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Abstract001

Query Optimization (QO) refers to techniques002
aimed at improving the operational efficiency003
and response quality of Large Language Mod-004
els (LLMs) in processing complex queries, par-005
ticularly within Retrieval-Augmented Gener-006
ation (RAG) frameworks. RAG dynamically007
retrieves current external information to com-008
plement model knowledge as a cost-effective009
solution addressing LLMs’ tendencies to gen-010
erate factually inconsistent outputs. With re-011
cent advancements expanding RAG into multi-012
component systems, QO has become pivotal for013
optimizing the evidence retrieval phase - criti-014
cally determining the system’s ability to source015
accurate, multi-faceted supporting information016
for query resolution. Effective query optimiza-017
tion strategies directly enhance information018
retrieval performance (e.g., improving recall019
rates of evidentiary documents) while indirectly020
strengthening the model’s semantic comprehen-021
sion and final response generation. This paper022
systematically examines the developmental tra-023
jectory of QO techniques through a comprehen-024
sive analysis of seminal research. By establish-025
ing a structured categorization framework, we026
aim to synthesize existing QO methodologies027
in RAG implementations, clarify their technical028
underpinnings, and emphasize their transforma-029
tive potential for expanding LLM capabilities030
across diverse applications.031

1 Introduction032

Large Language Models (LLMs) have made im-033

pressive achievements (Zhao et al., 2023), yet they034

still encounter notable challenges, particularly in035

tasks that are domain-specific or heavily reliant036

on specialized knowledge (Kandpal et al., 2023;037

Gao et al., 2023b; Zhu et al., 2023b; Huang and038

Huang, 2024; Verma, 2024; Zhao et al., 2024; Hu039

and Lu, 2024; Fan et al., 2024; Wu et al., 2024;040

Peng et al., 2024a; Gupta et al., 2024). One promi-041

nent issue is their tendency to produce "hallucina-042

tions" when dealing with queries that surpass their043

Query  Optimization

Expansion Query Type: 
A Single Piece of Explicit Evidence

Decomposition Query Type: 
Multiple Pieces of Explicit Evidence

Disambiguation Query Type: 
A Single Piece of Implicit Evidence

Abstraction Query Type: 
Multiple Pieces of Implicit Evidence

Figure 1: Illustration of four atomic operations in QO.
Each atomic operation is classified according to the
types of evidence required when solving the query.

training data or necessitate up-to-date information 044

(Zhang et al., 2023b; Tonmoy et al., 2024). To miti- 045

gate these challenges, Retrieval-Augmented Gener- 046

ation (RAG) enhances LLMs by retrieving relevant 047

segments, effectively diminishing the production 048

of factually incorrect content. The widespread in- 049

tegration of RAG into LLMs has established it as 050

a crucial technology for the advancement of query 051

solvers and has improved the suitability of LLMs 052

for practical, real-world applications. 053

Since Lewis et al. (2020) introduced RAG, the 054

field has advanced rapidly, particularly with the 055

emergence of models like ChatGPT. Despite these 056

developments, there is a significant gap in the lit- 057

erature—a thorough analysis of RAG’s underlying 058

mechanisms and the progress made in subsequent 059

studies is lacking. Furthermore, the field is char- 060

acterized by fragmented research focuses and in- 061

consistent terminology for similar methods, which 062

leads to confusion. 063

RAG typically involves several core concepts, 064

including but not limited to query optimization, in- 065

formation retrieval, and response generation (Zhu 066
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Query
Optimization

Query Expansion 
aims to capture a wider range of relevant 

information and potentially uncover connections 

that may not have been apparent in the query. 

This process involves analyzing the initial query, 

identifying key concepts, and incorporating 

related terms, synonyms, or associated ideas to 

form a new query for creating a more 

comprehensive search.

Internal
Expansion

Scenario
Internal Expansion primarily addresses queries about information with 
low temporal sensitivity, which typically comprises knowledge already 
embedded within the parameters of LLMs during their pre-training phase.

Case

Original Query Where will the 2020 Summer Olympics be held?

Optimized Query

Where will the 2020 Summer Olympics be 
held?

+
{relevant information generated by LLMs}

External
Expansion

Scenario External Expansion primarily addresses highly time-sensitive queries that 
usually require searching facts from knowledge bases or the web.

Case

Original Query Where will the 2024 Summer Olympics be held?

Optimized Query

Where will the 2024 Summer Olympics be 
held?

+
{relevant information retrieved from 

knowledge bases}

Query Decomposition 
aims to effectively break down complex, multi-

hop queries into simpler, more manageable sub-

queries or tasks. This approach involves 

dissecting a query that requires facts from 

multiple sources or steps into smaller, more 

direct queries that can be answered individually.

