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ABSTRACT

Fine-tuned pretrained attention-based models often struggle with generalisation,
leading to poor performance on tasks like out-of-domain transfer, distribution
shifts, and few-shot learning. This limitation is prevalent across modalities such
as speech, text, graphs, and vision. Nonparametric Variational Information Bot-
tleneck (NVIB) is an attention-based information-theoretic regulariser applicable
to pretrained models that has been shown to improve generalisation. However,
prior work has applied NVIB only to the text modality and without fine-tuning.
We investigate whether NVIB’s ability to remove information from pretrained
embeddings helps the model avoid spurious correlations with noisy and super-
ficial features during fine-tuning. We are the first to integrate NVIB regularisation
during fine-tuning across multiple diverse models and modalities. This required
modifications to the architecture which enhance adaptability and stability during
fine-tuning and simplify the evaluation. We found improved out-of-distribution
generalisation in: speech quality assessment and language identification, text with
induced attention sparsity, graph-based link prediction, and few-shot image clas-
sification. 1

1 INTRODUCTION

Leveraging pretrained attention-based representations by fine-tuning has become the de facto mod-
elling paradigm due to its wide applicability and significant improvements on the state-of-the-art
(Ruder et al., 2019). Applications of pretrained Transformers (Vaswani et al., 2017) are modal-
ity agnostic and gained prevalence across: speech processing (Baevski et al., 2020; Radford et al.,
2023); natural language processing (Devlin et al., 2019; Raffel et al., 2020; Touvron et al., 2023),
graphs Rong et al. (2020); Li et al. (2021b) and computer vision (Liu et al., 2021; Dosovitskiy et al.,
2021; Bao et al., 2022).

The success of pretrained attention-based models is thought to stem from their ability to scale, both
in terms of corpora size and the number of parameters, as well as the inductive biases inherent in the
attention-based architecture (Henderson, 2020; Zhai et al., 2022; Fedus et al., 2021; Dehghani et al.,
2023). Despite their success, these models still exhibit notable limitations during fine-tuning. Due
to their large number of parameters and expressivity, they can be prone to overfitting and struggle
to generalise in the presence of shortcuts from spurious correlations (Bhargava et al., 2021; Geirhos
et al., 2020) and distribution shift (Wu et al., 2020a; Kumar et al., 2022). The attention mechanism

1The code is publically available at:
https://github.com/idiap/nvib &
https://github.com/idiap/nvib_finetuning
*Equal contribution, alphabetical order.
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facilitates expressivity through token interaction, but this also introduces redundant information,
which can hinder generalisation (Bian et al., 2021; Bhojanapalli et al., 2021). Introducing sparsity
as a form of regularisation into attention has been shown to improve generalisation performance
by reducing this redundancy (Child et al., 2019; Behjati et al., 2023; Fehr & Henderson, 2024).
However, regularising attention during fine-tuning of pretrained models remains both challenging
and unexplored.

Information bottleneck (IB) is an information-theoretic regulariser that learns latent features Z that
compress the input X while preserving information for the downstream task Y (Tishby et al., 2000).
The variational information bottleneck (VIB) framework, introduced through a variational lower
bound to the IB objective (Alemi et al., 2017), enables deep neural representations (Tishby & Za-
slavsky, 2015) to be trained using gradient-based optimisation. This framework has been widely
applied across speech (Nelus & Martin, 2021; Lian et al., 2022), natural language (McCarthy et al.,
2020; mahabadi et al., 2021), graphs (Wu et al., 2020b; Sun et al., 2022) and vision (Han et al., 2020;
Chun, 2024). The success of the VIB framework can be attributed to its key properties, including
resilience against spurious correlations (Chuah et al., 2022) and distribution shift (Li et al., 2021a),
robustness (Zhang et al., 2022) and sparsity (Paranjape et al., 2020). Despite this success, VIB
regularisation has seen limited exploration in the fine-tuning of pretrained attention-based models.
Applying VIB to these pretrained models is difficult due to the complexity of incorporating it into
the variable-sized latent representations accessed by attention.

Henderson & Fehr (2023) propose Nonparametric Variational Information Bottleneck (NVIB) as a
VIB regulariser for attention layers. NVIB regularises the variable-sized representations accessed
by attention by compressing both the information in individual vectors and the number of vectors.
Further contributions to NVIB have demonstrated characteristics such as out-of-distribution (OOD)
generalisation and sparsity (Henderson & Fehr, 2023; Behjati et al., 2023; Fehr & Henderson, 2024).
Behjati et al. (2023) employ NVIB for representation learning by incorporating the regulariser into
the self-attention layers of a Transformer-based encoder, and trains from scratch to progressively
learn sparser representations through its layers. Fehr & Henderson (2024) integrated NVIB into
pretrained models and achieved improvements in OOD summarisation and translation tasks without
further training. Previous work has not applied NVIB regularisation during fine-tuning of pretrained
models, nor has it explored generalising nonparametric variational models beyond text to diverse
modalities like vision, speech, and graphs with their varying model architectures, data, and tasks.

Contributions. In this paper, we are the first to extend NVIB regularisation methods to fine-
tuning, with diverse pretrained models. (1) We propose several novel methods for NVIB fine-tuning,
including a learnable prior mean embedding per layer for adaptability, clipped Dirichlet pseudo-
counts for stability, and a simplified denoising attention function at evaluation (Section 2). (2) We
do the first empirical evaluation of NVIB on diverse modalities such as speech (Section 3.1), text
(Section 3.2), graphs (Section 3.3), and vision (Section 3.4). (3) We show improved OOD gener-
alisation in classification and regression tasks, demonstrating NVIB’s added value across diverse
applications.
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Figure 1: The NVIB module including the NVIB layer (left) and denoising attention (right).
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2 FINE-TUNING WITH NVIB

Figure 1 depicts an NVIB module, with the NVIB layer (left) and denoising attention function
(right). The NVIB layer projects the sequence of vectors x ∈ Rn×d from a Transformer embedding
to the parameters of a Dirichlet Process. These parameters include the isotropic Gaussian means
µ ∈ R(n+1)×d and variances σ2 ∈ R(n+1)×d, and the Dirichlet concentration parameters α ∈
R(n+1). Each of the n vectors has an associated mixture component, along with an additional
(n+1)th component that serves as a prior for the embeddings. During training, the NVIB layer
samples a mixture distribution, represented as a set of weighted vectors (π,Z), where π ∼ Dir(α)
and Zi ∼ N (µi,σ

2
i ). During evaluation, the NVIB layer outputs the expectation of these samples,

which is the mixture of n+1 Gaussians, but can be approximated as Z = µ and π = α/
∑n

i αi.

