FN-NOW: A COMMUNICATION-EFFICIENT NEWTON-TYPE FEDERATED LEARNING VIA LOW-RANK HES-SIAN APPROXIMATION

Anonymous authorsPaper under double-blind review

ABSTRACT

Newton-type algorithms have become a promising direction for improving federated learning (FL). Their faster convergence offers new insights into enhancing communication efficiency in FL. However, these methods rely on the full Hessian, introducing significant computational, memory, and communication overhead. In this paper, we propose FN-NOW, a communication-efficient Newton-type federated optimization algorithm based on a low-rank approximation of the Hessian. Specifically, FN-NOW leverages Nyström method and the Woodbury identity to efficiently approximate the Hessian inverse, enabling communication-efficient training through fast convergence while maintaining memory overhead comparable to first-order methods. We provide a theoretical analysis showing that FN-NOW achieves a linear convergence rate under standard assumptions, outperforming typical first-order methods. Extensive experiments demonstrate that FN-NOW consistently outperforms existing methods in terms of both convergence speed and predictive performance, making it well suited for deployment in resource-constrained FL settings.

1 Introduction

Federated learning (FL) (McMahan et al., 2017) is a privacy-preserving distributed paradigm enabling collaborative model training across devices without sharing local data. However, frequent transmission of model parameters causes significant communication overhead (Martínez Beltrán et al., 2023; Liu et al., 2024a). Given bandwidth and network constraints, minimizing communication is essential for improving FL efficiency (Liu et al., 2024c). Since FedAvg (McMahan et al., 2017) introduced an SGD-based federated framework, numerous subsequent studies have aimed to further alleviate communication burdens (Zhao et al., 2023; Herzog et al., 2024). A common strategy in first-order methods is to reduce the size of local updates sent by clients (Konečný, 2016; Chen et al., 2021; Di et al., 2024), which implicitly limits the amount of information aggregated.

Second-order optimization has gained attention for its fast convergence in centralized settings, with classical Newton's method (Cauchy, 1821; Fletcher & Powell, 1963) leveraging curvature information to accelerate training. This is appealing for FL, where fewer communication rounds are needed, potentially reducing communication costs. However, the vanilla Newton's method requires computing and transmitting a Hessian inverse with quadratic parameter complexity, imposing heavy resource demands and limiting scalability. Furthermore, this communication burden may offset the convergence gains. Therefore, making second-order methods practical for FL necessitates addressing the challenges of computational, memory, and per-round communication overhead.

Existing work has explored Newton-type optimizers in FL (Elgabli et al., 2022; Ma et al., 2022; Dinh et al., 2022), focusing on reducing communication and computation costs. Techniques include Hessian compression (Chaudhuri et al., 2022), Newton sketching (Li et al., 2024) and group alternating direction method of multipliers (ADMM) (Krouka et al., 2023). However, They still require storing full Hessian during local training, limiting applicability to shallow models with relatively few parameters. This raises a natural question: can we retain the fast convergence of second-order methods in FL without their high overhead, achieving costs closer to first-order levels?

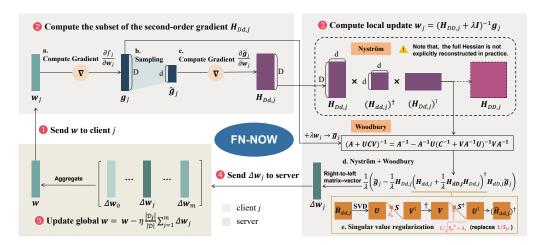


Figure 1: Illustration of FN-NOW.

Research on second-order optimizers for FL that are both resource-efficient and broadly applicable remains scarce. In this work, we aim to harness the advantages of second-order optimization while mitigating its costs in computation, memory, and per-round communication. Accordingly, we propose FN-NOW (Federated Newton's Method with Nyström and Woodbury), a novel federated Newton-type optimizer based on low-rank Hessian approximationas, illustrated in Figure 1. It replaces the full Hessian with Nyström approximation, and maintains low memory overhead with the Woodbury identity. By communicating parameter updates, it achieves per-round communication costs comparable to those of first-order methods. We provide theoretical and empirical evidence that FN-NOW converges faster, effectively reducing communication rounds. While primarily designed for communication efficiency, it also achieves strong accuracy and robustness to data heterogeneity. Notably, FN-NOW is not derived from existing centralized algorithms and is applicable to both federated and centralized settings. We summarize our main contributions as follows:

- We propose FN-NOW, a Newton-type FL method that reduces communication rounds via fast convergence and mitigates computation and memory overhead via Nyström approximation and the Woodbury identity, enabling scalability to diverse model architectures.
- We prove FN-NOW achieves a linear convergence rate under standard assumptions. This provides strong theoretical support for applying second-order methods in FL.
- Extensive experiments on benchmark datasets and commonly used models show that FN-NOW outperforms related methods in both convergence speed and accuracy, particularly in resource-constrained federated settings.

2 RELATED WORK

Our work focuses on applying second-order optimization to FL. We review existing federated optimizers and centralized second-order methods, which offer valuable insights for FL adaptation.

Federated first-order optimizer. McMahan et al. (2017) introduced FedAvg based on first-order optimizer SGD. Beyond SGD, Reddi et al. (2020) explored adaptive optimizers in FL like ADA-GRAD (Duchi et al., 2011), ADAM (Kingma, 2014), and YOGI (Zaheer et al., 2018), while Gong et al. (2022) proposed FedADMM using primal-dual optimization. Communication-efficient first-order FL methods typically either reduce per-device communication via compression (Chen et al., 2021) or filtering (Chu et al., 2025), or limit participating clients (Di et al., 2024; Ribero & Vikalo, 2024). Additionally, Herzog et al. (2024) reduces communication frequency by increasing local training. However, such strategies degrade aggregation quality and hinder overall training efficiency.

Centralized second-order optimizer. Classical techniques to accelerate computation include BFGS (Broyden, 1965), L-BFGS (Liu & Nocedal, 1989), Gauss-Newton (Schraudolph, 2002), and inexact Newton methods (Dembo et al., 1982). More recently, diagonal approximations have been

widely adopted. For example, ADAHESSIAN (Yao et al., 2021) and Sophia (Liu et al., 2024b) approximate the Hessian and Gauss-Newton (GN) diagonals, respectively. K-FAC (Martens & Grosse, 2015) represents the GN using a Kronecker product, and Botev et al. (2017) proposed recursive block-diagonal forms. HesScale (Elsayed et al., 2024) further enables scalable second-order updates with improved diagonal estimates. These methods offer key insights by approximating the Hessian with compact, informative substitutes.

Federated second-order optimizer. DANE (Shamir et al., 2014) and GIANT (Wang et al., 2018) use conjugate gradient to approximate Newton updates, while DONE (Dinh et al., 2022) applies Richardson iteration. These methods communicate twice per iteration. FedNL (Chaudhuri et al., 2022), SHED (Dal Fabbro et al., 2024) and FedNew (Elgabli et al., 2022) use compressed Hessians, eigenvector-eigenvalue pairs and ADMM mitigating communication, yet full Hessian is still required during training. FedNS (Li et al., 2024), FLeNS (Gupta et al., 2024) adopt sketched Hessians, but the limited compression ratio constrains their applicability across models. Recent works like Fed-Sophia (Elbakary et al., 2024), derived from centralized Sophia (Liu et al., 2024b), approximate the GN via diagonalization, while FAGH (Sen et al., 2024), samples the Hessian's first row. Their effectiveness hinges on accurately capturing the full Hessian. In comparison, our approach enables more adaptable approximation via flexible sampling. Moreover, we prove linear convergence, which is absent in existing methods relying on approximation.

PRELIMINARIES

108

110

111

112

113 114

115

116

117

118

119

120

121

122

123

124

125 126

127 128

129

130

131

132

133

134 135

136

137

138

139

140

141

142

143 144

145

146

147

148 149

150 151

152 153

154

155 156

157 158

159

161

Federated learning. We consider a standard FL setting with a global server and m local devices. Each device $j \in [m]$ holds local data \mathcal{D}_j drawn from a distribution ρ_j over $\mathcal{X} \times \mathcal{Y}$ and full dataset is the disjoint union of local datasets $\mathcal{D} = \bigcup_{j=1}^{m} \mathcal{D}_{j}$, implicitly drawn from a global distribution ρ over $\mathcal{X} \times \mathcal{Y}$, where \mathcal{X} and \mathcal{Y} denote the input and output spaces, respectively. The FL objective on \mathcal{D} :

$$\min_{\boldsymbol{w}} f(\boldsymbol{w}) = \sum_{j=1}^{m} \frac{|\mathcal{D}_j|}{|\mathcal{D}|} f_j(\boldsymbol{w}), \tag{1}$$

where $f_j(w)$ is the j-th device's loss function, $w \in \mathbb{R}^D$ denotes the model parameters. A predefined learning rate η is generally used. In centralized settings, gradient descent updates follow:

$$\boldsymbol{w}^t = \boldsymbol{w}^{t-1} - \eta \boldsymbol{g}^t, \tag{2}$$

where $q^t := \nabla f(w^t) \in \mathbb{R}^D$ is gradient. Let w^t denote the model at round t.

