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ABSTRACT

Newton-type algorithms have become a promising direction for improving feder-
ated learning (FL). Their faster convergence offers new insights into enhancing
communication efficiency in FL. However, these methods rely on the full Hes-
sian, introducing significant computational, memory, and communication over-
head. In this paper, we propose FN-NOW, a communication-efficient Newton-
type federated optimization algorithm based on a low-rank approximation of the
Hessian. Specifically, FN-NOW leverages Nystrom method and the Woodbury
identity to efficiently approximate the Hessian inverse, enabling communication-
efficient training through fast convergence while maintaining memory overhead
comparable to first-order methods. We provide a theoretical analysis showing
that FN-NOW achieves a linear convergence rate under standard assumptions,
outperforming typical first-order methods. Extensive experiments demonstrate
that FN-NOW consistently outperforms existing methods in terms of both conver-
gence speed and predictive performance, making it well suited for deployment in
resource-constrained FL settings.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., [2017) is a privacy-preserving distributed paradigm en-
abling collaborative model training across devices without sharing local data. However, frequent
transmission of model parameters causes significant communication overhead (Martinez Beltran
et al.; 2023; Liu et al.l 2024a). Given bandwidth and network constraints, minimizing communi-
cation is essential for improving FL efficiency (Liu et al.| 2024c)). Since FedAvg (McMahan et al.,
2017) introduced an SGD-based federated framework, numerous subsequent studies have aimed to
further alleviate communication burdens (Zhao et al., [2023} |Herzog et al., 2024). A common strat-
egy in first-order methods is to reduce the size of local updates sent by clients (Konecny, 2016} Chen
et al.| 20215 D1 et al.}2024), which implicitly limits the amount of information aggregated.

Second-order optimization has gained attention for its fast convergence in centralized settings, with
classical Newton’s method (Cauchyl |1821} [Fletcher & Powell, [1963) leveraging curvature infor-
mation to accelerate training. This is appealing for FL, where fewer communication rounds are
needed, potentially reducing communication costs. However, the vanilla Newton’s method requires
computing and transmitting a Hessian inverse with quadratic parameter complexity, imposing heavy
resource demands and limiting scalability. Furthermore, this communication burden may offset the
convergence gains. Therefore, making second-order methods practical for FL necessitates address-
ing the challenges of computational, memory, and per-round communication overhead.

Existing work has explored Newton-type optimizers in FL (Elgabli et al.l 2022; Ma et al., 2022}
Dinh et al.|[2022), focusing on reducing communication and computation costs. Techniques include
Hessian compression (Chaudhuri et al., [2022), Newton sketching (Li et al.l [2024) and group alter-
nating direction method of multipliers (ADMM) (Krouka et al., 2023). However, They still require
storing full Hessian during local training, limiting applicability to shallow models with relatively
few parameters. This raises a natural question: can we retain the fast convergence of second-order
methods in FL without their high overhead, achieving costs closer to first-order levels?
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Figure 1: [llustration of FN-NOW.

Research on second-order optimizers for FL that are both resource-efficient and broadly applica-
ble remains scarce. In this work, we aim to harness the advantages of second-order optimization
while mitigating its costs in computation, memory, and per-round communication. Accordingly,
we propose FN-NOW (Federated Newton’s Method with Nystrom and Woodbury), a novel feder-
ated Newton-type optimizer based on low-rank Hessian approximationas, illustrated in Figure [I] It
replaces the full Hessian with Nystrom approximation, and maintains low memory overhead with
the Woodbury identity. By communicating parameter updates, it achieves per-round communication
costs comparable to those of first-order methods. We provide theoretical and empirical evidence that
FN-NOW converges faster, effectively reducing communication rounds. While primarily designed
for communication efficiency, it also achieves strong accuracy and robustness to data heterogene-
ity. Notably, FN-NOW is not derived from existing centralized algorithms and is applicable to both
federated and centralized settings. We summarize our main contributions as follows:

* We propose FN-NOW, a Newton-type FL method that reduces communication rounds via
fast convergence and mitigates computation and memory overhead via Nystrom approxi-
mation and the Woodbury identity, enabling scalability to diverse model architectures.

* We prove FN-NOW achieves a linear convergence rate under standard assumptions. This
provides strong theoretical support for applying second-order methods in FL.

* Extensive experiments on benchmark datasets and commonly used models show that FN-
NOW outperforms related methods in both convergence speed and accuracy, particularly
in resource-constrained federated settings.

2 RELATED WORK

Our work focuses on applying second-order optimization to FL. We review existing federated opti-
mizers and centralized second-order methods, which offer valuable insights for FL adaptation.

Federated first-order optimizer. McMahan et al.| (2017) introduced FedAvg based on first-order
optimizer SGD. Beyond SGD, Reddi et al.| (2020) explored adaptive optimizers in FL like ADA-
GRAD (Duchi et al, 2011), ADAM 2014), and YOGI (Zaheer et al, 2018), while Gong|
(2022) proposed FedADMM using primal-dual optimization. Communication-efficient first-
order FL methods typically either reduce per-device communication via compression (Chen et al.
2021) or filtering [2025), or limit participating clients (D1 et all 2024} [Ribero & Vikalo
2024). Additionally, [Herzog et al. (2024) reduces communication frequency by increasing local
training. However, such strategies degrade aggregation quality and hinder overall training efficiency.