Figure 1 (right) depicts how the denoising attention function is a generalisation of standard attention
to any nonparametric mixture distribution. In the case of a set of weighted vectors, this involves
using the weights π as bias terms for the attention weights over keys K(Z). We provide a detailed
description and pseudocode for denoising attention in Appendix B, and a consolidated overview of
prior research on NVIB in Appendix A.

Following from Fehr & Henderson (2024), we reinterpret the pretrained models as nonparametric
variational models by including NVIB layers before the attention mechanisms. This layer maps the
input vectors x to the DP parameters (µq,σq,αq):

µ = µ(x) = xW µ + bµ W µ = I; bµ = 0
σ2 = σ2(x) = exp(xW σ + bσ) W σ = 0; bσ = log(τ2σ)
α = α(x) = exp(x2wα

1 + xwα
2 + bα) wα

1 = 1

2
√

d/h
⊙ 1; wα

2 = 0; bα = τα

This initialisation ensures empirical equivalence with the pretrained model, after manual adjustment
of the hyperparameters (τ2σ , τα) for each model, where d and h denote the projection size and num-
ber of attention heads. Further details are provided in Appendix C. During fine-tuning, all model
parameters are updated, including W µ, bµ, W σ , bσ , wα

1 , wα
2 , and bα.

To fine-tune with NVIB regularisation, we add Kullback-Leibler (KL) divergence terms to the task
loss. As with previous VIB regularisers, information flow is controlled during training by sampling
the latent representations. Minimising the KL divergence with the prior tries to maintain this sam-
pling noise and remove information, while the task loss keeps the information needed for the task.
The task loss LT is computed with the sampled representations. With NVIB, the KL divergence is
decomposed into two loss terms: LG for the Gaussians and LD for the Dirichlet distributions, with
hyperparameters λG and λD controlling their balance. The corresponding equations from Hender-
son & Fehr (2023) are provided in Appendix A.3. This gives us a total fine-tuning loss of:

L = LT + λDLD + λGLG (1)

Novel methods for NVIB fine-tuning. Firstly, in contrast to Fehr & Henderson (2024), we sim-
plify the denoising function during evaluation to better align with the training function. The equa-
tions used in both training and evaluation are shown in Figure 1 (right) and pseudocode in Appendix
B. Secondly, while Fehr & Henderson (2024) estimate the prior parameters from training data, in
this work we allow the prior mean µp to be fine-tuned. This allows for flexibility and adaptation to
the pretrained model. To maintain the noise in the prior during training, we keep the prior variance
(σp)2 = 1 and the prior’s pseudo-count αp

0 = 1 fixed. Thirdly, we stabilise fine-tuning by ap-
plying proportional clipping to the Dirichlet sampling parameters α. The magnitude of α controls
the amount of noise when sampling the weights π, with larger values reducing noise. The relative
values of α determine the expected π distribution. Thus, we control the magnitude of α while pre-
serving its relative values using the clipping functions max(ϵ, .) and min(ω, .) to prevent underflow
and overflow, respectively. The parameter ϵ is set small enough to prevent values from vanishing,
while ω is chosen to be sufficiently large to avoid distorting the distribution.

α = max

(
ϵ,

α∑
i αi

)
×min

(
ω,
∑
i

αi

)
(2)
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3 EXPERIMENTS

To evaluate the NVIB regulariser, we design controlled experiments by fine-tuning pretrained mod-
els across modalities, including speech, text, graphs, and vision. We compare to models that are
first pretrained and then fine-tuned using empirical risk minimization (ERM) with task-specific loss
functions. For simplicity and to maintain uniformity across experiments, we define a set of fine-
tuned baselines, avoiding modality-specific alternatives. These baselines include models trained
without regularisation and models with dropout regularisation. Dropout is a suitable baseline for
NVIB regularisation, as it is widely used and effective, seamlessly integrates into pretrained mod-
els, and introduces noise into both embeddings and attention mechanisms. To reduce computational
costs, we prioritise smaller Transformer models: TinyBERT (Turc et al., 2019) for text and graphs,
Wav2Vec2 base and large (Baevski et al., 2020) for speech, and DeiT-small (Touvron et al., 2021b)
for vision. Additional modelling details and hyperparameters for each experiment are provided in
Appendix C.

3.1 SPEECH OUT-OF-DISTRIBUTION EVALUATION

Language identification and automated assessment of speech are crucial tasks in the development
of audio transmission systems, but are challenging due to many factors related to: the acoustic en-
vironment; variation in recording hardware and software; speaker characteristics; and evaluation
conditions (Gierlich & Kettler, 2006; Chinen, 2021; Cooper et al., 2022). The prediction of per-
ceived speech quality is formulated as a regression task to estimate the scores of human listeners
(ITU-T, 1996), whereas language identification is a classification task given an audio sample. Given
the diverse array of factors that can impact speech, generalisation is essential in these tasks.

Speech quality assessment. We fine-tune and evaluate on the NISQA (Mittag et al., 2021) dataset,
which contains English speech recordings from live calls with network impairments and simulated
distortions. We perform OOD testing on the TencentWithReverberation (Tencent) Chinese speech
corpus (Yi et al., 2022), which introduces new conditions such as: simulated and real reverbera-
tion; and different labelling conditions. Following ITU-T (2020), we evaluate our models using the
Pearson’s correlation coefficient (PCC) and root-mean-square error after mapping with a first-order
polynomial function (RMSE MAP). Table 1 shows that NVIB regularisation achieves the highest
correlation on the in-distribution (ID) data. On the OOD dataset, NVIB regularisation achieves
comparable generalisation improvements while exhibiting a lower standard deviation.

Table 1: Speech quality assessment for NISQA (ID) and Tencent (OOD). Average test results (0–1)
are reported with standard deviation across 5 seeds.

NISQA (ID) Tencent (OOD)
Model PCC (↑) RMSE MAP (↓) PCC (↑) RMSE MAP (↓)

W2V2Base 0.89 (0.02) 0.42 (0.03) 0.80 (0.01) 0.54 (0.01)

with Dropout 0.89 (0.01) 0.43 (0.01) 0.83 (0.03) 0.51 (0.04)

with NVIB 0.90 (0.01) 0.41 (0.02) 0.83 (0.02) 0.51 (0.03)

Speech language identification. We fine-tune our models on the CommonLanguage (Ravanelli
et al., 2021) speech dataset which consists of 22K training audios from 45 languages. We evaluate on
two OOD datasets with overlapping languages: FLEURS (Conneau et al., 2023) with 27 languages;
and VoxPopuli (Wang et al., 2021) with 11 lanuages. The FLEURS dataset is read speech, which
is closer to CommonLanguage. Whereas, the VoxPopuli dataset is more challenging as it contains
spontaneous speech from the European Parliament. Table 2 reports the F1 classification scores,
showing that NVIB matches ID performance and outperforms the dropout-regularised baseline on
the OOD datasets.
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Table 2: Language identification for CommonLanguage (ID), FLEURS (OOD) and VoxPopuli
(OOD). Average test F1 scores (0–1) are reported with standard deviation across 5 seeds.