Scenario
Sequential Decomposition primarily targets queries 
that necessitate retrieving multiple facts to formulate 
a comprehensive answer.

Case A

Original Query
Which sport did China win more medals in 
at the 2024 Summer Olympics: table tennis 
or badminton?

Optimized Query

Q-1: How many medals did China win 
in table tennis at the 2024 Olympics?

Q-2: How many medals did China win in 
badminton at the 2024 Olympics?

Sub-Queries

Case B

Original Query What is the birthdate of the 2024 Olympic 
men's singles table tennis gold medalist?

Optimized Query

Q-1: Who is the men's singles table tennis 
champion at the 2024 Summer Olympics? 
(Let's assume the champion is <A-1>.)

Q-2: What is 
<A-1>'s 
birthday?

Sub-Queries

Query Disambiguation 
aims to identify and eliminate ambiguity in 

complex queries, ensuring they are unequivocal. 

This involves pinpointing elements of the query 

that could be interpreted in multiple ways and 

refining the query to ensure a single, precise 

interpretation.

Scenario
Query Disambiguation primarily addresses queries that are ambiguous or have multiple potential 
interpretations. It focuses on clarifying and refining user queries to ensure accurate understanding 
and retrieval of relevant information. 

Case

Original Query Who is the 2024 Summer Olympics 
table tennis singles champion?

Optimized Query

Q-1: Who is the women's singles champion in 
table tennis at the 2024 Summer Olympics?

Q-2: Who is the men's singles champion in 
table tennisat the 2024 Summer Olympics?

Sub-Queries

Query Abstraction 
aims to provide a broader perspective on the fact 

need, potentially leading to more diverse and 

comprehensive results. This involves identifying 

and distilling the fundamental intent and core 

conceptual elements of the query, then creating 

a higher-level representation that captures the 

essential meaning while removing specific details.

Scenario
Query Abstraction primarily targets queries that require not only an understanding of the facts 
but also the ability to comprehend and apply domain-specific reasoning integral to the context of 
the data.

Case
Original Query How many times has China hosted the Olympic Games?

Optimized Query The history of hosting the Olympic Games.

Figure 2: Classification of query optimization techniques in detail.

et al., 2023b; Huang and Huang, 2024; Verma,067

2024). Among these, query optimization plays068

a crucial role in directly determining the relevance069

of the retrieved information and consequently im-070

pacts the quality of the final response. Although071

query optimization in retrieval-augmented large072

language models (LLMs) has experienced rapid073

growth, there has been a lack of systematic syn-074

thesis to clarify its broader trajectory. This survey075

endeavors to fill this gap by mapping out the query076

optimization process in retrieval-augmented LLMs,077

charting its evolution, and anticipating future de-078

velopments. We consider both technical paradigms079

and research methods, summarizing four main ap-080

proaches identified in recent LLM-based RAG stud-081

ies: Expansion, Disambiguation, Decomposition,082

and Abstraction, as shown in Figure 1, and then083

categorize the corresponding atomic operations for084

query optimization and map them accordingly. We085

classify the difficulty of most queries into four 086

types: those that can be solved with a single piece 087

of explicit evidence, those requiring multiple pieces 088

of explicit evidence, those solvable with a single 089

piece of implicit evidence, and those needing mul- 090

tiple pieces of implicit evidence. We then map 091

these queries to different optimization operations 092

respectively for ease of explanation, as shown in 093

Figure 2. Next, we briefly introduce each type of 094

query and the corresponding optimization method, 095

as illustrated in Figure 3. 096

Overall, this paper aims to meticulously com- 097

pile and categorize the foundational technical con- 098

cepts, historical developments, and the range of 099

query optimization methodologies and applications 100

that have emerged since the advent of LLMs. It is 101

designed to equip readers and professionals with 102

a detailed and structured understanding of query 103

optimization in retrieval-augmented LLMs, illumi- 104
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QUERY OPTIMIZATION

EXPANSION

INTERNAL

GENQRENSEMBLE (Dhole
and Agichtein, 2024)

GUIDECQR (Park
and Lee, 2024)
QUERY2DOC

(Wang et al., 2023b)
GQE (Bai et al., 2024)
CSQE (Lei et al., 2024)

MUGI (Zhang et al., 2024b)
EQE (Zhang et al., 2023a)
HYDE (Gao et al., 2023a)

FLARE (Jiang et al., 2023)
GENREAD (Yu et al., 2023a)

INTER (Feng et al., 2024)
EAR (Chuang et al., 2023)

MILL (Jia et al., 2024)

EXTERNAL

MUGI (Zhang et al., 2024b)
KNOWLEDGPT

(Wang et al., 2023c)
PROMPTAGATOR
(Dai et al., 2023)

