
Under review as a conference paper at ICLR 2023

IMPROVED STEIN VARIATIONAL GRADIENT DESCENT
WITH IMPORTANCE WEIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Stein Variational Gradient Descent (SVGD) is a popular sampling algorithm used
in various machine learning tasks. It is well known that SVGD arises from a
discretization of the kernelized gradient flow of the Kullback-Leibler divergence
DKL (· | π), where π is the target distribution. In this work, we propose to enhance
SVGD via the introduction of importance weights, which leads to a new method
for which we coin the name β-SVGD. In the continuous time and infinite particles
regime, the time for this flow to converge to the equilibrium distribution π, quan-
tified by the Stein Fisher information, depends on ρ0 and π very weakly. This is
very different from the kernelized gradient flow of Kullback-Leibler divergence,
whose time complexity depends on DKL (ρ0 | π). Under certain assumptions, we
provide a descent lemma for the population limit β-SVGD, which covers the de-
scent lemma for the population limit SVGD when β → 0. We also illustrate the
advantages of β-SVGD over SVGD by simple experiments.

1 INTRODUCTION

The main technical task of Bayesian inference is to estimate integration with respect to the posterior
distribution

π(x) ∝ e−V (x),

where V : Rd → R is a potential. In practice, this is often reduced to sampling points from the
distribution π. Typical methods that employ this strategy include algorithms based on Markov Chain
Monte Carlo (MCMC), such as Hamiltonian Monte Carlo (Neal, 2011), also known as Hybrid Monte
Carlo (HMC) (Duane et al., 1987; Betancourt, 2017), and algorithms based on Langevin dynamics
(Dalalyan & Karagulyan, 2019; Durmus & Moulines, 2017; Cheng et al., 2018).

One the other hand, Stein Variational Gradient Descent (SVGD)—a different strategy suggested
by Liu & Wang (2016)—is based on an interacting particle system. In the population limit, the
interacting particle system can be seen as the kernelized negative gradient flow of the Kullback-
Leibler divergence

DKL (ρ | π) :=
∫

log
(
ρ
π

)
(x) dρ(x); (1)

see (Liu, 2017; Duncan et al., 2019). SVGD has already been widely used in a variety of machine
learning settings, including variational auto-encoders (Pu et al., 2017), reinforcement learning (Liu
et al., 2017), sequential decision making (Zhang et al., 2018; 2019), generative adversarial net-
works (Tao et al., 2019) and federated learning (Kassab & Simeone, 2022). However, current theo-
retical understanding of SVGD is limited to its infinite particle version (Liu, 2017; Korba et al., 2020;
Salim et al., 2021; Sun et al., 2022), and the theory on finite particle SVGD is far from satisfactory.

Since SVGD is built on a discretization of the kernelized negative gradient flow of (1), we can learn
about its sampling potential by studying this flow. In fact, a simple calculation (for example, see
Korba et al. (2020)) reveals that

min
0≤s≤t

IStein (ρs | π) ≤ DKL(ρ0|π)
t , (2)

where IStein (ρs | π) is the Stein Fisher information (see Definition 2) of ρs relative to π, which is
typically used to quantify how close to π are the probability distributions (ρs)

t
s=0 generated along
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this flow. In particular, if our goal is to guarantee min
0≤s≤t

IStein (ρs | π) ≤ ε, result (2) says that we

need to take
t ≥ DKL(ρ0|π)

ε .

Unfortunately, and this is the key motivation for our work, the quantity the initial KL divergence
DKL (ρ0 | π) can be very large. Indeed, it can be proportional to the underlying dimension, which
is highly problematic in high dimensional regimes. Salim et al. (2021) and Sun et al. (2022) have
recently derived an iteration complexity bound for the infinite particle SVGD method. However,
similarly to the time complexity of the continuous flow, their bound depends on DKL (ρ0 | π).

