
Active Learning of General Halfspaces:
Label Queries vs Membership Queries

Ilias Diakonikolas∗
University of Wisconsin-Madison

ilias@cs.wisc.edu

Daniel M. Kane∗
University of California, San Diego

dakane@cs.ucsd.edu

Mingchen Ma∗
University of Wisconsin-Madison

mingchen@cs.wisc.edu

Abstract

We study the problem of learning general (i.e., not necessarily homogeneous)
halfspaces under the Gaussian distribution on Rd in the presence of some form of
query access. In the classical pool-based active learning model, where the algorithm
is allowed to make adaptive label queries to previously sampled points, we establish
a strong information-theoretic lower bound ruling out non-trivial improvements
over the passive setting. Specifically, we show that any active learner requires label
complexity of Ω̃(d/(log(m)ϵ)), where m is the number of unlabeled examples.
Specifically, to beat the passive label complexity of Õ(d/ϵ), an active learner
requires a pool of 2poly(d) unlabeled samples. On the positive side, we show that
this lower bound can be circumvented with membership query access, even in the
agnostic model. Specifically, we give a computationally efficient learner with query
complexity of Õ(min{1/p, 1/ϵ} + dpolylog(1/ϵ)) achieving error guarantee of
O(opt + ϵ). Here p ∈ [0, 1/2] is the bias and opt is the 0-1 loss of the optimal
halfspace. As a corollary, we obtain a strong separation between the active and
membership query models. Taken together, our results characterize the complexity
of learning general halfspaces under Gaussian marginals in these models.

1 Introduction

In Valiant’s PAC learning model [Val84a, Val84b], the learner is given access to random labeled
examples and aims to find an accurate approximation to the function that generated the labels. The
standard PAC model is “passive” in the sense that the learner has no control over the selection of
the training set. Here we focus on interactive learning between a learner and a domain expert that
can potentially lead to significantly more efficient learning procedures. A standard such paradigm
is (pool-based) active learning [MN+98], where the learner has access to a large pool of unlabeled
examples S and has the ability to (adaptively) select a subset of S and obtain their labels. We will
henceforth refer to this type of data access as label query access. An even stronger interactive model
is that of PAC learning with membership queries [Ang88, Fel09]. A membership query (MQ) allows
the learner to obtain the value of the target function on any desired point in the support of the marginal
distribution. This model captures the ability to perform experiments or the availability of expert
advice. While in active learning, the learner is allowed to query the labels of previously sampled
points from S, in MQ learning the learner has black-box access to the target function. We refer the
reader to Appendix A for formal definitions of these two learning models. Roughly speaking, when

*Equal Contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

the size of S becomes exponentially large (so that it is a good cover of the space), the model of active
learning “converges” to the model of learning with MQs. This intuitive connection will be useful in
the proceeding discussion.

Active learning is motivated by the availability of large amounts of unlabeled data at low cost. As such,
the typical goal in this model is to develop algorithms with qualitatively improved label complexity
(compared to passive learning) at the expense of a larger — but, ideally, still reasonably bounded —
set of unlabeled data. Over the past two decades, a large body of work in theoretical machine learning
has studied the possibilities and limitations of active learning in a variety of natural and important
settings; see, e.g. [FSST97, Das04, Das05, DKM05, BBZ07, BHV10, H+14, HY15, DMRT24?].

A prototypical setting where active learning leads to substantial savings is for the task of learning
homogeneous Linear Threshold Functions (LTFs) or halfspaces. An LTF is any function h : Rd →
{±1} of the form h(x) = sign(w ·x+ t), where w ∈ Sd−1 is called the weight vector and t is called
the threshold. If t = 0, the halfspace is called homogeneous. The problem of learning halfspaces is
one the classical problems in machine learning, going back to the Perceptron algorithm [Ros58] and
has had a great impact on many other influential techniques, including SVMs [Vap97] and AdaBoost
[FS97].

For the class of homogeneous halfspaces under well-behaved distributions (including the Gaussian
and isotropic log-concave distributions), prior work has established that O(d log(1/ϵ)) label queries
suffice, where d is the dimension and ϵ is the desired accuracy [BBZ07, DKM05, BL13]. Moreover,
there are computationally efficient algorithms with near-optimal label complexity for this task
[ABL17, YZ17, She21], even in the agnostic model that achieve errorO(opt+ϵ). Unfortunately, this
logarithmic dependence on 1/ϵ breaks down for general (potentially biased) halfspaces. Intuitively,
this holds because if the bias of a halfspace (the probability mass of the small class) is p, then we need
to obtain at least 1/p labeled examples before we see the first point in the small class. This implies an
information-theoretic label complexity lower bound of Ω(min{1/p, 1/ϵ}+d log(1/ϵ)) [Das05], even
for realizable PAC learning under the uniform distribution on the sphere. Hanneke et al. [BHV10]
showed an information-theoretic label complexity upper bound of Õ((1/p)d3/2 log(1/ϵ)) for general
halfspaces under the uniform distribution on the sphere (via an exponential-time algorithm).

In summary, prior to this work, the possibility that there is an active learner with label complexity
O(d log(1/ϵ) + min{1/p, 1/ϵ}) and unlabeled sample complexity poly(d/ϵ) remained open. Our
first main result is an information-theoretic lower bound ruling out this possibility.

Theorem 1.1 (Main Lower Bound). For any active learning algorithm A, there is a halfspace h∗

that labels S with bias p such that if A makes less than Õ(d/(p log(m))) label queries over S, a set
of m i.i.d. points drawn from N(0, I), then with probability at least 2/3 the halfspace ĥ output by A
has error more than p/2 with respect to h∗.

In particular, if p is chosen as Θ(ϵ log(1/ϵ)), learning a p-bias halfspace with error Cϵ (for any fixed
constant C) would require a learning algorithm to either make Ω̃(d/ϵ) label queries or have a pool
of 2d unlabeled examples. Our information-theoretic lower bound essentially shows that the active
setting does not provide non-trivial advantages for the class of general halfspaces, unless the learner
is allowed to obtain exponentially many unlabeled examples. (As already mentioned, in this extreme
setting, the active learning model approximates PAC learning with MQs.) This motivates the study of
learning halfspaces in the stronger model with MQs, where better upper bounds may be attainable.

To circumvent the aforementioned lower bound, we consider the stronger model of PAC learning
with MQs. We are interested in understanding the query complexity of learning general halfspaces
under the Gaussian distribution. We study this question in the agnostic learning model and establish
the following positive result, the proof of which can be found in Appendix G:

Theorem 1.2 (Main Algorithmic Result). Consider the problem of agnostic PAC learning halfspaces
with membership queries under the Gaussian distribution. There is an algorithm such that for every
labeling function y(x) and for every ϵ, δ ∈ (0, 1), it makesM = Õδ(min{1/p, 1/ϵ}+dpolylog(1/ϵ))
* memberships queries, runs in poly(d,M) time, where p is the bias of the optimal halfspace h∗, and
outputs an ĥ ∈ H such that with probability at least 1− δ, err(ĥ) ≤ O(opt + ϵ).

*In this paper, we use Oδ to hide the dependence on polylog(1/δ).

2

In other words, we provide a computationally efficient constant factor agnostic query learner with
query complexity Õ(min{1/p, 1/ϵ}+ dpolylog(1/ϵ)). Due to known dpoly(1/ϵ) complexity lower
bounds for achieving optimal error of opt + ϵ [DKZ20, DKPZ21, DKR23], the majority of work
[DKS18, DKTZ22] in the passive PAC model has focused on designing efficient learners achieving a
constant factor approximation ofO(opt+ϵ)These passive learning algorithms have sample complexity
poly(d, 1/ϵ). Note that, by Theorem 1.1, it is impossible to modify these algorithms (for general
halfspaces) to achieve an active learner with low label complexity.

In the realizable setting under the Gaussian distribution, a learner may query many points that are
extremely far from the origin to find examples from the small class with few queries. However,
such an algorithm is quite fragile to even a tiny amount of noise. In particular, the query complexity
achieved by our algorithm establishing Theorem 1.2 is nearly optimal in the agnostic setting.

On the one hand, Ω(d log(1/ϵ)) queries are required because describing a halfspace up to error ϵ
requires d log(1/ϵ) bits of information [KMT93]. On the other hand, we argue that the overhead term
of Ω(min{1/p, 1/ϵ}) cannot be avoided in the agnostic setting. Such a statement can be deduced
from a lower bound of [HKL20]: they showed that in the realizable setting, any algorithm requires at
least Ω((1/p)1−o(1)) MQs to see the first example from the small class (where p is the bias of the
target halfspace with respect to the uniform distribution on the unit ball); they also showed a similar
lower bound of Ω(1/p) if the underlying distribution is the uniform distribution over the unit sphere.
As the dimension d increases, the standard Gaussian distribution is very well approximated by the
uniform distribution over a d-dimensional sphere with radius ∼

√
d. Thus, an exponentially small

level of noise would make every query far from this sphere contain no useful information. This allows
us to show that, under the Gaussian distribution with a tiny amount of label noise, Ω((1/p)1−o(1))
queries are needed to see a single example from the small class. The proof of this statement is
essentially identical to the argument in [HKL20] for unit ball. The reader is referred to that work for
the details.

1.1 Preliminaries

For a halfspace h(x) = sign(w · x+ t), w ∈ Sd−1, t > 0, we use p(t) = Prx∼N(0,I)(h(x) = −1)
to denote its bias. For a halfspace h(x), we define its Chow-Parameter under the standard Gaussian
distribution to be Ex∼N(0,I) xh(x). Let y(x) : Rd → {±1} be a (randomized) labeling function for
examples in Rd. We denote by err(h) = Prx∼N(0,I)(h(x) ̸= y(x)) to be the error of the hypothesis
h and opt = minh∈H err(h), where H is the class of halfspaces over Rd. We will use h∗ to denote
the halfspace with an error equal to opt. When there is no confusion, we will use p to denote the bias
of the optimal halfspace h∗.