CommonLanguage (ID) FLEURS (OOD) VoxPopuli (OOD)
Model F1 (↑) F1 (↑) F1 (↑)

W2V2Large 0.82 (0.01) 0.90 (0.02) 0.86 (0.02)

with Dropout 0.81 (0.01) 0.90 (0.01) 0.82 (0.02)

with NVIB 0.82 (0.01) 0.91 (0.02) 0.85 (0.02)

3.2 TEXT OUT-OF-DISTRIBUTION CLASSIFICATION

We consider the CivilComments (CC) (Borkan et al., 2019) task which is part of the WILDS (Koh
et al., 2021) curated set of datasets that represent real-life distribution shifts. CC classifies the pres-
ence of toxicity in online comments which is an important task of monitoring internet content. The
task is a binary classification task of determining if a comment is toxic and contains a subpopula-
tion shift between 8 demographic identities classes. The subpopulation shift means that the training
and test domains overlap, but their relative proportions differ.We measure the generalisation by the
accuracy of the lowest performing subpopulation worst-group (WG).

Table 3 shows the generalisation improvement of this task through regularisation. On average, NVIB
regularisation improves OOD generalisation over the unregularised baseline, though it remains less
effective than dropout. However, introducing sparsity in the attention keys based on their attention
magnitude, as shown in Figure 2, raises the OOD accuracy of the NVIB model and sustains it across
a wide range of sparsity levels. Further inspection of the attention patterns in Appendix Figures 4 &
5 shows an interpretable focus on toxic words as spurious keys are dropped and attention weight is
put on the prior token.

Table 3: Text classification on CC train (ID) and test
(OOD). Average accuracy (%) is reported across 5 seeds
with standard deviation and the best OOD model.

CC Train (ID) CC Test (OOD)
Model WG (↑) WG (↑)
BERTTiny 78.12 (14.33) 99.00 49.14 (5.56) 61.03

with Dropout 91.05 (1.49) 91.16 60.10 (3.11) 63.97

with NVIB 80.12 (10.69) 76.30 55.01 (6.15) 61.03
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Figure 2: Worst-group (WG) test accu-
racy as a function of attention key spar-
sity for the best OOD models, relative
to the dropout baseline.

3.3 GRAPH LINK PREDICTION

Link prediction is a graph-based problem that involves predicting whether a link exists between two
nodes in a graph. This is widely used for recommendation and prediction in social networks, citation
links and biological interactions (Kumar et al., 2020; Xia et al., 2021). We build upon the BERT for
Link Prediction (BLP) model (Daza et al., 2020) which operates on a set of triples (h, r, t), where
h and t represent the head and tail node, while r represents the relation between those two nodes.
We evaluate on the FB15k-237 dataset (Daza et al., 2020). This dataset follows an inductive setting,
where new entities and triples are dynamically incorporated into the graph during evaluation. We
evaluate the models by querying them with (h, r, ?) and (?, r, t) triples, and assess their performance
using two metrics: Mean Reciprocal Rank (MRR), which measures the model’s ability to rank the
correct triple, and H@k, which calculates the proportion of correct triples ranked within the top-k
results. Table 4 presents the test set results, which highlights the advantage of the NVIB-regularised
model over typical regularisation methods like dropout. This advantage may stem from the presence
of new entities in the head or tail positions, which require a higher level of generalisation.
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Table 4: Graph link prediction on FB15k-237. Test set ranking metrics (0–1) are reported, based on
the best model selected from validation set performance.

FB15k-237
Model MRR (↑) H@1 (↑) H@3 (↑) H@10 (↑)
BLP-BERTTiny 0.164 0.100 0.175 0.288
with Dropout 0.162 0.097 0.172 0.288
with NVIB 0.167 0.103 0.180 0.294

3.4 IMAGE FEW-SHOT CLASSIFICATION

Few-shot classification aims to train models capable of classifying images with limited labelled
examples per category. Meta-learning (Vinyals et al., 2016) achieves this by meta-training on sev-
eral episodes, enabling generalisation to new tasks with previously unseen classes. To generalise
effectively, the classifier must transfer knowledge from the training distribution to unseen testing
distributions while avoiding spurious correlations and shortcuts (Zheng et al., 2024; Zhang et al.,
2024). The following experiments are conducted within a meta-learning-based few-shot classifica-
tion framework Hu et al. (2022), using a pretrained DeiT-small model as the backbone.

Table 5: Image classification on
CIFAR-FS (ID). Test episodes accu-
racy (%) with standard deviation.

CIFAR-FS (ID)
Model Acc (↑) Std (↓)

DeiTSmall 93.57 5.71
with Dropout 93.55 5.61
with NVIB 93.88 5.58

Few-shot in-distribution. We evaluate the ID perfor-
mance using the CIFAR-FS (Bertinetto et al., 2019) dataset.
Following Hu et al. (2022), we conduct experiments under a
5-way 5-shot setting, where each episode consists of a “sup-
port set” with 5 classes and 5 samples per class for training,
and a “query set” containing 5 classes with 15 examples per
class for testing. Table 5 reports the average classification
accuracy and standard deviation over all test episodes for
CIFAR-FS in few-shot classification. Compared to the base-
line and Dropout, we observe that NVIB regularisation im-
proves accuracy with lower variance across all test episodes.

Few-shot out-of-distribution. To evaluate the OOD few-shot classification performance, we use
the Meta-Dataset (Triantafillou et al., 2019). This benchmark is a diverse set of 10 image datasets,
including, ImageNet-1k, MSCOCO (COCO), Traffic Signs (Sign), Describable Textures (DTD),
FGVCx Fungi (Fungi), Omniglot, VGG Flower (Flower), CUB-200-2011 (CUB), FGVCAircraft
(Acraft) and QuickDraw (QDraw). We meta-train the models on ImageNet-1k and then meta-test
them on the remaining datasets. The number of ways, shots, and query images for each dataset are
sampled as in Hu et al. (2022), with further details provided in Appendix C.4.2. Figure 3 shows that
the NVIB-regularised model achieves the highest performance on 6 out of 9 OOD datasets and is
rarely outperformed by the dropout-regularised baseline.
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Figure 3: Percentage point improvement in test accuracy relative to the unregularised baseline on
the Meta-Dataset benchmark (OOD).
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4 DISCUSSION

Our results suggest that including NVIB regularisation improves the model’s ability to distinguish
signal from noise. This is supported by performance gains observed in tasks such as speech qual-
ity prediction (Table 1) and few-shot image classification (Table 5). We attribute this to NVIB’s
Bayesian nature, which effectively models statistical uncertainty. During fine-tuning, NVIB intro-
duces noise into the latent representations, which enhances its ability to generalise across noisy
feature spaces such as background disturbances and capture variations present in both audio and im-
ages. NVIB regularisation shifts the model’s attention from relying on superficial, spurious features
to deeper features which generalise better out-of-distribution. This is evident in consistent improve-
ments across tasks that require generalisation to unseen entities, such as graph linking (Table 4) and
visual meta-learning (Figure 3). We believe this is due to the additional prior tokens, which disen-
tangle and reweight attention away from spurious tokens (attention maps in Appendix Figures 4 &
5). Additionally, this effect is observed in sustained performance with increased sparsity (Figure 2).