1.1 SUMMARY OF CONTRIBUTIONS

In this paper, we design a family of continuous time flows—which we call β-SVGD flow—by
combining importance weights with the kernelized gradient flow of the KL-divergence. Surpris-
ingly, we prove that the time for this flow to converge to the equilibrium distribution π, that is
min0≤s≤t IStein (ρs | π) ≤ ε with (ρs)

t
s=0 generated along β-SVGD flow, can be bounded by

− 1
εβ(β+1) when β ∈ (−1, 0). This indicates that the importance weights can potentially accel-

erate SVGD. Actually, we design β-SVGD method based on a discretization of the β-SVGD flow and
provide a descent lemma for its population limit version. Some simple experiments in Appendix D
verify our predictions.

We summarize our contributions in the following:

• A new family of flows. We construct a family of continuous time flows for which we
coin the name β-SVGD flows. These flows do not arise from a time re-parameterization of
the SVGD flow since their trajectories are different, nor can they be seen as the kernelized
gradient flows of the Rényi divergence.

• Convergence rates. When β → 0, this returns back to the kernelized gradient flow of the
KL-divergence (SVGD flow); when β ∈ (−1, 0), the convergence rate of β-SVGD flows
is significantly improved than that of the SVGD flow in the case DKL (ρ0 | π) is large.
Under a Stein Poincaré inequality, we derive an exponential convergence rate of 2-Rényi
divergence along 1-SVGD flow. Stein Poincaré inequality is proved to be weaker than Stein
log-Sobolev inequality, however like Stein log-Sobolev inequality, it is not clear to us when
it does hold.

• Algorithm. We design β-SVGD algorithm based on a discretization of the β-SVGD flow
and we derive a descent lemmas for the population limit β-SVGD.

• Experiments. Finally, we do some experiments to illustrate the advantages of β-SVGD
with negative β. The simulation results on β-SVGD when β changes from positive to
negative corroborate our theory.

1.2 RELATED WORKS

The SVGD sampling technique was first presented in the fundamental work of Liu & Wang (2016).
Since then, a number of SVGD variations have been put out. The following is a partial list: Newton
version SVGD (Detommaso et al., 2018), stochastic SVGD (Gorham et al., 2020), mirrored SVGD
(Shi et al., 2021), random-batch method SVGD (Li et al., 2020) and matrix kernel SVGD (Wang
et al., 2019). The theoretical knowledge of SVGD is still constrained to population limit SVGD. The
first work to demonstrate the convergence of SVGD in the population limit was by Liu (2017); Korba
et al. (2020) then derived a similar descent lemma for the population limit SVGD using a different
approach. However, their results relied on the path information and thus were not self-contained,
to provide a clean analysis, Salim et al. (2021) assumed a Talagrand’s T1 inequality of the target
distribution π and gave the first iteration complexity analysis in terms of dimension d. Following
the work of Salim et al. (2021); Sun et al. (2022) derived a descent lemma for the population limit
SVGD under a non-smooth potential V .

In this paper, we consider a family of generalized divergences, Rényi divergence, and SVGD with
importance weights. For these two themes, we name a few but non-exclusive related results. Wang
et al. (2018) proposed to use the f -divergence instead of KL-divergence in the variational inference
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problem, here f is a convex function; Yu et al. (2020) also considered variational inference with
f -divergence but with its dual form. Han & Liu (2017) considered combining importance sampling
with SVGD, however the importance weights were only used to adjust the final sampled points but
not in the iteration of SVGD as in this paper; Liu & Lee (2017) considered importance sampling, they
designed a black-box scheme to calculate the importance weights (they called them Stein importance
weights in their paper) of any set of points.

2 PRELIMINARIES

We assume the target distribution π ∝ e−V , and we have oracle to calculate the value of e−V (x) for
all x ∈ Rd.

2.1 NOTATION

Let x = (x1, . . . , xd)
>
, y = (y1, . . . , yd)

> ∈ Rd, denote 〈x, y〉 :=
∑d
i=1 xiyi and ‖x‖ :=√

〈x, x〉. For a square matrix B ∈ Rd×d, the operator norm and Frobenius norm of B are de-

fined respectively by ‖B‖op :=
√
%(B>B) and ‖B‖F :=

√∑d
i=1

∑d
j=1B

2
i,j , respectively, where

% denotes the spectral radius. It is easy to verify that ‖B‖op ≤ ‖B‖F . Let P2(Rd) denote the
space of probability measures with finite second moment; that is, for any µ ∈ P2(Rd) we have∫
‖x‖2 dµ(x) < +∞. The Wasserstein 2-distance between ρ, µ ∈ P2(Rd) is defined by