Federated second-order optimizer. Newton's method uses the inverse Hessian (second-order derivatives) to scale the gradient and determine the update direction:

$$\boldsymbol{w}^{t} = \boldsymbol{w}^{t-1} - \eta (\boldsymbol{H}^{t})^{-1} \boldsymbol{g}^{t}, \tag{3}$$

 $\pmb{w}^t = \pmb{w}^{t-1} - \eta (\pmb{H}^t)^{-1} \pmb{g}^t,$ where $\pmb{H}^t := \nabla^2 f(\pmb{w}^t) \in \mathbb{R}^{D \times D}$, and $\eta = 1$ recovers standard Newton's method.

In federated Newton's method, the global Hessian is obtained by aggregating local Hessian, analogous to gradient aggregation in first-order FL. For equation 3, they can be computed further as:

$$\boldsymbol{H}^{t} = \sum_{j=1}^{m} \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \boldsymbol{H}_{j}^{t}, \quad \boldsymbol{g}^{t} = \sum_{j=1}^{m} \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \boldsymbol{g}_{j}^{t}, \tag{4}$$

where $\boldsymbol{H}_i^t := \nabla^2 f_i(\boldsymbol{w}^t), \boldsymbol{g}_i^t := \nabla f_i(\boldsymbol{w}^t).$

METHODOLOGY

As shown in Algorithm 1, we propose a Newton-type FL method via low-rank Hessian approximation to reduce computational and memory costs, while communicating updates at first-order level.

4.1 PROBLEM FORMULATION

Considering the addition of the ℓ_2 -norm of model parameters as a penalty term, the objective function of FL is given by:

$$\min_{\boldsymbol{w}} F(\boldsymbol{w}) = \sum_{j=1}^{m} \frac{|\mathcal{D}_j|}{|\mathcal{D}|} F_j(\boldsymbol{w}), \quad \text{where} \quad F_j(\boldsymbol{w}) = f_j(\boldsymbol{w}) + \frac{\lambda}{2} ||\boldsymbol{w}||^2,$$
 (5)

162 Algorithm 1 FN-NOW 163 **Input**: Local training data subset \mathcal{D}_i , $\forall j \in [m]$, local loss function $F_i(\boldsymbol{w})$, number of communica-164 tion rounds T, the number of local examples $|\mathcal{D}_i|$ and total examples $|\mathcal{D}|$. **Parameter**: Learning rate η , regularization parameters λ , stabilization parameter λ_s . 166 **Output**: The global weight w167 1: for each round t = 1, ..., T do Communicate $\boldsymbol{w} = (x_1, \dots, x_D)^{\top}$ to all clients. 169 3: for each client $j \in [m]$ do 170 4: $\boldsymbol{w}_i \leftarrow \boldsymbol{w}$. 5: for each step (batches in each epoch) do 171 Compute $g_j \leftarrow \frac{\partial f_j}{\partial \boldsymbol{w}_i}, \ \bar{\boldsymbol{g}}_j \leftarrow \boldsymbol{g}_j + \lambda \boldsymbol{w}_j$. 172 173 Sample gradient subset $\widetilde{g}_j \subseteq g_j$ via leverage score sampling in equation 8 174 Compute $m{H}_{Dd,j} \leftarrow rac{\partial \widetilde{m{g}}_j}{\partial m{w}_j}, m{H}_{dd,j} \subseteq m{H}_{Dd,j}$ and $m{\widetilde{H}}_{dd,j} = m{H}_{dd,j} + rac{1}{\lambda} m{H}_{dD,j} m{H}_{Dd,j}$ 8: 175 Perform SVD for the matrix $\widetilde{\boldsymbol{H}}_{dd,j} = \boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^{\top}$. 9: 176 Apply singular value regularization to compute the inverse of $(\widetilde{m{H}}_{dd,j})^{\dagger} = m{V}\widetilde{m{S}}^{+}m{U}^{ op}$ 10: 177 according to equation 11, where \widetilde{S}^+ is a diagonal matrix with $\widetilde{S}_{ii}^+ = 1/\sqrt{S_{ii}^2 + \lambda_s}$ and 178 179 Compute local update $\Delta w_j = \frac{1}{\lambda} \left(\bar{g} - \frac{1}{\lambda} \left(H_{Dd,j} \left(\left(\widetilde{H}_{dd,j} \right)^{\dagger} \left(H_{dD,j} \bar{g}_j \right) \right) \right) \right)$ ac-180 11: 181 cording to equation 10 with matrix-vector multiplication 12: end for 183 13: Communicate the local update Δw_i to server. 14: end for 185 15: On the global server: 186

where λ is a regularization parameter. The solution using Newton's method can be expressed as:

$$\boldsymbol{w}^{t} = \boldsymbol{w}^{t-1} - \eta \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \sum_{j=1}^{m} \Delta \boldsymbol{w}_{j}^{t-1}, \quad \Delta \boldsymbol{w}_{j}^{t-1} = (\boldsymbol{H}_{j}^{t-1} + \lambda \boldsymbol{I})^{-1} \bar{\boldsymbol{g}}_{j}^{t-1}, \tag{6}$$

where $\bar{g}_{i}^{t} := g_{i}^{t} + \lambda w^{t}$, and the remaining notation is consistent with equation 3.

4.2 HESSIAN MATRIX WITH NYSTRÖM APRROXIMATION

Update the global model $\mathbf{w} \leftarrow \mathbf{w} - \eta \sum_{j=1}^{m} \frac{|\mathcal{D}_j|}{|\mathcal{D}|} \Delta \mathbf{w}_j$.

16:

17: **end for**

187

188 189 190

191

192

193 194

195 196

197

200

201202

203204205206

207208209210

211

212

213

214

215

The Nyström method (Williams & Seeger, 2000) is an approximation technique used to efficiently handle large-scale matrices by utilizing a subset of columns. This means that in second-order methods, we can approximate the entire Hessian matrix by computing only a little part of it. We consider training on a certain device where $\boldsymbol{w}=(x_1,\ldots x_D)^{\top}\in\mathbb{R}^D$ represents the model parameters to be optimized, and the first-order gradient $\boldsymbol{g}=(g_1,\ldots,g_D)^{\top}\in\mathbb{R}^D$, where $g_i=\frac{\partial f}{\partial x_i}$, can be easily computed. Then we sample the subset $\widetilde{\boldsymbol{g}}=(\widetilde{g}_1,\ldots,\widetilde{g}_d)^{\top}\subseteq\boldsymbol{g},\,d\ll D$ to calculate the subset of the second-order gradient $\boldsymbol{H}_{Dd}:=(\frac{\partial \widetilde{\boldsymbol{g}}}{\partial x_1},\ldots,\frac{\partial \widetilde{\boldsymbol{g}}}{\partial x_D})^{\top}\in\mathbb{R}^{D\times d}$. Using Nyström technique, we approximate the Hessian matrix and the local update in Newton's method according to equation 6:

$$H_{DD} \approx H_{Dd}(H_{dd})^{\dagger} H_{Dd}^{\top}, \quad (H_{DD} + \lambda I)^{-1} \bar{g} \approx (H_{Dd}(H_{dd})^{\dagger} H_{Dd}^{\top} + \lambda I)^{-1} \bar{g},$$
 (7) where $H_{DD} := (\frac{\partial g}{\partial x_1}, \dots, \frac{\partial g}{\partial x_D})^{\top} \in \mathbb{R}^{D \times D}, H_{dd} \in \mathbb{R}^{d \times d} \subseteq H_{Dd}, H^{\dagger}$ is the Moore-Penrose inverse of the martrix H .

Since the Hessian matrix may be sparse, uniform sampling can yield poorly informative subsets, leading to unstable or inaccurate inversions. Sampling more informative components improves the approximation quality. We use leverage score sampling method to quantify the importance of data points in the regularized kernel matrix. In our method, the subset \tilde{g} is selected with probability:

$$p_i = \hat{l}(i) / \sum_{i=1}^{D} \hat{l}(i), \quad \hat{l}(i) = g_i^2 / \sum_{i=1}^{D} g_i^2,$$
 (8)

where $\widehat{l}(i)$ is the leverage score of $g_i \in \boldsymbol{g}$ and $i \in [D]$.

4.3 INVERSE HESSIAN WITH WOODBURY IDENTITY

Although we have introduced low-rank approximation techniques for Hessian, in Newton's method, the gradient update is actually performed using the inverse of the Hessian matrix. It is necessary to avoid the constructing of full-sized Hessian matrices throughout the entire computation process. The Woodbury identity (Sherman & Morrison, 1950) simplifies the computation of matrix inverses through matrix decomposition and is applicable when certain parts of the matrix have a special structure. The identity is as follows:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1},$$
(9)

where $A \in \mathbb{R}^{N \times N}$ is typically a large and sparse matrix, $U \in \mathbb{R}^{N \times n}$, $C \in \mathbb{R}^{n \times N}$, $V \in \mathbb{R}^{n \times N}$, and $n \ll N$.

Using the Woodbury identity equation 9 to decompose the inverse of the Hessain matrix equation 7, the second-order update computed on local devices can be decomposed as:

$$(\boldsymbol{H}_{DD} + \lambda \boldsymbol{I})^{-1} \bar{\boldsymbol{g}} \approx \frac{1}{\lambda} \left(\bar{\boldsymbol{g}} - \frac{1}{\lambda} \boldsymbol{H}_{Dd} \left((\widetilde{\boldsymbol{H}}_{dd})^{\dagger} (\boldsymbol{H}_{dD} \bar{\boldsymbol{g}}) \right) \right).$$
 (10)

We denote $H_{dD} := H_{Dd}^{\top}$, $\widetilde{H}_{dd} := H_{dd} + \frac{1}{\lambda} H_{dD} H_{Dd}$ and since the matrix may be singular, we use the Moore-Penrose pseudoinverse to replace the matrix inverse.

