbolic knowledge encoded in a domain specific
programming language.

2.2 Synthesis of Differentiable Programs

Our approach utilizes recent work on the synthesis of differentiable programs (Chaudhuri et al., 2021; Shah
et al., 2020; Valkov et al., 2018), where one learns both the discrete structure of the symbolic program
(analogous to the architecture of a neural network) as well as the differentiable parameters within that
structure. Our formulation closely follows that of Shah et al. (2020). We use a domain-specific programming
language (DSL), generated with a context-free grammar (see Figure 3 for an example). A program is
represented as a pair (α,ψ), where α is a discrete program architecture and ψ are its real-valued parameters.
We denote P as the space of symbolic programs (i.e. programs with complete architectures). The semantics
of a program (α,ψ) is given by a function [[α]](x, ψ) that is guaranteed to be differentiable in both x and ψ.

Like Shah et al. (2020), we pose the problem of learning differentiable programs as search through a directed
program graph G. The graph G models the top-down construction of program architectures α through the
repeated firing of rules of the DSL grammar, starting with an empty architecture α0 (represented by the
“start” nonterminal of the grammar). The leaf nodes of G represent programs with complete architectures (no
nonterminals). Thus, P is the set of programs in the leaf nodes of G. The other nodes in G contain programs
with partial architectures (has at least one nonterminal). We interpret a program in a non-leaf node as being
neurosymbolic, by viewing its nonterminals as representing neural networks with free parameters. The root
node in G is the empty architecture α0, interpreted as a fully neural program. An edge (α, α′) exists in G if
one can obtain α′ from α by applying a rule in the DSL that replaces a nonterminal in α.

Program synthesis in this problem setting equates to searching through G to find the optimal complete
program architecture, and then learning corresponding parameters ψ, i.e., to find the optimal (α,ψ) that
minimizes a combination of standard training loss (e.g., classification error) and structural loss (preferring
“simpler” α’s). Shah et al. (2020) evaluate multiple strategies for solving this problem and finds informed
search using admissible neural heuristics to be the most efficient strategy (see appendix). Consequently, we
adopt this algorithm for our program synthesis task.

3 Neurosymbolic Encoders

The structure of our neurosymbolic encoder is shown in the right diagram of Figure 1. The latent representation
z = [zϕ, z(α,ψ)] is partitioned into neurally encoded zϕ and programmatically encoded z(α,ψ). This approach
boasts several advantages:

• The symbolic component of the latent representation is programmatically interpretable.

• The neural component can encode any residual information not captured by the program, which
maintains the model’s capacity compared to deep encoders (see synthetic experiment in Section 4.2).

• By incorporating a modular design, we can leverage state-of-the-art learning algorithms for both
differentiable encoder-decoder training and program synthesis.

3

Published in Transactions on Machine Learning Research (11/2022)

Input

Neural
Encoder

Symbolic Encoder:
Fully neural to start

Neural
Decoder

Reconstructed
Input Input

Symbolic Encoder:
Program depth + 1

Input

Neural
Encoder

Fully symbolic

Neural
Decoder

Reconstructed
Input

Step 1: Optimize with fixed

Step 2: Update symbolic encoder Repeat steps 1 & 2 until is fully symbolic,
Optimize with complete

Figure 1: Learning Neurosymbolic Encoders: Sketch of Algorithm 1 (Section 3.1). The symbolic
encoder is initially fully neural. We alternate between VAE training with the program architecture fixed
(Step 1 as in Eq. 2), and supervised program learning to increase the depth of the program by 1 (Step 2 as in
Eq. 3). Once we reach a symbolic program, we train the model one last time to learn all the parameters. The
color (in terms of lightness) of the symbolic encoder corresponds to the encoder becoming more symbolic
over time.

We denote qϕ and q(α,ψ) as the neural and symbolic encoders respectively (see Figure 1), where zϕ ∼ qϕ(·|x)
and z(α,ψ) ∼ q(α,ψ)(·|x). qϕ is instantiated with a neural network, but q(α,ψ) is a differentiable program with
architecture α and parameters ψ in some program space P defined by a DSL. Given an unlabeled training
set of x’s, our neurosymbolic-VAE (ns-vae) learning objective becomes:

max
ϕ,(α,ψ),θ

Lns-vae(ϕ, α, ψ, θ)

= max
ϕ,(α,ψ),θ

E
qϕ(zϕ|x)q(α,ψ)(z(α,ψ)|x)

[
log pθ(x|zϕ, z(α,ψ))︸ ︷︷ ︸

reconstruction loss

]
− DKL

(
qϕ(zϕ|x)||p(zϕ)

)︸ ︷︷ ︸
regularization for neural latent

−DKL

(
q(α,ψ)(z(α,ψ)|x)||p(z(α,ψ))

)︸ ︷︷ ︸
regularization for symbolic latent

.

(2)

Compared to the standard VAE objective in Eq. 1 for a single neural encoder, Eq. 2 has separate KL-divergence
terms for the neural and programmatic encoders.

3.1 Learning Algorithm

The challenge with solving for Eq. 2 is that while (ϕ, ψ, θ) can be optimized via back-propagation with α
fixed, optimizing for α is a discrete optimization problem. Since it is difficult to jointly optimize over both
continuous and discrete spaces, we take an iterative, alternating optimization approach. We start with a
fully neural program (one with empty architecture α0 as described in Section 2.2) trained using standard
differentiable optimization (Figure 1, Step 1). We then gradually make it more symbolic (Figure 1, Step 2)
by finding a program that is a child of the current program in G (more symbolic by construction of G) that
outputs as similar to the current latent representations as possible:

min
α′:(α,α′)∈G, ψ′

Lsupervised
(
q(α,ψ)(x), q(α′,ψ′)(x)

)
, (3)

which can be viewed as a form of distillation (from less symbolic to more symbolic programs) via matching
the input/output behavior. We solve Eq. 3 by enumerating over all child programs of the current search tree
and selecting the best one, which is similar to one iteration of iteratively-deepened depth-first search in Shah
et al. (2020) (more details in Section 3.2). We alternate between optimizing Eq. 2 and Eq. 3 until we obtain
a complete program. Algorithm 1 outlines this procedure and is guaranteed to terminate if G is finite by
specifying a maximum program depth.

We chose this optimization procedure for two reasons. First, it maximally leverages state-of-the-art tools
in both differentiable latent variable modeling (VAE-style training) and supervised program synthesis (for
distillation), leading to tractable algorithm design. Second, this procedure never makes a drastic change to
the program architecture, leading to relatively stable learning behavior across iterations.

4

Published in Transactions on Machine Learning Research (11/2022)

Algorithm 1 Learning a neurosymbolic encoder
1: Input: program space P, program graph G
2: initialize ϕ, ψ, θ, α = α0 (empty architecture)
3: while α is not complete do
4: ϕ, ψ, θ ← optimize Eq. 2 with α fixed
5: (α,ψ)← optimize Eq. 3
6: end while
7: ϕ, ψ, θ ← optimize Eq. 2 with complete α
8: Return: encoder {qϕ, q(α,ψ)}

Algorithm 2 Learning a neurosymbolic encoder
with k programs

1: Input: program space P, program graph G, k
2: for i = 1..k do
3: fix programs {q(α1,ψ1), . . . , q(αi−1,ψi−1)}
4: execute Algorithm 1 to learn q(αi,ψi)
5: remove q(αi,ψi) from P to avoid redundancies
6: end for
7: Return: encoder {qϕ, q(α1,ψ1), . . . , q(αk,ψk)}

3.2 Program Synthesis via NEAR

Our strategy for solving Eq. 3 utilizes the setup in Shah et al. (2020). We summarize the key points below.