5 CONCLUSION

In this work, we contribute to fine-tuning with Nonparametric Variational Information Bottleneck
regularisation by demonstrating improved generalisation across multiple modalities and models. We
extend NVIB to pretrained models by proposing a novel learnable prior mean embedding per layer
for greater adaptability, clipping Dirichlet pseudo-counts for training stability, and simplifying the
NVIB denoising attention function at evaluation time.

Future work. In future work, we aim to scale our experiments to include models with larger
parameter sizes and explore training from scratch. While our current focus prioritized simplicity
and uniformity, we are encouraged to evaluate additional baselines and tasks across each modality.
Furthermore, we see significant promise in applying NVIB to language modelling, particularly with
large language models (LLMs).
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A INTRODUCTION TO NVIB

Henderson & Fehr (2023) define Nonparametric Variational Information Bottleneck (NVIB) by generalising
the standard attention layer to a Bayesian model where embeddings are distributions over the latent space. A
key insight of this approach is that the latent space of attention-based representations can be viewed as non-
parametric mixture distributions. In this interpretation, the vectors accessed via attention define a mixture of
impulse distributions. Since a Transformer embedding is a set of vectors that dynamically scale with the com-
plexity of the input, the corresponding latent space of these mixture distributions is inherently nonparametric in
nature. In this formulation, the attention function is interpreted as Bayesian “query denoising” using the latent
distribution as the prior. The authors define denoising attention as a generalisation of the attention function to
query denoising.

A.1 DENOISING ATTENTION

Denoising attention is a generalisation of attention which interprets the latent space of Transformers as a non-
parametric mixture distribution. Henderson & Fehr (2023) provide a constructive proof of exact equivalence
to the standard attention function. When standard attention accesses the latent space of Transformers, which
is a set of embedding vectors Z ∈ Rn×d via weight matrices WK ,W V ∈ Rd×d to keys and values, respec-
tively, and projects the accessing input vector u′ ∈ R1×d via the weight matrix WQ ∈ Rd×d to a query. By
letting u = (u′WQ(WK)⊤) ∈ R1×d, the standard scaled dot product attention function can be rewritten as
(Attn(u,Z)W V ), with Attn(u,Z) defined in terms of a sum over the vectors zi in Z, or equivalently defined
in terms of an integral over a distribution which is only non-zero at the zi:

Attn(u,Z) = softmax
(

1√
d
uZ⊤

)
Z = DAttn(u;FZ) (3)

DAttn(u; F ) =

∫
v

f(v) g(u; v,
√
dI)∫

v
f(v) g(u; v,

√
dI) dv

v dv (4)

FZ =

n∑
i=1

exp( 1

2
√
d
||zi||2)∑n

i=1 exp(
1

2
√
d
||zi||2)

δzi (5)

where δzi is an impulse distribution at zi, f(·) is the probability density function for distribution F , and
g(u; v,

√
dI) is the multivariate Gaussian function with diagonal variance of

√
d. This alternative definition

DAttn(u; FZ) is denoising attention. It subsumes standard attention in that any attention-based embedding
Z has an equivalent mixture of impulse distributions, namely FZ , where denoising attention DAttn(u; FZ)
gives us exactly the same result as attention Attn(u,Z), for all queries u. This is an elegant result, which in
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practice allows us to define a nonparametric distribution over the latent embeddings of Transformers. Appendix
B covers the exact equations for denoising attention and pseudocode.

A.2 DISTRIBUTIONS OVER MIXTURE DISTRIBUTIONS

Given this generalisation of attention-based representations to nonparametric mixture distributions, Bayesian
nonparametrics can be used to define distributions over the latent space. Henderson & Fehr (2023) propose to
use Dirichlet Processes (DPs) to define distributions over mixture distributions, so an NVIB layer first embeds
its input vectors into a DP representation by mapping them to the parameters (µq,σq,αq) of a DP. A DP is
defined by a base distribution Gq

0 for generating the vectors for the component impulse distributions, and a
pseudo-count αq

0 for generating their mixture weights.

αq
0 =

∑
i

αq
i ; Gq

0 =
∑
i

αq
i

αq
0

N (µq
i , I(σ

q
i )

2) (6)

Following this definition, Gq
0 is itself a mixture distribution, consisting of one Gaussian component from the

prior plus one Gaussian component for each vector input to the NVIB layer. These DPs represent the posterior
q(F |x)). The prior p(F ) is a DP specified by the parameters (µp,σp, αp) of its pseudo-count αp and its uni-
modal base distribution Gp

0 = N (µp,σp). In this work, we allow the prior µp to be learned, which allows the
prior to be centred in the latent embedding space. However, to maintain noise during regularisation, we set the
prior variance (σp)2 = 1 and the prior’s pseudo-count αp

0 = 1.

A.3 NVIB REGULARISATION

During training, NVIB regularises the information passing through the NVIB layer by sampling latent repre-
sentations from its DP embedding. This process introduces noise and removes redundant information, enhanc-
ing model generalisation. The level of noise is learned by the DP parameters (µq,σq,αq) within the NVIB
layer. To maintain noise during training, a Kullback-Leibler (KL) divergence loss term is included between the
embedding distribution and the DP prior. Since the prior DP is input independent, the KL term enforces an
information bottleneck by minimising the information retained in the DP embedding. During evaluation, the
NVIB layer uses the mean latent representation, which is the base distribution Gq

0 of the DP embedding.