RARG (Yue et al., 2024)
DRAGIN (Su et al., 2024)

EWEK-QA (De-
hghan et al., 2024)

BLENDFILTER
(Wang et al., 2024a)

REFEED (Yu et al., 2023b)
QUERY2EXPAND

(Jagerman et al., 2023)
DR-RAG (Hei et al., 2024)
COV-RAG (He et al., 2024)

MILL (Jia et al., 2024)
LAMER (Shen et al., 2024a)

DECOMPOSITION

RAG-STAR (Jiang et al., 2024)
PLAN×RAG

(Verma et al., 2024)
CONTREGEN

(Roy et al., 2024)
RICHRAG (Wang

et al., 2024c)
ALTER (Zhang et al., 2024a)
LPKG (Wang et al., 2024b)
RA-ISF (Liu et al., 2024b)

THINK-THEN-ACT
(Shen et al., 2024b)

AUTOPRM (Chen et al., 2024)
RQ-RAG (Chan et al., 2024)
QDMR (Zhu et al., 2023a)

REWRITE-RETRIEVE-
READ (Ma et al., 2023b)
RSTAR (Qi et al., 2024)

LEAST-TO-MOST
(Zhou et al., 2023)

HIRAG (Zhang et al., 2024d)
COK (Li et al., 2024)

DSP (Khattab et al., 2022)
SELF-ASK (Press et al., 2023)
DECOMP (Khot et al., 2023)

ICAT (V et al., 2023)
PLAN-AND-SOLVE
(Wang et al., 2023a)

IM-RAG (Yang et al., 2024)
MQA-KEAL (Ali et al., 2024)

REACT (Yao et al., 2023)
REAPER (Joshi et al., 2024)

DISAMBIGUATION

RSTAR (Qi et al., 2024)
RQ-RAG (Chan et al., 2024)

RAFE (Mao et al., 2024)
TOC (Kim et al., 2023)

BEQUE (Peng et al., 2024b)
ADAQR (Zhang et al., 2024c)

CHIQ (Mo et al., 2024)
ECHOPROMPT

(Mekala et al., 2024)
MAFERW (Wang et al., 2024e)

INFOCQR (Ye et al., 2023)
NATURAL-PROGRAM

(Ling et al., 2023)

ABSTRACTION

MINIRAG (Fan et al., 2025)
SIMGRAG (Cai et al., 2024)

COA (Gao et al., 2024)
CRAFTING-THE-PATH

(Baek et al., 2024)
ABSINSTRUCT

(Wang et al., 2024f)
AOT (Hong et al., 2024)

ABSPYRAMID
(Wang et al., 2024g)

KELP (Liu et al., 2024a)
META-REASONING
(Wang et al., 2024d)

CONCEPTUALIZATION-
ABSTRACTION

(Zhou et al., 2024)
MA-RIR (Ko-

rikov et al., 2024)
RULERAG (Anonymous, 2024)

STEPBACK (Zheng
et al., 2024)

Figure 3: Taxonomy tree of core techniques of query optimization.