Program graph G. Shah et al. (2020) learns programs in a supervised learning setting that minimizes a
structural cost s (deeper programs are more costly) and a prediction error ζ:

(α∗, ψ∗) = arg min
(α,ψ)

(s(α) + ζ(α,ψ)). (4)

Shah et al. (2020) construct a program graph G such that solving Eq. 4 equates to finding a leaf node with
the minimum path cost on G. We include a copy of their illustration for G in Figure 2. Our problem definition
in Eq. 3 is very similar so we utilize the same program graph. The difference is that our labels are not
ground-truth but rather the labels assigned by the current neurosymbolic encoder.

Figure 2: Figure 4 from Shah et al. (2020).
Structural costs s are in red, heuristic
values h in black, and prediction errors ζ
in blue. O refers to nonterminals.

Neural heuristic h. Shah et al. (2020) solve Eq. 4 by introducing
a heuristic as a neural admissible relaxation (NEAR for short).
Leveraging a fully differentiable DSL, they use neural networks to
fill in for nonterminals in programs and show that the performance
of such neurosymbolic programs are underestimates of the total
path costs of descendent leaf nodes and thus, can be used as an
admissible heuristic. This allows them to integrate their heuristic
with several graph search algorithms, of which they adopt A*
search and iteratively-deepened depth-first-search with branch-
and-bound (IDS-BB). We use IDS-BB in our work.

IDS-BB. The full algorithm for IDS-BB is described in Algorithm
2 in Shah et al. (2020). In our work, this reduces to the following:

1. For the current program, we enumerate its children in G.

2. We compute the heuristic for each child in G by replacing
any nonterminals with neural networks.

3. We commit to the most promising child (with respect
to the heuristic) and update the program, which can be
viewed as one iteration of the full IDS-BB algorithm.

One key difference is that the original IDS-BB algorithm maintains a frontier ordered by the best heuristics
encountered so far. However, our label distributions can change between iterations (since the symbolic
component of the encoder is updated and thus, so are the labels it assigns), which invalidates the heuristics
computed from previous iterations. This leaves a very interesting direction for future work.

3.3 Learning Multiple Programs

The interpretability of latent representations induced by symbolic encoders q(α,ψ) ultimately depends on the
DSL. For instance, a program that encodes to one of ten classes may not be very interpretable if it involves a

5

Published in Transactions on Machine Learning Research (11/2022)

matrix multiplication within the program. Instead, we learn binary programs that encode sequences into
one of two classes (using binary cross-entropy for Lsupervised, a uniform prior on 2-dimensional z(α,ψ), and
Gumbel-Softmax (Jang et al., 2017) to sample z(α,ψ) from the posterior). Figures 5a & 5b depict learned
binary programs that encode mice trajectories and their interpretations.

To encode more than two classes, we simply learn multiple binary programs by extending Eq. 2 to sum
over Lsupervised for k symbolic programs {q(α1,ψ1), . . . , q(αk,ψk)} and corresponding latent representations
{z(α1,ψ1), . . . , z(αk,ψk)}. This results in 2k classes and a solution space that now scales exponentially (e.g.
|P|k). Algorithm 2 outlines our greedy solution that reuses Algorithm 1 by iteratively learning one symbolic
program at a time. We leave the exploration of more sophisticated search methods as future work.

3.4 Dealing with Posterior and Index Collapse

Deep latent variable models, especially those with discrete latent variables, are notoriously prone to both
posterior (Bowman et al., 2015; Chen et al., 2016b; Oord et al., 2017) and index (Kaiser et al., 2018) collapse.
Since our algorithms optimize for such models repeatedly, they can be susceptible to these failure modes.
Below, we summarize two strategies that we found to work well in our setting.2

Adversarial information factorization. Index collapse is the phenomenon in which all data is encoded
into one class, resulting in a discrete latent variable z(α,ψ) that is effectively meaningless. Creswell et al.
(2017) counteracts index collapse by introducing an adversarial network Aω and maximizing the adversarial
loss below to ensure that the adversary Aω cannot successfully predict z(α,ψ) from zϕ.

max
ϕ,(α,ψ),θ

Lfac(ϕ, α, ψ, θ)

= max
ϕ,(α,ψ),θ

E
qϕ(zϕ|x)q(α,ψ)(z(α,ψ)|x)

[
log pθ(x|zϕ, z(α,ψ)) + min

ω
Ladv

(
Aω(zϕ), z(α,ψ)

)
︸ ︷︷ ︸

adversary

]
−DKL

(
qϕ(zϕ|x)||p(zϕ)

)
−DKL

(
q(α,ψ)(z(α,ψ)|x)||p(z(α,ψ))

)
(5)

Channel capacity constraint. Posterior collapse is the phenomenon in which the posterior trivially matches
the prior exactly (a KL-divergence of 0) but the latent variables are unused by the decoder. Burgess et al.
(2017) and Dupont (2018) instead force the KL-divergence terms to match capacities Cϕ and C(α,ψ), which
are hyperparameter (see appendix). Since the KL-divergence is an upper bound on the mutual information
between latent variables and the data (Kim & Mnih, 2018; Dupont, 2018), this encourages the latent variables
to encode information and aims to prevent posterior collapse.

max
ϕ,(α,ψ),θ

Lcap(ϕ, α, ψ, θ)

= max
ϕ,(α,ψ),θ

E
qϕ(zϕ|x)q(α,ψ)(z(α,ψ)|x)

[
log pθ(x|zϕ, z(α,ψ))

]
− γϕ|DKL

(
qϕ(zϕ|x)||p(zϕ)

)
− Cϕ| − γ(α,ψ)|DKL

(
q(α,ψ)(z(α,ψ)|x)||p(z(α,ψ))

)
− C(α,ψ)|

(6)

In our algorithms, we augment our initial objective in Eq. 2 with Eq. 5 and Eq. 6:
max

ϕ,(α,ψ),θ
Lns-vae(ϕ, α, ψ, θ) + λfacLfac(ϕ, α, ψ, θ) + λcapLcap(ϕ, α, ψ, θ), (7)

where λfac = λcap = 1 in our experiments.

3.5 Instantiation for Sequential Domains

The objective in Eq. 2 describes a general problem that is applicable to any domain. In our experiments, we
focus on sequential trajectory data. Trajectory data is often used in scientific applications where interpretability
is desirable, such as behavior discovery (Luxem et al., 2020; Hsu & Yttri, 2020). The ability to easily explain
the learned latent representation using programs can help domain experts better understand the structure
in their data. Trajectory data is also often relatively low dimensional, which helps experts encode domain
knowledge into the DSL more easily (Shah et al., 2020; Sun et al., 2021b; Zhan et al., 2020).

2There are many approaches available for tackling both these issues, but we emphasize that these contributions are orthogonal
to ours; as techniques for preventing posterior and index collapse improve, so will the robustness of our algorithm.

6

Published in Transactions on Machine Learning Research (11/2022)

α ::= x | ⊕(α1, . . . , αk) | ⊕θ(α1, . . . , αk)
if α1 then α2 else α3 | selS x | mapaverage (fun x1.α1) x

Figure 3: Our DSL for sequential domains, similar to the one used in Shah et al. (2020). x, ⊕, and ⊕θ

represent inputs, basic algebraic operations, and parameterized library functions, respectively. fun x.e(x)
represents a function that evaluates an expression e(x) over the input x. selS selects a subset S of the
dimensions of the input x. mapaverage g x applies the function g to every element of the sequence x and
returns the average of the results. We employ a differentiable approximation of the if -then-else construct.