The evidence lower bound (ELBO) is a widely used objective in variational Bayesian methods, serving as a
tractable approximation to the log-likelihood of the observation x, where x represents the input. The ELBO is
formulated as follows:

log(p(x)) ≥ Eq(F |x) log(p(x|F )) −KL(q(F |x)||p(F )) (7)

LR = −Eq(F |x) log(p(x|F )) (8)

This decomposition consists of two key terms: the reconstruction loss LR, computed using samples F drawn
from the approximate posterior q(F |x), and the KL divergence between this posterior and the prior p(F ). In
this work, we replace the reconstruction loss with a task specific loss LT . Henderson & Fehr (2023) further
divided the KL term into LG, corresponding to Gaussian distributions, and LD , corresponding to Dirichlet
distributions. This gives us the following loss terms for the KL divergence, where Γ is the gamma function and
ψ is the digamma function:

LD + LG ≈ DKL(q(F |x) || p(F )) (9)

LD = logΓ(αq
0)− logΓ(αp

0) + (αq
0 − αp

0)

(
−ψ(αq

0) + ψ(
αq
0

κ0
)

)
+ κ0

(
logΓ(

αp
0

κ0
)− logΓ(

αq
0

κ0
)

)
(10)

LG = 1
2
κ0

n+1∑
i=1

αq
i

αq
0

d∑
h=1

(
(µq

ih − µp
h)

2

(σp
h)

2
+

(σq
ih)

2

(σp
h)

2
− 1− log

(σq
ih)

2

(σp
h)

2

)
(11)

Since we only draw a single sample per component, thus κ0 = n+ 1. However, in practice we scale both LG

and LD by the number of components (n+ 1) such that the loss is invariant to sequence length. We introduce
two hyperparameters to control the relative weight of the above three parts of the loss, which defines our VIB
loss L.

L = LT + λDLD + λGLG (12)
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A.4 INCLUDING NVIB INTO PRETRAINED MODELS

Fehr & Henderson (2024) define an identity initialisation for NVIB such that the latent embeddings have negli-
gible uncertainty and denoising attention is effectively equivalent to standard attention. This allows pretrained
attention-based models to be reinterpreted as Nonparametric Variational models. By only changing the initial-
isation, away from the identity and towards an empirically estimated prior, an effective post-training regulari-
sation is added. The authors found that this information-theoretic regularisation lead to improvements in OOD
text generalisation in summarisation and translation without fine-tuning.

B SIMPLIFYING DENOISING ATTENTION

In this section, we provide the implementation details for denoising multihead attention. We define the set of
Transformer latent embedding vectors as Z ∈ Rn×d and set of pre-projected queries as U ′ ∈ Rm×d. We
assume the latent projection matrices are square such that WQ,WK ,W V ∈ Rd×d and biases bQ, bK , bV ∈
Rd are used to linearly project to the queries, keys and values, respectively. We define the standard attention
weights before the softmax as follows:

A = 1√
d
(U ′WQ + bQ)︸ ︷︷ ︸

Q

(ZWK + bK)⊤︸ ︷︷ ︸
K⊤

∈ Rm×n (13)

Typically, for multihead attention the projected query Q and keys K are split into heads. In this definition, we
split the linear projections by a divisible number of heads h such that WQ,WK ,W V ∈ Rh×d× d

h and biases
bQ, bK , bV ∈ Rh× d

h , so that Q ∈ Rh×m× d
h and K ∈ Rh×n× d

h . We can then specify multihead attention by
defining a matrix of attention scores A ∈ Rh×m×n, for each head i:

Ai =
1√
d/h

((Qi(W
K
i )⊤Z⊤ +Qi(b

K
i )⊤) (14)

where the bias term Qi(b
K
i )⊤ ∈ Rm is added across all n keys, and thus is normalised out in the softmax

below. The scaling term also considers the heads and is division by
√
d/h. For denoising attention, each

head’s query is projected into the space of the original set of vectors Z, namely Ui=Qi(W
K
i )⊤, and so is still

in Rm×d. Thus, each head can be viewed as doing denoising attention in the same way as single-head attention,
with the only difference being that the variance of the theoretical query noise is now

√
d/hI .

Training. Given these sampled weights and vectors, the training-time denoising attention function is the
same as the standard attention function with two changes: (1) the keys come from the sampled vectors Z ∈
R(n+1)×d, which include a vector sampled from the prior component; and (2) each key has an attention bias
b ∈ R(n+1) which is determined by its weight π ∈ R(n+1). Summing over heads i, the training-time denoising
attention function is:

DAttn(.) =
∑
i

Softmax(Ai + log(π)− 1

2
√

d/h
∥Z∥2︸ ︷︷ ︸

b

) (ZW V
i + bVi )︸ ︷︷ ︸
Vi

) (15)

The biases b are defined by adding the log of the sampled weights log(π) ∈ R(n+1) from the NVIB layer
and subtracting the scaled squared-L2-norms of the sampled vectors 1

2
√

d/h
∥Z∥2 ∈ R(n+1). For multihead

attention we only need to reuse the same biases b for each head, just like we reuse the same vectors Z for each
head.

Evaluation. During the evaluation, as for training, the NVIB layer outputs the isotropic Gaussian parameters
µ ∈ R(n+1)×d,σ ∈ R(n+1)×d and Dirichlet parameters α ∈ R(n+1). For evaluation the base distribution is
used. The parameters are taken directly without sampling such that we use the expectation of the distribution.
We can write the denoising attention scores A ∈ Rh×m×(n+1), for each head i, as follows:

Ai = Qi(W
K
i )⊤(

µ√
d/h

)⊤ + 1√
d/h

Qi(b
K
i )⊤ (16)

where the bias term Qi(b
K
i )⊤ ∈ Rm is added across all n keys, and thus is normalised out in the softmax

below. For this attention score matrix A, multihead evaluation denoising attention adds the same key biases
c ∈ Rh×(n+1) across all m queries and h heads. For ease of notation we define α0 =

∑d
j=1 αj .

DAttn(.) =
∑
i

Softmax(Ai + log(
α

α0
)− 1

2
∥ µ√

d
∥2︸ ︷︷ ︸

b

) (µW V
i + bVi )︸ ︷︷ ︸
Vi

(17)
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This simplifies previous implementations of Henderson & Fehr (2023) and Fehr & Henderson (2024) by re-
moving the additional variance term in the bias b and the interpolation between the query and value vectors.
This makes the training and test time denoising attention functions more similar and reduces computation re-
quirements.

Pseudocode: Attention and Denoising Attention during training (single-head). Left: Standard At-
tention. Right: Denoising Attention.

class Attention():
def __init__(self, d):

# Projections to Q, K, V [d,d]
self.q = linear(d, d)
self.k = linear(d, d)
self.v = linear(d, d)

def forward(self, u, z):
# queries u: [B, M, d]
# keys / values z: [B, N, d]
d = keys.shape(2)

# Project to Q, K, V
q = self.q(u)
k = self.k(z) / sqrt(d)
v = self.v(z)

# Attention scores [B, M, N]
attn = q @ k.transpose()

# Attention probabilities [B, M, N]
attn = softmax(attn)

# Value projection [B, M, d]
out = attn @ v

return out

class DenoisingAttention():
def __init__(self, d):

# Projections to Q, K, V [d,d]
self.q = linear(d, d)
self.k = linear(d, d)
self.v = linear(d, d)

def forward(self, u, z, pi):
# queries u: [B, M, d]
# keys / values z: [B, N+1, d]
d = keys.shape(2)