nating the evolution of these techniques and specu-105

lating on upcoming trends and innovations.106

Query optimization techniques summarized in107

this paper may involve multiple scenarios, includ-108

ing but not limited to retrieval-augmented genera-109

tion, question answering, etc. Therefore, we uni-110

formly adopt the term "query" to represent terms111

such as "query", "question", and "problem" in the112

subsequent content. This survey is organized as113

follows: Section 2 introduces the stratification of114

query optimization. The subsequent sections delve115

into key techniques in query optimization: Sec-116

tion 2.1 explores query expansion, which is further117

divided into internal expansion (Section 2.1.1) and118

external expansion (Section 2.1.2). Section 2.2119

discusses query decomposition. Section 2.3 and120

Section 2.4 focus on disambiguation and abstrac-121

tion. Section 3 addresses the challenges and future122

directions in this field. Finally, the section of con-123

clusion is presented in Section 4.124

2 Stratification of Query Optimization125

Query optimization is crucial for enhancing the ef-126

fectiveness and precision of retrieval-augmented127

generation using large language models. By refin-128

ing users’ original queries, this process addresses129

several challenges, including ambiguous seman- 130

tics, complex requirements, and discrepancies in 131

relevance between the query and target documents. 132

Effective query optimization demands a profound 133

understanding of user intent and query context, es- 134

pecially when dealing with intricate or multifaceted 135

inquiries. When implemented successfully, it sig- 136

nificantly improves problem-solving performance, 137

substantially impacting the quality of the model’s 138

generated outputs. Ultimately, this enhancement 139

in query processing leads to more accurate and 140

contextually appropriate responses, elevating the 141

overall user experience and increasing the utility of 142

LLMs across various applications. 143

As previously described, this paper summarizes 144

the query optimization approaches used in recent 145

years, thereby identifying expansion, decomposi- 146

tion, disambiguation, and abstraction as four types 147

of atomic operations in query optimization. There- 148

fore, not only have we classified and matched the 149

queries most suitable for each atomic operation in 150

Figure 1, but we have also distinguished and visu- 151

alized the effects of each atomic operation in the 152

query processing process, as shown in Figure 4. 153

In Figure 4, qn,m represents the problem in differ- 154

ent states, where q0,0 represents the initial problem, 155
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Query Abstraction

Figure 4: Visualization of the relationship between different queries and query optimization operations.

and q1,1 represents the subproblem aimed at solv-156

ing the first hop, that is, addressing a subproblem157

within the original problem. Specifically, based on158

the previous description, query expansion is usu-159

ally more suitable for solving problems that only160

require retrieval or obtaining explicit evidence. It161

thus does not require additional query optimiza-162

tion operations. Query decomposition typically163

involves complex multi-hop problems that require164

multiple retrievals. However, each decomposition165

may not necessarily yield the correct answer, re-166

sulting in many redundant exploratory operations.167

For example, the blue and orange parts represent168

sub-queries involved in obtaining the correct an-169

swer. Query disambiguation refers to reducing the170

amount of evidence needed to solve the current171

query by adding additional conditions, which can172

be understood as a backtracking operation in the fig-173

ure. Lastly, query abstraction summarizes the prob-174

lem from a higher level, thereby obtaining back-175

ground information more conducive to answering176

the original question. Compared to query decom-177

position, it can save many retrieval processes.178

2.1 Query Expansion179

Query expansion techniques (Azad and Deepak,180

2019) are critical and effective approaches in en-181

hancing the performance of retrieval-augmented182

generation, particularly when integrated with183

LLMs (Weller et al., 2024). Based on the differ-184

ent sources of knowledge, we broadly categorize185

it into internal expansion and external expansion.186

The former focuses on maximizing the value of187

existing information in the original query or the188

used LLM without relying on external knowledge189

sources., while the latter introduces supplementary190

data from outside sources (e.g., Web or Knowledge191

base) to fill gaps, provide additional context, or192

broaden the scope of the content.193

2.1.1 Internal Expansion194

In previous years, researchers have developed vari-195

ous query expansion techniques to enhance infor-196

mation retrieval systems through Large Language 197

Models (LLMs). The seminal GENREAD approach 198

(Yu et al., 2023a) employs carefully crafted instruc- 199

tions to prompt LLMs to generate contextual doc- 200

uments that bridge query understanding and an- 201

swer generation. This paradigm was extended by 202

QUERY2DOC (Wang et al., 2023b), which uses 203

few-shot prompting to create pseudo-documents 204

containing web-scale knowledge, effectively dis- 205

ambiguating queries and guiding retrieval systems 206

through expanded contextual signals. 207

Several methods adopt iterative refinement strate- 208

gies: REFEED (Yu et al., 2023b) establishes a 209

retrieval-augmented loop by generating initial out- 210

puts, retrieving supporting documents, and refining 211

responses through context enrichment. Similarly, 212

INTER (Feng et al., 2024) constructs a synergistic 213

framework where retrieval models expand queries 214

using LLM-generated knowledge, while LLMs en- 215

hance prompt formulation through retrieved doc- 216

uments. FLARE (Jiang et al., 2023) introduces 217

anticipatory retrieval based on predicted content 218

trajectories, dynamically triggering new queries 219

when low-confidence tokens emerge. 220

Alternative approaches leverage hypothetical 221

generation and verification mechanisms: HYDE 222

(Gao et al., 2023a) generates hallucinated docu- 223

ments through zero-shot prompting, then employs 224

contrastive encoding to ground them in real corpus 225

embeddings. MILL (Jia et al., 2024) innovates 226

with mutual verification between LLM-generated 227

sub-queries/documents and retrieved content, en- 228

suring comprehensive coverage through diversity- 229

aware synthesis. 230

Ensemble strategies further advance the field: 231

GENQRENSEMBLE (Dhole and Agichtein, 2024) 232

enhances retrieval robustness through instruction 233

paraphrasing and keyword set aggregation, while 234

ERRR (Cong et al., 2024) focuses on parametric 235

knowledge distillation and query optimization to 236

maximize relevance precision. 237
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2.1.2 External Expansion238