In this domain, x is a trajectory of length T : x = {x1, . . . , xT }. We then factorize the log-density in Eq. 2 as
a product of conditional probabilities:

log pθ(x|zϕ, z(α,ψ)) =
T∑
t=1

log pθ(xt|x<t, zϕ, z(α,ψ)). (8)

When qϕ and pθ are instantiated with recurrent neural networks (RNN), the model is more commonly known
as a trajectory-VAE (TVAE) (Co-Reyes et al., 2018).

As the symbolic encoder q(α,ψ) maps sequences to vectors, we adopt a DSL (Figure 3) previously used for
sequence classification (Shah et al., 2020). Our DSL is purely functional and contains both basic algebraic
operations and parameterized library functions. Domain experts can easily augment the DSL with their own
functions, such as selection functions that select subsets of features that they deem potentially important. We
ensure that all programs in our DSL are differentiable by utilizing a smooth approximation of the if -then-else
construct (Shah et al., 2020). Figures 5a & 5b depict example programs (full details in the appendix).

4 Experiments

We take a multi-faceted approach to evaluate our unsupervised learning approach using synthetic data and
real-world data from animal behavior and sports analytics. We also show the end-to-end practicality of our
programs by applying them to a downstream behavior classification framework. Our research questions are:

• Q1: Are the clusters created with our programs meaningful? (Section 4.2). We evaluate
this aspect both qualitatively and quantitatively by comparing with the truth generative process on
synthetic datasets, as well as by comparing to human annotated labels on real-world datasets.

• Q2: How sensitive is our approach to different DSL choices? (Section 4.3). We compare
programs learned in our framework from three different DSLs designed by three domain experts for
studying animal behavior. The three DSLs (DSL 1, DSL 2, DSL 3) mainly differ in the behavioral
features chosen by experts, and are described in Appendix Section C.

• Q3: Are the programs useful for downstream tasks? (Section 4.4). Ultimately, the practicality
of these methods must be validated by their usefulness in downstream tasks such as those used in
scientific analyses. We apply our unsupervised programs to a behavior classification framework called
task programming (Sun et al., 2021b). This framework uses hand-crafted programs for self-supervision,
which we replace with our automatically learned programs.

4.1 Experimental Setup

4.1.1 Datasets

We summarize the datasets used in our experiments, and provide full details in the appendix.

Synthetic. We generate synthetic trajectories by sampling initial positions and velocities from a Gaussian
distribution and introducing 2 ground-truth factors of variation as large external forces in the positive/negative
x/y directions that affect velocity, totaling to 4 discrete classes. Velocities are sampled and fixed for the entire
trajectory, but we also sample small Gaussian noise at each timestep. We generate 10k/2k/2k trajectories
of length 25 for train/validation/test. Figure 4a shows 50 trajectories from the training set. This dataset

7

Published in Transactions on Machine Learning Research (11/2022)

(a) 50 synthetic trajectories

1[>6.34][
selFinalXPosition x]

1[>8.99][
selFinalYPosition x]

(b) learned programs (c) zϕ, 0 programs (d) zϕ, 1 program (e) zϕ, 2 programs

Figure 4: Synthetic dataset experiments. (a) Trajectories in synthetic training set. Initial/final
positions are indicated in green/blue. Red lines delineate ground-truth classes, based on final positions.
(b) k = 2 learned binary programs using our algorithm. The first program (top) thresholds the final
x-position while the second program (bottom) thresholds the final y-position. (c, d, e) Neural latent variables
reduced to 2 dimensions. Top/bottom rows are colored by final x/y-positions respectively (green/yellow
is positive/negative). (c) Clusters in TVAE neural latent space correspond to 4 ground-truth classes. (d)
After learning the first program, the neural latent space contains clusters only based on the final y-position.
(e) After learning the second program, all 4 ground-truth classes have been extracted as programs and the
remaining neural latent space contains no clear clustering.

is useful because we can evaluate whether our algorithm can learn programs that match the ground-truth
factors of variation (such ground-truth information is not available in real-world datasets).

CalMS21. Our primary real-world dataset is the CalMS21 dataset (Sun et al., 2021a), containing trajectories
of socially interacting mice captured for neuroscience experiments. Each frame contains 7 tracked keypoints for
each of two mice. The dataset has one set of unlabeled tracking data, which we use to train our neurosymbolic
encoder, and another set annotated with 4 labels at each frame by human experts (frame-level behaviors),
which we use to evaluate our programs. These labels consists of three behaviors-of-interest between mice
(attack, mount, investigation), and a label corresponding to all other behaviors (other), with a more detailed
description in Sun et al. (2021a). Specifically, our evaluation uses labels from the test split of the CalMS21
classification task. We have 231k/52k/262k trajectories of length 21 for train/val/test. The features in our
DSL are selected by a domain expert based on the attributes from Segalin et al. (2020).

Basketball. We use the same basketball dataset as in Shah et al. (2020) and Zhan et al. (2020) that tracks
professional basketball players. Each trajectory is of length 25 over 8 seconds and contains the xy-positions
of 10 players. We split trajectories by grouping offensive and defensive players (5 each), effectively doubling
the dataset size. We evaluate our algorithm and the baselines with respect to the labels of offensive/defensive
players. Our DSL includes additional domain features like player speed and distance-to-basket. In total, we
have 177k/31k/27k trajectories for train/val/test.

4.1.2 Quantitative Evaluation Setup

The quantitative evaluations are used to compare our neurosymbolic encoders with baseline unsupervised
learning methods on the real-world datasets.

Baselines. We compare our model containing a neurosymbolic encoder against other approaches based
on VAEs. In particular, we compare against JointVAE (Dupont, 2018), which also has both discrete
and continuous latent representations, and can be viewed as a fully neural version of our neurosymbolic
encoder. Other baselines include VAE, VAE with K-means loss (Ma et al., 2019; Luxem et al., 2020), and
Beta-VAE (Burgess et al., 2017). These models have a fully neural encoder and learn continuous latent
representations, which we can then use to produce clusters with K-means clustering (Lloyd, 1982). We
additionally compare against VQ-VAEs (Oord et al., 2017), which produce discrete latent clusters. We use
the TVAE version of all baselines (details included in the appendix).

Metrics. Unlike in the synthetic setting, we do not have ground truth programs in the real-world datasets.
We thus evaluate our programs quantitatively using (1) standard cluster metrics relative to human-defined

8

Published in Transactions on Machine Learning Research (11/2022)

1[>−7]

 mapaverage (fun xt.
multiply (ResidentSpeedAffine[−6.3];−8.3(xt),

NoseTailDistAffine[.04];−9.1(xt)) x

(a) Program learned using CalMS21 DSL 1, resulting NMI 0.428. Since speed is positive, the first term is always
negative. One cluster thus generally consists of trajectories where the mice are further apart, such that the second
term is positive, and the negative product is less than the threshold. The other cluster generally occurs when the mice
are close together, the second term is negative, and the product will be positive.

1[>−5.7]

 mapaverage (fun xt.
add (ResidentAxisRatioAffine[−8.0];−7.1(xt),

BoundingBoxIOUAffine[−16.6];5.9(xt)) x

(b) Program learned using CalMS21 DSL 2, resulting NMI 0.320. The axis ratio is the ratio of major axis length
and minor axis length of an ellipse fitted to the mouse keypoints. The second term measures the bounding box overlap
between mice, and is zero when the mice are far apart. It follows that one cluster generally contains trajectories
when the mice has larger bounding box overlaps or if the resident axis ratio is large. The other cluster thus contains
trajectories where the mice bounding boxes do not overlap, and resident body is compact.