This differs from previous federated second-order methods, which typically communicate both the Hessian matrix and gradients. In contrast, our approach, which only communicates the local parameter updates, reduces the communication overhead to the level of first-order methods. We demonstrate the effectiveness of directly aggregating parameter updates through both experimental results and theoretical analysis.

Remark 1 (Efficient Matrix Inversion and Matrix-Vector Multiplication). The computation in equation 7 involves the inverse of a $D \times D$ matrix, resulting in a time complexity of $\mathcal{O}(D^3)$, which is prohibitive for high-dimensional models. By applying the Woodbury matrix identity, this inversion can be reformulated in terms of a much smaller $d \times d$ matrix in equation 10, where $d \ll D$, significantly reducing the computational burden. Furthermore, to avoid expensive matrix-matrix multiplications, we compute the local update through a sequence of matrix-vector multiplications. After the use of the Woodbury identity and matrix-vector multiplications, the computational complexity is reduced from $\mathcal{O}(D^3)$ in equation 7 to $\mathcal{O}(Dd + d^3)$ in equation 10, where $d \ll D$.

4.4 SINGULAR VALUE REGULARIZATION

We compute the pseudo-inverse of H_{dd} using SVD, a standard and stable approach, and conveniently leverage its structure to perform singular value regularization. The Moore-Penrose pseudoinverse of A is obtained by decomposing it as USV^{\top} , inverting the nonzero singular values in S to form S^+ , and reconstructing VS^+U^{\top} . The pseudoinverse in equation 10, incorporating regularization, is computed as:

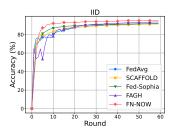
$$(\widetilde{\boldsymbol{H}}_{dd})^{\dagger} = \boldsymbol{V}\widetilde{\boldsymbol{S}}^{+}\boldsymbol{U}^{\top},\tag{11}$$

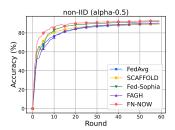
where \widetilde{S}^+ is the diagonal matrix with $\widetilde{S}^+_{ii}=1/\sqrt{S^2_{ii}+\lambda_s}$ and $\lambda_s>0$ is stabilization parameter.

Remark 2 (Stability of Hessian Inversion). Hessian inversion can be unstable due to near-zero eigenvalues, and Liu et al. (2024b) further pointed out issues from rapidly changing or negative curvature. Therefore, Hessian conditioning is essential in second-order methods. For example, Liu et al. (2024b) and Elbakary et al. (2024) impose a lower bound on second-order information and clips update to ensure stability. We regularize the singular values in the SVD step of the Moore–Penrose pseudoinverse computation to directly address the core instability without altering curvature directions while making explicit use of the existing decomposition.

5 CONVERGENCE ANALYSIS

In this section, we provide a convergence analysis of FN-NOW and a theoretical comparison with several methods. Before the analysis, we first introduce some notations and standard assumptions.





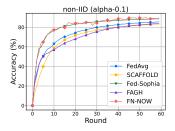


Figure 2: The test accuracy of the compared methods on MNIST using MLP under different levels of data heterogeneity.

Assumption 1 (Twice differentiable and convex). The objective function are closed and twice differentiable convex function and $\nabla^2 F(w) \succeq v \mathbf{I}$.

Assumption 2 (Lipschitz smoothness). The second-order derivatives of F are M-Lipschitz smooth, i.e., $\|\nabla^2 F(\boldsymbol{w}) - \nabla^2 F(\boldsymbol{w}')\| \le M\|\boldsymbol{w} - \boldsymbol{w}'\|$. The gradient satisfies the L-lipschitz condition, i.e., $\|\nabla F(\boldsymbol{w}) - \nabla F(\boldsymbol{w}')\| \le L\|\boldsymbol{w} - \boldsymbol{w}'\|$.

Lemma 1 (Nyström approximation error). With Assumptions 1, 2, let c > 0 and $\delta \in (0,1)$ be fixed constants. For a target accuracy $\epsilon_l \in (0,1)$ and target rank k of the low-rank approximation, the sampling dimension $d \geq \frac{c}{\epsilon_s^2} k \ln \frac{k}{\delta}$, the exact Hessian \mathbf{H} and its Nyström approximation $\hat{\mathbf{H}}$ satisfy

$$\|\boldsymbol{H} - \hat{\boldsymbol{H}}\| \le \rho_{Ny},\tag{12}$$

where $\rho_{Ny} = (1 + \epsilon_l)\lambda_{k+1}(\boldsymbol{H})$, $\lambda_{k+1}(\boldsymbol{H})$ denotes the (k+1)-th eigenvalue of \boldsymbol{H} , with probability at least $1 - \delta$. A detailed proof is given in A.2.

5.1 Convergence Analysis for FN-NOW

Theorem 1. (Convergence of FN-NOW). Under Assumptions 1, 2, let $\delta \in (0,1)$ and $\epsilon \in (0,\frac{1}{2})$. Suppose that each $\nabla^2 F_j(\cdot)$ is uniformly upper bounded, i.e., $\nabla^2 F_j(w) \preceq CI$ for all $j \in [m]$. When $|\mathcal{D}_j| \geq \frac{4C}{v\epsilon^2} \log \frac{2DK}{\delta}$ and $d \geq \frac{c}{\epsilon_j^2} k \ln \frac{kK}{\delta}$, we obtain

$$\|\boldsymbol{w}^{t+1} - \boldsymbol{w}^*\| \le P\|\boldsymbol{w}^t - \boldsymbol{w}^*\| + \frac{3M}{2v}\|\boldsymbol{w}^t - \boldsymbol{w}^*\|^2,$$
 (13)

with probability at least $1-3K\delta$. Here, P is a constant, defined as $P=\frac{(1-\eta)L}{v}+\frac{\eta\Gamma L}{(1-\epsilon)v^2}+\frac{\eta\rho_{Ny}L}{(1-\epsilon)v\lambda}+\frac{\eta\epsilon_BL}{\lambda}$, where Γ and ϵ_B are related to the local similarity of the first and second order gradients, respectively.

In equation 13, the algorithm converges when P < 1, and the accompanying discussion and detailed proof are provided in B. We now analyze the components of P. The first term captures the deviation from the standard Newton method. This term vanishes when $\eta = 1$, under ideal conditions. The second and fourth terms depend on distributional differences across local clients and increase with the degree of heterogeneity. To quantify distributional dissimilarity, we adopt a commonly used similarity bound defined in (Li et al., 2020; Karimireddy et al., 2020). The third term reflects the error introduced by the Nyström approximation, which depends on sampling quality and the number of sampled columns.

Theorem 2. (Convergence rate of FN-NOW). Under Assumptions 1, 2 and iterative process in Theorem 1, if initial point satisfies $\|\mathbf{w}^0 - \mathbf{w}^*\| \leq \frac{(1-P)v}{M}$, then achieving $\|\mathbf{w}^t - \mathbf{w}^*\| \leq \varepsilon$ requires $T = \mathcal{O}(\log \frac{1}{\varepsilon})$ iterations.

The proof is in C. This result establishes linear convergence, as typical for Newton-type methods. Although the second-order term is not globally dominant, it improves convergence near the optimum, often after a few warm-up steps with a first-order method.

5.2 THEORETICAL COMPARISONS

We theoretically compare our method with the ideal Newton's method and other related methods in Table 1. Compared to first-order methods FedAvg (McMahan et al., 2017) and FedProx (Dinh et al.,

Table 1: Summary of Communication Complexity (Comm.) and Memory Overhead Comparison for Related Methods.

Метнор	MEMORY COST	$\frac{\text{Iterations}}{T}$	COMM. ONCE	COMM. COMPLEXITY
FEDAVG	$\mathcal{O}(D)$	$\mathcal{O}(rac{1}{arepsilon})$	$\mathcal{O}(D)$	$\mathcal{O}(rac{D}{arepsilon})$
FEDPROX	$\mathcal{O}(D)$	$\mathcal{O}(rac{1}{arepsilon})$	$\mathcal{O}(D)$	$\mathcal{O}(\frac{D}{\varepsilon})$
DANE	$\mathcal{O}(D)$	$\mathcal{O}(\frac{\kappa^2}{ \mathcal{D}_j }\log(Dm)\log\frac{1}{\varepsilon})$	$\mathcal{O}(D)$	$\mathcal{O}(D \frac{k^2}{ \mathcal{D}_j } \log(Dm) \log \frac{1}{\varepsilon}))$
DONE	$\mathcal{O}(D^2)$	$\mathcal{O}(\delta_\kappa \log \frac{1}{arepsilon})$	$\mathcal{O}(D)$	$\mathcal{O}(D\delta_k\log\frac{1}{\varepsilon})$
DONE		$\mathcal{O}(\log\log rac{1}{arepsilon})$	$\mathcal{O}(D)$	$\mathcal{O}(D\log\log\frac{1}{\varepsilon})$
FEDNL	$\mathcal{O}(D^2)$	$\mathcal{O}(\log rac{1}{arepsilon})$	$\mathcal{O}(D)$	$\mathcal{O}(D\log rac{1}{arepsilon})$
SHED	$\mathcal{O}(D^2)$	$\mathcal{O}(\log rac{1}{arepsilon})$	_	$\mathcal{O}(D^2)$
FEDNEWTON	$\mathcal{O}(D^2)$	$\mathcal{O}(\log\log\frac{1}{arepsilon})$	$\mathcal{O}(D^2)$	$\mathcal{O}(D^2 \log \log \frac{1}{\varepsilon})$
FN-NOW	$\mathcal{O}(dD)$	$\mathcal{O}(\log \frac{1}{\varepsilon})$	$\mathcal{O}(D)$	$\mathcal{O}(D\log \frac{1}{\varepsilon})$

Note: All analyses are carried out under the assumption of a ε -accurate solution. Done and dane actually communicate twice per round. κ in iterations of dane represents the condition number. $\delta_k < 1$ is assumed in Done

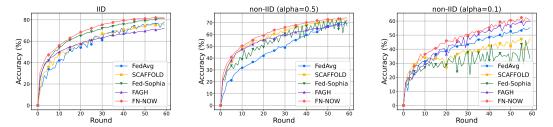


Figure 3: The test accuracy of the compared methods on CIFAR10 using ResNet-18 under different levels of data heterogeneity.