# Project to Q, K, V
q = self.q(u)
k = self.k(z) / sqrt(d)
v = self.v(z)

# NVIB bias [B, 1, N+1]
b = log(pi)

- 1/(2*sqrt(d))*l2norm(z)**2

# Attention scores [B, M, N+1]
attn = q @ k.transpose() + b

# Attention probabilities [B, M, N+1]
attn = softmax(attn)

# Value projection [B, M, d]
out = attn @ v

return out

Pseudocode: Denoising Attention during evaluation (single-head). Left: Previous implementation
including extra bias term and query value interpolation. Right: Current simplified implementation.

class DenoisingAttention():
def __init__(self, d):

# Projections to Q, K, V [d,d]
self.q = linear(d, d)
self.k = linear(d, d)
self.v = linear(d, d)

def forward(self, u, mu, sigma2, alpha):
# queries u: [B, M, d]
# keys / values mu: [B, N+1, d]
d = keys.shape(2)

# Project to Q, K, V
q = self.q(u)
k = self.k(mu / (sqrt(d)+sigma2))
# v is used in interpolation

# NVIB bias [B, 1, N+1]
b = log(alpha / sum(alpha))

- 1/(2*(sqrt(d)+sigma2))*l2norm(mu)**2
- sum(log(sqrt(sqrt(d)+sigma2)))

# Attention scores [B, M, N+1]
attn = q @ k.transpose() + b

# Attention probabilities [B, M, N+1]
attn = softmax(attn)

# Query projection to key-space [B, M, d]
u k = self.k(q)

# Value interpolation [B, M, d]
out = (attn @

(sigma2/(sqrt(d)+sigma2)))*u k
+ attn @

((sqrt(d)/(sqrt(d)+sigma2)))*mu
out = self.v(out)

return out

class DenoisingAttention():
def __init__(self, d):

# Projections to Q, K, V [d,d]
self.q = linear(d, d)
self.k = linear(d, d)
self.v = linear(d, d)

def forward(self, u, mu, alpha):
# queries u: [B, M, d]
# keys/values mu: [B, N+1, d]
d = keys.shape(2)

# Project to Q, K, V
q = self.q(u)
k = self.k(mu) / sqrt(d)
v = self.v(mu)

# NVIB bias [B, 1, N+1]
b = log(alpha/sum(alpha))

- 1/(2*sqrt(d))*l2norm(mu)**2

# Attention scores [B, M, N+1]
attn = q @ k.transpose() + b

# Attention probabilities [B, M, N+1]
attn = softmax(attn)

# Value projection [B, M, d]
out = attn @ v

return out
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C MODELLING & HYPERPARAMETERS

We outline the general modelling choices applied across all experiments, followed by experiment-specific con-
figurations in the sections below. To manage computational costs, we prioritise smaller models, as all experi-
ments were conducted on a consumer-grade GPU (NVIDIA RTX3090 24GB).

Baselines. For uniformity across modalities and models, we use two baselines to compare our regularisa-
tion method. The first is an unregularised model fine-tuned without dropout in embeddings and attention. The
second, with dropout, follows typical regularisation in pretrained Transformers, applying a 0.1 dropout rate
during fine-tuning. Dropout is an appropriate baseline for NVIB regularisation, as it is widely used and ef-
fective, seamlessly integrates into pretrained models, and introduces noise into both embeddings and attention
mechanisms.

Initialisation of NVIB layers. When including the NVIB layers into a pretrained Transformer, we ensure
an equivalence in the initialisation, as described by Fehr & Henderson (2024). Specifically, this requires the
attention weight to completely ignore the prior component embedding for each layer of the model that includes
NVIB. While Fehr & Henderson (2024) empirically initialise the prior component from training data, we sim-
plify the process by initialising our prior mean µp = 0, variance (σp)2 = 1 (standard normal Gaussian),
and prior Dirichlet pseudo-count αp

0 = 1. We establish a set of equivalence tests and find that, in general, the
lower layers of the model are easier to preserve in equivalence. The higher layers tend to be more sensitive, and
stacking multiple NVIB layers introduces accumulating variance that can break the equivalence. For the later
layers where equivalence is not achieved, we exclude NVIB from those layers, with a manual process for each
pretrained model. The initialisation Gaussian variance τσ and Dirichlet τα parameters influence equivalence
during both evaluation and training.

The initialisation Gaussian variance parameter τσ is a bias term for the initial amount of noise during fine-
tuning. Since it is not required for equivalence, as we do not sample from the embedding distribution during
evaluation, we can start with a non-zero amount of noise and initialise this parameter for fine-tuning.

σ2 = σ2(x) = exp(xW σ + bσ); W σ = 0; bσ = log(τ2σ) (18)

The initialisation parameter τα serves as a bias term for the Dirichlet pseudo-counts projection. It reweights
the α parameters, ensuring that the embedding vectors from the input are larger than the prior in the attention
calculation. The τα parameter must be sufficiently large to ensure equivalence, allowing the input embeddings
to dominate the prior, but not so large that it significantly prolongs the regularisation. Previously, it was set
as a ratio of the empirical standard deviation from training data (Fehr & Henderson, 2024). In this work, we
determine it manually by selecting the smallest τα that maintains equivalence of the pretrained model.

α = α(x) = exp(x2wα
1 + xwα

2 + bα); wα
1 =

1

2
√
d/h

⊙ 1; wα
2 = 0; bα = τα (19)

Fine-tuning hyperparameters. Following the approach of Henderson & Fehr (2023), we set the number
of samples per component to κ∆ = 1. However, the authors define a conditional prior, which when training
models from scratch helped to control the sparsity. In this work, we do not incorporate this conditional prior.
As shown in Appendix A.3, the Kullback-Leibler divergence is decomposed into two parts, with the Gaussian
and Dirichlet components weighted by the hyperparameters λG and λD , respectively. We explore different of
these hyperparameters during fine-tuning for each experiment.

C.1 SPEECH OUT-OF-DISTRIBUTION EVALUATION

C.1.1 SPEECH QUALITY ASSESSMENT

Fine-tuning details. For the speech quality regression task on NISQA2 and Tencent3, we used the mean-
squared-error (MSE) loss with the pretrained Wav2vec2-base4 model (Baevski et al., 2020), a 12 Transformer
encoder. For the regression head we use two linear layers, including non-linearity and dropout, followed by
mean pooling. The size for the latent embedding vectors and model projections are 768 with 12 attention
heads, which leads to models of approximately 95 million parameters. During fine-tuning we use: the Adam
optimiser (Kingma & Ba, 2014), a constant learning rate of 1e−5, batch size of 16, trained for 5 epochs. For
regularised models we include layer drop of 0.1 time-frequency masking on the output of the feature encoder
with probability 0.05. The pretrained convolutional feature encoder is not fine-tuned. This is a standard for the
model architecture (Baevski et al., 2020).