Figure 5: Learned programs on CalMS21. The subscripts represents the learned weights (in brackets) and
biases (after the brackets) for the affine transformation followed by the bias.

Model CalMS21 Basketball
Purity NMI RI Purity NMI RI

Random assignment .597 .000 .536 .500 .000 .500
TVAE .598 .089 .564 .501 .001 .500

TVAE+KMeans loss .605 .118 .573 .501 .001 .500
JointVAE .597 .019 .537 .560 .034 .507
VQ-TVAE .601 .124 .588 .572 .016 .511
Beta-TVAE .616 .115 .589 .565 .013 .509

Ours (1 program) .706 .423 .694 .596 .027 .518
Ours (2 programs) .725 .320 .648 .561 .033 .507
Ours (3 programs) .756 .314 .633 .584 .022 .514

Table 1: Evaluating clusters from
baseline and our neurosymbolic
encoders on human-annotated la-
bels. Median purity, NMI, and RI
on CalMS21 and Basketball compared
to human-annotated labels (3 runs).
Experiment hyperparameters are in-
cluded in the appendix.

labels, and (2) average precision for behavior classification when integrating our programs into downstream
tasks. For cluster metrics, we use Purity (Schütze et al., 2008), Normalized Mutual Information (NMI)
(Zhang et al., 2006), and Rand Index (RI) (Rand, 1971). We report the median of three runs. More details,
including the standard deviation and the ELBO, are in the appendix.

4.2 Q1: Are the clusters created with our programs meaningful?

Synthetic dataset experiments. Our synthetic dataset consists of trajectory data with 4 ground truth
classes, corresponding to positive/negative x/y directions. The goal is to learn symbolic programs that
capture the ground-truth classes, while leaving the neural latent space to capture any residual information,
such as the random initial velocity. We visualize the 2 dimensions of the neural latent space of a TVAE
along with 0, 1, and 2 learned programs in Figures 4c, 4d & 4e. The initial neural latent space of the TVAE
contains 4 clusters corresponding to the 4 ground-truth classes in Figure 4c. After our algorithm learns the
first program that thresholds the final x-position, the resulting latent space in Figure 4d captures the other
factor of variation as 2 clusters corresponding to the final y-positions. Lastly, when our algorithm learns a
second program that thresholds the final y-position, the resulting latent space in Figure 4e no longer contains
any clear clustering, showing that our approach has successfully extracted the 4 ground-truth classes.

Real-world datasets experiments. We compare clusters produced by our neurosymbolic encoder with
fully neural autoencoding baselines (Table 1), measured against human-annotated behaviors. For CalMS21,

9

Published in Transactions on Machine Learning Research (11/2022)

Model CalMS21 (DSL 1) CalMS21 (DSL 2) CalMS21 (DSL 3)
Purity NMI RI Purity NMI RI Purity NMI RI

Ours (1 program) .706 .423 .694 .689 .364 .681 .649 .325 .616
Ours (2 programs) .725 .320 .648 .715 .359 .673 .664 .324 .634

Table 2: Effect of varying DSLs on CalMS21 for neurosymbolic encoders. Median purity, NMI, and
RI on CalMS21 of our algorithms with DSLs selected by three domain experts compared to human-annotated
labels (3 runs). DSL1 corresponds to Table 1.

Model CalMS21 Basketball
Purity NMI RI Purity NMI RI

TVAE .598 .089 .564 .501 .001 .500
TVAE (w/ features) .597 .103 .570 .565 .012 .508

VQ-TVAE .601 .124 .588 .571 .016 .511
VQ-TVAE (w/ features) .608 .114 .601 .525 .002 .501

Beta-TVAE .616 .115 .589 .566 .013 .509
Beta-TVAE (w/ features) .612 .096 .571 .563 .011 .508

Table 3: Effect of encoding
DSL features into baselines.
Median purity, NMI, and RI on
CalMS21 and Basketball com-
pared to human-annotated labels
(3 runs) for baseline with trajec-
tory inputs only, and baseline
with trajectory features added.

we observe that our method consistently outperforms the baselines in all three cluster metrics. We note that
purity increases as the number of programs (thus clusters) increase, while NMI and RI decrease. This implies
our method with two clusters best correspond to CalMS21 behaviors, but the other clusters found by our
method may still be useful for domain experts. For Basketball, our method improves slightly with respect to
purity, but is overall comparable with the baselines.

Qualitative interpretation of our clusters. We further study the programs and clusters produced by
our algorithm for the CalMS21 dataset, through a qualitative study with a behavioral neuroscientist. Here,
the behavioral neuroscientist analyzes the programmatic clusters produced from the symbolic representation
of our neurosymbolic encoder for one, two, and three programs, resulting in two, four, and eight clusters
respectively. The CalMS21 dataset is originally manually annotated with 4 classes corresponding to “attack”,
“investigation” (sniff), “mount”, and “other” labels. “Other” corresponds to when no behaviors-of-interest is
occuring, and is typically when the mice are not interacting.

In the single program case, our programs correspond to two discovered clusters. These clusters were classified
by domain experts as referring to (1) when the mice are interacting and (2) when there are no interactions.
They noted that this is based on distance between the mice, which is consistent with our program (Figure 5a)
using distance between nose of resident and tail of intruder. For two programs, there are a total of four
discovered clusters, with two clusters each corresponding to no interaction and interaction. For the interaction
clusters, the domain expert was further able to identify sniff tail behavior as one of the clusters. In this case,
the programs found were based on intruder head body angle, resident nose and intruder tail distance, and
resident nose and intruder nose distance. The domain expert found the three program case to be more difficult
to interpret, but was able to identify clusters corresponding to sniff tail, resident exploration, interaction
facing the same direction (ex: mounting), and interaction facing opposite directions (ex: face-to-face sniffing).

4.3 Q2: How sensitive is our approach to the DSL?

Choice of DSL. To study the effect of DSL choices, we worked with three domain experts to construct
three different DSLs used to learn our programmatic representations. These DSLs contained 8 to 10 different
behavioral features for studying mouse social behavior on CalMS21, in addition to common sequential
operations (Figure 3). A full list of features selected by domain experts are in the appendix.

While there is some variability, our approach consistently outperforms the baselines that contain fully neural
encoders for all three DSLs (Table 2). Comparing some learned programs from two DSLs (Figures 5a, 5b),
both contain a term that correlates with whether the mice are interacting (distance and bounding box
overlap), and another term that correlates with resident speed (mice tends to be more stretched when they
are moving quickly).

10

Published in Transactions on Machine Learning Research (11/2022)

10 2 10 1 100

Training Data Fraction (Log Scale)

1.2 × 10 1

1.4 × 10 1

1.6 × 10 1

1.8 × 10 1

2 × 10 1
2.2 × 10 1
2.4 × 10 1

Er
ro

r (
Lo

g
Sc

al
e)

Task Programming with Program Variations

Features
Features
 + TREBA
 (10 expert progs)
Features
 + TREBA
 (ours, 1 prog)
Features
 + TREBA
 (ours, 2 progs)

Figure 6: Applying symbolic encoders for self-supervision. “Features” is baseline w/o self-supervision.
“TREBA” is a self-supervised approach in the Task Programming paradigm (Sun et al., 2021b), using either
expert-crafted programs or our symbolic encoders as the weak-supervision rules. The shaded region is std
dev over 9 repeats. The std dev for our approach (not shown) is comparable. Based on Sun et al. (2021b),
the error is computed using 1.0 − Mean Average Precision.