External expansion is a systematic methodol-239

ogy that substantially enriches document content240

through the strategic integration of relevant infor-241

mation from diverse external knowledge sources.242

This process effectively enhances the overall con-243

textual depth, informational accuracy, and seman-244

tic richness of document corpora by incorporating245

authoritative facts, current statistical data, and con-246

textual knowledge from curated repositories, spe-247

cialized datasets, and validated knowledge bases.248

LameR (Shen et al., 2024a) employs large lan-249

guage models (LLMs) to augment queries with250

potential answer candidates obtained through stan-251

dard retrieval procedures. This approach synthe-252

sizes both correct and incorrect in-domain candi-253

dates through prompt engineering that combines254

original queries with retrieved results. GuideCQR255

(Park and Lee, 2024) addresses conversational256

query refinement by extracting critical informa-257

tion from initially retrieved documents to guide258

query reformulation processes. The methodol-259

ogy focuses on distilling essential contextual sig-260

nals from preliminary search results to optimize261

subsequent retrieval iterations. CSQE (Lei et al.,262

2024) utilizes the dual capabilities of LLMs for263

knowledge extraction and relevance assessment,264

systematically identifying pivotal sentences within265

retrieved documents. This corpus-derived knowl-266

edge is integrated with LLM-generated expan-267

sions through a structured framework that enhances268

query-document relevance prediction. MUGI269

(Zhang et al., 2024b) introduces a novel paradigm270

that leverages LLMs to generate multiple pseudo-271

references for query expansion. This approach272

synergistically combines generated references with273

original queries to optimize performance across274

both sparse and dense retrieval architectures.275

2.2 Question Decomposition276

For complex queries, simply searching with the277

original query often fails to retrieve adequate infor-278

mation. It is crucial for LLMs to first decompose279

such queries into simpler, answerable sub-queries,280

and then search for information relevant to these281

sub-components. By integrating the responses to282

these sub-queries, LLMs are able to construct a283

comprehensive response to the original query.284

The Demonstrate-Search-Predict (DSP) frame-285

work (Khattab et al., 2022) exemplifies this ap-286

proach through coordinated interaction between287

LLMs and retrieval models (RMs) within language 288

processing pipelines. This framework orchestrates 289

three core operations: generating bootstrap demon- 290

strations through few-shot learning, executing tar- 291

geted passage retrieval, and producing evidence- 292

grounded predictions. By decomposing complex 293

tasks into sequential transformations, DSP lever- 294

ages the complementary strengths of neural rea- 295

soning and information retrieval systems for robust 296

problem-solving. 297

Contemporary prompting strategies reinforce 298

this decomposition paradigm. The LEAST-TO- 299

MOST (Zhou et al., 2023) methodology employs 300

few-shot prompting to recursively divide com- 301

plex problems into solvable subproblems through 302

chain-of-thought reasoning. Similarly, PLAN-AND- 303

SOLVE (Wang et al., 2023a) prompting opera- 304

tionalizes task decomposition through explicit plan- 305

ning phases, where models first architect solution 306

blueprints before executing stepwise subtask res- 307

olution. Both techniques demonstrate enhanced 308

performance through systematic decomposition of 309

cognitive load. 310

The concept of compositional reasoning is fur- 311

ther quantified through SELF-ASK (Press et al., 312

2023), which identifies the compositionality gap 313

metric. This measure exposes systemic limita- 314

tions in answer integration by calculating the ratio 315

of failed composite answers relative to correctly 316

solved sub-components. The quantification under- 317

scores fundamental challenges in neural reasoning 318

architectures’ ability to synthesize partial solutions 319

into coherent final responses. 320

To address retrieval challenges, approaches like 321

EAR (Chuang et al., 2023) apply a query expansion 322

model to generate a diverse set of queries, using 323

a query reranker to select those that could lead to 324

better retrieval results. Correction of Knowledge 325

(COK) (Li et al., 2024) first proposes and prepares 326

several preliminary rationales and answers while 327

identifying the relevant knowledge domains. If 328

there is no majority consensus among the answers, 329

COK corrects the rationales step by step by adapt- 330

ing knowledge from the identified domains, serving 331

as a better foundation for the final response consol- 332

idation. ICAT (V et al., 2023) induces reasoning 333

capabilities without any LLM fine-tuning or man- 334

ual annotation of in-context samples. It transfers 335

the ability to decompose complex queries into sim- 336

pler ones or generate step-by-step rationales by 337

carefully selecting from available data sources of 338

related tasks. 339
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REACT (Yao et al., 2023) introduces a paradigm340