Centralized second-order optimizer. Classical techniques to accelerate computation include

BFGS (Broyden| [1963), L-BFGS (Liu & Nocedal, [1989), Gauss-Newton (Schraudolphl [2002)), and

inexact Newton methods (Dembo et all [1982)). More recently, diagonal approximations have been
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widely adopted. For example, ADAHESSIAN (Yao et al.,|2021) and Sophia (Liu et al. |2024b) ap-
proximate the Hessian and Gauss-Newton (GN) diagonals, respectively. K-FAC (Martens & Grosse,
2015) represents the GN using a Kronecker product, and Botev et al.| (2017) proposed recursive
block-diagonal forms. HesScale (Elsayed et al.| 2024) further enables scalable second-order up-
dates with improved diagonal estimates. These methods offer key insights by approximating the
Hessian with compact, informative substitutes.

Federated second-order optimizer. DANE (Shamir et al., [2014) and GIANT (Wang et al., [2018)
use conjugate gradient to approximate Newton updates, while DONE (Dinh et al., [2022)) applies
Richardson iteration. These methods communicate twice per iteration. FedNL (Chaudhuri et al.,
2022), SHED (Dal Fabbro et all [2024) and FedNew (Elgabli et al., |2022) use compressed Hes-
sians, eigenvector-eigenvalue pairs and ADMM mitigating communication, yet full Hessian is still
required during training. FedNS (Li et al., [2024), FLeNS (Gupta et al.| [2024) adopt sketched Hes-
sians, but the limited compression ratio constrains their applicability across models. Recent works
like Fed-Sophia (Elbakary et al.,[2024), derived from centralized Sophia (Liu et al., 2024b)), approx-
imate the GN via diagonalization, while FAGH (Sen et al.l [2024), samples the Hessian’s first row.
Their effectiveness hinges on accurately capturing the full Hessian. In comparison, our approach en-
ables more adaptable approximation via flexible sampling. Moreover, we prove linear convergence,
which is absent in existing methods relying on approximation.

3 PRELIMINARIES

Federated learning. We consider a standard FL setting with a global server and m local devices.
Each device j € [m] holds local data D; drawn from a distribution p; over X x ) and full dataset is
the disjoint union of local datasets D = U7, D;, implicitly drawn from a global distribution p over
X x Y, where X and ) denote the input and output spaces, respectively. The FL objective on D:

mlnf Z |’D| (D)

where f;(w) is the j-th device’s loss function, w € RD denotes the model parameters. A predefined
learning rate 7 is generally used. In centralized settings, gradient descent updates follow:

w' =w'"" —ng', 2)
where g' := V f(w') € RP is gradient. Let w' denote the model at round ¢.

Federated second-order optimizer. Newton’s method uses the inverse Hessian (second-order
derivatives) to scale the gradient and determine the update direction:

w' =w'" —n(H") g, 3)
where H' := V2 f(w?) € RP*P and n = 1 recovers standard Newton’s method.

In federated Newton’s method, the global Hessian is obtained by aggregating local Hessian, analo-
gous to gradient aggregation in first-order FL. For equation E], they can be computed further as:

Z ||D| Z |D| @

where H} := V? f;(w'), g} := ij( w').

4 METHODOLOGY

As shown in Algorithm[I} we propose a Newton-type FL method via low-rank Hessian approxima-
tion to reduce computational and memory costs, while communicating updates at first-order level.

4.1 PROBLEM FORMULATION

Considering the addition of the /5-norm of model parameters as a penalty term, the objective func-
tion of FL is given by:

m

. D; A
min F(w) = Z|D|F(w), where Fj(w):fj(w)+§||w|\2, (5)
j=1
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Algorithm 1 FN-NOW

Input: Local training data subset D;, Vj € [m], local loss function F; (w), number of communica-
tion rounds T, the number of local examples |D;| and total examples |D|.
Parameter: Learning rate ), regularization parameters A, stabilization parameter ;.
Qutput: The global weight w

1: for eachroundt =1,...,7 do

2:  Communicate w = (x1,...,2p)' to all clients.

3: for each client j € [m] do

4: w; < w.
5: for each step (batches in each epoch) do
6.
7
8
9

Compute g; + 8%-3, gj < gj + \w;.
Sample gradient subset g; C g; via leverage score sampling in cquation
Compute Hpg,j < %,Hdd,j C Hpg ; and ﬁdd,j =Hgyq; + %HdD,jHDd,j
Perform SVD for the matrix ﬁddd =USVT,
10: Apply singular value regularization to compute the inverse of (ﬁ dd, j)T = VStUuT

according to equation , where St is a diagonal matrix with gf, =1/y/S% + X\ and
As > 0.

11: Compute local update Aw; = % <g — % <HDd7j <(Hdd,j>T (HdD,ij)>)> ac-
cording to equation [I0] with matrix-vector multiplications.

12: end for

13: Communicate the local update Aw; to server.

14:  end for

15:  On the global server:

16:  Update the global modelw + w — 772] 1 |‘ |‘ Awj.

17: end for

where ) is a regularization parameter. The solution using Newton’s method can be expressed as:

D;
wt: t—1 _ ||D||ZA w] (Ht 1+)\I) 1= t 17 (6)

where g; = g§ + A\w?, and the remaining notation is consistent with cquation

4.2 HESSIAN MATRIX WITH NYSTROM APRROXIMATION

The Nystrom method (Williams & Seeger, [2000) is an approximation technique used to efficiently
handle large-scale matrices by utilizing a subset of columns. This means that in second-order meth-
ods, we can approximate the entire Hessian matrix by computing only a little part of it. We consider
training on a certain device where w = (z1,...x D)T e RP represents the model parameters to be

optimized, and the first-order gradient g = (g1,...,g9p)" € RP, where g; = af , can be easily
computed. Then we sample the subset g = (71, - ¥ ,ga)T € g,d < Dto calculate the subset
of the second-order gradient Hpy := (;—fl, NN 681‘%3 )T € RP*4, Using Nystrom technique, we

approximate the Hessian matrix and the local update in Newton’s method according to equation [6}
Hpp ~ Hpa(Haa) Hpy, (Hpp +AI)7'g ~ (Hpa(Haa) ' Hpg + M) "'g, (D
where Hpp = (22 99 \T ¢ RP*D Hyy € R¥*4 C Hpy, H' is the Moore-Penrose

. 8.1'1 1 Qxp
inverse of the martrix H.