DSL features as input. Lastly, we experiment with using the same DSL features introduced by domain
experts as additional features for input trajectories instead (Table 3). For both CalMS21 and Basketball, the
baselines using the additional features have comparable performance to using input trajectory data alone. In
contrast, by using the features more explicitly as part of the DSL in our neurosymbolic encoders, we are able
to produce clusters with a better separation between behavior classes based on cluster metrics (see Table 1).

4.4 Q3: Are the programs useful for downstream tasks?

We apply our programs to frame-level behavior classification (Segalin et al., 2020; Eyjolfsdottir et al.,
2016; Burgos-Artizzu et al., 2012), where the goal is to automatically quantify behavior based on expert
annotations. We are motivated by the observation that manual behavior annotation is time-consuming and
expensive (Anderson & Perona, 2014), often being a bottleneck in the analysis workflow. Our unsupervised
programs have the potential to reduce annotation effort and help accelerate behavioral studies, through
the task programming framework. Task programming (Sun et al., 2021b) uses hand-crafted programs as
self-supervision to improve behavior classification data efficiency; however, hand designing programs still
requires human effort. Here, we show that unsupervised programs learned using our neurosymbolic encoders
performs comparably to expert-designed programs on CalMS21.

We integrate the learned programs from our neurosymbolic encoder into the task programming framework
(i.e., use them as a source of self-supervision instead of the expert-crafted programs), and compare to the
classification performance using expert programs (Figure 6). The classification performance is computed using
Mean Average Precision on the behaviors-of-interest in CalMS21 (attack, investigation, mount). Using only
one program found using our approach, we are able to achieve comparable performance to 10 expert-written
programs on the behavior classification task studied in Sun et al. (2021b). Importantly, we note that we
automatically learned the self-supervision tasks from a DSL, instead of hand-crafting them as in Sun et al.
(2021b). This demonstrates that programs found by our approach can be applied effectively to downstream
behavior analysis tasks such as task programming.

5 Other Related Work

Interpretable latent variable models. Latent representations, especially those that are human-
interpretable, can help us understand the structure of data. These models may learn disentangled fac-
tors (Higgins et al., 2016; Chen et al., 2016a; Ma et al., 2020) or semantically meaningful clusters (Ma
et al., 2019) using unsupervised learning approaches. These approaches are often grounded in the VAE
framework (Kingma & Welling, 2014). Some of these approaches, such as JointVAE (Dupont, 2018), Discrete
VAE (Rolfe, 2016), Guided-VAE (Ding et al., 2020), and VQ-VAE (Oord et al., 2017), learn discrete latent
representations (in particular, JointVAE learns a combined discrete-continuous representation, just like our
approach). However, these approaches use fully neural encoders. To our knowledge, our work is the first to

11

Published in Transactions on Machine Learning Research (11/2022)

propose neurosymbolic encoders, where the symbolic component produces a symbolic program that produces
an low-dimensional encoding of the input data.

Neurosymbolic programming. Neurosymbolic programming (Chaudhuri et al., 2021) has seen much
activity in the recent past. Existing approaches here are often trained in a supervised fashion (Gulwani, 2011;
Wang et al., 2017; Shah et al., 2020; Cui & Zhu, 2021), or within a (generative) policy learning context with
an explicit reward function (Chen et al., 2018; Verma et al., 2018; 2019; Bastani et al., 2018; Inala et al.,
2020; Feinman & Lake, 2020; Trivedi et al., 2021). Prior work on unsupervised program synthesis has mostly
addressed generative modeling, i.e., the synthesis of programs that can generate the training data (Tian
et al., 2018; Ellis et al., 2018; Feinman & Lake, 2020). This task is analogous to learning a symbolic decoder
rather than a symbolic encoder. Studying how to incorporate such methods into our framework can be an
interesting future direction.

Representation learning for behavior analysis. Representation learning has been applied to a variety of
downstream tasks for behavior analysis, such as discovering behavior motifs (Berman et al., 2014; Singh et al.,
2021), identifying internal states (Calhoun et al., 2019), and improving sample-efficiency (Sun et al., 2021b).
Studies in this area have used methods such as VAE (Kingma & Welling, 2014), AR-HMM (Wiltschko et al.,
2015), forecasting or predicting future behaviors (Liang et al., 2020; Gao et al., 2020), and Umap (McInnes
et al., 2018) to better understand the latent structure of behavior. Similar to a few other representation
learning methods (Luxem et al., 2020; Sun et al., 2021b), we also use an encoder-decoder setup on trajectory
data. However, our work learns a neurosymbolic encoder whereas existing works in this area have fully neural
encoders. Our work can aid behavior analysis by learning more interpretable latent representations and can
be applied to downstream tasks, such as behavior classification.

6 Discussion

We present a novel approach for unsupervised learning of neurosymbolic encoders. Our approach integrates the
VAE framework with program synthesis and results in a learned representation with both neural and symbolic
components. Experiments on trajectory data from behavior analysis demonstrate that our programmatic
descriptions of the latent space result in more meaningful clusters relative to human-defined behaviors,
compared to purely neural encoders. Additionally, we show the practicality of our approach by applying our
learned programs to achieve comparable performance to expert-constructed tasks in a self-supervised learning
approach for behavior classification.

Problem Scope. We explore unsupervised learning of neurosymbolic encoders for the first time, and here,
our neurosymbolic encoders tackle domains consisting of lower dimensional spatiotemporal data. These
types of domains covers a wide range of application areas, from behavioral data (animal behavior and sports
analytics in our experiments), to control systems for rigid-body systems, to biomarkers or socioeconomic
markers. In many of these domains, there are existing domain expertise that can be leveraged to create the
DSL for our neurosymbolic encoders. For example, we use the behavioral features from Segalin et al. (2020)
in our work. One direct application of learning semantically meaningful programs is that it can be used to
improve learning pipelines, such as task programming, as we have demonstrated.

Limitations. One limitation of our current approach is scalability of the program search process. While our
program search is parallelizable, such that learning additional programs would not incur significant additional
time, the symbolic encoder update does increase the runtime over a purely neural solution. Here, we have
explored our approach on settings where shorter programs are beneficial. Future work have the potential to
further expand the applications of these models to larger, more complex systems. Furthermore, our approach
requires programs that are differentiable with respect to its parameters. We note that there are increasingly
more differentiable DSLs, such as Shah et al. (2020); Cui & Zhu (2021); Valkov et al. (2018); Gaunt et al.
(2016); Bunel et al. (2016), and there are commonly-adopted ways to make differentiable approximations
to more established non-differentiable DSLs (for example, in Shah et al. (2020), the authors use a smooth
differentiable approximation of the non-differentiable if-then-else statement). These common challenges in
using neurosymbolic learning in science is further discussed in Sun et al. (2022).

12

Published in Transactions on Machine Learning Research (11/2022)

Future Directions. There are many future directions to explore for neurosymbolic encoders based on our
work. Scalability is one important area as discussed above. Another direction is to extend this work to
other domains such as image and text data, in order to learn interpretable symbolic latent representations.
Neurosymbolic encoders on images would require a DSL for pixel data as well as architecture changes, such as
using convolutional VAEs. Furthermore, one can improve upon our greedy approach in Algorithm 2 for finding
the optimal set of symbolic programs, e.g. by performing local coordinate ascent in program space, similar
to algorithms for large-scale neighborhood search (Ahuja et al., 2002). Lastly, while practically-oriented
extensions of VAEs such as our own have yielded great practical benefit, they often lead to sub-optimal
results from a pure likelihood (or ELBO) perspective. One final direction is to rigorously formulate a learning
objective from the ground up that formally encapsulates practically-oriented extensions of VAEs.