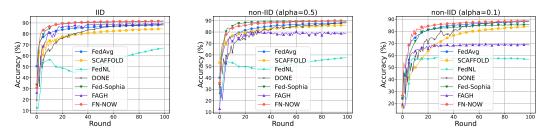


Figure 4: The test accuracy of the compared methods on MNIST using MLR under different levels of data heterogeneity.

2022), second-order methods require fewer iterations T, and our method retains this advantage without additional communication overhead. Other second-order methods, including Done (Dinh et al., 2022), FedNL (Chaudhuri et al., 2022), and SHED (Dal Fabbro et al., 2024), have low communication complexity but incur high memory overhead. DANE (Shamir et al., 2014) is memory-efficient but communication-inefficient.

Recent methods such as FAGH (Sen et al., 2024) and Fed-Sophia (Elbakary et al., 2024) retain the Newton update form and have low memory overhead, but lack theoretical guarantees, and are thus analyzed algorithmically. FAGH, approximating the Hessian by sampling its first row, is a special case of the Nyström method. It corresponds to our method with sampling size 1, while ours allows greater flexibility. Fed-Sophia uses a diagonal approximation with per-iteration complexity $\mathcal{O}(D)$, matching ours. Due to algorithmic differences, we compare convergence empirically.

Table 2: The comparison of communication cost (Comm.) and the number of rounds required by the compared methods to reach a target accuracy (as shown in the third row of the table), with experimental settings consistent with those described earlier.

	TARGET ACCURACY - MLP						TARGET ACCURACY - RESNET							
METHOD	Сомм.	II	D	$\alpha =$	0.5	$\alpha =$	0.1	Сомм.	II	D	$\alpha =$	0.5	$\alpha =$	0.1
	(MB)	80	90	80	90	80	85	(MB)	60	70	60	70	40	50
FEDAVG	45.43	7	31	13	-	30	54	1279.64	23	39	21	55	21	47
SCAFFOLD	90.87	6	37	9	-	39	-	2559.27	21	35	23	45	36	-
FED-SOPHIA	45.43	4	24	8	30	13	26	1279.64	13	26	28	47	40	-
FAGH	90.87	10	23	13	52	39	-	2559.27	22	51	32	-	17	32
FN-NOW	45.43	3	6	5	19	12	23	1279.64	12	21	21	39	13	28

6 EXPERIMENTS

To evaluate FN-NOW, we conducted experiments on MNIST, Fashion MNIST, and CIFAR-10, using three models of increasing complexity: a single-layer MLP, a five-layer CNN (1.5M parameters), and ResNet-18 (He et al., 2015). We compared against firstorder methods FedAvg (McMahan et al., 2017) and SCAFFOLD (Karimireddy et al., 2020), and secondorder methods Fed-Sophia (Elbakary et al., 2024), FAGH (Sen et al., 2024), DONE (Dinh et al., 2022), and FedNL (Chaudhuri et al., 2022), with the latter two evaluated on multinomial logistic regression (MLR). Data heterogeneity was simulated via a Dirichlet distribution $\pi \sim \text{Dir}_r(\alpha)$, where larger α implies more IID. Hyperparameters were selected based on convergence speed, final accuracy and the recommended settings in original paper. All results are averaged over five runs. Full experimental details are provided in D.

Overall training performance. We evaluate training performance across methods with 30 clients by compar-

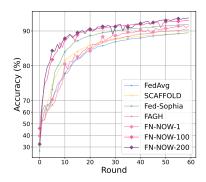


Figure 5: The test accuracy of FN-NOW with different sample scale and other compared methods. The number following the method name represents the size of samples, and the total number of parameters in the model is 392,000.

ing test accuracy over communication rounds under three heterogeneity levels: IID, moderate ($\alpha=0.5$), and extreme ($\alpha=0.1$). As shown in Figures 2–4, our method generally converges faster, occasionally matching Fed-Sophia under extreme heterogeneity but still outperforming other baselines. FedAvg performs best on MLR, likely due to the simplicity of the model where SGD suffices and complex methods may hinder performance. FedNL performs poorly due to large errors from its crude compression. These results highlight the advantage of efficient optimizers in complex settings, consistent with our goal of scalable second-order methods. Among Hessian approximation methods, FAGH suffers from slow convergence and sharp degradation as heterogeneity increases, likely due to loss of Hessian information. In contrast, Fed-Sophia and our method benefit from richer sampling. On ResNet, the most complex model, our method outperforms Fed-Sophia with similar computational cost, likely due to better preservation of feature interactions. CNN results are in the E.1; partial client participation settings are in E.2.

Impact of sample scale. We evaluated the impact of Nyström sampling size on non-IID ($\alpha=0.5$) MNIST using an MLP. As shown in Figure 5, performance significantly improves from size 1 to 100, while further increasing from 100 to 200 offers marginal gains. This suggests limited additional information from larger samples, indicating FN-NOW achieves strong performance without incurring unnecessary memory or computational overhead.

communication efficiency. Table 2 reports the per-round communication cost and the rounds required to first reach target accuracy. MLR and CNN results appear in E.3. The table shows our method lowers both rounds and communication once. Figure 6 further presents training wall clock time and communication time for MLP with non-IID data ($\alpha=0.5$), computing communication time from the measured round count under a fixed 10 Mbps link rate following (Chen et al., 2023). The figure underscores the importance of communication efficiency. Although larger sampling

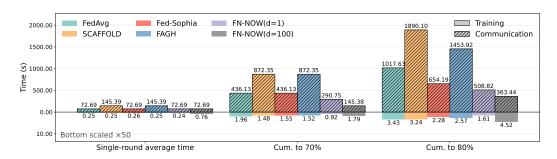


Figure 6: Average per-round training/communication time, and cumulative training/communication time until accuracy first reaches 70% (Cum. to 70%) and 80% (Cum. to 80%).

Table 3: The summary of final-round accuracy (%) for the compared methods, with experimental settings consistent with those described earlier.

Mor	MODEL		SCAFFOLD	FED-SOPHIA	FAGH	FN-NOW
	IID	91.86±0.02	91.31±0.04	91.87 ± 0.04	91.86±0.02	95.00±0.04
MLP	$\alpha = 0.5$	89.48 ± 0.13	89.47 ± 0.04	89.48 ± 0.13	90.47 ± 0.11	$93.00 {\pm} 0.05$
	$\alpha = 0.1$	85.52 ± 1.49	83.38±0.24	89.31 ± 0.11	84.17±0.41	89.72 ± 0.53
	IID	84.05±0.91	79.60±1.96	87.31 ± 0.24	80.40±0.42	87.89±0.22
CNN	$\alpha = 0.5$	82.86 ± 0.28	77.32 ± 0.33	85.01 ± 0.19	83.01±0.03	86.11 ± 0.18
	$\alpha = 0.1$	74.49 ± 1.50	75.51 ± 0.59	82.45 ± 1.03	75.08 ± 0.11	83.36 ± 0.32
	IID	78.05 ± 0.05	76.35 ± 0.06	81.87±1.54	72.19 ± 0.13	82.12±0.79
RESNET	$\alpha = 0.5$	71.95 ± 0.32	72.87 ± 0.78	71.46 ± 3.53	69.07±0.19	73.96 ± 0.43
	$\alpha = 0.1$	54.40±1.76	46.99±1.75	39.83 ± 4.49	60.84±1.58	$61.03 {\pm} 0.87$

slightly lengthens training time for our method, the reduction in communication time dominates. Overall, by reducing both the number of rounds and the per-round payload, FN-NOW improves communication efficiency and thus overall efficiency.

Model Accuracy. We compare the final accuracy at the last round 60 in Table 3. Despite being primarily designed to improve communication efficiency, our method also delivers strong accuracy and robustness to data heterogeneity. These results validate second-order methods as an effective approach to improving communication efficiency in FL without sacrificing training quality. Additional results and detailed analysis on MLR are provided in E.4.

The impact of regularization parameter λ . In Figure 7, we assess λ on a CNN trained on Fashion MNIST with non-IID data ($\alpha = 0.5$). Larger λ stabilizes opti-

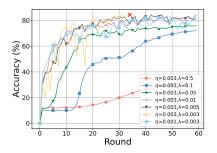


Figure 7: Training comparison across λ .

mization but degrades performance; smaller λ induces instability, and below a threshold training aborts due to ill-conditioned inversions. This aligns with the role of λ as a regularizer that enforces Hessian positive definiteness—larger values improve conditioning but attenuate useful second-order information. We also observe coupling with the learning rate η ; when training fails at very small λ , reducing η restores stability.