W2 (ρ, µ) := inf
η∈Γ(ρ,π)

√∫
‖x− y‖2 dη(x, y),

where Γ (ρ, µ) is the set of all joint distributions defined on Rd × Rd having ρ and µ as marginals.
The push-forward distribution of ρ ∈ P2

(
Rd
)

by a map T : Rd → Rd, denoted by T#ρ,
is defined as follows: for any measurable set Ω ∈ Rd, T#ρ (Ω) := ρ

(
T−1 (Ω)

)
. By defini-

tion of the push-forward distribution, it is not hard to verify that the probability densities satisfy
T#ρ(T (x))|det DT (x)| = ρ(x), where DT is the Jacobian matrix of T . The reader can refer to
Villani (2009) for more details.

2.2 RÉNYI DIVERGENCE

Next, we define the Rényi divergence which plays an important role in information theory and
many other areas such as hypothesis testing (Morales González et al., 2013) and multiple source
adaptation (Mansour et al., 2012).

Definition 1 (Rényi divergence) For two probability distributions ρ and µ on Rd and ρ � µ, the
Rényi divergence of positive order α is defined as

Dα(ρ | µ) :=


1

α−1 log

(∫ (
ρ
µ

)α−1

(x) dρ(x)

)
0 < α <∞, α 6= 1∫

log
(
ρ
µ

)
(x) dρ(x) α = 1

. (3)

If ρ is not absolutely continuous with respect to µ, we set Dα(ρ | µ) = ∞. Further, we denote
DKL (ρ | µ) := D1 (ρ | µ).

Rényi divergence is non-negative, continuous and non-decreasing in terms of the parameter α;
specifically, we have DKL (ρ | µ) = limα→1 Dα(ρ | µ). More properties of Rényi divergence can
be found in a comprehensive article by Van Erven & Harremos (2014). Besides Rényi divergence,
there are other generalizations of the KL-divergence, e.g., admissible relative entropies (Arnold
et al., 2001).

2.3 BACKGROUND ON SVGD

Stein Variational Gradient Descent (SVGD) is defined on a Reproducing Kernel Hilbert
Space (RKHS) H0 with a non-negative definite reproducing kernel k : Rd × Rd → R+. The
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key feature of this space is its reproducing property:

f(x) = 〈f(·), k(x, ·)〉H0
, ∀f ∈ H0, (4)

where 〈·, ·〉H0
is the inner product defined on H0. Let H be the d-fold Cartesian product of H0.

That is, f ∈ H if and only if there exist f1, · · · , fd ∈ H0 such that f = (f1, . . . , fd)
>. Naturally,

the inner product onH is given by

〈f, g〉H :=
d∑
i=1

〈fi, gi〉H0
, f = (f1, . . . , fd)

> ∈ H, g = (g1, . . . , gd)
> ∈ H. (5)

For more details of RKHS, the readers can refer to Berlinet & Thomas-Agnan (2011).

It is well known (see for example Ambrosio et al. (2005)) that∇ log
(
ρ
π

)
is the Wasserstein gradient

of DKL (· | π) at ρ ∈ P2(Rd). Liu & Wang (2016) proposed a kernelized Wasserstein gradient of
the KL-divergence, defined by

gρ(x) :=
∫
k(x, y)∇ log

(
ρ
π

)
(y) dρ(y) ∈ H. (6)

Integration by parts yields

gρ(x) = −
∫

[∇ log π(y)k(x, y) +∇yk(x, y)] dρ(y). (7)

Comparing the Wasserstein gradient∇ log
(
ρ
π

)
with (7), we find that the latter can be easily approx-

imated by

gρ(x) ≈ ĝρ̂ := − 1
N

N∑
i=1

[∇ log π(xi)k(x, xi) +∇xik(x, xi)] , (8)

with ρ̂ = 1
N

∑N
i=1 δxi and (xi)

N
i=1 sampled from ρ. With the above notations, the SVGD update rule

xi ← xi + γ
N

N∑
j=1

[
∇ log π(xj)k(xi, xj) +∇xjk(xi, xj)

]
, i = 1, . . . , N, (9)

where γ is the step-size, can be presented in the compact form ρ̂ ← (I − γĝρ̂)# ρ̂. When we talk
about the infinite particle SVGD, or population limit SVGD, we mean ρ ← (I − γgρ)# ρ. The
metric used in the study of SVGD is the Stein Fisher information or the Kernelized Stein Discrep-
ancy (KSD).