Since the Hessian matrix may be sparse, uniform sampling can yield poorly informative subsets,
leading to unstable or inaccurate inversions. Sampling more informative components improves the
approximation quality. We use leverage score sampling method to quantify the importance of data
points in the regularized kernel matrix. In our method, the subset g is selected with probability:

pi=10)/ 310, 1) =62/ db, ®)
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~

where [(i) is the leverage score of g; € g and i € [D].

4.3 INVERSE HESSIAN WITH WOODBURY IDENTITY

Although we have introduced low-rank approximation techniques for Hessian, in Newton’s method,
the gradient update is actually performed using the inverse of the Hessian matrix. It is necessary
to avoid the constructing of full-sized Hessian matrices throughout the entire computation process.
The Woodbury identity (Sherman & Morrison, |1950) simplifies the computation of matrix inverses
through matrix decomposition and is applicable when certain parts of the matrix have a special
structure. The identity is as follows:

(A+UcVv)'=A"-A"'U(CT'+VvATlU)'VAT, ©)

where A € RV*N is typically a large and sparse matrix, U € RV*" C € R V € R**Y and
n < N.

Using the Woodbury identity equation[J]to decompose the inverse of the Hessain matrix equation[7}
the second-order update computed on local devices can be decomposed as:

g 1/ 1 = _
(Hpp+ M) 'g~ Y (g — yHpa ((Hdd)T (HdDg)>> - (10)
We denote H,p = Hgd, ﬁdd = Hyy + %HdDHDd and since the matrix may be singular, we
use the Moore-Penrose pseudoinverse to replace the matrix inverse.

This differs from previous federated second-order methods, which typically communicate both the
Hessian matrix and gradients. In contrast, our approach, which only communicates the local param-
eter updates, reduces the communication overhead to the level of first-order methods. We demon-
strate the effectiveness of directly aggregating parameter updates through both experimental results
and theoretical analysis.

Remark 1 (Efficient Matrix Inversion and Matrix-Vector Multiplication). The computation in equa-
tion[?] involves the inverse of a D x D matrix, resulting in a time complexity of O(D?), which is pro-
hibitive for high-dimensional models. By applying the Woodbury matrix identity, this inversion can
be reformulated in terms of a much smaller d x d matrix in equation[I0} where d < D, significantly
reducing the computational burden. Furthermore, to avoid expensive matrix-matrix multiplications,
we compute the local update through a sequence of matrix-vector multiplications. After the use of
the Woodbury identity and matrix-vector multiplications, the computational complexity is reduced

from O(D?) in equation[7]t0 O(Dd + d?) in equation where d < D.

4.4 SINGULAR VALUE REGULARIZATION

We compute the pseudo-inverse of H ;4 using SVD, a standard and stable approach, and conve-
niently leverage its structure to perform singular value regularization. The Moore-Penrose pseu-
doinverse of A is obtained by decomposing it as USV T, inverting the nonzero singular values
in S to form ST, and reconstructing V.StU T. The pseudoinverse in equation 10} incorporating
regularization, is computed as:

(Huw) = VvStUT, (11)

where S is the diagonal matrix with 5;2 =1//S2 + \s and A, > 0 is stabilization parameter.

Remark 2 (Stability of Hessian Inversion). Hessian inversion can be unstable due to near-zero
eigenvalues, and|Liu et al.|(|2024D) further pointed out issues from rapidly changing or negative cur-
vature. Therefore, Hessian conditioning is essential in second-order methods. For example, Liu et al.
(2024b) and Elbakary et al.| (2024) impose a lower bound on second-order information and clips
update to ensure stability. We regularize the singular values in the SVD step of the Moore—Penrose
pseudoinverse computation to directly address the core instability without altering curvature direc-
tions while making explicit use of the existing decomposition.

5 CONVERGENCE ANALYSIS

In this section, we provide a convergence analysis of FN-NOW and a theoretical comparison with
several methods. Before the analysis, we first introduce some notations and standard assumptions.
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Figure 2: The test accuracy of the compared methods on MNIST using MLP under different levels
of data heterogeneity.

Assumption 1 (Twice differentiable and convex). The objective function are closed and twice dif-
ferentiable convex function and V?F (w) = vlI.
Assumption 2 (Lipschitz smoothness). The second-order derivatives of F are M -Lipschitz smooth,
ie, |V2F(w) — V2F(w')|| < M||lw — w'|. The gradient satisfies the L-lipschitz condition, i.e.,
IVF(w) = VF(w')|| < Ljjw —w'.
Lemma 1 (Nystrom approximation error). With Assumptions @ letc > 0andé € (0,1) be fixed
constants. For a target accuracy €, € (0,1) and target rank k of the low-rank approximation, the
sampling dimension d > 5k In %, the exact Hessian H and its Nystrom approximation H satisfy

l

|H — H|| < pyy, (12)

where pny = (14 €)Apy1(H), Apt1 (H) denotes the (k + 1)-th eigenvalue of H, with probability
at least 1 — 4. A detailed proof is given in[A.2]

5.1 CONVERGENCE ANALYSIS FOR FN-NOW

Theorem 1. (Convergence of FN-NOW). Under Assumptions @ let 5 € (0,1) and € € (0,3).
Suppose that each N*F;(-) is uniformly upper bounded, i.e., V*F;(w) < CI forall j € [m]. When

|D;| > % log 28X and d > ékln %, we obtain

)

3M
ot = | < P’ - w | + 5w — (3)

with probability at least 1 — 3K 0. Here, P is a constant, defined as P = Aom)L  _alL

v (1—e)v?
(71”1 = ;JJ‘)\ + 2 L where T and eg are related to the local similarity of the first and second order

gradients, respectively.