Let Dx be a distribution over Rd, y(x) be a labeling function over Rd and S = {(xi, y(xi))}mi=1

be a set of i.i.d. examples drawn from the distribution D over Rd × {±1} such that the marginal
distribution of D is Dx. A membership query takes an x in the support of Dx as input and outputs
y(x). A label query takes an xi, where (xi, y(xi)) ∈ S as input and outputs y(xi). A learning
algorithm A is allowed to use membership queries/label queries and aims to output a halfspace
hypothesis ĥ such that err(ĥ) ≤ O(opt + ϵ) by making as few queries as possible.

2 Nearly-Tight Lower Bound on Label Complexity: Proof of Theorem 1.1

In this section, we prove our information-theoretic lower bound on the label complexity of active
learning general halfspaces under the Gaussian distribution.

Before presenting our proof, we provide high-level intuition behind Theorem 1.1 and the strategy of
our proof. Previous work, see, e.g. [Das04, DKM05, HKL20], showed that if S is a set of examples
drawn uniformly from the unit sphere, and if h∗ is a halfspace with bias p that is chosen uniformly,
the following holds: no matter which query strategy a learning algorithm A uses, for the first r
queries, in expectation only pr of them fall into the small cap on the sphere cut by h∗. Thus, if A
makes less than 1/(2p) queries, it will with constant probability not see any negative examples; and
it is therefore impossible to learn the target halfspace.

3

In the Gaussian case, we will use a similar but stronger idea. If we are able to learn h∗ up to error p/2
with few queries, then we can randomly partition S into two sets, use the first set to learn the halfspace
and use the second part to find d negative examples by paying another O(d) queries in expectation.
Formally, we have the following statement, the proof of which can be found in Appendix B.1.

Lemma 2.1. Suppose there is an active learning algorithm that can make r label queries over a pool
S ofm ≥ poly(d/p) examples drawn fromN(0, I) and learn any halfspace h∗(x) = sign(w∗ ·x+t∗)
with bias p up to error p/2 with probability at least 2/3. Then there is an algorithm such that given a
pool of 2m random examples S drawn from the standard Gaussian distribution with hidden labels
by some halfspace h∗(x) = sign(w∗ · x + t∗) with bias p, it makes r + O(d) queries and finds d
negative examples from S with probability 1/2.

We will show that finding d negative examples from S requires many queries. The idea is that
since S is sampled from a standard Gaussian in high dimensions, every pair of examples is almost
orthogonal unless m is as large as 2d. If we have made 1/ϵ queries over S and found our first negative
example, then this negative example will only provide us with very little knowledge to find the next
negative example — as no example in the pool has a large correlation with it. Therefore, it will still
take us another approximately 1/ϵ queries to find the next negative example. Such an issue only
disappears after we have already found roughly d negative examples; at which time, the average of
the d examples has a good correlation with w∗. Therefore, it would take us roughly d/ϵ queries in
total. We remark that such an argument is hard to formalize, because, besides negative examples, the
algorithm has also seen many positive examples in the process. It is thus challenging to argue that the
algorithm cannot make good use of the information obtained from these positive examples.

To overcome this difficulty, our proof strategy works as follows. Each algorithm A can be described
as a decision tree. Each tree node represents the example queried in a given round. Every time the
algorithm sees a negative example, it moves to the left; otherwise, it moves to the right. Suppose that
A wants to find k negative examples with r queries. Then there are at most

(
r
k

)
≤ (er/k)k paths of

the tree, where A successfully finds k negative examples, and for each of the paths there are exactly
k examples that are negative upon queried. For a k-tuple of examples, we will derive a deterministic
condition such that if the k examples satisfy the condition, a random halfspace with bias p will have
only roughly pk probability to label all of the k examples negative.

Formally, we establish the following technical lemma (see Appendix B.2 for the proof).

Lemma 2.2. Let A ∈ Rk×d be a matrix with row vectors x1, . . . , xk. Let t∗ > C > 0 for some
sufficiently large constant C. Let h∗(x) = sign(w∗ · x+ t∗) be a random halfspace with bias p with
w∗ ∼ Sd−1 chosen uniformly from Sd−1. If

∥∥AA⊤ − dI
∥∥
2
≤ O(d/(t∗)2), then with probability at

most O(p log(1/p))k, where p is the bias of h∗ under the Gaussian distribution, h∗(xi) = −1 for
i = 1, . . . , k.

Thus, if the
(
r
k

)
tuples all satisfy such a condition, then A will succeed with a fairly tiny probability

unless r is larger than k/p. So, in the last step of the proof, we will show in Lemma 2.3 that by taking
k ≈ d/(log(m)polylog(1/p)), with high probability every k-tuple of examples in S will satisfy the
deterministic condition. Thus, no algorithm can succeed with a constant probability, unless it makes
Ω̃(d/(p log(m))) queries. The proof of Lemma 2.3 can be found in Appendix B.3.

Lemma 2.3. Let S ⊆ Rd be a set of m examples drawn i.i.d. from N(0, I). Let t∗ > C > 0 for
a sufficiently large constant C and k = O(d/ log(m)(t∗)4). Then, with probability at least 2/3,
for every k-tuple of examples {x1, . . . , xk} ⊆ S,

∥∥AA⊤ − dI
∥∥
2
≤ d/(t∗)2, where A ∈ Rk×d be a

matrix with row vectors x1, . . . , xk.

Proof of Theorem 1.1. We will start by showing that, given a set S of m points drawn i.i.d. from a
Gaussian distribution, the following holds. With probability at least 2/3, for every algorithm A there
exists a halfspace h∗ = sign(w∗ · x+ t∗) with bias p such that if A makes only r = Õ(d/p log(m))
label queries over S, then with probability at least 2/3 it will not be able to find k negative examples
in S for some k ≤ d. By Yao’s minimax principle, it is sufficient to show that there is a distribution
over halfspaces h∗ such that for any deterministic active learning algorithm, the following holds:
given m random Gaussian examples, if the learning algorithm makes r queries, with probability 2/3
it cannot find k negative examples. We will fix the threshold t∗ of h∗ and draw w∗ uniformly from
the unit sphere.

4

By Lemma 2.3, we know that by choosing k = O(d/ log(m)(t∗)4), with probability at least 2/3, for
every k-tuple of examples x1, . . . , xk ∈ S,

∥∥AA⊤ − dI
∥∥
2
≤ d/(t∗)2, where A ∈ Rk×d is a matrix

with row vectors x1, . . . , xk. By Lemma 2.2, we know that every k-tuple of examples x1, . . . , xk ∈ S
has a probability αk, which is at most O(p log p)k to be labeled all negative by the random halfspace
h∗. Notice that every query algorithm can be expressed as a binary tree T . Each node of the tree
represents an example where the algorithm makes queries at a time. If the example at node v is
negative, then the algorithm will query the left child of v, and otherwise it will query the right child
of v. The algorithm stops making queries when either it has queried r examples or it has queried k
negative examples. In particular, for a given search algorithm, there are at most

(
r
k

)
different possible

outcomes where it successfully finds k negative examples. Furthermore, for each of the possible
outcomes, there is a set of k examples in S that correspond to the k negative examples the algorithm
finds. Thus, the probability that the algorithm successfully finds k negative examples is bounded
above by the probability that there exists one of the

(
r
k

)
k-tuples of examples in S that are all labeled

negative by h∗. Such a probability can be bounded above by(
r

k

)
αk ≤

(er
k
O(p log(1/p))

)k
≤ 2/3 ,

if r ≤ O(k/p log(1/p)) = O(d/(p log(m)polylog(1/p)). By Lemma 2.1, we know that if we
can make O(d/(p log(m)polylog(1/p)) label queries to learn a p-biased halfspace up to error p/2
over a set S of m/2 Gaussian examples, then we can use O(d/(p log(m)polylog(1/p)) queries to
find d negative examples among m Gaussian points. This leads to a contradiction. Thus, the label
complexity of the learning problem is Ω̃(d/(p log(m))), as desired.

3 Robust Learning of General Halfspaces with MQs: Proof of Theorem 1.2

In this section, we present our main algorithmic result, Theorem 1.2. We refer the readers to
Appendix G for the full proof of Theorem 1.2. Throughout the paper, we will assume for convenience
that the noise level opt ≤ ϵ. Such an assumption can be made without loss of generality, as discussed
in Appendix C.1. We first present our main algorithm, Algorithm 1. Algorithm 1 will maintain a list
of polylog(1/ϵ) candidate hypotheses at least one of which has error O(opt + ϵ). We will then use a
standard tournament approach to find an accurate hypothesis among them.