2Dataset: https://github.com/gabrielmittag/NISQA/wiki/NISQA-Corpus
3Dataset: https://github.com/ConferencingSpeech/ConferencingSpeech2022
4Model: https://huggingface.co/facebook/wav2vec2-base-960h
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NVIB details. For our Transformer encoder, we include NVIB in layers 0−10. The NVIB projections were
initialised using τσ = 0.1 and τα = 10. During fine-tuning we included the learnable prior µp. Hyperparam-
eters for influencing the amount of regularisation from the Gaussian component λG and Dirichlet component
λD were tied and selected over a log-scaled grid search [1e−1, 1e−2, 1e−3, 1e−4] on validation data. The best
performing model used NVIB regularisation parameters of λG = λD = 1e−2 and evaluated over 5 seeds.

C.1.2 SPEECH LANGUAGE IDENTIFICATION

Fine-tuning details. For the language identification classification task, we used cross-entropy loss with the
pretrained Wav2vec2-large5 model (Baevski et al., 2020), a 24 layer Transformer encoder. We use a single linear
layer and mean pooling classification head. The size for the latent embedding vectors and model projections
are 1024 with 16 attention heads, which leads to models of approximately 317 million parameters. During
fine-tuning we use: the AdamW (Loshchilov & Hutter, 2019) optimiser, a learning rate of 3e−5, scheduler with
a linear warm-up and decay, batch size of 4, trained for 10 epochs with mixed precision 16bit and gradient norm
clipping of 1. This experiment also includes weight decay for all models of 0.05. For regularised models, we
include layer drop of 0.1 and time-frequency masking on the output of the feature encoder with probability 0.05.
The pretrained convolutional feature encoder is not fine-tuned. This is a standard for the model architecture
(Baevski et al., 2020).

NVIB details. For our Transformer encoder, we include NVIB in layers 0−16. The NVIB projections were
initialised using τσ = 0 and τα = 10. During fine-tuning we included the learnable prior µp. Hyperparam-
eters for influencing the amount of regularisation from the Gaussian component λG and Dirichlet component
λD were tied and selected over a log-scaled grid search [1e−1, 1e−2, 1e−3, 1e−4, 1e−5, 1e−6, 1e−7, 1e−8] on
validation data. The best performing model used NVIB regularisation parameters of λG = λD = 1e−7 and
evaluated over 5 seeds.

Dataset Details. We fine-tune our models on the CommonLanguage6 (Ravanelli et al., 2021) dataset which
consists of 22K training audios from 45 languages. For VoxPopuli7 we selected 11 languages (Czech, Dutch,
English, Estonian, French, German, Italian, Polish, Romanian, Slovenian, and Spanish) while 27 for FLEURS8

(Arabic, Catalan, Czech, Dutch, English, Estonian, French, Georgian, German, Greek, Indonesian, Italian,
Japanese, Kyrgyz, Latvian, Maltese, Persian, Polish, Portuguese, Romanian, Russian, Slovenian, Spanish,
Swedish, Tamil, Turkish, and Welsh).

C.2 TEXT OUT-OF-DISTRIBUTION CLASSIFICATION

Fine-tuning details. For the CivilComments9 classification task, we used cross-entropy loss with the pre-
trained TinyBERT10 model (Turc et al., 2019), a two-layer Transformer encoder. The size for the latent em-
bedding vectors and model projections are 128 with 2 attention heads, which leads to models of approximately
4.5 million trainable parameters. The standard BERT base-uncased tokeniser is used for tokenisation with a
vocabulary of approximately 30K. During fine-tuning we use: the AdamW optimiser (Loshchilov & Hutter,
2019), a constant learning rate of 5e−5, batch size of 1024, trained for 50 epochs with mixed precision 16bit
and gradient norm clipping of 0.1.

NVIB details. For our two-layer Transformer encoder, we include NVIB in both layers. The NVIB pro-
jections were initialised using τσ = 0.1 and τα = 1. During fine-tuning a linear KL annealing warmup was
used including the learnable prior µp. Hyperparameters for influencing the amount of regularisation from the
Gaussian component λG and Dirichlet component λD were tied and selected over a log-scaled grid search
[1e0, 1e−1, 1e−2, 1e−3, 1e−4, 1e−5] on validation data. The best performing model used NVIB regularisation
parameters of λG = λD = 1e−1 and evaluated over 5 seeds.

Induced sparsity. After fine-tuning, NVIB regularisation naturally induces sparsity in the key-space,
whereas dropout promotes a more uniform distribution across keys, as shown in the right-most frames of the
attention maps (Figures 4 and 5). This effect arises from the NVIB regularisation decreasing the weight of
embeddings in proportion to the prior component embedding during the attention calculation. To remove a key,
we first calculate the average attention weights across the query dimension and then mask out the embeddings
with the lowest magnitudes, thereby inducing key sparsity. Since NVIB naturally creates key sparsity, when

5Model: https://huggingface.co/facebook/wav2vec2-large-960h
6Dataset: https://huggingface.co/datasets/speechbrain/common_language
7Dataset: https://huggingface.co/datasets/facebook/voxpopuli
8Dataset: https://huggingface.co/datasets/google/fleurs
9Dataset: https://github.com/p-lambda/wilds

10Model: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2
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these keys are dropped, we notice an improvement or sustained task performance (Figure 2). As the proportion
of keys being masked increases (right to left in Figures 4 and 5), we notice minor changes in the attention
patterns for the NVIB model and clear alignment with the tokens that are toxic content.
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 4: Attention plot for the best models on CivilComments. The plots show a single head
of the last layer. Left-Right: Proportion of keys retained [0.1, 0.25, 0.5, 0.75, 1.0]. Top: with
Dropout. Bottom: with NVIB. Sentence: (‘you sound like a terrorist.’). NVIB highlights ‘sound’
and ‘terrorist’.
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Qu
er

y

[P
]

[C
LS

]
(_

1 '_2
th

e_
3

clo
wn

_4
##

s_
5

ar
e_

6
ig

no
ra

nt
_7

sh
ee

p_
8

of
_9

th
e_

10
le

ft_
11

liv
in

g_
12

in
_1

3
ha

te
_1

4
lik

e_
15

yo
u_

16
wh

ile
_1

7
tru

m
p_

18
is_

19
wo

rk
in

g_
20

an
d_

21
su

cc
ee

di
ng

_2
2

fo
r_

23
th

e_
24

us
a_

25 ._2
6

ho
w_

27
ab

ou
t_

28
le

ss
_2

9
fo

cu
s_

30
on

_3
1

tru
m

p_
32

an
d_

33
m

or
e_

34
on

_3
5

ou
r_

36
pa

th
et

ic_
37

le
ad

er
sh

ip
_3

8
'_3

9
,_4

0
)_

41
[S

EP
]