In equation[I3] the algorithm converges when P < 1, and the accompanying discussion and detailed
proof are provided in[B] We now analyze the components of P. The first term captures the deviation
from the standard Newton method. This term vanishes when 1 = 1, under ideal conditions. The
second and fourth terms depend on distributional differences across local clients and increase with
the degree of heterogeneity. To quantify distributional dissimilarity, we adopt a commonly used
similarity bound defined in (Li et al., 2020; [Karimireddy et al., 2020). The third term reflects the
error introduced by the Nystrom approximation, which depends on sampling quality and the number
of sampled columns.

Theorem 2. (Convergence rate of FN-NOW). Under Assumptions [I} 2] and iterative process in
Theorem if initial point satisfies ||w® — w*| < %, then achieving ||w' — w*|| < € requires
T = O(log 1) iterations.

The proof is in |[Cl This result establishes linear convergence, as typical for Newton-type methods.

Although the second-order term is not globally dominant, it improves convergence near the opti-
mum, often after a few warm-up steps with a first-order method.

5.2 THEORETICAL COMPARISONS

We theoretically compare our method with the ideal Newton’s method and other related methods in
Table|l] Compared to first-order methods FedAvg (McMahan et al., 2017) and FedProx (Dinh et al.,
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Table 1: Summary of Communication Complexity (Comm.) and Memory Overhead Comparison
for Related Methods.

METHOD MEMORY ITERATIONS COMM. COMM.
COST T ONCE COMPLEXITY
FEDAVG O(D) o(2) O(D) o)
FEDPROX O(D) o(2) O(D) o)
DANE O(D) O(% log(Dm)log 1)  O(D) (’)(D% log(Dm) log 1))
DONE oD O(dxlog 1) O(D) O(Dérlog 1)
O(loglog 1) O(D) O(Dloglog 1)
FEDNL O(D?) O(log 1) O(D) O(Dlog?t)
SHED O(D?) O(log 1) - O(D?%)
FEDNEWTON  O(D?) O(loglog 1) O(D?) O(D?loglog 1)
FN-NOW O(dD) O(log 1) O(D) O(Dlog L)

NOTE: ALL ANALYSES ARE CARRIED OUT UNDER THE ASSUMPTION OF A €-ACCURATE SOLUTION.
DONE AND DANE ACTUALLY COMMUNICATE TWICE PER ROUND. K IN ITERATIONS OF DANE REP-
RESENTS THE CONDITION NUMBER. d; < 1 1S ASSUMED IN DONE
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Figure 3: The test accuracy of the compared methods on CIFAR10 using ResNet-18 under different
levels of data heterogeneity.
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Figure 4: The test accuracy of the compared methods on MNIST using MLR under different levels
of data heterogeneity.

2022), second-order methods require fewer iterations 7, and our method retains this advantage with-
out additional communication overhead. Other second-order methods, including Done (Dinh et al.,
2022), FedNL (Chaudhuri et al.,[2022), and SHED (Dal Fabbro et al.,[2024)), have low communica-
tion complexity but incur high memory overhead. DANE (Shamir et al.,[2014) is memory-efficient
but communication-inefficient.

Recent methods such as FAGH (Sen et al.| 2024)) and Fed-Sophia (Elbakary et al., [2024) retain the
Newton update form and have low memory overhead, but lack theoretical guarantees, and are thus
analyzed algorithmically. FAGH, approximating the Hessian by sampling its first row, is a special
case of the Nystrom method. It corresponds to our method with sampling size 1, while ours allows
greater flexibility. Fed-Sophia uses a diagonal approximation with per-iteration complexity O(D),
matching ours. Due to algorithmic differences, we compare convergence empirically.
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Table 2: The comparison of communication cost (Comm.) and the number of rounds required by
the compared methods to reach a target accuracy (as shown in the third row of the table), with
experimental settings consistent with those described earlier.

TARGET ACCURACY - MLP TARGET ACCURACY - RESNET

METHOD CoMM. 11D a=05|a=01]| ComMm. 11D a=05|a=0.1

(MB) |80 90 |80 90|80 85 (MB) [ 60 70|60 70|40 50
FEDAVG 45.43 7 31|13 - |30 54 |1279.64 |23 39|21 55|21 47
SCAFFOLD | 90.87 6 3719 - 139 - | 255927 |21 35|23 45|36 -
FED-SOPHIA | 45.43 4 24| 8 30|13 26| 1279.64 | 13 26| 28 47 |40 -
FAGH 90.87 | 10 23 |13 52|39 - |2559.27 |22 51|32 - |17 32
FN-NOW 45.43 3 6|5 19|12 23 |1279.64 |12 21|21 39|13 28

6 EXPERIMENTS

To evaluate FN-NOW, we conducted experiments on
MNIST, Fashion MNIST, and CIFAR-10, using three
models of increasing complexity: a single-layer MLP,
a five-layer CNN (1.5M parameters), and ResNet-
18 (He et al, [2015). We compared against first-
order methods FedAvg (McMahan et all [2017) and
SCAFFOLD (Karimireddy et al., [2020), and second- J oL
order methods Fed-Sophia (Elbakary et al., [2024), Fagr
FAGH (Sen et al.| [2024), DONE (Dinh et al., [2022), and FN-NOW-1
FedNL (Chaudhuri et al, 2022), with the latter two eval- | e [ odvezoe
vated on multinomial logistic regression (MLR). Data R T
heterogeneity was simulated via a Dirichlet distribution Round
7 ~ Dir,.(«), where larger o implies more IID. Hyperpa- Figure 5: The test accuracy of FN-NOW
rameters were selected based on convergence speed, final  ith different sample scale and other
accuracy and the recommended settings in original paper. compared metheds. The number fol-
All results are averaged over five runs. Full experimental lowing the method name represents the