Algorithm 1 QUERY LEARNING HALFSPACE(Efficient Agnostic Learning Halfspaces with Queries)

Input: error parameter ϵ ∈ (0, 1), confidence parameter δ ∈ (0, 1)

Output: halspace ĥ(x) = sign(ŵ · x+ t̂), where ŵ ∈ Sd−1, t̂ > 0
C ← ∅ ▷ Create a list of candidate hypothesises C
Use Õ(min{1/p, 1/ϵ}) queries to estimate p by some p̂ such that p̂ ≤ p ≤ 2p̂ (or verify p < Cϵ
and return +1, the constant hypothesis).
Let ta, tb > 0 such that a halfspace with threshold ta has bias 2p̂ and with threshold tb has bias p̂.
Build grid points ta = t0 < t1 < · · · < tψ = tb such that |ti+1 − ti| = 1/(2 log(1/ϵ)),∀i ≤ ψ−1.
▷ Guess the true threshold t∗ with t′ ∈ {t0, t1, . . . }
for j = 0, . . . , ψ do

Repeat the following procedure polylog(1/ϵ) log(1/δ) times
w0 ← INITIALIZATION(ϵ, tj , δ/polylog(1/ϵ)) ▷ Find a w0 ∈ Sd−1 as a warm start
(wT , t̂)← REFINE(w0, tj , ϵ.δ/polylog(1/ϵ)) ▷ Find a wT ∈ Sd−1 close enough to w∗ and

t̂ close enough to t∗ based on w0

C ← C ∪ {sign(wT · x+ t̂)} ▷ Add a new candidate hypothesis to C
Find a good hypothesis ĥ from C using Lemma C.1, a standard tournament approach
return ĥ

At the beginning of Algorithm 1, we will use random queries to approximately estimate the bias p of
the optimal halfspace up to a constant factor. As we will discuss in Appendix C.2, such an estimation
can be done with only Õ(min{1/p, 1/ϵ}) queries by applying a doubling trick to the coin estimation
problem. In particular, if we find p < Cϵ, we can directly output a constant hypothesis as it has

5

error only O(ϵ). Since t∗ is unknown to us, such an approach can prevent us from using some t′
which is much larger than t∗ in the rest of the learning procedure, which will potentially lead to a
larger query complexity. With such a p̂, t∗ will fall into a reasonable range [ta, tb]. We next partition
[ta, tb] into a grid of size O(1/ log(1/ϵ)) and use each of the grid points as an initial guess of t∗. In
particular, at least one of these grid points tj is O(1/ log(1/ϵ)) close to t∗. Although such a tj is not
accurate enough to be used in the final output hypothesis, as t∗ ≤

√
log(1/ϵ), we will show later that

such a tj is enough for us to use it to learn w∗, t∗ accurately. Suppose now we have such a good tj .
We will design two subroutines that make use of tj to produce a good hypothesis sign(wT · x+ t̂).
The first algorithm will take tj and the noise level ϵ as its input and produce a unit vector w0 as
an initialization. We will show in Section 3.2 that as long as |tj − t∗| ≤ 1/ log(1/ϵ), we can with
probability at least 1/ log(1/ϵ) produce some w0 such that θ(w0, w

∗) ≤ O(1/tj). By repeating such
an initialization algorithm polylog(1/ϵ) times, with high probability one of these runs will succeed.
In particular, such an algorithm has a query complexity of Õ(1/p+dpolylog(1/ϵ)). Now assume we
have such a w0 as a warm-start. Our second subroutine is to refine the direction w0 and the threshold
tj . More specifically, we will maintain a unit vector wi such that θi = θ(wi, w

∗) and an upper bound
σi for sin(θi/2). In each round of the refining algorithm, we will use Õ(d) queries to update wi. In
particular, in each round σi will decrease by a constant factor and thus after at most T = Õ(log(1/ϵ))
rounds, we will have sin(θT /2) ≤ σT = Cϵ exp(t2j/2). As we will show in Section 3.1, provided
the correct t∗, sign(wT · x+ t∗) is at most O(ϵ) far from h∗. However, to output a good hypothesis,
we still need to learn t∗ up to a high accuracy. When t∗ is small, we even have to estimate t∗ up to
error O(ϵ), which typically needs many queries. However, as we will show in Section 3.1, given wT
close enough to w∗, we are able to combine the localization technique used in [DKS18] with this
fact to learn t∗ using only O(log(1/ϵ)) queries. This gives an overview of Algorithm 1 and its query
complexity.

3.1 Refining A Warm-Start

We will start by discussing how to refine a warm start w0 by proving the following theorem. The
proof of the theorem and the main algorithm, Algorithm 3 can be found in Appendix D.5.
Theorem 3.1. Let h∗(x) = sign(w∗ · x + t∗) be a halfspace such that err(h∗) = opt ≤ ϵ.
Let t′ ≤

√
log(1/ϵ), w0 ∈ Sd−1 be inputs of Algorithm 3. If t′ − 1/ log(1/ϵ) ≤ t∗ ≤ t′,

t′ exp((t′)2/2) ≤ 1/(Cϵ) and sin(θ(w0, w
∗)/2) ≤ σ0 := min{1/t′, 1/2}, then Algorithm 3 makes

M = Õδ(dpolylog(1/ϵ)) membership queries, runs in poly(d,M) time, and outputs (wT , t̂) such
that with probability at least 1−O(δ), err(sign(wT · x+ t̂)) ≤ O(ϵ).

As we discussed in Section 3, we will assume we have some t′ such that t′ − 1/ log(1/ϵ) ≤ t∗ ≤ t′
and some w0 such that sin(θ0/2) ≤ σ0 = min{1/t′, 1/2}, i.e., some initial knowledge of t∗, w∗.
Our algorithm runs in iterations and will maintain some wi in round i. We will maintain some unit
vector wi and use ∥wi − w∗∥ = 2 sin(θi/2) to measure the progress made by Algorithm 3. The
method we use to update wi is a simple projected gradient descent algorithm. Specifically, we will
construct a random vector Gi over Rd such that Gi ⊥ wi and in expectation gi = EGi has bounded
length and a good correlation with respect to w∗. We will show in the following lemma that by
estimating EGi up to constant error with ĝi and using the update rule wi+1 = projSd−1(wi + µiĝi),
we are able to significantly decrease θi. The proof of Lemma 3.2 can be found in Appendix D.1.
Lemma 3.2. Let w∗, wi ∈ Sd−1 such that w∗ = aiwi + biu, where u ∈ Sd−1, u ⊥ wi, ai, bi >
0, a2i + b2i = 1. Let θi = θ(wi, w

∗). Let Gi be a random vector drawn from some distribution D such
that with probability 1, Gi ⊥ wi. Let gi be the mean of Gi. Let ĝi be the empirical mean of Gi and
µi > 0. The update rule wi+1 = projSd−1(wi + µiĝi) satisfies the following property,

∥wi+1 − w∗∥2 ≤ ∥wi − w∗∥2 − 2µibigi · u+ 2µibi ∥ĝi − gi∥+ µ2
i

∥∥ĝi2∥∥ .
Furthermore, if sin(θi/2) ≤ σi ∈ (0, 1) and there exist constant c1, c2 such that gi · u ≥ c1/10,
∥ĝi∥ ≤ c1 and ∥gi − ĝi∥ ≤ c2 ≤ c1/40, then there exist constant C1, C2 > 8 such that by
taking µi = σi/C1 and σi+1 = (1 − 1/C2)σi, it holds that sin (θi+1/2) ≤ σi+1. In particular, if
sin(θi/2) ≤ 3σi/4 and ∥ĝi∥ ≤ c1 then sin (θi+1/2) ≤ σi+1 always holds.

In the rest of the section, we will show that as long as wi is not good enough, we can always efficiently
construct a random vector Gi whose expectation points to the correct direction and we can use very

6

few queries to estimate its expectation up to a desired accuracy. We adapt the localization technique
used in [DKS18] to achieve this goal.

3.1.1 Finding A Good Gradient via Localization

In the i-th round of Algorithm 3, we write w∗ = aiwi + biui, where ui ∈ Sd−1, ui ⊥ wi, ai, bi >
0, a2i + b2i = 1. Recall that σi is an upper bound we maintain for sin(θi/2). We will construct the
random gradient as follows

Gi := projw⊥
i
zy(A

1/2
i z − t̃wi),

where z ∼ N(0, I), Ai = I − (1 − σ2
i)wiw

t
i and t̃ ∈ (0, t′) is a scalar. To see why Gi is a good

choice, we will start by analyzing Gi assuming the noise rate opt = 0. To simplify the notation,
denote by ℓi(z) = sign((aiwi + biui/σi)z + (t∗ − at̃)/σi) and ḡi = Ez∈N(0,I) projw⊥

i
zℓi(z). A

simple calculation gives us the following result.
Fact 3.3. Let h(x) = sign(w · x+ t) be a halfspace. Let v ∈ Sd−1 such that w = av + bu, where
a, b > 0, a2+b2 = 1, u ∈ Sd−1, u ⊥ v. Let s, σ > 0 be real numbers and defineA = I−(1−σ2)vvt.
For each z ∈ Rd, define z̃ := A1/2z − sv. Then h(z̃) = ℓ(z), where ℓ is the following halfspace

ℓ(z) = sign((av + bu/σ) · z + (t− as)/σ) .

Fact 3.3 implies that if opt = 0, then it always holds that fi(z) := y(A
1/2
i z− t̃wi) = ℓi(z), ∀z ∈ Rd

and we can view z as examples labeled by a halfspace ℓi(z). In particular, Ez∼N(0,I) zfi(z) is the
Chow-Parameter of the halfspace ℓi(z) under the standard Gaussian distribution.

Fact 3.4 (Lemma C.3 in [DKS18]). Let h(x) = sign(w · x + t), where w ∈ Sd−1 be a halfspace.

Then Ez∼N(0,I) zh(z) =
√

2
π exp (−t2/2)w.