Definition 2 (Stein Fisher Information) Let ρ ∈ P2(Rd). The Stein Fisher Information of ρ rela-
tive to π is defined by

IStein(ρ | π) :=
∫∫

k(x, y)
〈
∇ log

(
ρ
π

)
(x),∇ log

(
ρ
π

)
(y)
〉
dρ(x) dρ(y). (10)

A sufficient condition under which limn→∞ IStein(ρn | π) implies ρn → π weakly can be
found in Gorham & Mackey (2017), which requires: i) the kernel k to be in the form k(x, y) =(
c2 + ‖x− y‖2

)θ
for some c > 0 and θ ∈ (−1, 0); ii) π ∝ e−V to be distant dissipative; roughly

speaking, this requires V to be convex outside a compact set, see Gorham & Mackey (2017) for an
accurate definition.

In the study of the kernelized Wasserstein gradient (7) and its corresponding continuity equation
∂ρt
∂t + div (ρtgρt) = 0,

Duncan et al. (2019) introduced the following kernelized log-Sobolev inequality to prove the expo-
nential convergence of DKL (ρt | π) along the direction (7):

Definition 3 (Stein log-Sobolev inequality) We say π satisfies the Stein log-Sobolev inequality
with constant λ > 0 if

DKL(ρ | π) ≤ 1
2λIStein(ρ | π). (11)

While this inequality can guarantee an exponential convergence rate of ρt to π, quantified by the
KL-divergence, the condition for π to satisfy the Stein log-Sobolev inequality is very restrictive. In
fact, little is known about when (11) holds.
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Figure 1: The performance of β-SVGD with three choices of β, but using the same step-size. The
blue dashed line is the target distribution π: the Gaussian mixture 2

5N (2, 1) + 3
5N (6, 1). The green

solid line is the distribution generated by β-SVGD after 100 iterations; see Appendix D for more
results and details.

3 CONTINUOUS TIME DYNAMICS OF THE β-SVGD FLOW

In this section, we mainly focus on the continuous time dynamics of the β-SVGD flow. Due to page
limitation, we leave all of the proofs to Appendix B.

3.1 β-SVGD FLOW

In this paper, a flow refers to some time-dependent vector field vt : Rd → Rd. This time-dependent
vector field will influence the mass distribution on Rd by the continuity equation or the equation of
conservation of mass

∂ρt
∂t + div (ρtvt) = 0, (12)

readers can refer to Ambrosio et al. (2005) for more details.

Definition 4 (β-SVGD flow) Given a weight parameter β ∈ (−1,+∞), the β-SVGD flow is given
by

vβt (x) := −
(
π
ρt

)β
(x)
∫
k(x, y)∇ log

(
ρt
π

)
(y) dρt(y). (13)

Note that when β = 0, this is the negative kernelized Wasserstein gradient (6).

Note that we can not treat β-SVGD flow as the kernelized Wasserstein gradient flow of the (β + 1)-
Rényi divergence. However, they are closely related, and we can derive the following theorem.

Theorem 1 (Main result) Along the β-SVGD flow (13), we have1

min
t∈[0,T ]

IStein (ρt | π) ≤


eβDβ+1(ρ0|π)

Tβ(β+1) β > 0
DKL(ρ0|π)

T β = 0

− 1
Tβ(β+1) β ∈ (−1, 0)

. (14)

Note the left hand side of (14) is the Stein Fisher information. When β decreases from positive to
negative, the right hand side of (14) changes dramatically; it appears to be independent of ρ0 and
π. If we do not know the Rényi divergence between ρ0 and π, it seems the best convergence rate is
obtained by setting β = − 1

2 , that is

min
t∈[0,T ]

IStein (ρt | π) ≤ 4
T .