to combine reasoning and acting with LLMs for341

solving diverse language reasoning and decision-342

making tasks. REACT prompts LLMs to generate343

both verbal reasoning traces and actions on a task344

in an interleaved manner. This allows the model345

to perform dynamic reasoning to create, maintain,346

and adjust high-level plans for acting ("reason to347

act"), while also interacting with external environ-348

ments (e.g., Wikipedia) to incorporate additional349

information into reasoning ("act to reason").350

Approaches leveraging query decomposition351

and iterative refinement have emerged as effective352

strategies for handling complex queries. AUTO-353

PRM (Chen et al., 2024) and RA-ISF (Liu et al.,354

2024b) both employ multi-stage decomposition355

frameworks, though with distinct execution mech-356

anisms. AUTOPRM decomposes complex prob-357

lems into manageable sub-queries using a granular-358

ity control mechanism, then applies reinforcement359

learning to optimize sub-query resolution sequen-360

tially. RA-ISF integrates text relevance with self-361

knowledge through iterative sub-query processing,362

isolating multi-turn queries into independent single-363

turn tasks before synthesizing their solutions.364

Several methods enhance LLM capabilities365

through structured knowledge integration. RQ-366

RAG and LPKG (Wang et al., 2024b) exemplify367

this trend: LPKG improves query planning by368

grounding knowledge graph patterns into natural369

language sub-queries, while RQ-RAG employs370

explicit query rewriting and disambiguation tech-371

niques. Similarly, ALTER (Zhang et al., 2024a)372

enhances table reasoning through multi-perspective373

question augmentation, generating diverse sub-374

queries to examine complex problems from com-375

plementary angles.376

IM-RAG (Yang et al., 2024) introduces a Re-377

finer module to mediate between Retriever and Rea-378

soner components, enabling multi-round knowl-379

edge reconciliation. REAPER (Joshi et al., 2024)380

adopts lightweight planning with smaller LLMs381

to generate tool-calling blueprints for complex382

queries. HIRAG (Zhang et al., 2024d) and MQA-383

KEAL (Ali et al., 2024) both implement multi-384

hop reasoning through decomposition, with HI-385

RAG employing Chain-of-Thought integration and386

MQA-KEAL utilizing external structured memory387

for iterative knowledge retrieval.388

Recent advancements focus on sophisticated389

retrieval-reasoning integration. RICHRAG (Wang390

et al., 2024c) combines latent query facet explo-391

ration with multi-faceted document curation, while 392

CONTREGEN (Roy et al., 2024) employs tree- 393

structured retrieval for hierarchical information syn- 394

thesis. PLAN×RAG (Verma et al., 2024) formal- 395

izes reasoning as directed acyclic graphs, enabling 396

atomic sub-queries with efficient information shar- 397

ing. Completing this spectrum, RAG-STAR (Jiang 398

et al., 2024) implements Monte Carlo Tree Search 399

for deliberative reasoning, autonomously plan- 400

ning intermediate sub-queries through LLM self- 401

knowledge. These approaches collectively demon- 402

strate progressive refinement in aligning retrieval 403

mechanisms with complex reasoning requirements. 404

2.3 Query Disambiguation 405

For ambiguous queries with multiple possible an- 406

swers, relying solely on the original query for infor- 407

mation retrieval is inadequate. To deliver complete 408

and nuanced responses, LLMs must learn to clar- 409

ify the query by identifying the user’s intent and 410

then formulate a more targeted search query. After 411

gathering relevant information, LLMs can provide 412

a detailed and comprehensive response. There are 413

mainly two types of approaches for query disam- 414

biguation. One is when the query itself is ambigu- 415

ous, and the other is for multi-turn queries, where 416

it’s necessary to rewrite the query by incorporating 417

historical dialogue content to achieve disambigua- 418

tion (Peng et al., 2024b; Mao et al., 2024). 419

Ling et al. (2023) early introduces a deductive 420

reasoning format based on the natural language that 421

decomposes the reasoning verification process into 422

a series of step-by-step processes. Each process 423

receives only the necessary context and premises, 424

allowing LLMs to generate precise reasoning steps 425

that are rigorously grounded on prior ones. This ap- 426

proach empowers language models to conduct rea- 427

soning self-verification sequentially, significantly 428

enhancing the rigor and trustworthiness of the gen- 429

erated reasoning steps. ECHOPROMPT (Mekala 430

et al., 2024) introduces a query-rephrasing subtask 431

by employing prompts like “Let’s repeat the query 432

and also think step by step.”. This encourages the 433

model to restate the query in its own words before 434

engaging in reasoning, ensuring better understand- 435

ing and consistency. Importantly, the prompt used 436

for answer extraction remains consistent across all 437

zero-shot methodologies. TOC (Kim et al., 2023) 438

recursively builds a tree of disambiguations for 439

ambiguous queries by utilizing few-shot prompt- 440

ing and external knowledge. It retrieves relevant 441

facts to generate a comprehensive long-form an- 442

6



swer based on this tree, thus providing more accu-443