By Fact 3.4, in the noiseless case, Ez∼N(0,I) zfi(z) is parallel to (aiwi + biui/σi) with length
Θ(exp(−T 2

i)), where Ti = t∗−ai t̃
σi

√
a2i+b

2
i /σ

2
i

and gi = ḡi is exactly the ui component of the Chow-

Parameter. In particular, if Ti is constant, then by estimating gi using ĝi up to a small constant
error using Õ(d) queries, we are able to use Lemma 3.2 to improve wi. Assuming we set t̃ = t∗,
as σit′ ≤ 1 and bi ≤ O(σi), it is easy to check Ti can be bounded by some universal constant.
However, as we mentioned before, we only know |t′ − t∗| ≤ 1

log(1/ϵ) , when wi getting close to w∗,
σi could become very small and an error of 1/ log(1/ϵ) could potentially blow up Ti, making the
signal we want quite small. Such an issue is problematic for the algorithm, especially when fi(z)
is a noisy version of ℓi(z). To overcome such an issue, we prove the following structural lemma in
Appendix D.2 showing that we can always check whether the choice of t̃ is good or not, by looking
at the bias of ℓ(z), using Õ(1) queries. Using this method, we can perform a binary search for t̃ to
find a correct choice in at most log(1/ϵ) rounds. Furthermore, as long as we select the correct t̃, it
must hold that

∣∣t̃− t∗∣∣ ≤ O(σi). In particular, as σT = Cϵ exp((t′)2/2), such a t̃ is a good enough
estimate for t∗ to be used in the final hypothesis.
Lemma 3.5. Let w∗, wi ∈ Sd−1 such that w∗ = aiwi + biui, where ui ∈ Sd−1, u ⊥ wi, ai, bi >
0, a2i + b2i = 1. Let t∗, t′, σi, ϵ be positive real numbers such that 0 ≤ t∗ ≤ t′, sin(θi/2) ≤ σi,

and σit′ ≤ 1. Define Ti := t∗−ai t̃
σi

√
a2i+b

2
i /σ

2
i

, ℓi(z) = sign((aiwi + biui/σi)z + (t∗ − at̃)/σi) and

ḡi = Ez∈N(0,I) projw⊥
i
zℓi(z) for some t̃ ∈ [0, t′]. Then the following three properties hold.

1. There exists an interval It′ ⊆ [0, t′] of length at least σi such that for every t̃ ∈ It′ , |Ti| ≤ 5.

2. When |Ti| ≤ 6, it holds that ḡi · ui = ∥ḡi∥ and e−19bi/σi ≤ ∥ḡi∥ ≤ 2e−19.

3. For every
∣∣t̃− t∗∣∣ > 40σi and t̃ < t′, |Ti| > 10.

3.1.2 Robustness Analysis

So far, we have only considered the case when opt = 0. Due to the presence of noise, it is impossible
for us to estimate ḡi = Ez∈N(0,I) projw⊥

i
zℓi(z) because we only have a noisy version fi(z) of

7

ℓi(z). In this section, we will show that as long as wi is close to w∗ and |t′ − t∗| ≤ 1/ log(1/ϵ), the
probability that for a Gaussian point z, ℓi(z) ̸= fi(z) is at most a tiny constant. This is incomparable
with the bias of ℓz(z) if t̃ is chosen correctly, and does not affect the algorithm too much. We start
with the following lemma which bounds the probability of ℓi(z) ̸= fi(z).

Lemma 3.6. Let h∗(x) = sign(w∗ · x + t∗) be a halfspace such that err(h∗) = opt ≤ ϵ. Let
t̃, σi, t

′ be real numbers such that t̃ ≤ t′ and σit′ ≤ 1, σi ≤ 1/2. Let w∗ = aiwi + biui, where
ui ∈ Sd−1, u ⊥ wi, ai, bi > 0, a2i + b

2
i = 1. Define ℓi(z) = sign((aiwi+ biui/σi)z+(t∗−at̃)/σi)

and fi(z) = y(A
1/2
i z− t̃wi). Then Prz∼N(0,I)(ℓi(z) ̸= fi(z)) ≤ ϵ exp(t̃2/2+4)/σi. In particular,

if σi ≥ C exp((t′)2/2)ϵ, for some sufficient large constant C, then there is a sufficiently small
constant c such that Prz∼N(0,I)(ℓi(z) ̸= fi(z)) ≤ c ≤ e−40.

The proof of Lemma 3.6 leverages the (v, s, σ)- rejection procedure introduced in [DKS18] (see
Appendix D.3). We will use Lemma 3.6 to analyze the gradient descent approach we described in the
presence of noise. Formally, we establish the following lemma (see Appendix D.4 for the proof).

Lemma 3.7. Let w∗, wi ∈ Sd−1 such that w∗ = aiwi + biui, where ui ∈ Sd−1, u ⊥ wi, ai, bi >
0, a2i + b2i = 1. Let t∗, t′, σi, ϵ be positive real numbers such that 0 ≤ t∗ ≤ t′, sin(θi/2) ≤ σi,
σi ≥ C exp((t′)2/2)ϵ, and σit′ ≤ 1. Let h∗(x) = sign(w∗ · x + t∗) be a halfspace such that
err(h∗) = opt ≤ ϵ. Define Ti := t∗−ai t̃

σi

√
a2i+b

2
i /σ

2
i

, ℓi(z) = sign((aiwi + biui/σi)z + (t∗ − at̃)/σi),

ḡi = Ez∈N(0,I) projw⊥
i
zℓi(z) and gi = Ez∈N(0,I) projw⊥

i
zfi(z), where fi(z) = y(A

1/2
i z − t̃wi)

for some t̃ ∈ [0, t′]. Let ηi := Prz∼N(0,I)(ℓi(z) ̸= fi(z)) and pi be the probability that fi(z) = −1.
Then the following two properties hold.

1. If pi ∈ (e−18, 1− e−18), then |Ti| < 6 and if |Ti| < 5, then pi ∈ (e−16, 1− e−16).

2. gi · ui ≥ ḡi · ui − 2
√
eηi
√
log(1/ηi) and ∥gi∥ ≤ ∥ḡi∥+ 2

√
eηi
√

log(1/ηi).

Lemma 3.7 says as the noise level is small, it will not affect the structure lemma we established in
Lemma 3.5 too much, and thus we are able to find the correct threshold t̃ by checking the probability
of fi(z) = −1. Furthermore, as long as we choose the correct threshold t̃, gi, the noisy version of ḡi
still satisfies the conditions in the statement of Lemma 3.2 and thus can be used to improve wi.

3.2 Finding A Good Initialization

In Section 3.1, we have shown that given some w0 non-trivially close to w∗ and some t′ such that
t′ − 1

log(1/ϵ) ≤ t∗ ≤ t′, we can use Algorithm 3 to learn a good hypothesis with high probability.
In this section, we show how to find such a good initialization w0 using a few membership queries.
The most common way to get such a warm-start is by robustly estimating the Chow-Parameter (see
for example [She21, YZ17]) using Fact 3.4. Such an approach does not work for general halfspaces
because the length of the length of the Chow-Parameter can be as small as Õ(p), and thus needs
roughly d/p random queries to estimate. In this section, we show how to overcome such an issue
using a label smoothing technique, which has been useful in related problems [DKK+23]. The
main results in this step can be summarized as follows. The proof of Theorem 3.8 is deferred to
Appendix E.2

Theorem 3.8. Let h∗(x) = sign(w∗ · x+ t∗) and y(x) be any labeling function such that err(h∗) =
opt ≤ ϵ ≤ 1/C for some large enough constant C. If |t− t∗| ≤ 1/ log(1/ϵ), then with probability
at least 1/3, Algorithm 2 makes M = Õ(1/p+ d log(1/ϵ)), runs in poly(d,M) time, and outputs
some w0 such that sin(θ(w0, w

∗)/2) ≤ max{min{1/t, 1/2}, O(η
√

log(1/η)}, where η = ϵ/p.

Due to the space limitations, here we only consider the case when t∗ is not extremely large, which
roughly covers the regime when η

√
log(1/η) ≤ 1/t. This suffices to capture some of the ideas and

illustrate the power of the smoothed labeling. For the case when η
√

log(1/η) > 1/t, we are still
able to find such a warm start by leveraging the smoothed label method in combination with the
technique used in Section 3.1 in a more complicated way. We postpone this analysis to Appendix F.
Our algorithm, Algorithm 2, to find a warm start is presented as follows.

To analyze Algorithm 2, we introduce the following definitions and notations.

8

Algorithm 2 INITIALIZATION 1(Finding a good initialization under unextreme threshold)

Input: error parameter ϵ ∈ (0, 1), confidence parameter δ ∈ (0, 1), threshold t > 0
Output: w0 ∈ Sd−1

Keep some x ∼ N(0, I) and query y(x) until see some x0 such that y(x0) = −1
for i = 1, . . . ,m = Õ(d log(1/ϵ)) do

Sample zi ∼ N(0, I) and query ỹ(x(i)0) := y(
√

1− ρ2x0 + ρzi) with ρ := min{1/t, 1}
Let u0 := 1

m

∑m
i=1 ziỹ(x

(i)
0)

return w0 := u0/ ∥u0∥

Definition 3.9 (Smoothed Label). Let x ∈ Rd be a point and y(x) be any labeling function. For
ρ ∈ [0, 1], define the random variable x̃ =

√
1− ρ2x+ ρz, where z ∼ N(0, I). The smoothed label

of x with parameter ρ is defined as ỹ(x) := y(x̃).

We will require the following fact (whose proof follows via a direct calculation):

Fact 3.10. Let h∗(x) = sign(w∗ ·x+ t∗) be a halfspace. Let x, z ∈ Rd and define x̃ :=
√

1− ρ2x+
ρz. Then h̃(z) := h∗(x̃) = sign(w∗ · z + (t∗ +

√
1− ρ2w∗ · x)/ρ) is another halfspace for z with

threshold (t∗ +
√
1− ρ2w∗ · x)/ρ.