It is somewhat unexpected to observe that the time complexity is independent of ρ0 and π, or to
be more precise, that it relies only very weakly on ρ0 and π when β ∈ (−1, 0). We wish to
stress that this is not achieved by time re-parameterization. In the proof of Theorem 1, we can

1In fact, in the proof in Appendix B we know a stronger result. When β ∈ (−1, 0), the right hand side

of (14) is only weakly dependent on ρ0 and π and should be

∣∣∣∣eβDβ+1(ρ0|π)−eβDβ+1(ρT |π)
∣∣∣∣

T |β(β+1)| , which is less than
− 1
Tβ(β+1)

.
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see the term (π/ρt)
β in β-SVGD flow (13) is utilized to cancel term (ρt/π)

β in the Wasserstein
gradient of (β + 1)-Rényi divergence. Actually, when β ∈ (−1, 0), this term has an added ad-
vantage and can be seen as the acceleration factor in front of the kernelized Wasserstein gradi-
ent of KL-divergence. Specifically, the negative kernelized Wasserstein gradient of KL-divergence
v0
t (x) := −

∫
k(x, y)∇ log(ρtπ )(y)dρt(y) is the vector field that compels ρt to approach π, while

(π/ρt)
β

(x) is big (roughly speaking this means x is close to the mass concentration region of ρt
but away from the one of π), this factor will enhance the vector field at point x and force the mass
around x move faster towards the mass concentration region of π; on the other hand, if (π/ρt)

β
(x)

is small (this means x is already near to the mass concentration region of π), this factor will weaken
the vector field and make the mass surrounding x remain within the mass concentration region of π.
This is the intuitive justification for why, when β ∈ (−1, 0), the time complexity for β-SVGD flow
to diminish the Stein Fisher information only depends on ρ0 and π very weakly.

Remark 1 While it may seem reasonable to suspect that the time complexity of the β-SVGD flow
with β ≤ −1 will also depend on ρ0 and π very weakly, surprisingly, this is not true. In fact, we can
prove that (see Appendix B)

min
t∈[0,T ]

IStein (ρt | π) ≤ e(−β−1)D−β(π|ρ0)

|Tβ(β+1)| .

Letting β → −1, we get mint∈[0,T ] IStein (ρt | π) ≤ DKL(π|ρ0)
T . The regime when β ≤ −1 is similar

to the β > 0 regime in Theorem 1, which heavily depends on ρ0 and π. Mathematically speaking,
the weak dependence on ρ0 and π is caused by the concavity of the function sα on s ∈ R+ when
α = β + 1 ∈ (0, 1).

3.2 1-SVGD FLOW AND THE STEIN POINCARÉ INEQUALITY

Functional DKL (· | ·) is non-symmetric; that is, DKL (· | π) 6= DKL (π | ·), and so is their Wasser-
stein gradient. The Wasserstein gradient of DKL (π | ·) at distribution ρ ∈ P2(Rd) is −∇π

ρ (see
Appendix A), or, to put it another way, πρ∇ log( ρπ ), which may be regarded as the non-kernelized
1-SVGD flow (module a minus sigh) when compared to (13). To conclude, the 1-SVGD flow

v1
t (x) := − π

ρt
(x)
∫
k(x, y)∇ log

(
ρt
π

)
(y) dρt(y), (15)

is the negative kernelized Wasserstein gradient flow of DKL (π | ·). Next, we will study the expo-
nential convergence of 2-Rényi divergence along 1-SVGD flow under the Stein Poincaré inequality.

Definition 5 (Stein Poincaré inequality) We say that π satisfies the Stein Poincaré inequality with
constant λ > 0 if ∫

|g|2 dπ ≤ 1
λ

∫∫
k(x, y) 〈∇g(x),∇g(y)〉 dπ(x) dπ(y), (16)

for any smooth g with
∫
g dπ = 0.