Key

[CLS](_1'_2the_3clown_4##s_5are_6ignorant_7sheep_8of_9the_10left_11living_12in_13hate_14like_15you_16while_17trump_18is_19working_20and_21succeeding_22for_23the_24usa_25._26how_27about_28less_29focus_30on_31trump_32and_33more_34on_35our_36pathetic_37leadership_38'_39,_40)_41[SEP]
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Figure 5: Attention plot for the best models on CivilComments. The plots show a single head of
the last layer. Left-Right: Proportion of keys retained [0.1, 0.25, 0.5, 0.75, 1.0]. Top: with dropout.
Bottom: with NVIB. Sentence: (‘the clowns are ignorant sheep of the left living in hate like you
while trump is working and succeeding for the usa. how about less focus on trump and more on our
pathetic leadership’.) NVIB highlights ‘ignorant’ and ‘pathetic’.
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C.3 GRAPH LINK PREDICTION

We build upon the BERT for Link Prediction (BLP) model (Daza et al., 2020), which encodes the textual
description of h and t using BERT. The resulting representations are pooled into the final layer’s [CLS] dense
representation, denoted as h[CLS] and t[CLS], respectively. The relation r is selected from a learnable lookup
table R. The model is trained using a contrastive approach, where a positive triple (h, r, t) is compared to
corrupted triples (h′, r, t′) using a distance-based loss function, such as TransE (Bordes et al., 2013):

fTransE(h, r, t) = ||h+ r − t||
We adopt the experimental setting of BLP without further hyperparameter tuning.

Fine-tuning details. For the graph-link classification task on FB15k-23711, we used distance-based loss
function model, with the pretrained TinyBERT12 model (Turc et al., 2019), a two-layer Transformer encoder.
The size for the latent embedding vectors and model projections are 128 with 2 attention heads, which leads to
models of approximately 4.5 million trainable parameters. The standard BERT base-uncased tokeniser is used
for tokenisation with a vocabulary of approximately 30K. During fine-tuning we use: the RAdam optimiser
(Liu et al., 2020), a cosine learning rate scheduler with value 8e−5, batch size of 256, trained for 40 epochs
with mixed precision 16bit and gradient norm clipping of 1.

NVIB details. For our two-layer Transformer encoder, we include NVIB in both layers. The NVIB pro-
jections were initialised using τσ = 0.1 and τα = 1. During fine-tuning the learnable prior µp was used.
Hyperparameters for influencing the amount of regularisation from the Gaussian component λG and Dirichlet
component λD were tied and selected over a log-scaled grid search [1e−1, 1e−2, 1e−3, 1e−4] on validation
data. The best performing model used NVIB regularisation parameters of λG = λD = 1e−3.

C.4 IMAGE FEW SHOT CLASSIFICATION

These experiments build from the following work and repository Hu et al. (2022)13.

C.4.1 FEW-SHOT IN-DISTRIBUTION

Fine-tuning details. For the CIFAR-FS14 few-shot classification task, we used cross-entropy loss
with the pretrained DeiT-Small15 model (Touvron et al., 2021a), a 12 Transformer encoder. The
size for the latent embedding vectors and model projections are 384 with 6 attention heads, which
leads to models of approximately 22 million trainable parameters. We use the prototypical network
(ProtoNet) (Snell et al., 2017) classifier, which creates class centroids dynamically for each episode
and then performs nearest centroid classification (Hu et al., 2022). During fine-tuning we use: the
AdamW optimiser (Loshchilov & Hutter, 2019), a linear warmup with cosine decay learning rate
scheduler 1e−4, batch size of 1, trained for 50 epochs with mixed 16bit precision. Episodes during
meta-training 2000 and episodes during testing is 2000. Weight decay is kept constant 0.05 for all
experiments.

NVIB details. For our Transformer encoder, we include NVIB in layers 0− 5. The NVIB projec-
tions were initialised using τσ = 0 and τα = 0. In this experiment we initialised the prior µp = 0
and did not allow it to be learnable. Hyperparameters for influencing the amount of regularisa-
tion from the Gaussian component λG and Dirichlet component λD were tied and selected over a
log-scaled grid search [1e0, 1e−1, 1e−2, 1e−3, 1e−4, 1e−5] on validation data. The best performing
model used NVIB regularisation parameters of λG = λD = 1e−2.

C.4.2 FEW-SHOT OUT-OF-DISTRIBUTION

This experiment uses the Meta-Dataset (Triantafillou et al., 2019), which samples 5− 50 ways, with
a maximum support size of 500 and a maximum query size of 10. For datasets except ImageNet
and Omniglot, we use uniform sampling, while for ImageNet and Omniglot, sampling is performed
according to the hierarchy of classes. This follows the methodology described in Hu et al. (2022).

11Dataset: https://github.com/dfdazac/blp?tab=readme-ov-file
12Model: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2
13Original codebase: https://github.com/hushell/pmf_cvpr22
14Dataset dropbox link: https://www.dropbox.com/scl/fi/91dgxywb8e948rvmmq1d8/

cifar-fs-splits.zip?rlkey=h69z5fxhe1rdonjm9s37q6laf&e=1&dl=0
15Model: https://huggingface.co/facebook/deit-small-patch16-224
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 https://www.dropbox.com/scl/fi/91dgxywb8e948rvmmq1d8/cifar-fs-splits.zip?rlkey=h69z5fxhe1rdonjm9s37q6laf&e=1&dl=0
https://huggingface.co/facebook/deit-small-patch16-224 
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Fine-tuning details. For the Meta-Dataset16 few-shot classification task, we used cross-entropy
loss with the pretrained DeiT-Small17 model (Touvron et al., 2021a), a 12 Transformer encoder.
The size for the latent embedding vectors and model projections are 384 with 6 attention heads,
which leads to models of approximately 22 million trainable parameters. We use the prototypical
network (ProtoNet) (Snell et al., 2017) classifier, which creates class centroids dynamically for
each episode and then performs nearest centroid classification (Hu et al., 2022). During fine-tuning
we use: the AdamW optimiser (Loshchilov & Hutter, 2019), a linear warmup with cosine decay
learning rate scheduler 1e−4, batch size of 1, trained for 50 epochs with mixed 16bit. Episodes
during meta-training 2000 and episodes during testing is 600. Weight decay is kept constant 0.05
for all experiments.

NVIB details. For our Transformer encoder, we include NVIB in layers 0 − 5. The NVIB pro-
jections were initialised using τσ = 0 and τα = −3. In this experiment we initialised the prior
µp = 0 and did not allow it to be learnable. Hyperparameters for influencing the amount of regular-
isation from the Gaussian component λG and Dirichlet component λD were tied and selected over a
log-scaled grid search [1e0, 1e−1, 1e−2, 1e−3, 1e−4, 1e−5] on validation data. The best performing
model used NVIB regularisation parameters of λG = λD = 1e−3.

16Dataset: https://github.com/google-research/meta-dataset
17Model: https://huggingface.co/facebook/deit-small-patch16-224
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