Let h∗ = sign(w∗ · x+ t∗) be an optimal halfspace and let y(x) be any labeling function such that
err(h∗) = opt ≤ ϵ. For x ∈ Rd, we denote by η(x) := Pr(h∗(x̃) ̸= ỹ(x)), the noise level of the
smoothed label. Assuming that we are given a random negative example x0, then with constant
probability, it is close to the decision boundary, i.e., w∗ · x0 ∈ (−t∗ − 1

t∗ ,−t
∗). This implies that

the threshold of h̄, the halfspace corresponding to the smoothed label at x0, is between (−1, 1).
Moreover, the Chow-Parameter of h̄ under the standard Gaussian distribution is parallel to w∗ with
a constant length, by Fact 3.4. If opt = 0, then for every t ≤

√
log(1/ϵ), we only need another

Õ(d log(1/ϵ)) queries to estimate the Chow-Parameter of h̄ up to error O(1/t); thus, we get a warm
start w0 such that sin(θ0/2) ≤ 1/t, given |t− t∗| is small. Therefore, the total number of queries
we use to run Algorithm 2 is Õ(1/p+ d log(1/p)). However, in general, it is impossible to estimate
w∗ up to arbitrary accuracy — even using an infinite number of queries — because of the presence
of noise. In fact, using a random x0 is important for Algorithm 2 to succeed. If we are given some
adversarially selected x0, even if it is close to the decision boundary, the above method can easily
fail. This is because almost all the queries we made are in a small neighborhood of x0 and could
be corrupted by noise arbitrarily. However, we show in Appendix E.1 that, with a probability at
least 2/3, the noise level η(x0) of the smoothed label around x0 is at most O(ϵ/p), if x0 is a random
example given y(x0) = −1; and thus we can still estimate w∗ to a desired accuracy provided ϵ/p is
not too large.

Lemma 3.11. Let h∗(x) = sign(w∗ · x+ t∗) be a halfspace and y(x) be any labeling function such
that err(h∗) = opt ≤ ϵ. Let x ∼ N(0, I) conditioned on y(x) = −1 be a Gaussian example with a
negative label. If p > Cϵ for some large enough constant C, then with probability at least 1/2 we
have η(x) ≤ 5ϵ/p and w∗ · x ∈ (−t∗ − 1/t∗,−t∗).

Finally, we briefly discuss how to obtain a warm start when the threshold t∗ is very large. The details
of this method can be found in Appendix F. By Theorem 3.8, when p is small, we are only able
to get some w0 such that sin(θ(w0, w

∗)) ≤ O(η
√
log(1/η)) for η = ϵ/p. One possible approach

is to use the localization technique we use in Section 3.1 to refine such w0. However, such an
approach fails because after localization the noise rate would be possibly larger than the length of the
Chow-Parameter that we want to estimate. This makes it impossible for us to learn the useful signal.
On the other hand, [DKS18] gave a randomized localization method that can make the expected
noise level sufficiently smaller than the length of the Chow-Parameter we want to estimate; and thus
will succeed with constant probability in each round of refinement. Unfortinately, such an approach
cannot be used in a query-efficient manner, because to implement such a method we need to know
θ(wi, w

∗) up to an error 1/ log(1/ϵ), in each round of refinement. This implies that if we make a
random guess of θ(wi, w∗), the probability of success in each round drops to only 1/ log(1/ϵ), which
requires to rerun the whole algorithm too many times in order to succeed once.

9

Such an issue could be addressed in a similar but more complicated way to the method we use in
Lemma 3.5, by looking at the bias of the halfspace after localization. The second issue is that even
the noise level is smaller than the length of the Chow-Parameter we want to estimate, the length of
the Chow-Parameter is only 1/pc, for some small constant c, as we can only make θ0 smaller than
some small constant. This still requires us to use d/pc queries to estimate it. Such an issue can again
be addressed using the smoothed label method, where we use only 1/pc queries to search a small
class example and use another Õ(d) queries to estimate the Chow-Parameter. Importantly, even such
a method only succeeds with constant probability overall. As the refinement stage only runs for
O(log log(1/ϵ)) rounds, we only need to rerun the entire algorithm O(log(1/ϵ)) times to succeed
once.

Acknowledgement

Ilias Diakonikolas was supported by NSF Medium Award CCF-2107079, NSF Award CCF-1652862
(CAREER), a Sloan Research Fellowship, and a DARPA Learning with Less Labels (LwLL) grant.
Daniel M. Kane was supported by NSF Medium Award CCF-2107547 and NSF Award CCF-1553288
(CAREER). Mingchen Ma was supported by NSF Award CCF-2144298 (CAREER).

References

[ABL17] Pranjal Awasthi, Maria Florina Balcan, and Philip M Long. The power of localization for
efficiently learning linear separators with noise. Journal of the ACM (JACM), 63(6):1–27,
2017.

[Ang88] Dana Angluin. Queries and concept learning. Machine learning, 2:319–342, 1988.

[BBZ07] Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active learning.
In International Conference on Computational Learning Theory, pages 35–50. Springer,
2007.

[BHV10] Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman Vaughan. The true sample
complexity of active learning. Machine learning, 80:111–139, 2010.

[BL13] Maria-Florina Balcan and Phil Long. Active and passive learning of linear separators
under log-concave distributions. In Conference on Learning Theory, pages 288–316.
PMLR, 2013.

[Das04] Sanjoy Dasgupta. Analysis of a greedy active learning strategy. Advances in neural
information processing systems, 17, 2004.

[Das05] Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. Advances in
neural information processing systems, 18, 2005.

[DG03] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and
lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.

[DKK+23] Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis.
Agnostically learning multi-index models with queries. arXiv preprint arXiv:2312.16616,
2023. Conference version in FOCS’24.

[DKK+24] Ilias Diakonikolas, Daniel Kane, Vasilis Kontonis, Sihan Liu, and Nikos Zarifis. Effi-
cient testable learning of halfspaces with adversarial label noise. Advances in Neural
Information Processing Systems, 36, 2024.

[DKM05] Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis of perceptron-
based active learning. In Learning Theory: 18th Annual Conference on Learning
Theory, COLT 2005, Bertinoro, Italy, June 27-30, 2005. Proceedings 18, pages 249–263.
Springer, 2005.

10

[DKPZ21] I. Diakonikolas, D. M. Kane, T. Pittas, and N. Zarifis. The optimality of polynomial re-
gression for agnostic learning under gaussian marginals in the SQ model. In Proceedings
of The 34th Conference on Learning Theory, COLT, 2021.

[DKR23] I. Diakonikolas, D. M. Kane, and L. Ren. Near-optimal cryptographic hardness of
agnostically learning halfspaces and relu regression under gaussian marginals. CoRR,
abs/2302.06512, 2023.

[DKS18] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Learning geometric concepts
with nasty noise. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pages 1061–1073, 2018.

[DKTZ22] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Learning gen-
eral halfspaces with adversarial label noise via online gradient descent. In International
Conference on Machine Learning, pages 5118–5141. PMLR, 2022.

[DKZ20] Ilias Diakonikolas, Daniel Kane, and Nikos Zarifis. Near-optimal sq lower bounds for
agnostically learning halfspaces and relus under gaussian marginals. Advances in Neural
Information Processing Systems, 33:13586–13596, 2020.

[DMRT24] Ilias Diakonikolas, Mingchen Ma, Lisheng Ren, and Christos Tzamos. Fast co-training
under weak dependence via stream-based active learning. In Forty-first International
Conference on Machine Learning, 2024.

[Fel09] Vitaly Feldman. On the power of membership queries in agnostic learning. The Journal
of Machine Learning Research, 10:163–182, 2009.

[FS97] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

[FSST97] Yoav Freund, H Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling
using the query by committee algorithm. Machine learning, 28:133–168, 1997.

[H+14] Steve Hanneke et al. Theory of disagreement-based active learning. Foundations and
Trends® in Machine Learning, 7(2-3):131–309, 2014.

[HKL20] Max Hopkins, Daniel Kane, and Shachar Lovett. The power of comparisons for actively
learning linear classifiers. Advances in Neural Information Processing Systems, 33:6342–
6353, 2020.

[HY15] Steve Hanneke and Liu Yang. Minimax analysis of active learning. J. Mach. Learn. Res.,
16(1):3487–3602, 2015.

[KMT93] Sanjeev R Kulkarni, Sanjoy K Mitter, and John N Tsitsiklis. Active learning using
arbitrary binary valued queries. Machine Learning, 11:23–35, 1993.

[KMT24] Vasilis Kontonis, Mingchen Ma, and Christos Tzamos. The gain from ordering in online
learning. Advances in Neural Information Processing Systems, 36, 2024.

[MN+98] Andrew McCallum, Kamal Nigam, et al. Employing em and pool-based active learning
for text classification. In ICML, volume 98, pages 350–358. Citeseer, 1998.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[She21] Jie Shen. On the power of localized perceptron for label-optimal learning of halfspaces
with adversarial noise. In International Conference on Machine Learning, pages 9503–
9514. PMLR, 2021.

[Val84a] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

[Val84b] L. G. Valiant. A theory of the learnable. In Proc. 16th Annual ACM Symposium on
Theory of Computing (STOC), pages 436–445. ACM Press, 1984.

11

[Vap97] Vladimir N Vapnik. The support vector method. In International conference on artificial
neural networks, pages 261–271. Springer, 1997.

[Ver18] R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2018.

[YZ17] Songbai Yan and Chicheng Zhang. Revisiting perceptron: Efficient and label-optimal
learning of halfspaces. Advances in Neural Information Processing Systems, 30, 2017.

12

Supplementary Material

Here we give an organization of the supplementary material. In Appendix A, we present the formal
definition of agnostic learning with membership queries and label queries. In Appendix B, we present
the omitted proofs in Section 2 about the information-theoretical lower bound. In Appendix C, we
discuss why we can without loss of generality assume the noise level opt ≤ ϵ and how to learn
p up to a constant factor with Õ(1/p) queries. In Appendix D, we present the omitted proofs in
Section 3.1 about how to learn a good hypothesis given a good initialization. In Appendix E.2, we
present the omitted proofs in Section 3.2 about how to find a good initialization when the threshold is
not extremely large. In Appendix F, we design an algorithm that finds a good initialization when the
threshold is very large. In Appendix G, we prove Theorem 1.2.