details are provided in[D} size of samples, and the total number of

Overall training performance. We evaluate training Parameters in the model is 392,000.
performance across methods with 30 clients by compar-

ing test accuracy over communication rounds under three heterogeneity levels: IID, moderate
(o = 0.5), and extreme (o« = 0.1). As shown in Figures our method generally converges
faster, occasionally matching Fed-Sophia under extreme heterogeneity but still outperforming other
baselines. FedAvg performs best on MLR, likely due to the simplicity of the model where SGD
suffices and complex methods may hinder performance. FedNL performs poorly due to large errors
from its crude compression. These results highlight the advantage of efficient optimizers in complex
settings, consistent with our goal of scalable second-order methods. Among Hessian approximation
methods, FAGH suffers from slow convergence and sharp degradation as heterogeneity increases,
likely due to loss of Hessian information. In contrast, Fed-Sophia and our method benefit from
richer sampling. On ResNet, the most complex model, our method outperforms Fed-Sophia with
similar computational cost, likely due to better preservation of feature interactions. CNN results are

in the partial client participation settings are in

Impact of sample scale. We evaluated the impact of Nystrom sampling size on non-IID (o = 0.5)
MNIST using an MLP. As shown in Figure [5} performance significantly improves from size 1 to
100, while further increasing from 100 to 200 offers marginal gains. This suggests limited addi-
tional information from larger samples, indicating FN-NOW achieves strong performance without
incurring unnecessary memory or computational overhead.

o
=]

FedAvg
SCAFFOLD

Accuracy (%)
2 U o9 N
& 8833

w
o

40 50 60

communication efficiency. Table [2] reports the per-round communication cost and the rounds re-
quired to first reach target accuracy. MLR and CNN results appear in [E.3] The table shows our
method lowers both rounds and communication once. Figure [6] further presents training wall clock
time and communication time for MLP with non-IID data (v = 0.5), computing communication
time from the measured round count under a fixed 10 Mbps link rate following (Chen et al., [2023).
The figure underscores the importance of communication efficiency. Although larger sampling



Under review as a conference paper at ICLR 2026

2000.00 FedAvg Fed-Sophia FN-NOW(d=1) 1890.10 1 Training
SCAFFOLD FAGH FN-NOW(d=100) Communication

1500.00 1453.92
@ 1000.00

= 500.00

145.39
v 72.69 5 72.69 72.69
V777 s/ 7777 Dz rzzagzzzzza
025 025 026 025 024 076

0.92 "1 79

0.00 1

10.001 Bottom scaled x50

Single-round average time Cum. to 70% Cum. to 80%
Figure 6: Average per-round training/communication time, and cumulative training/communication

time until accuracy first reaches 70% (Cum. to 70%) and 80% (Cum. to 80%).

Table 3: The summary of final-round accuracy (%) for the compared methods, with experimental
settings consistent with those described earlier.

MODEL FEDAVG SCAFFOLD | FED-SOPHIA FAGH FN-NOW

11D 91.86+0.02 | 91.31+£0.04 | 91.87+0.04 | 91.86+£0.02 | 95.00+0.04

MLP a=0.51| 89.48+0.13 | 89.474+0.04 89.48+0.13 | 90.474+0.11 | 93.00+0.05
a=0.1 | 85.52+1.49 | 83.384+0.24 89.31+0.11 | 84.17+0.41 | 89.724+0.53

11D 84.05+0.91 | 79.60+1.96 87.31+£0.24 | 80.40+0.42 | 87.89+0.22

CNN a=0.5| 82.86+0.28 | 77.324+0.33 85.01+0.19 | 83.014+0.03 | 86.11+0.18
a=0.1 1| 74.49+1.50 | 75.514+0.59 82.45+1.03 | 75.084+0.11 | 83.36+0.32
11D 78.05+£0.05 | 76.35+0.06 81.874+1.54 | 72.19+£0.13 82.12+0.79

RESNET | « =0.5 | 71.954+0.32 | 72.8740.78 71.46+£3.53 | 69.07+0.19 | 73.96+0.43
a=0.11 54.40+1.76 | 46.994+1.75 39.83+4.49 | 60.84+1.58 | 61.03+0.87

slightly lengthens training time for our method, the reduction in communication time dominates.
Overall, by reducing both the number of rounds and the per-round payload, FN-NOW improves
communication efficiency and thus overall efficiency.

Model Accuracy. We compare the final accuracy at
the last round 60 in Table Despite being primar- 80
ily designed to improve communication efficiency, our

are=Xa A —t
/Jv’\/"»/v DA s ‘e

method also delivers strong accuracy and robustness to £

data heterogeneity. These results validate second-order §40 f’

methods as an effective approach to improving com- 3 | / o reoama-ns
munication efficiency in FL without sacrificing train- £, — 1=0003-0.05

n=0.003,A=0.01
—¥— n=0.003,A=0.005

n=0.003,A=0.003

n=0.001,A=0.003

40 50 60

ing quality. Additional results and detailed analysis on
MLR are provided in[E.4] of

0 10 20

30
The impact of regularization parameter \. In Fig- Round
ure[7] we assess A on a CNN trained on Fashion MNIST
with non-IID data (o« = 0.5). Larger A stabilizes opti-
mization but degrades performance; smaller A induces instability, and below a threshold training
aborts due to ill-conditioned inversions. This aligns with the role of A as a regularizer that enforces
Hessian positive definiteness—Ilarger values improve conditioning but attenuate useful second-order
information. We also observe coupling with the learning rate 7; when training fails at very small ),
reducing 7 restores stability.