7 Conclusion

Second-order optimization in FL faces high computational, memory, and per-round communication costs. We present FN-NOW, a Newton-type algorithm that retains second-order benefits while significantly reducing overhead through Nyström approximation and the Woodbury identity, and provide theoretical guarantees of linear convergence. FN-NOW approaches first-order methods in memory and communication, and achieves substantial computational savings over standard second-order methods, though further improvements remain possible. Future work may explore trade-offs between performance and cost under flexible sampling.

REFERENCES

- Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton optimisation for deep learning. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 557–565. PMLR, 06–11 Aug 2017.
- C. G. Broyden. A class of methods for solving nonlinear simultaneous equations. *Mathematics of Computation*, 19:577–593, 1965.
- Augustin-Louis Cauchy. Cours d'analyse de l'École Royale Polytechnique. Cambridge Library Collection Mathematics. Cambridge University Press, 1821.
- Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.). *FedNL: Making Newton-Type Methods Applicable to Federated Learning*, volume 162 of *Proceedings of Machine Learning Research*, 2022.
- Mingzhe Chen, Nir Shlezinger, H Vincent Poor, Yonina C Eldar, and Shuguang Cui. Communication-efficient federated learning. *Proceedings of the National Academy of Sciences*, 118(17):e2024789118, 2021.
- Zunming Chen, Hongyan Cui, Ensen Wu, and Xi Yu. Computation and communication efficient adaptive federated optimization of federated learning for internet of things. *Electronics*, 12(16): 3451, 2023.
- Yun-Wei Chu, Dong-Jun Han, and Christopher G. Brinton. Only send what you need: Learning to communicate efficiently in federated multilingual machine translation, 2025.
- Nicolò Dal Fabbro, Subhrakanti Dey, Michele Rossi, and Luca Schenato. Shed: A newton-type algorithm for federated learning based on incremental hessian eigenvector sharing. *Automatica*, 160:111460, 2024. ISSN 0005-1098.
- Ron S Dembo, Stanley C Eisenstat, and Trond Steihaug. Inexact newton methods. *SIAM Journal on Numerical analysis*, 19(2):400–408, 1982.
- Yicheng Di, Hongjian Shi, Ruhui Ma, Honghao Gao, Yuan Liu, and Weiyu Wang. Fedrl: A reinforcement learning federated recommender system for efficient communication using reinforcement selector and hypernet generator. *ACM Trans. Recomm. Syst.*, July 2024. Just Accepted.
- Canh T. Dinh, Nguyen H. Tran, Tuan Dung Nguyen, Wei Bao, Amir Rezaei Balef, Bing B. Zhou, and Albert Y. Zomaya. Done: Distributed approximate newton-type method for federated edge learning, 2022.
- John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of machine learning research*, 12(7), 2011.
- Ahmed Elbakary, Chaouki Ben Issaid, Mohammad Shehab, Karim Seddik, Tamer ElBatt, and Mehdi Bennis. Fed-sophia: A communication-efficient second-order federated learning algorithm, 2024.
- Anis Elgabli, Chaouki Ben Issaid, Amrit Singh Bedi, Ketan Rajawat, Mehdi Bennis, and Vaneet Aggarwal. FedNew: A communication-efficient and privacy-preserving Newton-type method for federated learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 5861–5877. PMLR, 17–23 Jul 2022.
- Mohamed Elsayed, Homayoon Farrahi, Felix Dangel, and A. Rupam Mahmood. Revisiting scalable hessian diagonal approximations for applications in reinforcement learning, 2024.
- R. Fletcher and M. J. D. Powell. A rapidly convergent descent method for minimization. *The Computer Journal*, 6(2):163–168, 08 1963. ISSN 0010-4620.

- Alex Gittens and Michael Mahoney. Revisiting the nystrom method for improved large-scale machine learning. In Sanjoy Dasgupta and David McAllester (eds.), *Proceedings of the 30th International Conference on Machine Learning*, volume 28 of *Proceedings of Machine Learning Research*, pp. 567–575, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.
 - Yonghai Gong, Yichuan Li, and Nikolaos M. Freris. Fedadmm: A robust federated deep learning framework with adaptivity to system heterogeneity, 2022.
 - Sunny Gupta, Mohit Jindal, Pankhi Kashyap, Pranav Jeevan, and Amit Sethi. Flens: Federated learning with enhanced nesterov-newton sketch. In 2024 IEEE International Conference on Big Data (BigData), pp. 7774–7783, 2024.
 - Vipul Gupta, Avishek Ghosh, Michal Derezinski, Rajiv Khanna, Kannan Ramchandran, and Michael Mahoney. Localnewton: Reducing communication bottleneck for distributed learning, 2021.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2015.
 - Alexander Herzog, Robbie Southam, Othmane Belarbi, Saif Anwar, Marcello Bullo, Pietro Carnelli, and Aftab Khan. Selective updates and adaptive masking for communication-efficient federated learning. *IEEE Transactions on Green Communications and Networking*, 8(2):852–864, 2024.
 - Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 5132–5143. PMLR, 13–18 Jul 2020.
 - Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
 - Jakub Konečný. Federated learning: Strategies for improving communication efficiency. *arXiv* preprint arXiv:1610.05492, 2016.
 - Mounssif Krouka, Anis Elgabli, Chaouki Ben Issaid, and Mehdi Bennis. Communication-efficient second-order newton-type approach for decentralized learning. In 2023 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–7, 2023.
 - Jian Li, Yong Liu, and Weiping Wang. Fedns: A fast sketching newton-type algorithm for federated learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 13509–13517, 2024.
 - Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. *Proceedings of Machine learning and systems*, 2:429–450, 2020.
 - Bingyan Liu, Nuoyan Lv, Yuanchun Guo, and Yawen Li. Recent advances on federated learning: A systematic survey. *Neurocomputing*, 597:128019, 2024a. ISSN 0925-2312.
 - Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization. *Mathematical programming*, 45(1):503–528, 1989.
 - Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic second-order optimizer for language model pre-training. In *The Twelfth International Conference on Learning Representations*, 2024b.
- Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin Zhang, and Qiang Yang. Vertical federated learning: Concepts, advances, and challenges. *IEEE Transactions on Knowledge and Data Engineering*, 36(7):3615–3634, 2024c. doi: 10. 1109/TKDE.2024.3352628.
 - Xin Ma, Renyi Bao, Jinpeng Jiang, Yang Liu, Arthur Jiang, Jun Yan, Xin Liu, and Zhisong Pan. Fedsso: A federated server-side second-order optimization algorithm. *arXiv preprint arXiv*:2206.09576, 2022.

- James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curvature. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp. 2408–2417, Lille, France, 07–09 Jul 2015. PMLR.
 - Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Gregorio Martínez Pérez, and Alberto Huertas Celdrán. Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges. *IEEE Communications Surveys & Tutorials*, 25(4):2983–3013, 2023. doi: 10.1109/COMST.2023.3315746.
 - Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
 - Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. *arXiv preprint arXiv:2003.00295*, 2020.
 - Mónica Ribero and Haris Vikalo. Reducing communication in federated learning via efficient client sampling. *Pattern Recognition*, 148:110122, 2024. ISSN 0031-3203.
 - Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. *Neural Computation*, 14(7):1723–1738, 2002. doi: 10.1162/08997660260028683.
 - Mrinmay Sen, A. K. Qin, and Krishna Mohan C. Fagh: Accelerating federated learning with approximated global hessian, 2024.
 - Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization using an approximate newton-type method. In Eric P. Xing and Tony Jebara (eds.), *Proceedings of the 31st International Conference on Machine Learning*, volume 32 of *Proceedings of Machine Learning Research*, pp. 1000–1008, Bejing, China, 22–24 Jun 2014. PMLR.
 - Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. *The Annals of Mathematical Statistics*, 21(1):124–127, 1950. ISSN 00034851.
 - Shusen Wang, Fred Roosta, Peng Xu, and Michael W Mahoney. Giant: Globally improved approximate newton method for distributed optimization. *Advances in Neural Information Processing Systems*, 31, 2018.
 - Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel machines. In T. Leen, T. Dietterich, and V. Tresp (eds.), *Advances in Neural Information Processing Systems*, volume 13. MIT Press, 2000.
 - Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney. Adahessian: An adaptive second order optimizer for machine learning. In *proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 10665–10673, 2021.
 - Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for nonconvex optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018.
 - Zihao Zhao, Yuzhu Mao, Yang Liu, Linqi Song, Ye Ouyang, Xinlei Chen, and Wenbo Ding. Towards efficient communications in federated learning: A contemporary survey. *Journal of the Franklin Institute*, 360(12):8669–8703, 2023.

A AUXILIARY LEMMAS

A.1 LOCAL SECOND-ORDER GRADIENT BOUND (FROM LEMMA A.1. IN GUPTA ET AL. (2021))

We directly adopt the result from Lemma A.1. in Gupta et al. (2021). Under Assumptions 1, 2, and $\nabla F_j^2(\boldsymbol{w}) \leq C\boldsymbol{I}$, let $\epsilon \in (0, \frac{1}{2})$ and $\delta \in (0, 1)$. Then, for a given $|\mathcal{D}_j| \geq \frac{4C}{v\epsilon^2} \log \frac{2D}{\delta}$, we obtain

$$(1 - \epsilon)v \prec \nabla^2 F_i(\boldsymbol{w}) \prec (1 + \epsilon)L, \tag{14}$$

for all $\boldsymbol{w} \in \mathbb{R}^D$ and $j \in [m]$ with probability at least $1 - \delta$.