A Active Learning with Membership Queries and Label Queries

Definition A.1 (Active Learning Halfspace with Membership Queries). Let H = {h(x) = sign(w ·
x + t) : Rd → {±1} | w ∈ Sd−1, t ≥ 0} be the class of halfspaces over X = Rd. The labeling
function y(x) : X → {±1} is a random function that maps each x ∈ X to an unknown binary random
variable. For each h ∈ H , denote by err(h) = Prx∼N(0,I) (h(x) ̸= y(x)), opt := minh∈H err(h)
and h∗(x) = sign(w∗ · x+ t∗) any halfspace with error opt. A membership query takes x ∈ X as
an input and returns a label y ∼ y(x). We say a learning algorithm A is a constant-approximate
learning algorithm if for every labeling function y(x), and for every ϵ, δ ∈ (0, 1), it outputs some
ĥ ∈ H by adaptively making memberships queries, such that with probability at least 1 − δ,
err(ĥ) ≤ O(opt + ϵ). The query complexity of A is the total number of membership queries it uses
during the learning process.

Definition A.2 (Active Learning Halfspace with Label Queries). Let H = {h(x) = sign(w · x+ t) :
Rd → {±1} | w ∈ Sd−1, t ≥ 0} be the class of halfspaces over X = Rd. Let D be a distribution
over Rd ×{±1} such that Dx, the marginal distribution over x is the standard Gaussian distribution
N(0, I). For each h ∈ H , denote by err(h) = Pr(x,y)∼N(0,I) (h(x) ̸= y), opt := minh∈H err(h)
and h∗(x) = sign(w∗ · x + t∗) any halfspace with error opt. Let S be a set of m i.i.d. labeled
examples drawn from D. An active learning algorithm with label query is given S but with hidden
labels and is allowed to make a label query for each x ∈ S and see its label y. We say a learning
algorithm A is a constant-approximate learning algorithm if for every distribution D and for every
ϵ, δ ∈ (0, 1), it outputs some ĥ ∈ H by adaptively making label queries over a set of m examples
drawn i.i.d. from D, such that with probability at least 1 − δ, err(ĥ) ≤ O(opt + ϵ). The label
complexity of A is the total number label queries made over S during the learning process

B Omitted Proofs in Section 2

B.1 Proof of Lemma 2.1

Proof of Lemma 2.1. Let A be such a learning algorithm. We select a random set of m examples
S1 and give it to A. With probability at least 2/3, A makes r queries and learns a halfspace ĥ with
error p/2 with respect to h∗. This implies that given a Gaussian example, with probability at least
p/2 it will predict negative, and given it predicts negative, with probability at least 1/2 it is actually
negative. Since m is at least poly(d, 1/p), we know that with enough high probability, at least Ω(d)
examples will be predicted by negative by ĥ and at least a constant fraction of these examples are
actually negative. Thus, given such a ĥ with probability at least 3/4, we can find d negative examples
in S by randomly querying O(d) examples that are predicted as negative by ĥ.

B.2 Proof of Lemma 2.2

Let v = Aw∗ = (w∗ · x1, . . . , w∗ · xk)⊤. Consider the projection of w∗ over the subspace spanned
by the row vectors of A, A⊤(AA⊤)−1Aw∗. Assuming that x1, . . . , xk are all negative, then ∥v∥2 ≥

13

k(t∗)2. This implies that the square of the norm of the projection of w∗ onto the subspace is

B := (w∗)⊤A⊤(AA⊤)−1Aw∗ = v⊤(AA⊤)−1v ≥ ∥v∥2 /
∥∥AA⊤∥∥

2
≥ k(t∗)2/

∥∥AA⊤∥∥
2
.

Since w∗ is uniformly chosen from the unit sphere, by Lemma B.1 in [KMT24], the square norm
of w∗ projected onto a fixed k−dimensional subspace is a random variable drawn from a beta
distribution B(k2 ,

d−k
2). By Lemma 2.2 in [DG03], if

∥∥AA⊤
∥∥
2
≤ d(1 +O(1/(t∗)2)).

Pr
(
B ≥ k(t∗)2/

∥∥AA⊤∥∥2
2

)
≤ exp

(
−k
2
(
d(t∗)2

∥AA⊤∥2
− 1− log(

d(t∗)2

∥AA⊤∥2
))

)

=

(√
(t∗)2d

∥AA⊤∥2
exp(−1

2
(
d(t∗)2

∥AA⊤∥2
− 1))

)k

≤
(
O((t∗) exp(− (t∗)2

2
(1−O(1/(t∗)2)))

)k
=

(
O((t∗)2

1

t∗
exp(− (t∗)2

2
))

)k
≤ (O(p log(1/p)))

k
.

The last inequality follows by Fact D.4.

B.3 Proof of Lemma 2.3

We will first show that for a given A ∈ Rk×d,
∥∥AA⊤ − dI

∥∥
2

is small with high probability if the
rows of A are drawn i.i.d. from d-dimensional standard Gaussian. Let N be an 1/4-net of Sk−1.
According to [Ver18], we know that |N | ≤ e3k and

∥∥AA⊤ − dI
∥∥
2
≤ 2 supu∈N

∣∣ut(AA⊤ − dI)u
∣∣.

Thus, to show that
∥∥AA⊤ − dI

∥∥
2

is small with high probability, it is equivalent to show with high
probability for every u ∈ N ,

∣∣u⊤(AA⊤ − dI)u
∣∣ is small.

Fix u ∈ N to be a unit vector. We have

u⊤AA⊤u− du⊤u =

d∑
j=1

(u⊤Aj)
2 − d.

Notice that each u⊤Aj is a standard Gaussian variable and thus
∑d
j=1(u

⊤Aj)
2 is a chi-squared

distribution with freedom d. By [Ver18], we have

Pr

∣∣∣∣∣∣
d∑
j=1

(u⊤Aj)
2 − d

∣∣∣∣∣∣ ≥ 2ξd

 ≤ 2 exp
(
−dξ2/2

)
.

Since |N | ≤ e3k, we know that

Pr
(∥∥AA⊤ − dI

∥∥
2
≥ ξd

)
≤ Pr

(
sup
u∈N

∣∣u⊤(AA⊤ − d)u
∣∣ ≥ 2ξd

)
≤ 2 exp(3k − dξ2/2).

Since there are at most
(
m
k

)
such k-tuples of examples, the probability that there exists a k-tuple such

that
∥∥AA⊤ − dI

∥∥
2

is larger than ξd = O(d/(t∗)2) is at most

2

(
m

k

)
exp(3k − dξ2/2) ≤ 2

(em
k

)k
exp(3k − dξ2/2) ≤ 2 exp(−(dξ2/2− 3k − k log(er/k))) ≤ 2/3,

by choosing k = d/(log(r)(t∗)4) and ξ = O(1/(t∗)2).

C Omitted Details in Section 3

C.1 Discussion on the Noise Level opt

Assuming we know some α such that ϵ ≤ α/2 ≤ opt ≤ α, then learning ĥ upto error O(opt + ϵ)
is equivalent to learning it up to error O(α). By guessing α = ϵ2i for i = 0, . . . , O(log(1/ϵ)), we

14

can always obtain a desired α and use it to run the learning algorithm and get a good hypothesis.
Such an approach will generate a list of O(log(1/ϵ)) different hypotheses, finding a good enough
hypothesis among them only costs polylog(1/ϵ) queries using a standard tournament approach, such
as the following lemma.
Lemma C.1 (Lemma 3.6 in [DKK+24]). Let ϵ, δ ∈ (0, 1) and D a distribution over Rd × {0, 1}.
Given a list of hypothesises {h(i)}ki=1, there is an algorithm that draws O(k2 log(k/δ)/ϵ) unlabeled
examples from Dx and performs O(k2 log(d/δ)) label queries runs in poly(d, ϵ, δ) times and output
a hypothesis ĥ such that

Pr
(x,y)∼D

(ĥ(x) ̸= y) ≤ 10min
i∈[k]

Pr
(x,y)∼D

(h(i)(x) ̸= y) + ϵ.

C.2 Approximate Bias Estimation Using Queries

In this part, we describe a simple approach to estimate the bias p up to a constant factor using
Õ(1/p) queries. To do this we will estimate p̄ = Prx∼N(0,I)(y(x) = −1), the noise version of p as
|p̄− p| ≤ ϵ. If we can estimate p̂ such that p̂/2 ≤ p̄ ≤ p̂ or verify that p̄ ≤ (C − 1)ϵ, then p̂ satisfies
our purpose.