Figure 7: Training comparison across A.

7 CONCLUSION

Second-order optimization in FL faces high computational, memory, and per-round communica-
tion costs. We present FN-NOW, a Newton-type algorithm that retains second-order benefits while
significantly reducing overhead through Nystrom approximation and the Woodbury identity, and
provide theoretical guarantees of linear convergence. FN-NOW approaches first-order methods in
memory and communication, and achieves substantial computational savings over standard second-
order methods, though further improvements remain possible. Future work may explore trade-offs
between performance and cost under flexible sampling.
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A AUXILIARY LEMMAS

A.1 LOCAL SECOND-ORDER GRADIENT BOUND (FROM LEMMA A.1. IN|GUPTA ET AL.
(2021))

We directly adopt the result from Lemma A.1. in |Gupta et al.[(2021). Under Assumptions and
VF?(w) < CT,lete € (0, %) and § € (0,1). Then, for a given [D;| > 4 log 22, we obtain

ve2
(1—-ev 2 V2 (w) < (1 +e)L, (14)
for all w € RP and j € [m] with probability at least 1 — 4.

A.2 PROOF OF LEMMAI]

Proof. The approximation error of the Nystrom has been extensively studied in previous work.
Here, we introduce a result from |Gittens & Mahoney| (2013) concerning uniform sampling. Let
H < RP*P be a symmetric positive definite matrix with eigendecomposition H = Zizl Niwgug
where {\;}2 ; are the eigenvalues and {u;}2 ; are the corresponding orthonormal eigenvectors of
H. Let H; = Zle A\iu;u; denote the best rank-k approximation of H. Then, there exists a
constant ¢ > 0 and a parameter 3 = % max; | (¢) that measures the distribution of the column space,
such that when d > ¢fklIn %, the approximation error between H and its low-rank approximation

H is bounded by

- 2D
|F— H| < (1+ =01 H - Hil) (15)

with probability at least 1 — ¢ and where ||H — Hyg|| = | Zikﬂ Nwgw] | = Apy1 (H).

Building on this, we consider the case of leverage score sampling. Unlike uniform sampling, which
requires a larger number of samples to ensure quality, leverage score sampling focuses solely on
approximation accuracy and does not depend on data distribution. Setting ¢; € (0, 1) and applying
the Matrix Bernstein inequality, we obtain the following result when d > ék In %:

|H — HI| < (14 @)Misa (H) = py,. (16)

with probability at least 1 — §. Using a larger d allows the approximation error ¢; to be reduced,
leading to improved approximation quality, which is consistent with both our empirical observations
and experimental results. Moreover, leverage score sampling reduces the amplification factor 1 + %
to a controllable level determined by the target precision.

O

B PROOF OF THEOREMI]

Proof. We analyze the full-batch case with one training epoch. Intuitively, the entire update can
be decomposed into the ideal global exact update and an error term, which can then be analyzed
separately. Before proceeding with the proof, we define g* := VF(w'), g := VF(w}) ,H}, :=
V?F(w'), H, ; == V?Fj(w"), and ﬂ}j = FAI?J + A1, where I;[;] is the approximate matrix of
V2 f;(w') derived via the Nystrom. We then obtain

13
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Dil o=,
el = | ()" = T () g
Jj=1
a7)
DA (gper-t gt 11 gt o 1D (g
< szl ((HF) _(HF7]) ) +|;((HF,]) (g _g]))

We first consider term ¢!, where the second-order gradient error arises from both data heterogeneity
and the Nystrom approximation. By introducing the Hessian similarity bound inspired in (A2) of
SCAFFOLD [Karimireddy et al|(2020) , we obtain || H}, — Hf ;|| <T. For any invertible matrices
A and A’, we have (A’)™1 — A=! = A71(A — A’)(A’)~!. Then with Eq. equation [14] and
§ € (0,1), we obtain

r
CHE) ™ = (Hy) ™| < 1HE) | [ H = By | ()7 < r— e 08
with probability at least 1 — ¢. Similarly, by applying equation[I6], we obtain
| )~ = e )| < e ) | cre )~ = ) || )|
1 1 PNy (19)

ST 9™y = T=gon
with probability at least 1 — 25, where HprjH = HHf,j + M| = AT and the bound of ||(1EI}])_1H
is derived as follows:
|k | < ek = | + |
< (1+€¢)L+ pny.

Using Eq. equation |18| and Eq. equation the error in the second-order gradient component can
be bounded as:

(20)

2 w .
Jetll = 72( ~ (HE,)™ + (HE)™ — (HE,) ™) ¢!
J:
1D .
STZHHF - (Hp) T+ R - ER) TP la @Y
r

PNy _t
<
(=g + w28 ol
with probability at least 1 — 24.

Next, we consider term e, which involves bounding the heterogeneity of the first-order gradients.
To this end, we adopt the B-local dissimilarity from FedProxLi et al.| (2020) (Definition 3). Under
this bound, we obtain E[||gt[|*] < B?|g’
first- and second-order local similarity are not directly related, so referencing different works does
not affect the validity of our analysis. Moreover, the definitions of gradient similarity in these works
are essentially equivalent, differing only in form—one expressed as an expected deviation, the other

as an empirical deviation.) We define gh2vé := Ilppj‘l Z;nzl g}, so E[g"*8] = g' and from them

it follows that E[g" — g"*¥€] = 0. Based on the above, and by treating g as independent across
clients, we can derive:

Bllg" — ] = Ellg" ™ - Bigh ¥ = Var(g )
DI D, D,
= Var( 721 (|D|) ZV ] |D\ Var(g ) 22)
D; D;
< ‘lenge < 2 Ba e
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where the last inequality uses the B-local dissimilarity. We further apply Markov’s inequality to
bound ||g* — g%|| from above. Let ez > 0 and § € (0, 1), when B < epd I’ we have