While Duncan et al. (2019) also introduced the Stein Poincaré inequality, they presented it in a differ-
ent form. Just as Poincaré inequality is a linearized log-Sobolev inequality (see for example (Bakry
et al., 2014, Proposition 5.1.3)), Stein Poincaré inequality is also a linearized Stein log-Sobolev in-
equality (11). Although Stein Poincaré inequality is weaker than Stein log-Sobolev inequality, the
condition for it to hold is quite restrictive, as in the case of Stein log-Sobolev inequality; see the
discussion in (Duncan et al., 2019, Section 6).

Lemma 1 (Stein log-Sobolev implies Stein Poincaré) If π satisfies the Stein log-Sobolev inequal-
ity (11) with constant λ > 0, then it also satisfies the Stein Poincaré inequality with the same
constant λ.

While the proof of the above lemma is a routine task, for completeness we provide it in Appendix B.
The following theorem is inspired by Cao et al. (2019), in which they proved the exponential conver-
gence of Rényi divergence along Langevin dynamic under a strongly convex potential V . However,
due to the structure of 1-SVGD flow, we can only prove the results for α-Rényi divergence with
α ∈ (0, 2].

6



Under review as a conference paper at ICLR 2023

Theorem 2 Suppose π satisfies the Stein Poincaré inequality with constant λ > 0. Then the flow
(15) satisfies

D2 (ρt | π) ≤ C ·D2 (ρ0 | π) · e−2λt, (17)

where C = eD2(ρ0|π)−1
D2(ρ0|π) .

Since Dα1 (ρ | π) ≤ Dα2 (ρ | π) for any 0 < α1 ≤ α2 < ∞, the exponential convergence of
α-Rényi divergence with α ∈ (0, 2) can be easily deduced from (17).

Corollary 1 Suppose π satisfies the Stein Poincaré inequality with constant λ > 0. Then the flow
(15) satisfies

Dα (ρt | π) ≤ C ·Dα (ρ0 | π) · e−2λt (18)

for all α ∈ (0, 2], where C = eD2(ρ0|π)−1
Dα(ρ0|π) .

4 THE β-SVGD ALGORITHM

The β-SVGD algorithm2 proposed here is a sampling method suggested by the discretization of the
β-SVGD flow (13). Our method reverts to the traditional SVGD algorithm when β = 0.

As in SVGD, the integral term in the β-SVGD flow (13) can be approximated by (8). However,
when β 6= 0, we have to estimate the extra importance weight term (π/ρt)

β . We can use the kernel
method (Silverman, 2018) to estimate ρt given points sampled from ρt. The idea behind the kernel
density estimation is simple. Assuming that Dirac δ(·) can be weakly approximated by kernel K(·),
that is for any bounded smooth function f ∈ C∞b (Rd), we have

lim
h→0

1
hd

∫
f(x)K

(
x
h

)
dx→

∫
f(x)δ(x)dx = f(0).

Then for ρ, a smooth probability density function on Rd, we have

ρ(x) =
∫
δ(x− y)ρ(y) dy ≈ 1

hd

∫
K(x−yh )ρ(y) dy ≈ 1

Nhd

N∑
i=1

K(x−yih ) =: ρ̂(x),

with (yi)
N
i=1 sampled from ρ. Usually, K will be a radially symmetric unimodal probability density

function, for example, the standard multivariate Gaussian

Kg(x) = 1

(2Π)
d
2
e−
‖x‖2

2 , Π is the area of unit circle.

While unfortunately we only know the value of π(x) up to a normalizing constant, this constant
is independent of x, allowing us to merge it into the step-size. One needs to keep in mind though
that (π/ρt)

β may explode from above. Therefore, in the implementation of β-SVGD (1), we must
truncate this value from above by a relatively big number M .

Remark 2 Note that the performance of kernel density estimation largely depends on the sample
size Parzen (1962); Devroye & Wagner (1979) and bandwidth h Sheather (2004). Optimal band-
width is difficult to obtain even with good bandwidth selection heuristics Scott & Sheather (1985).
(Silverman, 2018, Section 4.3.1) showed that the approximately optimal bandwidth hopt, in the sense
of minimizing mean integrated square error (see the section in the book), should be of orderN−

1
d+4 .

When d = 1, a lemma from Parzen (1962) (see also Lemma 2 in Appendix C) suggests h ∼ N− 1
2 .