A.2 PROOF OF LEMMA 1

Proof. The approximation error of the Nyström has been extensively studied in previous work. Here, we introduce a result from Gittens & Mahoney (2013) concerning uniform sampling. Let $\boldsymbol{H} \in \mathbb{R}^{D \times D}$ be a symmetric positive definite matrix with eigendecomposition $\boldsymbol{H} = \sum_{i=1}^{D} \lambda_i \boldsymbol{u}_i \boldsymbol{u}_i^{\top}$, where $\{\lambda_i\}_{i=1}^{D}$ are the eigenvalues and $\{\boldsymbol{u}_i\}_{i=1}^{D}$ are the corresponding orthonormal eigenvectors of \boldsymbol{H} . Let $\boldsymbol{H}_k = \sum_{i=1}^{k} \lambda_i \boldsymbol{u}_i \boldsymbol{u}_i^{\top}$ denote the best rank-k approximation of \boldsymbol{H} . Then, there exists a constant c > 0 and a parameter $\beta = \frac{D}{k} \max_i \hat{l}(i)$ that measures the distribution of the column space, such that when $d \geq c\beta k \ln \frac{k}{\delta}$, the approximation error between \boldsymbol{H} and its low-rank approximation $\hat{\boldsymbol{H}}$ is bounded by

$$\|\boldsymbol{H} - \hat{\boldsymbol{H}}\| \le (1 + \frac{2D}{d})\|\boldsymbol{H} - \boldsymbol{H_k}\|,$$
 (15)

with probability at least $1 - \delta$ and where $\|\boldsymbol{H} - \boldsymbol{H_k}\| = \|\sum_{i=k+1}^D \lambda_i \boldsymbol{u_i} \boldsymbol{u_i}^\top\| = \lambda_{k+1}(\boldsymbol{H})$.

Building on this, we consider the case of leverage score sampling. Unlike uniform sampling, which requires a larger number of samples to ensure quality, leverage score sampling focuses solely on approximation accuracy and does not depend on data distribution. Setting $\epsilon_l \in (0,1)$ and applying the Matrix Bernstein inequality, we obtain the following result when $d \geq \frac{c}{\epsilon_s^2} k \ln \frac{k}{\delta}$:

$$\|\boldsymbol{H} - \hat{\boldsymbol{H}}\| \le (1 + \epsilon_l)\lambda_{k+1}(\boldsymbol{H}) = \rho_{Ny},\tag{16}$$

with probability at least $1-\delta$. Using a larger d allows the approximation error ϵ_l to be reduced, leading to improved approximation quality, which is consistent with both our empirical observations and experimental results. Moreover, leverage score sampling reduces the amplification factor $1+\frac{D}{d}$ to a controllable level determined by the target precision.

B Proof of Theorem 1

Proof. We analyze the full-batch case with one training epoch. Intuitively, the entire update can be decomposed into the ideal global exact update and an error term, which can then be analyzed separately. Before proceeding with the proof, we define $\bar{g}^t := \nabla F(w^t)$, $\bar{g}^t_j := \nabla F(w^t)$, $H_F^t := \nabla^2 F(w^t)$, $H_{F,j}^t := \nabla^2 F_j(w^t)$, and $\hat{H}_{F,j}^t := \hat{H}_{f,j}^t + \lambda I$, where $\hat{H}_{f,j}^t$ is the approximate matrix of $\nabla^2 f_j(w^t)$ derived via the Nyström. We then obtain

$$\|e^{t}\| = \left\| (\boldsymbol{H}_{F}^{t})^{-1} \bar{\boldsymbol{g}}^{t} - \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \sum_{j=1}^{m} ((\hat{\boldsymbol{H}}_{F,j}^{t})^{-1} \bar{\boldsymbol{g}}_{j}^{t}) \right\|$$

$$\leq \left\| \underbrace{\frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \sum_{j=1}^{m} \left((\boldsymbol{H}_{F}^{t})^{-1} - (\hat{\boldsymbol{H}}_{F,j}^{t})^{-1} \right) \bar{\boldsymbol{g}}^{t}}_{e_{1}^{t}} + \underbrace{\frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \sum_{j=1}^{m} \left((\hat{\boldsymbol{H}}_{F,j}^{t})^{-1} (\bar{\boldsymbol{g}}^{t} - \bar{\boldsymbol{g}}_{j}^{t}) \right)}_{e_{2}^{t}} \right\|.$$

$$(17)$$

We first consider term e_1^t , where the second-order gradient error arises from both data heterogeneity and the Nyström approximation. By introducing the Hessian similarity bound inspired in (A2) of SCAFFOLD Karimireddy et al. (2020), we obtain $\|\boldsymbol{H}_F^t - \boldsymbol{H}_{F,j}^t\| \leq \Gamma$. For any invertible matrices \boldsymbol{A} and $\boldsymbol{A'}$, we have $(\boldsymbol{A'})^{-1} - \boldsymbol{A}^{-1} = \boldsymbol{A}^{-1}(\boldsymbol{A} - \boldsymbol{A'})(\boldsymbol{A'})^{-1}$. Then with Eq. equation 14 and $\delta \in (0,1)$, we obtain

$$\|(\boldsymbol{H}_{F}^{t})^{-1} - (\boldsymbol{H}_{F,j}^{t})^{-1}\| \le \|(\boldsymbol{H}_{F}^{t})^{-1}\| \|\boldsymbol{H}_{F}^{t} - \boldsymbol{H}_{F,j}^{t}\| \|(\boldsymbol{H}_{F,j}^{t})^{-1}\| \le \frac{\Gamma}{(1-\epsilon)v^{2}},$$
(18)

with probability at least $1 - \delta$. Similarly, by applying equation 16, we obtain

$$\left\| (\boldsymbol{H}_{F,j}^{t})^{-1} - (\hat{\boldsymbol{H}}_{F,j}^{t})^{-1} \right\| \leq \left\| (\boldsymbol{H}_{F,j}^{t})^{-1} \right\| \left\| (\boldsymbol{H}_{F,j}^{t})^{-1} - (\hat{\boldsymbol{H}}_{F,j}^{t})^{-1} \right\| \left\| (\hat{\boldsymbol{H}}_{F,j}^{t})^{-1} \right\|$$

$$\leq \frac{1}{(1 - \epsilon)v} \rho_{Ny} \frac{1}{\lambda} \leq \frac{\rho_{Ny}}{(1 - \epsilon)v\lambda},$$
(19)

with probability at least $1-2\delta$, where $\|\hat{\boldsymbol{H}}_{F,j}^t\| = \|\hat{\boldsymbol{H}}_{f,j}^t + \lambda \boldsymbol{I}\| \succeq \lambda \boldsymbol{I}$ and the bound of $\|(\hat{\boldsymbol{H}}_{F,j}^t)^{-1}\|$ is derived as follows:

$$\left\|\hat{\boldsymbol{H}}_{F,j}^{t}\right\| \leq \left\|\boldsymbol{H}_{F,j}^{t} - \hat{\boldsymbol{H}}_{F,j}^{t}\right\| + \left\|\boldsymbol{H}_{F,j}^{t}\right\|$$

$$\leq (1 + \epsilon)L + \rho_{Nu}.$$
(20)

Using Eq. equation 18 and Eq. equation 19, the error in the second-order gradient component can be bounded as:

$$||e_{1}^{t}|| = \left\| \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \sum_{j=1}^{m} \left((\boldsymbol{H}_{F}^{t})^{-1} - (\boldsymbol{H}_{F,j}^{t})^{-1} + (\boldsymbol{H}_{F,j}^{t})^{-1} - (\hat{\boldsymbol{H}}_{F,j}^{t})^{-1} \right) \bar{\boldsymbol{g}}^{t} \right\|$$

$$\leq \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \sum_{j=1}^{m} (\left\| (\boldsymbol{H}_{F}^{t})^{-1} - (\boldsymbol{H}_{F,j}^{t})^{-1} \right\| + \left\| (\boldsymbol{H}_{F,j}^{t})^{-1} - (\hat{\boldsymbol{H}}_{F,j}^{t})^{-1} \right\|) \left\| \bar{\boldsymbol{g}}^{t} \right\|$$

$$\leq \left(\frac{\Gamma}{(1-\epsilon)v^{2}} + \frac{\rho_{Ny}}{(1-\epsilon)v\lambda} \right) \left\| \bar{\boldsymbol{g}}^{t} \right\|,$$
(21)

with probability at least $1-2\delta$.