Acknowledgements. The authors are grateful to the anonymous reviewers for their helpful comments. This
work was funded in part by NSF #1918865, and a gift from Amazon.

References
Ravindra K Ahuja, Özlem Ergun, James B Orlin, and Abraham P Punnen. A survey of very large-scale

neighborhood search techniques. Discrete Applied Mathematics, 123(1-3):75–102, 2002.

David J Anderson and Pietro Perona. Toward a science of computational ethology. Neuron, 84(1):18–31,
2014.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy extraction.
In Advances in Neural Information Processing Systems, 2018.

Gordon J Berman, Daniel M Choi, William Bialek, and Joshua W Shaevitz. Mapping the stereotyped
behaviour of freely moving fruit flies. Journal of The Royal Society Interface, 11(99):20140672, 2014.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz, and Samy Bengio.
Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

Rudy R Bunel, Alban Desmaison, Pawan K Mudigonda, Pushmeet Kohli, and Philip Torr. Adaptive neural
compilation. Advances in Neural Information Processing Systems, 29, 2016.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. Understanding disentangling in β-vae. In Neural Information Processing Systems
Disentanglement Workshop, 2017.

Xavier P Burgos-Artizzu, Piotr Dollár, Dayu Lin, David J Anderson, and Pietro Perona. Social behavior
recognition in continuous video. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1322–1329. IEEE, 2012.

Adam J Calhoun, Jonathan W Pillow, and Mala Murthy. Unsupervised identification of the internal states
that shape natural behavior. Nature neuroscience, 22(12):2040–2049, 2019.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong Yue, et al.
Neurosymbolic programming. Foundations and Trends® in Programming Languages, 7(3):158–243, 2021.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: Inter-
pretable representation learning by information maximizing generative adversarial nets. arXiv preprint
arXiv:1606.03657, 2016a.

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever,
and Pieter Abbeel. Variational lossy autoencoder. arXiv preprint arXiv:1611.02731, 2016b.

Xinyun Chen, Chang Liu, and Dawn Song. Towards synthesizing complex programs from input-output
examples. In International Conference on Learning Representations, 2018.

13

Published in Transactions on Machine Learning Research (11/2022)

John Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, and Sergey Levine.
Self-consistent trajectory autoencoder: Hierarchical reinforcement learning with trajectory embeddings. In
International Conference on Machine Learning, 2018.

Antonia Creswell, Yumnah Mohamied, Biswa Sengupta, and Anil A Bharath. Adversarial information
factorization. arXiv preprint arXiv:1711.05175, 2017.

Guofeng Cui and He Zhu. Differentiable synthesis of program architectures. Advances in Neural Information
Processing Systems, 34:11123–11135, 2021.

Zhiwei Deng, Rajitha Navarathna, Peter Carr, Stephan Mandt, Yisong Yue, Iain Matthews, and Greg Mori.
Factorized variational autoencoders for modeling audience reactions to movies. In IEEE conference on
computer vision and pattern recognition, 2017.

Zheng Ding, Yifan Xu, Weijian Xu, Gaurav Parmar, Yang Yang, Max Welling, and Zhuowen Tu. Guided
variational autoencoder for disentanglement learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7920–7929, 2020.

Emilien Dupont. Learning disentangled joint continuous and discrete representations. In Neural Information
Processing Systems, 2018.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B Tenenbaum. Learning to infer graphics
programs from hand-drawn images. In Advances in Neural Information Processing Systems, 2018.

Eyrun Eyjolfsdottir, Kristin Branson, Yisong Yue, and Pietro Perona. Learning recurrent representations for
hierarchical behavior modeling. arXiv preprint arXiv:1611.00094, 2016.

Reuben Feinman and Brenden M Lake. Learning task-general representations with generative neuro-symbolic
modeling. In International Conference on Learning Representations, 2020.

Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, and Cordelia Schmid.
Vectornet: Encoding hd maps and agent dynamics from vectorized representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11525–11533, 2020.

Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor,
and Daniel Tarlow. Terpret: A probabilistic programming language for program induction. arXiv preprint
arXiv:1608.04428, 2016.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. ACM Sigplan
Notices, 46(1):317–330, 2011.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In International Conference on Learning Representations, 2016.

Alexander I Hsu and Eric A Yttri. B-soid: An open source unsupervised algorithm for discovery of spontaneous
behaviors. bioRxiv, pp. 770271, 2020.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. Toward controlled
generation of text. In International Conference on Machine Learning, 2017.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing programmatic
policies that inductively generalize. In International Conference on Learning Representations, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2017.

Matthew J Johnson, David Duvenaud, Alexander B Wiltschko, Sandeep R Datta, and Ryan P Adams.
Composing graphical models with neural networks for structured representations and fast inference. In
Advances in Neural Information Processing Systems, 2016.

14

Published in Transactions on Machine Learning Research (11/2022)

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob Uszkoreit, and Noam Shazeer.
Fast decoding in sequence models using discrete latent variables. In International Conference on Machine
Learning, 2018.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on Machine
Learning, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference on
Learning Representations, 2014.

Diederik P Kingma, Danilo J Rezende, Shakir Mohamed, and Max Welling. Semi-supervised learning with
deep generative models. arXiv preprint arXiv:1406.5298, 2014.

Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel Urtasun. Learning lane
graph representations for motion forecasting. In European Conference on Computer Vision, pp. 541–556.
Springer, 2020.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137,
1982.

Kevin Luxem, Falko Fuhrmann, Johannes Kürsch, Stefan Remy, and Pavol Bauer. Identifying behavioral
structure from deep variational embeddings of animal motion. bioRxiv, 2020.

Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu Zhu. Disentangled self-supervision
in sequential recommenders. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 483–491, 2020.

Qianli Ma, Jiawei Zheng, Sen Li, and Gary W Cottrell. Learning representations for time series clustering.
Advances in neural information processing systems, 32:3781–3791, 2019.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In International
Conference on Machine Learning, 2014.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. In
Advances in Neural Information Processing Systems, 2017.

William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical association, 66(336):846–850, 1971.

Jason Tyler Rolfe. Discrete variational autoencoders. arXiv preprint arXiv:1609.02200, 2016.

Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Introduction to information retrieval,
volume 39. Cambridge University Press Cambridge, 2008.

Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Zelikowsky, Jennifer J Sun, Pietro Perona,
David J Anderson, and Ann Kennedy. The mouse action recognition system (mars): a software pipeline for
automated analysis of social behaviors in mice. bioRxiv, 2020.

Ameesh Shah, Eric Zhan, Jennifer J Sun, Abhinav Verma, Yisong Yue, and Swarat Chaudhuri. Learning
differentiable programs with admissible neural heuristics. In Neural Information Processing Systems, 2020.

Satpreet H Singh, Steven M Peterson, Rajesh PN Rao, and Bingni W Brunton. Mining naturalistic human
behaviors in long-term video and neural recordings. Journal of Neuroscience Methods, 2021.

15

Published in Transactions on Machine Learning Research (11/2022)

Jennifer J Sun, Tomomi Karigo, Dipam Chakraborty, Sharada P Mohanty, David J Anderson, Pietro Perona,
Yisong Yue, and Ann Kennedy. The multi-agent behavior dataset: Mouse dyadic social interactions. arXiv
preprint arXiv:2104.02710, 2021a.