I1g° — g5Il < esllgll, (23)
with probability at least 1 — §. Consequently, we derive:

m
lles|| = %'Z( ) g—gj))

1.,
XHQLQ}?II
€EB ., _
_Tllgtll,

with probability at least 1 — 38, where the bound on || Hf 1~ ;|| has already been established in Equation
Eq. equation

Finally, we derive the following recurrence relation for ||w! — w*||:

: .,/
R e |D|Z(HF] )

_ Hwt—W*—ﬁ(Hfr)_l_t‘FnetH
< H'wt—w*—n(HF g

(24)

N

< ||<H;>-1||\|H;<wt w") =g || + [[ne'|

< 3 — B! — )| + | Hp (!~ w?) — g+ et @
e Muw w4 ) ]+ et~ ) + e

< ( Jirf)vz bl IDE) |

+ 2 ot =,

with probability at least 1 — 3§, where (i) is derived from Taylor expansion with integral remainder.

(1—e)v?  (1—e)vA

4 Y < n < min{ 7, m} we can obtain:

Choose the hyperparameters A\ > 4negL,

(1—mL 9L nenyL | mepl
P =
v =0 T -9 T o6
< L 1 4L —v (1 —€)’T'L (1 —e€e)vpnyL n negL <1
“w 4L ALT(1 —e)v?2  4(1 —e)vA (1 +¢)L?  4dnegl —

The simplification of the third term follows from our definition in equation pny = (1 +

€)1 (H), Mep1(H) < A (H) < L. Since the two parameter bounds contain mutually de-
% of 7 into the lower bound of A to verify that

((11—;21“)‘5 < 1, which is readily satisfied under moderate

heterogeneity, noting that (1 + ¢;) > (1 — €) and L > v. In addition, it can be observed that as het-
erogeneity increases (i.e., as e g and I' become larger), the admissible range for the hyperparameters
becomes more restrictive, which is consistent with empirical observations.

pendent terms, we substitute the upper bound

the feasible set is non-empty. This yields

O

C PROOF OF THEOREM

Proof. This analysis assumes the initialization lies within a sufficiently small neighborhood of w*,
which is standard in local convergence theory. Recall from equation (13| that we can rewrite the
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expression in a simplified form:

3M
|[w'™ —w*|| < Pllw’ —w*|| + Q|lw’ —w*|?, Q:= 55 > 0. 27)
Choose v > 0 such that
1= (28)
RS 20

where P < 1 by Theorem|[I] Define the convergence rate constant p,, = P + Qy, which is bounded
as:

1-P P+1
y < P — =—<1 29
pr<P+Q— 0 5 (29)
The convergence result holds under the assumption that the initial iterate satisfies ||w® — w*|| < 7,
where v < % defines a local convergence region. We prove by induction that
|w! — w*|| < ypk,Vt > 0. (30)

When ¢ = 0, the inequality holds trivially as ||w® —w*|| < v = vp%. Assume now that [|w’—w*| <
vpt. holds for some ¢ > 0. Then we have

[w™™ —w*|| < Plw’ —w*|| + Qllw" — w*||* < Pypl + Q(vpL)*. (€1
Since pL < 1, it follows that ypf. < -, and hence
Q(rph)* = QY P2t < Qv*ph. (32)
Substituting yields
[w"™ —w*|| < Pypl. + Qvpl. = vl (P + Q) = vplt, (33)

where the last equalityuses the definition p, = P + ()-y. This proves equation

To achieve ||w’ — w*|| < e, it suffices to ensure
T
VP S €

1 Y
> A
T log o 2 log = (34)
7 logl/e)
log(1/pr)
where the second inequality follows from the fact that p,, < 1. Since v and p, are constants inde-
pendent of €, the iteration complexity is

T = O(log%). (35)

O

D EXPERTIMENTAL SETTING

We provide detailed experimental settings and parameter choices used in our evaluations. For gen-
eral hyperparameters including learning rate n and regularization parameter A, we report represen-
tative ranges in the table [ for clarity across the four models, except for FedNL and DONE, whose
settings are provided later. We then present method-specific configurations and experimental details
with fixed parameter values. All experiments for our proposed method were conducted on a single
NVIDIA RTX 4090 GPU.

» FN-NOW. We set the singular value regularization parameter A, = 10~% in all experi-
ments. For MLR, MLP, and CNN, we use sampling rates of 0.003, 0.0003, and 0.00008,
respectively, while for ResNet, we directly set d = 1.

* Fed-Sophia. For ADAM-like momentum parameters, we set (31, 82) to (0.95, 0.99) for
MLR, (0.90, 0.99) for MLP, and (0.90, 0.95) for CNN and ResNet. Under partial client
participation setting, we reduce them to (0.50, 0.55). The Hessian clipping threshold is set
to 1074,
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Table 4: The parameter 77, A value ranges of each method under different experimental settings in

this study.
DISTRIBUTION FEDAVG SCAFFOLD FED-SOPHIA FAGH FN-NOW
11D n [1E-2, 7E-1] [SE-3,E3-1] [1E-4,8E-3] [1E-4,8E-3] [8E-4,5E-3]
A [1E-2,1.5E-2] [1E-3,1E-2] [4.5E-3,1E-2] | [2E-3,8E-2] | [1.5E-3,1E-1]
o =05 n [8E-3, 4E-1] [7e-3,1.2E-1] | [1.5E-4,9E-4] | [1E-4,5E-2] [8E-4,3E-3]
) A [1E-2,1.2E-2] [5E-3,3E-2] [4.5E-3,5E-3] | [1E-2,8E-2] [5E-3,1E-2]
. n [5E-3, 5E-2] [5E-3,9E-2] [7E-5,8E-4] [5E-4,6E-3] [8E-4,5E-2]
a=01 1 N [1E2.1562] | [1E-3.08-2] | [4.56-3.56-3] | [8E-3.3E-2] | [1E-3.1E-2]

* FedNL. Chaudhuri et al.| discusses several variants, among which we adopt the vanilla
version of FedNL. After comparing Unbiased Compressors, Contractive Compressors, and
Low-rank Compressors, we find that using option 2 combined with a rank-20 low-rank

compression yields the best performance. Other hyperparameters are set to = 1 and
a=1

* DONE. We set R = 40 and o = 0.03 (as used in the DONE algorithm). When the Dirichlet

parameter is 0.5, we use = 0.02 and A\ = 0.005; for all other cases, we set n = 0.03 and
A =0.001.