4.1 NON-ASYMPTOTIC ANALYSIS FOR β-SVGD

In this section, we study the convergence of the population limit β-SVGD. Specifically, we establish
a descent lemma for it. The derivation of the descent lemma is based on several assumptions.

The first assumption postulates L-smoothness of V ; this is typically assumed in the study of opti-
mization algorithms, Langevin algorithms and SVGD.

2For simplicity, we will often just call it β-SVGD; not to be confused with the β-SVGD flow.
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Algorithm 1 Beta Stein Variational Gradient Descent (β-SVGD)
1: Input: The potential function V : Rd → R of the target distribution π ∝ e−V , density estimation kernel
K(·), the scaling parameter h, reproducing kernel k(·, ·), a set of initial particles (x0i )

N
i=1 and iteration

number n.
2: for l = 0, 1, . . . , n do

3: Estimate density: ρli = 1
Nhd

∑N
j=1K

(
xli−x

l
j

h

)
, i = 1, . . . , N

4: Calculate the weight with choice 1: wli =

[(
e−V (xli)

ρli

)β
∧Ml

]/[∑N
j=1

(
e
−V (xlj)

ρlj

)β
∧Ml

]
;

choice 2: wli =

[(
e−V (xli)

ρli

)β
∧Ml

]/
N, i = 1, . . . , N , Ml is the truncating number

5: Update particles with step-size γl: xl+1
i ← xli+γlw

l
i

∑N
j=1

[
−k(xli, x

l
j)∇xljV (xlj) +∇xljk(xli, x

l
j)
]
, i =

1, . . . , N
6: end for
7: Return: Particles (xn+1

i )Ni=1.

Assumption 1 (L-smoothness) The potential function V of the target distribution π ∝ e−V is L-
smooth; that is, ∥∥∇2V

∥∥
op
≤ L.

Our second assumption postulates two bounds involving the reproducing kernel k(·, ·), and is also
common when studying SVGD; see (Liu, 2017; Korba et al., 2020; Salim et al., 2021; Sun et al.,
2022).

Assumption 2 Kernel k is continuously differentiable and there exists B > 0 such that
‖k(x, .)‖H0

≤ B and

‖∇xk(x, .)‖2H =
d∑
i=1

‖∂xik (x, .)‖2H0
≤ B2, ∀x ∈ Rd.

By the reproducing property (4), this is equivalent to k(x, x) ≤ B2 and
∑d
i=1 ∂xi∂yik(x, y) |y=x≤

B2 for any x ∈ Rd, and this is easily satisfied by kernel of the form k(x, y) = f(x− y), where f is
some smooth function at point 0.

The third assumption was already used by Liu (2017); Korba et al. (2020), and was later replaced
by Salim et al. (2021) it with a Talagrand inequality (Wasserstein distance can be upper bounded by
KL-divergence) which depends on π only. However, β-SVGD reduces the Rényi divergence instead
of the KL-divergence. Since we do not have a comparable inequality for the Rényi divergence, we
are forced to adopt the one from (Liu, 2017; Korba et al., 2020) here.

Assumption 3 There exists C > 0 such that
√
IStein (ρn | π) ≤ C for all n = 0, 1, . . . , N .

In the proof of the descent lemma, the next two assumptions help us deal with the extra term (π/ρn)
β .

Note that the fourth assumption is very weak. In fact, as long as Zn(x, y)ρn(x)ρn(y) is integrable
on Rd × Rd, then by the monotone convergence theorem, the truncating number Mρn(δ) is always
attainable since (ρn/π)

β
(x) (π/ρn)

β ∧M is non-decreasing and converges point-wise to 1 as M →
+∞.

Assumption 4 For any small δ > 0, we can find Mρn(δ) > 0 such that∣∣∣∣IStein (ρn | π)−
∫∫ (

ρn
π

)β
(x)
(
π
ρn

)β
∧Mρn(δ)Zn(x, y) dρn(x) dρn(y)

∣∣∣∣ ≤ δ, (19)

where Zn(x, y) := k(x, y)
〈
∇ log

(
ρn
π

)
(x),∇ log

(
ρn
π

)
(y)
〉
.