rate and detailed responses. INFOCQR (Ye et al.,444

2023) introduces a novel "rewrite-then-edit" frame-445

work, where LLMs first rewrite the original query446

and then revise the rewritten query to eliminate447

ambiguities. The well-designed instructions inde-448

pendently guide the LLMs through the rewriting449

and editing tasks, resulting in more informative and450

unambiguous queries.451

To further manipulate the disambiguated query,452

ADAQR (Zhang et al., 2024c) proposes a novel453

preference optimization approach, which aims to454

tailor rewriters to better suit retrievers by utilizing455

conversation answers to model retrievers’ prefer-456

ences. Specifically, the trained rewriter generates457

several rewrites, which are then used as queries458

to retrieve passages from a target retriever. Then,459

ADAQR calculates the conditional probability of460

the answer given each retrieved passage and the461

conversation, obtaining the marginal probability of462

the answer by marginalizing over the set of pas-463

sages. This marginal probability serves as a re-464

ward that quantifies the retrievers’ preferences over465

rewrites and pairs these rewrites based on their re-466

wards to optimize the trained rewriter using direct467

preference optimization.468

MAFERW (Wang et al., 2024e) improves the469

RAG performance by integrating multi-aspect feed-470

back from both the retrieved documents and the471

generated responses as rewards to explore the opti-472

mal query rewriting strategy. This approach lever-473

ages comprehensive feedback to enhance the ef-474

fectiveness of query rewriting. CHIQ leverages475

the NLP capabilities of LLMs, such as resolving476

coreference relations and expanding context, to477

reduce ambiguity in conversational history. This478

enhancement improves the relevance of the gener-479

ated search queries. We investigate various meth-480

ods for integrating refined conversational history481

into existing frameworks, including ad-hoc query482

rewriting, generating pseudo-supervision signals483

for fine-tuning query rewriting models, and com-484

bining both approaches.485

2.4 Query Abstraction486

For complex multi-hop reasoning tasks, sequential487

decomposition often fails to produce accurate so-488

lutions and may inadvertently introduce additional489

complexity. Human problem-solvers frequently490

address this challenge by employing abstraction491

techniques to derive high-level principles, thereby492

reducing error propagation in intermediate reason-493

ing steps (Zheng et al., 2024). The STEP-BACK 494

methodology (Zheng et al., 2024) operationalizes 495

this cognitive strategy through structured prompt- 496

ing mechanisms that guide large language models 497

(LLMs) to align their reasoning trajectories with 498

the core intent of the original query, particularly en- 499

hancing performance on tasks requiring multi-step 500

logical inference. 501

This abstraction paradigm has inspired multi- 502

ple technical implementations. The framework 503

proposed by (Zhou et al., 2024) formalizes con- 504

ceptual reasoning through abstract query formula- 505

tions, constraining solutions within verifiable sym- 506

bolic spaces to promote systematic handling of 507

high-level concepts. Similarly, COA (Gao et al., 508

2024) transforms conventional chain-of-thought 509

reasoning into abstract variable chains, enabling 510

domain-specific tool integration such as computa- 511

tional modules and web search interfaces. AOT 512

(Hong et al., 2024) advances this approach through 513

a hierarchical skeletal framework that explicitly 514

structures reasoning across multiple abstraction 515

levels, where higher tiers maintain functional ob- 516

jectives while distilling away implementation de- 517

tails—a marked contrast to the less constrained 518

nature of standard chain-of-thought prompting. 519

Contextual enrichment strategies further en- 520

hance reasoning capabilities. Baek et al. (2024) 521

generates meta-level abstraction layers that provide 522

conceptual background for queries, effectively ex- 523

panding the information landscape available for 524

analysis. For multi-faceted queries, MA-RIR (Ko- 525

rikov et al., 2024) introduces query aspect decom- 526

position, parsing compound queries into distinct 527

topical components to enable targeted reasoning 528

across dimensions. 529

Recent advancements emphasize structural align- 530

ment between queries and knowledge representa- 531

tions. META-REASONING (Wang et al., 2024d) de- 532

constructs query semantics into generalizable sym- 533

bolic representations, facilitating cross-domain pat- 534

tern recognition. RULERAG (Anonymous, 2024) 535

implements rule-guided retrieval augmented gen- 536

eration, leveraging logical axioms to retrieve both 537

supportive documents and attributable inference 538

rules. Knowledge graph integration approaches 539

like KELP (Liu et al., 2024a) employ latent seman- 540

tic path scoring for flexible knowledge extraction, 541

while SIMGRAG (Cai et al., 2024) introduces a 542

two-stage graph alignment process using generated 543

query patterns and graph semantic distance metrics. 544

For resource-constrained environments, MINI- 545
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RAG (Fan et al., 2025) demonstrates effective ab-546