Jennifer J Sun, Ann Kennedy, Eric Zhan, David J Anderson, Yisong Yue, and Pietro Perona. Task
programming: Learning data efficient behavior representations. In Conference on Computer Vision and
Pattern Recognition, 2021b.

Jennifer J Sun, Megan Tjandrasuwita, Atharva Sehgal, Armando Solar-Lezama, Swarat Chaudhuri, Yisong
Yue, and Omar Costilla-Reyes. Neurosymbolic programming for science. arXiv preprint arXiv:2210.05050,
2022.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T Freeman, Joshua B Tenenbaum, and
Jiajun Wu. Learning to infer and execute 3d shape programs. In International Conference on Learning
Representations, 2018.

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs as
interpretable and generalizable policies. Advances in neural information processing systems, 34:25146–
25163, 2021.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. In Advances in Neural
Information Processing Systems, 2020.

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri. Houdini: Lifelong
learning as program synthesis. In Advances in neural information processing systems, 2018.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. Pro-
grammatically interpretable reinforcement learning. In International Conference on Machine Learning,
2018.

Abhinav Verma, Hoang M Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic
reinforcement learning. In Advances in Neural Information Processing Systems, 2019.

Xinyu Wang, Isil Dillig, and Rishabh Singh. Program synthesis using abstraction refinement. Proceedings of
the ACM on Programming Languages, 2017.

Alexander B Wiltschko, Matthew J Johnson, Giuliano Iurilli, Ralph E Peterson, Jesse M Katon, Stan L
Pashkovski, Victoria E Abraira, Ryan P Adams, and Sandeep Robert Datta. Mapping sub-second structure
in mouse behavior. Neuron, 88(6):1121–1135, 2015.

Li Yingzhen and Stephan Mandt. Disentangled sequential autoencoder. In International Conference on
Machine Learning, 2018.

Eric Zhan, Albert Tseng, Yisong Yue, Adith Swaminathan, and Matthew Hausknecht. Learning calibratable
policies using programmatic style-consistency. In International Conference on Machine Learning, 2020.

Hui Zhang, Tu Bao Ho, Yang Zhang, and M-S Lin. Unsupervised feature extraction for time series clustering
using orthogonal wavelet transform. Informatica, 30(3), 2006.

Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A survey on neural network interpretability. arXiv
preprint arXiv:2012.14261, 2020.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning hierarchical features from generative models. In
International Conference on Machine Learning, 2017.

16

Published in Transactions on Machine Learning Research (11/2022)

A Additional Results

Table 4 contains the standard deviations of the results in Table 1 of the main paper.

Table 5 contains the median ELBO of our baselines and our neurosymbolic encoders. We find that our symbolic
encoders are comparable with our baselines. This is expected: since we are imposing additional constraints
on the encoder (a program with a bounded depth), we would not expect the variational approximation to be
better than an encoder without these constraints (fully-neural encoder). In general, obtaining better or more
semantically-meaningful cluster assignments can come at the cost of a smaller ELBO. For example, we find
that introducing a clustering loss to the TVAE can result in better metrics, but in lower ELBO as well.

Model CalMS21 Basketball
Purity NMI RI Purity NMI RI

TVAE .002 .011 .001 .049 .012 .008
TVAE+KMeans loss .001 .002 .001 .006 .001 .001

JointVAE .000 .003 .022 .037 .020 .004
VQ-TVAE .005 .004 .016 .042 .022 .014
Beta-TVAE .001 .001 .001 .124 .140 .088

Ours (1 program) .026 .056 .035 .039 .014 .001
Ours (2 programs) .017 .051 .019 .053 .020 .018
Ours (3 programs) .088 .075 .030 .007 .002 .002

Table 4: Standard deviation of purity, NMI, and RI on CalMS21 and Basketball compared to human-annotated
labels (3 runs). Random assignment metrics have standard deviation close to 0.

Model CalMS21 Basketball
TVAE 1120 895

TVAE+KMeans loss 1079 893
JointVAE 1090 902
VQ-TVAE 971 911
Beta-TVAE 1110 898

Ours (1 program) 1075 894
Ours (2 programs) 1073 893
Ours (3 programs) 1079 899

Table 5: Median ELBO of CalMS21 and Basketball across 3 runs.

B Implementation Details

The hyperparameters for our approach are in Tables 6, 7 and the hyperparameters for baselines are in
Table 8. We used the Adam Kingma & Ba (2014) optimizer for all training runs. Specifically, Table 6 contains
hyperparameters for program learning. Our use of the hyperparameters during the program learning process
are the same as those from NEAR Shah et al. (2020). Table 7 contains the hyperparameters for training the
VAE component of our model, including the hyperparameters we used for capacity.

n. epochs s. epochs frontier size penalty max depth lr batch size
Synthetic 10 10 30 0.01 2 0.0002 32
CalMS21 6 10 8 0.01 5 0.001 256

Basketball 8 8 30 0.01 3 0.002 128

Table 6: Hyperparameters for program learning. n. epochs and s. epochs represent the number of neural and
symbolic epochs respectively, where the neural epoch is for the neural heuristic. lr is the learning rate.

17

Published in Transactions on Machine Learning Research (11/2022)

epochs z dim h dim RNN dim adv. dim disc. cap. cont. cap. lr
Synthetic 50 4 16 16 8 0.6 - 0.0002
CalMS21 30 8 256 256 8 0.69 10 0.0001

Basketball 20 8 128 128 8 0.6 4 0.02

Table 7: Hyperparameters for VAE training. The batch size is the same as the ones for program learning in
Table 6.

JointVAE VQ-TVAE Beta-TVAE
weight disc. cap cont. cap # embed-

dings.
weight cap cap iter

CalMS21 100 0.69 10 4 100 20 10k
Basketball 10 0.6 4 2 10 5 20k

Table 8: Hyperparameters for baseline models. On CalMS21, the z dim for all baselines are 32 and trained
for 200 epochs.

B.1 Baseline Details

TVAE. We use a variation of the VAE where the inputs are trajectory data, called a TVAE Co-Reyes et al.
(2018); Zhan et al. (2020); Sun et al. (2021b). Here, the neural encoder qϕ and decoder pθ are instantiated
with recurrent neural networks (RNN), where z ∼ qϕ(·|x). In this domain, x is a trajectory of length T :
x = {x1, . . . , xT }. The TVAE objective is:

Ltvae = Eqϕ
[T∑
t=1

− log(pθ(xt|x<t, z))
]

+DKL(qϕ(z|x)||p(z)). (9)

All other baselines are variations of the TVAE, based on variations of VAE studied in recent works.

TVAE + KMeans loss. A few works Ma et al. (2019); Luxem et al. (2020) have studied adding a loss to
the VAE framework to encourage clustering in the latent space, called the K-means loss. Given a data matrix
z ∈ Rd×N , the K-means objective is:

Lk-means = Tr(zT z) − Tr(AT zT zA), (10)
where A ∈ RN×k is called the cluster indicator matrix. We optimize this loss using the implementation
in Luxem et al. (2020), where A is updated by computing the k-first singular values of

√
ztz. The K-means

loss is trained jointly with the TVAE loss (Eq 9) as one of our baselines.