Next, we consider term e_2^t , which involves bounding the heterogeneity of the first-order gradients. To this end, we adopt the B-local dissimilarity from FedProxLi et al. (2020) (Definition 3). Under this bound, we obtain $\mathbb{E}[\|\bar{g}_j^t\|^2] \leq B^2\|\bar{g}^t\|$, where B>1. (It is worth noting that the bounds on first- and second-order local similarity are not directly related, so referencing different works does not affect the validity of our analysis. Moreover, the definitions of gradient similarity in these works are essentially equivalent, differing only in form—one expressed as an expected deviation, the other as an empirical deviation.) We define $\bar{g}^{t,\text{avg}} := \frac{|\mathcal{D}_j|}{|\mathcal{D}|} \sum_{j=1}^m \bar{g}_j^t$, so $\mathbb{E}[\bar{g}^{t,\text{avg}}] = \bar{g}^t$ and from them it follows that $\mathbb{E}[\bar{g}^t - \bar{g}^{t,\text{avg}}] = 0$. Based on the above, and by treating \bar{g}_j^t as independent across clients, we can derive:

$$\mathbb{E}[\|\bar{\boldsymbol{g}}^{t} - \bar{\boldsymbol{g}}^{t,\text{avg}}\|^{2}] = \mathbb{E}[\|\bar{\boldsymbol{g}}^{t,\text{avg}} - \mathbb{E}[\bar{\boldsymbol{g}}^{t,\text{avg}}]\|^{2}] = Var(\bar{\boldsymbol{g}}^{t,\text{avg}})$$

$$= Var(\frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \sum_{j=1}^{m} \bar{\boldsymbol{g}}_{j}^{t}) = \left(\frac{|\mathcal{D}_{j}|}{|\mathcal{D}|}\right)^{2} \sum_{j=1}^{m} Var(\bar{\boldsymbol{g}}_{j}^{t}) = \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} Var(\bar{\boldsymbol{g}}_{j}^{t})$$

$$\leq \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \mathbb{E}[\|\bar{\boldsymbol{g}}_{j}^{t}\|^{2}] \leq \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} B^{2} \|\bar{\boldsymbol{g}}^{t}\|^{2},$$
(22)

 where the last inequality uses the B-local dissimilarity. We further apply Markov's inequality to bound $\|\bar{\boldsymbol{g}}^t - \bar{\boldsymbol{g}}_j^t\|$ from above. Let $\epsilon_B > 0$ and $\delta \in (0,1)$, when $B \leq \epsilon_B \delta \sqrt{\frac{|\mathcal{D}|}{|\mathcal{D}_j|}}$, we have

$$\|\bar{\boldsymbol{g}}^t - \bar{\boldsymbol{g}}_j^t\| \le \epsilon_B \|\bar{\boldsymbol{g}}^t\|,\tag{23}$$

with probability at least $1 - \delta$. Consequently, we derive:

$$||e_{2}^{t}|| = \left| \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \sum_{j=1}^{m} \left((\hat{\boldsymbol{H}}_{F,j}^{t})^{-1} (\bar{\boldsymbol{g}}^{t} - \bar{\boldsymbol{g}}_{j}^{t}) \right) \right|$$

$$\leq \frac{1}{\lambda} ||\bar{\boldsymbol{g}}^{t} - \bar{\boldsymbol{g}}_{j}^{t}||$$

$$\leq \frac{\epsilon_{B}}{\lambda} ||\bar{\boldsymbol{g}}^{t}||,$$

$$(24)$$

with probability at least $1-3\delta$, where the bound on $\|\hat{H}_{F,j}^t\|$ has already been established in Equation Eq. equation 20.

Finally, we derive the following recurrence relation for $\|\boldsymbol{w}^t - \boldsymbol{w}^*\|$:

$$\|\boldsymbol{w}^{t+1} - \boldsymbol{w}^*\| = \left\| \boldsymbol{w}^t - \boldsymbol{w}^* - \eta \frac{|\mathcal{D}_j|}{|\mathcal{D}|} \sum_{j=1}^m \left((\hat{\boldsymbol{H}}_{F,j}^t)^{-1} \bar{\boldsymbol{g}}_j^t \right) \right\|$$

$$= \left\| \boldsymbol{w}^t - \boldsymbol{w}^* - \eta (\boldsymbol{H}_F^t)^{-1} \bar{\boldsymbol{g}}^t + \eta e^t \right\|$$

$$\leq \left\| \boldsymbol{w}^t - \boldsymbol{w}^* - \eta (\boldsymbol{H}_F^t)^{-1} \bar{\boldsymbol{g}}^t \right\| + \left\| \eta e^t \right\|$$

$$\leq \left\| (\boldsymbol{H}_F^t)^{-1} \right\| \left\| \boldsymbol{H}_F^t (\boldsymbol{w}^t - \boldsymbol{w}^*) - \eta \bar{\boldsymbol{g}}^t \right\| + \left\| \eta e^t \right\|$$

$$\leq \frac{1}{v} \left\| (\boldsymbol{H}_F^t - \boldsymbol{H}_F^*) (\boldsymbol{w}^t - \boldsymbol{w}^*) \right\| + \left\| \boldsymbol{H}_F^* (\boldsymbol{w}^t - \boldsymbol{w}^*) - \eta \bar{\boldsymbol{g}}^t \right\| + \left\| \eta e^t \right\|$$

$$\stackrel{(i)}{\leq} \frac{1}{v} (\boldsymbol{M} \left\| \boldsymbol{w}^t - \boldsymbol{w}^* \right\|^2 + (1 - \eta) \left\| \bar{\boldsymbol{g}}^t \right\| + \frac{M}{2} \left\| \boldsymbol{w}^t - \boldsymbol{w}^* \right\|^2) + \left\| \eta e^t \right\|$$

$$\leq \left(\frac{(1 - \eta)L}{v} + \frac{\eta \Gamma L}{(1 - \epsilon)v^2} + \frac{\eta \rho_{Ny} L}{(1 - \epsilon)v\lambda} + \frac{\eta \epsilon_B L}{\lambda} \right) \left\| \boldsymbol{w}^t - \boldsymbol{w}^* \right\|$$

$$+ \frac{3M}{2v} \left\| \boldsymbol{w}^t - \boldsymbol{w}^* \right\|^2,$$

with probability at least $1-3\delta$, where (i) is derived from Taylor expansion with integral remainder.

Choose the hyperparameters $\lambda > 4\eta\epsilon_B L$, $\frac{4L-\upsilon}{4L} < \eta < \min\{\frac{(1-\epsilon)\upsilon^2}{4L\Gamma}, \frac{(1-\epsilon)\upsilon\lambda}{4(1+\epsilon_l)L^2}\}$, we can obtain:

$$P = \frac{(1-\eta)L}{\upsilon} + \frac{\eta\Gamma L}{(1-\epsilon)\upsilon^2} + \frac{\eta\rho_{Ny}L}{(1-\epsilon)\upsilon\lambda} + \frac{\eta\epsilon_B L}{\lambda}$$

$$\leq \frac{L}{\upsilon}\left(1 - \frac{4L-\upsilon}{4L}\right) + \frac{(1-\epsilon)\upsilon^2\Gamma L}{4L\Gamma(1-\epsilon)\upsilon^2} + \frac{(1-\epsilon)\upsilon\lambda\rho_{Ny}L}{4(1-\epsilon)\upsilon\lambda(1+\epsilon_l)L^2} + \frac{\eta\epsilon_B L}{4\eta\epsilon_B L} \leq 1.$$
(26)

The simplification of the third term follows from our definition in equation 16, $\rho_{Ny}=(1+\epsilon_l)\lambda_{k+1}(\boldsymbol{H}), \ \lambda_{k+1}(\boldsymbol{H}) \leq \lambda_1(\boldsymbol{H}) \leq L$. Since the two parameter bounds contain mutually dependent terms, we substitute the upper bound $\frac{(1-\epsilon)v\lambda}{4(1+\epsilon_l)L^2}$ of η into the lower bound of λ to verify that the feasible set is non-empty. This yields $\frac{(1-\epsilon)v\epsilon_B}{(1+\epsilon_l)L} < 1$, which is readily satisfied under moderate heterogeneity, noting that $(1+\epsilon_l) > (1-\epsilon)$ and L > v. In addition, it can be observed that as heterogeneity increases (i.e., as ϵ_B and Γ become larger), the admissible range for the hyperparameters becomes more restrictive, which is consistent with empirical observations.

C PROOF OF THEOREM 2

Proof. This analysis assumes the initialization lies within a sufficiently small neighborhood of w^* , which is standard in local convergence theory. Recall from equation 13 that we can rewrite the

expression in a simplified form:

$$\|\boldsymbol{w}^{t+1} - \boldsymbol{w}^*\| \le P\|\boldsymbol{w}^t - \boldsymbol{w}^*\| + Q\|\boldsymbol{w}^t - \boldsymbol{w}^*\|^2, \quad Q := \frac{3M}{2v} > 0.$$
 (27)

Choose $\gamma > 0$ such that

$$\gamma \le \frac{1 - P}{2Q},\tag{28}$$

where P < 1 by Theorem 1. Define the convergence rate constant $\rho_r = P + Q\gamma$, which is bounded as:

$$\rho_r \le P + Q \frac{1 - P}{2Q} = \frac{P + 1}{2} < 1. \tag{29}$$

The convergence result holds under the assumption that the initial iterate satisfies $\|w^0 - w^*\| \le \gamma$, where $\gamma \le \frac{1-P}{2Q}$ defines a local convergence region. We prove by induction that

$$\|\boldsymbol{w}^t - w^*\| \le \gamma \rho_r^t, \forall t \ge 0. \tag{30}$$

When t=0, the inequality holds trivially as $\|\boldsymbol{w}^0-\boldsymbol{w}^*\| \leq \gamma = \gamma \rho_r^0$. Assume now that $\|\boldsymbol{w}^t-\boldsymbol{w}^*\| \leq \gamma \rho_r^t$ holds for some t>0. Then we have

$$\|\boldsymbol{w}^{t+1} - \boldsymbol{w}^*\| \le P\|\boldsymbol{w}^t - \boldsymbol{w}^*\| + Q\|\boldsymbol{w}^t - \boldsymbol{w}^*\|^2 \le P\gamma\rho_r^t + Q(\gamma\rho_r^t)^2.$$
 (31)

Since $\rho_r^t \leq 1$, it follows that $\gamma \rho_r^t \leq \gamma$, and hence

$$Q(\gamma \rho_r^t)^2 = Q\gamma^2 \rho_r^{2t} \le Q\gamma^2 \rho_r^t. \tag{32}$$

Substituting yields

$$\|\boldsymbol{w}^{t+1} - \boldsymbol{w}^*\| \le P\gamma \rho_r^t + Q\gamma^2 \rho_r^t = \gamma \rho_r^t (P + Q\gamma) = \gamma \rho_r^{t+1}, \tag{33}$$

where the last equality uses the definition $\rho_r = P + Q\gamma$. This proves equation 30.