Our fifth and last assumption is of a technical nature, and helps us bound∥∥∥∇x (π/ρn)
β

(x)
(∫
k(x, y)∇ log(ρnπ )(y)dρn(y)

)>∥∥∥
F

. It is also relatively weak, and achiev-
able for example when the potential function of ρn does not fluctuate wildly.
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Assumption 5
∥∥∥∥∇( π

ρn

)β∥∥∥∥ ≤ Cρn (δ) in the region
{
x :
(
π
ρn

)β
(x) ≤Mρn(δ)

}
.

Though Assumptions 3, 4 and 5 are relatively reasonable, as we stated, we do not know how to
estimate constants C, Mρn(δ) and Cρn(δ) beforehand.

With all this preparation, we can now formulate our descent lemma for the population limit β-SVGD
when β ∈ (−1, 0). The proof can be found in Appendix B.

Proposition 1 (Descent Lemma) Suppose β ∈ (−1, 0), IStein (ρn | π) ≥ 2δ and Assumptions 1,
2, 4 and 5 hold. Choosing

0 < γ ≤ 1

6(Cρn (δ)+Mρn (δ))BIStein(ρn|π)
1
2

0 < γ ≤ 2(β+1)(IStein(ρn|π)−δ)
B2IStein(ρn|π)(LMρn (δ)2+10(Cρn (δ)+Mρn (δ))2)

0 < γ ≤ β+1

B2(LMρn (δ)2+10(Cρn (δ)+Mρn (δ))2)

, (20)

we have the descent property

eβDβ+1(ρn+1|π) − eβDβ+1(ρn|π) ≥ −β(β + 1)γ
(

1
2IStein (ρn | π)− δ

)
. (21)

Proposition 1 contains the descent lemma for the population limit SVGD Liu (2017); Korba et al.
(2020). Actually, let β and δ approach to 0, the descent lemma for the population limit SVGD will
be derived by L’Hospital rule. When β > 0, we also have Equation (21), however due to the sign
change of −β, Equation (21) can not guarantee Dβ+1 (ρn+1 | π) < Dβ+1 (ρn | π) anymore (for an
asymptotic analysis, please refer to Appendix C).

Remark 3 The lack of a descent lemma for β-SVGD when β > 0 is not a great loss for us, as
explained in Section 3.1, negative β is preferable in the implementation of β-SVGD. One can see
from our experiments that β-SVGD with negative β performs much better than the one with positive
β, this verifies our theory in Section 3.1.

The next corollary is a discrete time version of Theorem 1. Letting Mρn(ε) and Cρn(ε) have con-
sistent upper bound is reasonable since intuitively ρn will approach π, though we can not verify this
beforehand.

Corollary 2 In Proposition 1, choose δ = ε and suppose Assumptions 1, 2, 3, 4 and 5 hold with
uniformly bounded Mρn (ε) and Cρn (ε), so that γ is uniformly lower bounded. Then we have at
most

N = Ω
(
− 2
β(β+1)εγ

)
(22)

iterations to achieve mini∈{0,1,...,N} IStein (ρi | π) ≤ 3ε.

Remark 4 We may show that W2

(
1
N

∑
i=1 δxni , ρn

)
→ 0 as N → ∞, following Shi et al. (2021)

or Korba et al. (2020). However, the existing methods either give a qualitative analysis or provide a
exponential bound under more restrictive assumptions, which can not provide useful information in
the implementation of β-SVGD. Interested readers can refer to Korba et al. (2020); Shi et al. (2021),
we will not include them in this paper.

5 CONCLUSION

We construct a family of continuous time flows called β-SVGD flows on the space of probability
distributions, when β ∈ (−1, 0), its convergence rate is independent of the initial distribution and
the target distribution. Based on β-SVGD flow, we design a family of weighted SVGD called β-
SVGD. β-SVGD has the similar computation complexity as SVGD, but achieves faster convergence
rate in our analysis and experiments. We introduce β-SVGD in this work, but there are still lots of
questions we do not answer and deserve to explore, like how to tune the parameters to make it more
efficient, the performance of β-SVGD in more complex model and etc.
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