straction through entity-centric mapping onto het-547

erogeneous knowledge graphs, proving particularly548

suitable for smaller language models through its549

emphasis on computationally lightweight entity ex-550

traction primitives.551

3 Challenges and Future Directions552

3.1 Query-Centric Process Reward Model553

A promising approach to improving reasoning in554

LLMs is the use of process reward models (PRMs)555

(Ma et al., 2023a; Setlur et al., 2024). PRMs pro-556

vide feedback at each step of a multi-step reason-557

ing process, potentially enhancing credit assign-558

ment compared to outcome reward models (ORMs)559

that only provide feedback at the final step. How-560

ever, the processes in PRMs generated by chain-561

of-thought (CoT) prompting methods are usually562

unpredictable and make it difficult to find the opti-563

mal path. Utilizing the optimal path for optimizing564

complex queries to construct query-centric process565

reward models may be a simpler and more effective566

strategy, which means rewards are provided at each567

sub-query of a multi-step reasoning process.568

3.2 Query Optimization Benchmark569

Currently, the notable lack of benchmarks for query570

optimization hinders the consistent assessment and571

comparison of different query optimization tech-572

niques across various scenarios. Typically, the is-573

sue is especially prominent in complex contexts,574

such as optimizing queries for search within multi-575

turn retrieval-augmented dialogues and in the de-576

composition of intricate problems. Therefore, de-577

veloping comprehensive evaluation frameworks578

and benchmarks may significantly benefit advance-579

ments in query optimization techniques, such as580

existing benchmarks in RAG (Kuo et al., 2024; Xie581

et al., 2024; Han et al., 2024).582

3.3 Improving Query Optimization Efficiency583

and Quality584

Many existing methods fail to pursue the most op-585

timal query optimization paths, relying instead on586

strategies akin to exhaustive enumeration. This587

kind of strategy leads to increased computational588

time and higher search costs, as the system expends589

resources exploring numerous non-optimal paths.590

Additionally, it may introduce inconsistent or irrel-591

evant search information, potentially impacting the592

overall quality and reliability of the results.593

Future research should focus on designing ef- 594

ficient algorithms capable of identifying optimal 595

optimization pathways without the need for ex- 596

haustive search. Such advancements would reduce 597

time and resource expenditures while enhancing 598

the consistency and accuracy of query optimiza- 599

tion outcomes. For example, query decomposition 600

can further be categorized into parallel decompo- 601

sition and sequential decomposition. Sequential 602

decomposition typically corresponds to multi-hop 603

queries. The reason for this classification is that 604

parallel decomposition usually does not increase 605

additional search time, while sequential decompo- 606

sition requires iterative searching to solve depen- 607

dent queries one by one, which typically increases 608

search time as the number of hops increases. 609

3.4 Enhancing Query Optimization via 610

Post-Performance 611

A typical paradigm of prompting-based methods 612

involves providing LLMs with several ground-truth 613

optimizing cases (optional) and a task description 614

for the query optimizer. Although LLMs are ca- 615

pable of identifying the potential user intents of a 616

query, they lack awareness of the retrieval quality 617

resulting from the optimized query. This discon- 618

nect can result in optimized queries that appear 619

correct but produce unsatisfactory ranking results. 620

While some existing studies have utilized reinforce- 621

ment learning to adjust the query optimization pro- 622

cess based on generation results, a substantial realm 623

of research remains unexplored concerning the in- 624

tegration of ranking results. 625

4 Conclusion 626

This in-depth analysis explores the domain of query 627

optimization techniques, with a focus on their ap- 628

plication to retrieval-augmented LLMs. Our study 629

encompasses a broad range of optimization meth- 630

ods, providing a comprehensive understanding of 631

the field. By examining the complexities of query 632

optimization, we identify the key challenges and 633

opportunities that arise in this area. As research in 634

this field continues to advance, the development of 635

specialized methodologies tailored to the needs of 636

retrieval-augmented LLMs is crucial for unlocking 637

their full potential across various domains. This 638

survey aims to serve as a valuable resource for 639

retrieval-augmented LLMs, providing a detailed 640

overview of the current landscape and encouraging 641

further investigation into this vital topic. 642
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5 Limitations643

The main goal of this paper is to provide a sur-644

vey of the existing RAG approaches. Since we do645

not propose new models, there are no potential so-646

cial risks to the best of our knowledge. Our work647

may benefit the research community by providing648

more introspection into the current state-of-the-art649

retrieval-augmented LLMs.650
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