JointVAE. JointVAE Dupont (2018) is a variation of VAE that jointly optimizes discrete (c) and continuous
(z) latent variables. The JointVAE objective encourages the KL divergence terms to match capacities Cz and
Cc that gradually increases during training. The objective is:

Ljointvae = Eqϕ [log pθ(x|z, c)] − γ|DKL(qϕ(z|x)||p(z)) − Cz| − γ|DKL(qϕ(c|x)||p(c)) − Cc|, (11)
where γ is a constant. Since the capacities of the discrete and continuous variables are controlled separately,
the model is forced to encode information using both channels. Here, we use the trajectory formulation of
JointVAE, where:

log pθ(x|z, c) =
T∑
t=1

log pθ(xt|x<t, z, c). (12)

VQ-TVAE. VQ-VAE Oord et al. (2017) combines vector quantization with VAEs. These models produce
discrete latent encodings that are used to index an embedding table (or codebook). ze , the continuous
output of the encoder, is mapped to a discrete encoding based on its nearest neighbor in the codebook, then
the indexed encoding zq is used as input to the decoder. During training, the model learns the codebook, as
well as the assignments. The objective is:

Lvqvae = log pθ(x|zq) + ||sg[ze] − e||22 + β||ze − sg[e]||22, (13)
where e are embeddings from the codebook, and sg represents the stopgradient operator.

18

Published in Transactions on Machine Learning Research (11/2022)

Beta-TVAE. Beta-VAEs Higgins et al. (2016); Burgess et al. (2017) have been shown to learn disentangled
representations from the image domain. As originally proposed, an adjustable hyperparameter β is used to
weigh the KL term in the VAE objective. We use the version of beta-vae training objective with gradually
increasing capacity C proposed in Burgess et al. (2017). This object is:

Lbetavae = Eqϕ [log pθ(x|z)] − γ|DKL(qϕ(z|x)||p(z)) − C|, (14)
where γ is a constant. Here, we apply the beta-VAE objective to trajectory data using the factorization
shown in Eq 8.

B.2 Metrics Definition

We evaluate our programs quantitatively using standard cluster metrics relative to human-defined labels.
The metrics we use are Purity (Schütze et al., 2008), Normalized Mutual Information (NMI) (Zhang et al.,
2006), and Rand Index (RI) (Rand, 1971). These metrics have also been used by other works for evaluating
clustering (Ma et al., 2019; Luxem et al., 2020). The definition of purity is:

Purity = 1
n

∑
u∈U

max
v∈V

|u ∩ v| (15)

where U is the set of human-defined labels, V is the set of cluster assignments from the algorithm, and n is
the total number of trajectories.

The NMI is defined as:

NMI =
∑
u∈U

∑
v∈V |u ∩ v| log

(n|u∩v|
|u||v|

)√∑
u∈U |u| log |u|

n

∑
v∈U |v| log |v|

n

(16)

RI is defined as:

RI = TP + TN

n(n− 1)/2 (17)

where TP are the number of trajectory pairs correctly placed into the same cluster, TN are the number of
trajectory pairs correctly placed into different clusters, and n is the total number of trajectories. For all
metrics, a value closer to 1 indicates clusters that more closely match the human-defined labels.

C Dataset and DSL Details

Synthetic. We generate trajectories with the following steps:

1. Sample initial position x1 ∼ N ([10, 10], [1, 1]).

2. Sample velocity from v = [vx, vy] ∼ N ([0, 0], [1, 1]) such that 0.05 < ∥v∥2 < 0.4.

3. Sample force in x-direction cx ∼ Bernoulli(0.5) and update v′
x = vx + 0.4 · (2cx − 1).

4. Sample force in y-direction cy ∼ Bernoulli(0.5) and update v′
y = vy + 0.4 · (2cy − 1).

5. Generate trajectory with xt+1 = xt + v′ + 0.2 · ϵt, where ϵt ∼ N (0, 1).

v′ is fixed for an entire trajectory. (cx, cy) defines a label for each trajectory (one of 4). The ground-truth
decoder is linear with respect to x, v, cx, cy. The DSL for the synthetic dataset includes library functions
that threshold the final x and y positions, used to demonstrate that the ground-truth can be learned and the
information can be extracted from the neural latent space (Figure 4). Experiments were run locally with an
Intel 3.6-GHz i7-7700 CPU with 4 cores and an NVIDIA GTX 1080 Ti GPU with 3584 CUDA cores.

CalMS21. The CalMS21 dataset Sun et al. (2021a) consists of trajectory data from a mouse tracker Segalin
et al. (2020), where each mouse is tracked by seven body keypoints from an overhead camera. The two mice
are engaging in social interaction, where an intruder mouse is introduced to the cage of the resident mouse.
The dataset contains an unlabelled split which we use for training and validation, and we use the test split of

19

Published in Transactions on Machine Learning Research (11/2022)

Task 1 in CalMS21 for testing. Each frame of the test split is annotated by a domain expert with one of
four labels: attack, mount, investigation, other. We use these annotated behavior labels for comparison with
clusters produced by our algorithm. This dataset is available under the CC-BY-NC-SA license.

The feature selects in the CalMS21 DSL are based on behavior attributes computed on trajectory data
from domain experts in this area Segalin et al. (2020). In particular, we asked three domain experts to
independently select features from Segalin et al. (2020) to be part of the DSL. The time it takes domain
experts to do this step is on the timescale of minutes. A full list of all features use in the DSLs are as follows:

• Features in DSL 1: head body angle (resident and intruder), social angle (resident and intruder),
speed (resident and intruder), distance between nose of resident and tail of intruder, distance between
nose of resident and nose of intruder.

• Features in DSL 2: distance between head of mice, distance between body of mice, distance between
head of resident to body of intruder, resident acceleration, resident nose speed, resident axis ratio of
fitted ellipse, intersection over union of mice bounding boxes, resident social angle, distance between
nose of resident and tail of intruder, distance between nose of resident and nose of intruder.

• Features in DSL 3: head body angle (resident and intruder), area of ellipse fitted to body keypoints
(resident and intruder), acceleration (resident and intruder), distance between nose of resident and
tail of intruder, distance between nose of resident and nose of intruder.

Note that unless otherwise stated, the CalMS21 experiments uses the features from DSL 1.

The experiments are ran on Amazon EC2 with an Intel 2.3 GHz Xeon CPU with 4 cores equipped with a
NVIDIA Tesla M60 GPUs with 2048 CUDA cores.

Basketball. The basketball dataset was also used in Shah et al. (2020); Zhan et al. (2020) and tracks the
xy-positions of players from real NBA games. The positions are centered on the left half-court. Both (5)
offensive and (5) defensive players are tracked, as well as the ball (excluded in our experiments).

The DSL for basketball contains library functions that compute the speed, acceleration, final positions, and
distance-to-basket of players and take the maximum, minimum, or average over the players. We did not
consult a domain expert for this DSL, but these functions were used as labeling functions in Zhan et al.
(2020). Basketball experiments were run locally with an Intel 3.6-GHz i7-7700 CPU with 4 cores and an
NVIDIA GTX 1080 Ti GPU with 3584 CUDA cores.

20

	Introduction
	Background
	Variational Autoencoders
	Synthesis of Differentiable Programs

	Neurosymbolic Encoders
	Learning Algorithm
	Program Synthesis via NEAR
	Learning Multiple Programs
	Dealing with Posterior and Index Collapse
	Instantiation for Sequential Domains

	Experiments
	Experimental Setup
	Datasets
	Quantitative Evaluation Setup

	Q1: Are the clusters created with our programs meaningful?
	Q2: How sensitive is our approach to the DSL?
	Q3: Are the programs useful for downstream tasks?

	Other Related Work
	Discussion
	Additional Results
	Implementation Details
	Baseline Details
	Metrics Definition

	Dataset and DSL Details