To achieve $\|\boldsymbol{w}^t - \boldsymbol{w}^*\| \leq \varepsilon$, it suffices to ensure

$$\gamma \rho_r^T \le \varepsilon,
T \log \frac{1}{\rho_r} \ge \log \frac{\gamma}{\varepsilon},
T \ge \frac{\log(\gamma/\varepsilon)}{\log(1/\rho_r)},$$
(34)

where the second inequality follows from the fact that $\rho_r < 1$. Since γ and ρ_r are constants independent of ε , the iteration complexity is

$$T = \mathcal{O}(\log \frac{1}{\varepsilon}). \tag{35}$$

D EXPERTIMENTAL SETTING

We provide detailed experimental settings and parameter choices used in our evaluations. For general hyperparameters including learning rate η and regularization parameter λ , we report representative ranges in the table 4 for clarity across the four models, except for FedNL and DONE, whose settings are provided later. We then present method-specific configurations and experimental details with fixed parameter values. All experiments for our proposed method were conducted on a single NVIDIA RTX 4090 GPU.

- FN-NOW. We set the singular value regularization parameter $\lambda_s=10^{-4}$ in all experiments. For MLR, MLP, and CNN, we use sampling rates of 0.003, 0.0003, and 0.00008, respectively, while for ResNet, we directly set d=1.
- **Fed-Sophia.** For ADAM-like momentum parameters, we set (β_1, β_2) to (0.95, 0.99) for MLR, (0.90, 0.99) for MLP, and (0.90, 0.95) for CNN and ResNet. Under partial client participation setting, we reduce them to (0.50, 0.55). The Hessian clipping threshold is set to 10^{-4} .

Table 4: The parameter η , λ value ranges of each method under different experimental settings in this study.

DISTRIBU	TION	FEDAVG	SCAFFOLD	FED-SOPHIA	FAGH	FN-NOW
IID	$\eta \over \lambda$	[1E-2, 7E-1] [1E-2,1.5E-2]	[5E-3,E3-1] [1E-3,1E-2]	[1E-4,8E-3] [4.5E-3,1E-2]	[1E-4,8E-3] [2E-3,8E-2]	[8E-4,5E-3] [1.5E-3,1E-1]
$\alpha = 0.5$	$\eta \atop \lambda$	[8E-3, 4E-1] [1E-2,1.2E-2]	[7E-3,1.2E-1] [5E-3,3E-2]	[1.5E-4,9E-4] [4.5E-3,5E-3]	[1E-4,5E-2] [1E-2,8E-2]	[8E-4,3E-3] [5E-3,1E-2]
$\alpha = 0.1$	$\eta \over \lambda$	[5E-3, 5E-2] [1E-2,1.5E-2]	[5E-3,9E-2] [1E-3,1E-2]	[7E-5,8E-4] [4.5E-3,5E-3]	[5E-4,6E-3] [8E-3,3E-2]	[8E-4,5E-2] [1E-3,1E-2]

- FedNL. Chaudhuri et al. discusses several variants, among which we adopt the vanilla version of FedNL. After comparing Unbiased Compressors, Contractive Compressors, and Low-rank Compressors, we find that using option 2 combined with a rank-20 low-rank compression yields the best performance. Other hyperparameters are set to $\eta=1$ and $\alpha=1$.
- **DONE.** We set R=40 and $\alpha=0.03$ (as used in the DONE algorithm). When the Dirichlet parameter is 0.5, we use $\eta=0.02$ and $\lambda=0.005$; for all other cases, we set $\eta=0.03$ and $\lambda=0.001$.

E EXPERIMENTAL SUPPLEMENT

E.1 COMPARISON ON CNN

The result in Figure 8 supplements the baseline comparisons in overall training performance and the experimental setup and analysis follow the main text.

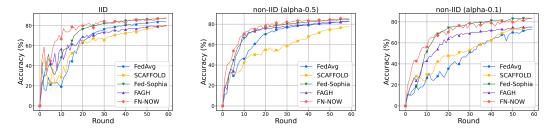


Figure 8: The test accuracy of the compared methods on Fashion MNIST using 5-layer CNN under different levels of data heterogeneity.

E.2 PARTIAL PARTICIPATION SETTING

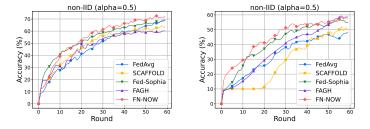


Figure 9: Test accuracy on non-IID on non-IID ($\alpha=0.5$) MNIST (left) and Fashion MNIST (right) using MLP and a 5-layer CNN, respectively, under partial client participation.

Under moderate heterogeneity, we evaluate partial client participation across models and datasets. We use 100 clients and sample 30 at random per round. As shown in Figure 9, all methods require more rounds to converge than under full participation, yet our method remains among the fastest. On CNNs, SCAFFOLD exhibits a pronounced slow start, likely because its control variate correction cannot reflect a reliable global direction when only a subset of clients has participated early on. Similarly, methods such as Fed-Sophia that reference previous client updates benefit from reducing reliance on prior rounds, typically requiring a lower momentum parameter.

E.3 ADDITIONAL RESULTS ON COMMUNICATION EFFICIENCY

In Table 5, we provide the comparative data on communication cost and the number of training rounds required to achieve a specific accuracy using CNN and MLR, which was omitted in the main text. The communication cost refers to the amount of data transmitted in each round, which remains fixed for a given method and model throughout training. Notably, FedNL and DONE rely on computing the full Hessian matrix, which restricts their applicability to models with a relatively small number of parameters like CNN due to memory constraints. FAGH and SCAFFOLD exhibit nearly identical communication efficiency since both methods transmit two parameter-sized vectors per round; the slight differences observed are likely due to statistical variation. DONE incurs this communication overhead because it performs two communication steps per round. Although FedNL employs compression techniques to avoid transmitting the full quadratic-size Hessian matrix (e.g., 7035.08MB per round in the MLR experiment), it still incurs significantly higher per-round cost compared to other methods. In contrast, our method achieves the same per-round communication cost as FedAvg while requiring substantially fewer rounds to converge.

Table 5: The comparison of the number of communication cost (Comm.) and rounds required by the compared methods to achieve a target accuracy(%) using CNN and MLR.

	TARGET ACCURACY - CNN							TARGET ACCURACY - MLR						
METHOD	Сомм.	II	D	$\alpha =$	0.5	$\alpha =$	0.1	Сомм.	II	D	$\alpha =$	0.5	$\alpha =$	0.1
	(MB)	70	80	70	80	65	75	(MB)	80	85	80	85	80	85
FEDAVG	134.55	23	38	19	44	43	-	0.90	9	29	17	38	18	41
SCAFFOLD	278.62	34	-	43	-	41	57	1.80	34	-	22	74	28	-
FEDNL	\	\	\	\	\	\	\	36.79	-	-	43	-	-	-
DONE	\	\	\	\	\	\	\	1.79	29	49	30	58	40	59
FED-SOPHIA	134.55	15	25	11	30	13	20	0.90	6	31	5	10	16	72
FAGH	278.38	21	57	9	37	20	49	1.79	9	17	22	-	-	-
FN-NOW	134.55	8	18	9	20	11	23	0.90	3	26	8	14	9	25

E.4 ADDITIONAL RESULTS ON MODEL ACCURACY

Table 6: The summary of final-round accuracy (%) for the compared methods using MLR.

Метнор	IID	$\alpha = 0.5$	$\alpha = 0.1$
FEDAVG	88.08 ± 0.00	87.96±0.45	88.06 ± 0.24
SCAFFOLD	84.56 ± 0.05	85.81 ± 0.23	83.99 ± 0.09
FEDNL	67.05 ± 2.03	57.53 ± 6.73	56.76 ± 0.85
DONE	88.41 ± 0.14	88.25 ± 0.16	88.59 ± 0.14
FED-SOPHIA	91.52 ± 0.23	89.39 ± 0.68	85.39 ± 0.40
FAGH	89.24±0.09	78.44 ± 0.11	68.52 ± 0.08
FN-NOW	91.98 ± 0.02	89.89±0.14	88.46±0.12

We report the final-round accuracies on MLR in Table 6, with the round fixed at 60. As shown, our method achieves the highest accuracy under both the IID and $\alpha=0.5$ settings, and remains competitive under $\alpha=0.1$. As previously discussed, MLR has relatively few parameters, making it well-suited to first-order methods. In this regime, introducing complex approximations or second-order information may hinder training performance rather than improve it. For example, FedNL

applies compression techniques, and FAGH constructs second-order updates based on the first row of the Hessian, both of which may introduce noise or information loss. Moreover, we observe that DONE appears relatively insensitive to data heterogeneity, likely because it performs local updates guided by a shared global gradient. Overall, although our method is primarily designed to improve communication efficiency, it maintains strong performance without sacrificing training effectiveness.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models solely for writing assistance in polishing phrasing and correcting spelling and grammar. The authors remain fully responsible for the paper's accuracy and integrity.