E EXPERIMENTAL SUPPLEMENT
E.1 COMPARISON ON CNN

The result in Figure[§]supplements the baseline comparisons in overall training performance and the
experimental setup and analysis follow the main text.
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Figure 8: The test accuracy of the compared methods on Fashion MNIST using 5-layer CNN under
different levels of data heterogeneity.
E.2 PARTIAL PARTICIPATION SETTING
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Figure 9: Test accuracy on non-IID on non-IID (o = 0.5) MNIST (left) and Fashion MNIST (right)
using MLP and a 5-layer CNN, respectively, under partial client participation.
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Under moderate heterogeneity, we evaluate partial client participation across models and datasets.
We use 100 clients and sample 30 at random per round. As shown in Figure 9] all methods require
more rounds to converge than under full participation, yet our method remains among the fastest. On
CNNs, SCAFFOLD exhibits a pronounced slow start, likely because its control variate correction
cannot reflect a reliable global direction when only a subset of clients has participated early on.
Similarly, methods such as Fed-Sophia that reference previous client updates benefit from reducing
reliance on prior rounds, typically requiring a lower momentum parameter.

E.3 ADDITIONAL RESULTS ON COMMUNICATION EFFICIENCY

In Table 5] we provide the comparative data on communication cost and the number of training
rounds required to achieve a specific accuracy using CNN and MLR, which was omitted in the
main text. The communication cost refers to the amount of data transmitted in each round, which
remains fixed for a given method and model throughout training. Notably, FedNL and DONE rely
on computing the full Hessian matrix, which restricts their applicability to models with a relatively
small number of parameters like CNN due to memory constraints. FAGH and SCAFFOLD exhibit
nearly identical communication efficiency since both methods transmit two parameter-sized vectors
per round; the slight differences observed are likely due to statistical variation. DONE incurs this
communication overhead because it performs two communication steps per round. Although FedNL
employs compression techniques to avoid transmitting the full quadratic-size Hessian matrix (e.g.,
7035.08MB per round in the MLR experiment), it still incurs significantly higher per-round cost
compared to other methods. In contrast, our method achieves the same per-round communication
cost as FedAvg while requiring substantially fewer rounds to converge.

Table 5: The comparison of the number of communication cost (Comm.) and rounds required by
the compared methods to achieve a target accuracy(%) using CNN and MLR.

TARGET ACCURACY - CNN TARGET ACCURACY - MLR

METHOD CoMM.| 1ID |a=05|a=01| CoMM.| IID |a=05]a=01

(MB) [70 80|70 80|65 75| (MB) [80 85|80 85|80 85
FEDAVG 13455 |23 38| 19 44 |43 - | 090 | 9 29|17 38|18 4l
SCAFFOLD | 278.62 |34 - [43 - [41 57| 180 |34 - |22 74|28 -
FEDNL \ LN N N N N A Y- 2T A U S IR
DONE \ VoV N Ny N 179 |29 49 (30 58|40 59
FED-SOPHIA | 134.55 [ 15 25|11 30|13 20| 090 |6 31|5 10|16 72
FAGH 27838 |21 579 37|20 49| 1.79 |9 17|22 - | - -
FN-NOW 13455 | 8 18| 9 20|11 23| 090 |3 26| 8 14| 9 25

E.4 ADDITIONAL RESULTS ON MODEL ACCURACY

Table 6: The summary of final-round accuracy (%) for the compared methods using MLR.

METHOD 1ID a=0.5 a=0.1

FEDAVG 88.084+0.00 87.96+0.45 | 88.06+0.24
SCAFFOLD | 84.56+0.05 | 85.814+0.23 | 83.9940.09
FEDNL 67.05+2.03 | 57.534+6.73 | 56.76+0.85
DONE 88.414+0.14 | 88.25+0.16 | 88.59+0.14
FED-SOPHIA | 91.52+0.23 | 89.394+0.68 | 85.3940.40
FAGH 89.2440.09 | 78.44+0.11 | 68.52+0.08
FN-NOW 91.98+0.02 | 89.89+0.14 | 88.46+0.12

We report the final-round accuracies on MLR in Table @ with the round fixed at 60. As shown,
our method achieves the highest accuracy under both the IID and o« = 0.5 settings, and remains
competitive under o = 0.1. As previously discussed, MLR has relatively few parameters, making it
well-suited to first-order methods. In this regime, introducing complex approximations or second-
order information may hinder training performance rather than improve it. For example, FedNL
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applies compression techniques, and FAGH constructs second-order updates based on the first row
of the Hessian, both of which may introduce noise or information loss. Moreover, we observe
that DONE appears relatively insensitive to data heterogeneity, likely because it performs local
updates guided by a shared global gradient. Overall, although our method is primarily designed
to improve communication efficiency, it maintains strong performance without sacrificing training
effectiveness.
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F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models solely for writing assistance in polishing phrasing and correcting
spelling and grammar. The authors remain fully responsible for the paper’s accuracy and integrity.
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