By Chebyshev’s inequality, if p̄ ≤ 3p̂/4, then taking O(1/p̂) random queries at x and computing
the empirical probability of y(x) = −1, with probability 2/3, we are able to verify this fact by
checking whether the empirical probability is less than 5p̂/6. On the other hand, if 4p̂/5 ≤ p̄ ≤ p̂,
with probability 2/3 we are able to verify this fact by checking whether the empirical probability is
greater than 5p̂/6. Furthermore, by repeating this approach O(log(1/δ)) times and using a majority
voting trick, we can boost the probability of success up to 1− δ. We will run the above approach for
p̂ = (4/5)i/2 for i = 0, 1, . . . until we find p̄ ≥ (4/5)p̂ or p̂ = C ′ϵ for some constant C ′. In the first
case (4/5)p̂ ≤ p̄ ≤ (25/24)p̂ and we find a good approximation for p̄ and thus for p. In the second
case, we can conclude that p is smaller than O(ϵ)

D Omitted Proofs from Section 3.1

Algorithm 3 REFINE(Learn the correct direction w∗ based on a warm start w0)

Input: Intial direction w0 ∈ Sd−1, t′ > 0, an approximate threshold, error parameter ϵ ∈ (0, 1),
confidence parameter δ ∈ (0, 1)
Output: wT ∈ Sd−1, an approximation of w∗, t̂ ∈ R, an approximation of t∗

Let ϵ′ = Cϵ exp(t′2/2)m = Õ(d), T = O(log(1/ϵ′)) σ0 ← min{1/t′, 1/2}.
Let C1, C2 be large enough constants
for i = 0, . . . , T do

Ai ← I − (1− σ2
i)wiw

t
i , µi ← σi/C1

Find t̃ ∈ {0, ϵ, 2ϵ, . . . , t′} using the following binary search method, if no such t̃ is found, then
stop the algorithm and return wT = 0. ▷ Find the correct threshold to construct the gradient.

Draw O(log(1/δ)) Gaussian samples z ∼ N(0, I), query A1/2
i z − t̃wi and compute p(t̃), the

empirical probability that a query returns −1. If p(t̃) < e−17, properly decrease t̃, if p(t̃) > e−17,
properly increase t̃. Otherwise, declare that t̃ is found.

for j = 1, . . . ,m do
Draw zj ∼ N(0, I), make queries at z̃j := A

1/2
i zj − t̃wi and denote by fi(zj) the result

ĝi ← 1
m

∑m
j=1 projw⊥

i
(zjfi(zj)) ▷ Construct the gradient

wi+1 ← projSd−1(wi + µiĝi), σi+1 ← (1− 1/C2)σi ▷ Gradient Descent
t̂← t̃ ▷ Use the threshold found in the last round
return wT , t̂

D.1 Proof of Lemma 3.2

Proof of Lemma 3.2. We first observe that

∥wi+1 − w∗∥2 = ∥projSd−1(wi + µiĝi)− projSd−1(w∗)∥2 ≤ ∥wi + µiĝi − w∗∥2 .

15

It remains to upper bound ∥wi + µiĝi − w∗∥2. We have

∥wi + µiĝi − w∗∥2 = ∥wi − w∗∥2 + 2µiĝi · (wi − w∗) + µ2
i ∥ĝi∥

2

= ∥wi − w∗∥2 − 2µiĝi · w∗ + µ2
i ∥ĝi∥

2

= ∥wi − w∗∥2 − 2µigi · w∗ + 2µi(gi − ĝi) · w∗ + µ2
i ∥ĝi∥

2

= ∥wi − w∗∥2 − 2µigi · w∗ + 2µi(gi − ĝi) · biu+ µ2
i ∥ĝi∥

2

≤ ∥wi − w∗∥2 − 2µigi · w∗ + 2µibi ∥gi − ĝi∥+ µ2
i ∥ĝi∥

2
.

= ∥wi − w∗∥2 − 2µibigi · u+ 2µibi ∥gi − ĝi∥+ µ2
i ∥ĝi∥

2
.

Here, in the second equality, we use the fact that ĝi ⊥ wi and in the fourth equality, we use the fact
that (gi − ĝi) · w∗ = (gi − ĝi) · aiwi + (gi − ĝi) · biu = (gi − ĝi) · biu.

Next, we assume that sin(θi/2) ≤ σi and show that we can carefully choose parameter µi, σi+1 to
make sin(θi+1/2) ≤ σi+1. We consider two cases. In the first case, we assume 3σi/4 sin(θi/2) ≤ σi.
Since ∥wi − w∗∥ = 2 sin θi

2 , by Lemma 3.2, we have

(2 sin
θi+1

2
)2 ≤ (2 sin

θi
2
)2 − 5µibi + 2µic2bi + µ2

i c
2
1

≤ 4σ2
i − 15σ2

i c1/(2C1) + 4c2σ
2
i /C1 + c21σ

2
i /C

2
1

≤ 4σ2
i − 5σ2

i c1/(2C1) + σ2
i c1/(10C1) + c21σ

2
i /C

2
1

≤ 4(1− 5c1/(8C1) + c1/(80C
2
1) + c21/(2C

2
1))σ

2
i := 4(1− 1/C2)

2σ2
i ,

where use the fact that bi ≤ 2 sin(θi/2) ≤ 3σi/2 and the fact that C1 can be made large enough.

In the second case, we assume sin(θi/2) < 3σi/4. In this case, using the fact that

2(sin(
θi+1

2
)− sin(

θi
2
)) = ∥wi+1 − w∗∥ − ∥wi − w∗∥ ≤ ∥wi+1 − wi∥ ≤ ∥wi + µiĝi − wi∥ = µi ∥ĝi∥ .

We have

σi+1 − sin(
θi+1

2
) = σi+1 − sin(

θi
2
)− (sin(

θi+1

2
)− sin(

θi
2
))

≥ σi+1 −
3σi
4
− σi ∥ĝi∥

C1
≥ (

1

4
− 1

C2
− 1

C1
)σi > 0,

where the last inequality holds because the parameter C1, C2 can be chosen larger than 8.

Lemma 3.2 implies that if gi has enough correlation with respect to w∗ but is also not too long, then
by estimating gi up to some error, we can ensure ∥wi − w∗∥ drops significantly each round. Formally,
we have the following corollary.

Corollary D.1. In Algorithm 3, denote by θi = θ(w∗, wi). Assume that sin θi
2 ≤ σi. If there exist

a suitable constant c1 and a small enough constant c2 such that gi · w∗ ≥ c1σi/10, ∥ĝi∥ ≤ c1 and
∥gi − ĝi∥ ≤ c2. Then there exists large enough constant C1, C2 such that by taking µi = σi/C1, it
holds that sin θi+1

2 ≤ (1− 1/C2)σi.

Proof of Corollary D.1. Since ∥wi − w∗∥ = 2 sin θi
2 , by Lemma 3.2, we have

(2 sin
θi+1

2
)2 ≤ (2 sin

θi
2
)2 − 5µiσi + 2µic2σi + µ2

i c
2
1

≤ 4σ2
i − 5σ2

i c1/C1 + 2c2σ
2/C1 + c21σ

2
i /C

2
1

≤ 4σ2
i − 5σ2

i c1/C1 + 2σ2/C2
1 + c21σ

2
i /C

2
1

≤ 4(1− 5c1/(4C1) + 1/(2C2
1) + c21/(2C

2
1))σ

2
i := 4(1− 1/C2)

2σ2
i ,

where the third and the fourth inequalities hold when C1 is large enough.

16

D.2 Proof of Lemma 3.5

Proof of Lemma 3.5. We first prove Item 1. Since Ti is a monotone decreasing function on t̃, and
t′ > t∗, it remains to show that for every t̃ such that

∣∣t̃− t∗∣∣ ≤ σi, |Ti| ≤ 5. Notice that

|Ti| =

∣∣∣∣∣ t∗ − ait̃
σi
√
a2i + b2i /σ

2
i

∣∣∣∣∣ ≤
∣∣∣∣ t∗ − ait̃σi

∣∣∣∣ ≤ ∣∣∣∣ t̃− ait̃σi

∣∣∣∣+ ∣∣∣∣ t̃− t∗σi

∣∣∣∣ ≤ b2i t̃

σi
+ 1 ≤ 5. (1)

By Fact 3.3, we know that

ḡi =

√
2

π
exp(−T 2

i /2)
biui/σi√
a2i + b2i /σ

2
i

.

Since
√
a2i + b2i /σ

2
i ≤
√
5 and |Ti| ≤ 5, we immediately obatin Item 2. Finally, we prove Item 3.

Using the monotone property of Ti, we prove the case where t̃ < t∗−40σi and the case t̃ > t∗+40σi
can proved symmetrically. We have

Ti =
t∗ − ait̃

σi
√
a2i + b2i /σ

2
i

=
t∗ − t̃

σi
√
a2i + b2i /σ

2
i

+
t̃− ait̃

σi
√
a2i + b2i /σ

2
i

≥ 40σi√
5σi
− 4 ≥ 10,

where the first inequality holds because of Equation (1).

D.3 Proof of Lemma 3.6

To prove Lemma 3.6, we first introduce the following definition called (v, s, σ)- rejection procedure.

Definition D.2 ((v, s, σ)- rejection procedure). Let v ∈ Rd be a unit vector and s, σ be real numbers
such that σ < 1. Given a point x ∈ Rd, (v, s, σ)- rejection procedure accepts it with probability

exp
(
−(σ−2 − 1)(v · x+ s/(1− σ2))2/2

)
and rejects it otherwise.

(v, s, σ)- rejection procedure satisfies the following property.
Lemma D.3 (Lemma C.7, Lemma C.8 in [DKS18]). If x ∼ N(0, I) is fed into the (v, s, σ)- rejection
procedure, then it is accepted with probability σ exp(−s2/(2(1− σ2))). In particular, when σs ≤ 2
and σ ≤ 1/2, the accepted probability is at least σ exp(−s2/2− 4). Moreover, the distribution on x
conditioned on acceptance is that of N(−sv,Av,σ), where Av,σ = I − (1− σ2)vvt.

Proof of Lemma 3.6. Let z̃ := A
1/2
i z− t̃wi. By Fact 3.3, we know that ℓi(z) = h∗(z̃),∀z ∈ Rd. By

Lemma 3.6, we know that if z ∼ N(0, I), then z̃ ∼ N(−t̃wi, Ai), which can be seen by feeding a
Gaussian random vector into the (wi, t̃, σi)−rejection procedure conditioned on acceptance. Since
err(h∗) = opt ≤ ϵ and the accepted rate is at least σ exp(−s2/2− 4), we know from Lemma 3.6
that

Pr
z∼N(0,I)

(ℓi(z) ̸= fi(z)) = Pr
z∼N(0,I)

(h∗(z̃) ̸= fi(z)) ≤ ϵ exp(t̃2/2 + 4)/σi.

In particular, if σi ≥ C exp((t′)2/2)ϵ, we have

ϵ exp(t̃2/2 + 4)/σi ≤
(
ϵ exp(t̃2/2 + 4)

)
/
(
Cϵ exp((t′)2/2)

)
≤ e4/C := c ≤ e−40.

D.4 Proof of Lemma 3.7

Before presenting the proof, we state the following two facts that will be used in our proof.
Fact D.4 (Komatsu’s Inequality). For any t ∈ R the bias p of a halfspace h(x) = sign(w∗ · x+ t)
can be bounded as √

2

π

exp(−t2/2)
t+
√
t2 + 4

≤ p ≤
√

2

π

exp(−t2/2)
t+
√
t2 + 2

.

17

Fact D.5 (Lemma B.4 in [DKTZ22]). Let D be a distribution on Rd × {±1} with standard normal
x−margin and let w, u be two orthogonal unit vectors. Let B be any interval over R and let S(x, y)
be any event over Rd × {±1}, such that S(x, y) ⊆ {w · x ∈ B} then it holds

E
D
(|u · x|1{S(x, y)}) ≤ 2

√
ePr(S(x, y))

√
log(

Pr(w · x ∈ B)

Pr(S(x, y))
).

Proof of Lemma 3.7. We start by proving the first part of Lemma 3.7. By Lemma 3.6, we know
that ηi := Prz∼N(0,I)(ℓi(z) ̸= fi(z)) ≤ e−40. This implies that

∣∣Prz∼N(0,I)(ℓi(z) = −1)− pi
∣∣ ≤

e−40. We first show that when pi is in a reasonable range, |Ti| < 6. Assuming by contradiction that
|Ti| ≥ 6, then by Fact D.4, the bias of ℓi(z) must be at most exp(−T 2

i /2)/(2Ti) ≤ e−20, which
implies that it cannot be the case where pi ∈ (e−18, 1 − e−18). Similarly, if |Ti| < 5, then by
Fact D.4, the bias of ℓi(z) must be at least exp(−T 2

i /2)/20 ≥ e−15.5. As the noise level ηi ≤ e−40,
we have pi ∈ (e−18, 1− e−18).

Next, we prove the second part of Lemma 3.7. We start by bounding the correlation between gi and
ui. We have

gi · ui = E
z∈N(0,I)

projw⊥
i
z(ℓi(z) + fi(z)− ℓi(z)) · ui

= ḡi · ui − E
z∈N(0,I)

projw⊥
i
z(ℓi(z)− fi(z)) · ui

≥ ḡi · ui − E
z∈N(0,I)

|ui · z|1{ℓi(z) ̸= fi(z)}

≥ ḡi · ui − 2
√
eηi
√
log(1/ηi),

where the third and the last inequalities hold because ui ⊥ wi and Fact D.5.

We next bound the norm of gi. Since both ḡi and gi are orthogonal to wi. It is sufficient to show that
for every unit vector u ⊥ wi, |gi · u| ≤ |ḡi · u|+ 4

√
eηi
√

log(1/ηi). We have

|gi · u| =
∣∣∣∣ E
z∈N(0,I)

projw⊥
i
z(ℓi(z) + fi(z)− ℓi(z)) · u

∣∣∣∣
=

∣∣∣∣ḡi · ui − E
z∈N(0,I)

projw⊥
i
z(ℓi(z)− fi(z)) · ui

∣∣∣∣
≤ |ḡi · ui|+ E

z∈N(0,I)
|ui · z|1{ℓi(z) ̸= fi(z)}

≤ |ḡi · ui|+ 2
√
eηi
√
log(1/ηi).

D.5 Proof of Theorem 3.1

In this section, we present the proof of Theorem 3.1. Before presenting the proof, we present the
following fact that will be a crucial part of our proof.

Fact D.6 (Lemma 4.2 in [DKS18]). Under the standard normal distribution for every pair of unit
vector w,w∗ and real number t,

Pr(sign(w∗ · x+ t) ̸= sign(w · x+ t)) ≤ sin(θ(w,w∗))

2
exp(−t2/2).

Proof of Theorem 3.1. Denote by θi := θ(wi, w
∗). We will first show by induction that with high

probability in the i-th round of Algorithm 3, sin(θi/2) ≤ σi. Assuming this is correct, since
σT = Cϵ exp (t′)2/2 for some large constant C. We will have

Pr(sign(w∗ · x+ t∗) ̸= sign(w · x+ t∗)) ≤ Cϵ exp((t
′ + t∗)(t′ − t∗)

2
) ≤ Cϵ exp(1√

log(1/ϵ)
) = O(ϵ).

(2)

18

Since opt ≤ ϵ, this implies that by providing a good enough estimation of t∗, we found a hypothesis
with error at most O(ϵ). Now we show that this is actually true. For i = 0, sin(θ0/2) ≤ σ0 holds by
our assumption.

Now, we assume this is correct for the i-round and we show this holds with high probability for
the i + 1-th round. We will show that with high probability the gradient ĝi we use in the update
wi+1 = projw⊥

i
(wi + µiĝi) satisfies the condition of Lemma 3.2.

Recall that we have the following notations. w∗ = aiwi + biui. Ti := t∗−ai t̃
σi

√
a2i+b

2
i /σ

2
i

,

ℓi(z) = sign((aiwi + biui/σi)z + (t∗ − at̃)/σi), ḡi = Ez∈N(0,I) projw⊥
i
zℓi(z) and gi =

Ez∈N(0,I) projw⊥
i
zfi(z), where fi(z) = y(A

1/2
i z− t̃wi). And ηi := Prz∼N(0,I)(ℓi(z) ̸= fi(z)) <

e−40 by Lemma 3.6.

We first show that with high probability, Algorithm 3 must be able to select a correct threshold t̃ ≤ t′
such that |Ti| ≤ 6. Denote by pi the probability that fi(z) = −1. We notice that for each fixed t̃ by
randomly querying O(log(1/δ)) fi(z), we can with high probability check if pi ∈ (e−17, 1− e−17)
or not. This can be done using the same method we used in Appendix C.2.

Since bi/2 = sin θi/2 ≤ sin(θi/2) ≤ σi, we know from Lemma 3.7 that as long as we find some t̃
such that pi ∈ (e−17, 1− e−17), we have have |Ti| ≤ 6. By Lemma 3.5 and Lemma 3.7, we know
that there exists an interval Ii ⊆ [0, t′] of length at least σi > ϵ such that for every t̃ ∈ Ii, |Ti| < 5
and thus pi ∈ (e−16, 1 − e−16). Thus, by performing a binary search at most O(log(1/ϵ)) times,
with high probability, we are able to find such a t̃ such that |Ti| < 6. Given that we find such a correct
t̃, we will consider two cases.

First, we assume that 3σi/4 ≤ sin(θi/2) ≤ σi. We will show that with high probability gi and
its empirical estimation ĝi satisfy the condition in the statement of Corollary D.1 and thus prove
sin(θi+1/2) ≤ σi+1. Since projw⊥

i
zfi(z) is 1-subgaussian random vector, by Hoeffding’s inequality,

we know that with Õ(d) samples of z, with high probability we have ∥gi − ĝi∥ ≤ c2 ≤ e−40.

By Lemma 3.7 and Lemma 3.5, we have

gi · ui = ḡi · ui − 2
√
eηi
√
log(1/ηi) ≥

bi ∥ḡi∥
σi

e−19 − 100e−40 ≥ e−19 − 100e−40 ≥ e−20 := c1.

∥ĝi∥ ≤ ∥gi∥+ ∥gi − ĝi∥ ≤ ∥ḡi∥+ 2
√
eηi
√

log(1/ηi)) + e−40 ≤ 3e−19 ≤ 10c1.

Thus, by Corollary D.1, we can conclude that sin(θi+1/2) ≤ (1 − 1/C2)σi = σi+1, for a large
constant C2.

Next, we consider the case where sin(θi/2) < 3σi/4. In this case, as we have shown that ∥ĝi∥ is
bounded by some universal constant, the condition of Lemma 3.2 is fulfilled automatically and thus
sin(θi+1/2) ≤ (1− 1/C2)σi = σi+1, for a large constant C2.

By induction, with a high probability for each i, we have sin(θi/2) ≤ σi and thus wT is a good
approximation of w∗. It remains to show that t̂ is also a good approximation of t∗. Recall that
t̂ = t̃ < t′ such that |TT | < 6. Lemma 3.5 implies that

∣∣t̂− t∗∣∣ ≤ 40σT = 40Cϵ exp (t′)2/2. Thus,

Pr
x∼N(0,I)

(
sign(wT · x+ t∗) ̸= sign(wT · x+ t̂)

)
≤ (2π)−1

∣∣t∗ − t̂∣∣ exp(− (t∗ −
∣∣t∗ − t̂∣∣)2
2

)

≤ (2π)−140Cϵ exp(
(t′)2 − (t∗ −

∣∣t∗ − t̂∣∣)2
2

)

≤ (2π)−140Cϵ exp(2t′(t′ − t∗ + 40σT))

≤ (2π)−140Cϵ exp(2t′(40σT +
1

log(1/ϵ)
))

= O(ϵ exp(80t′σT)).

Since σT t
′ = O(ϵt′ exp((t′)2/2)) and t′ exp((t′)2/2) ≤ 1/(Cϵ), we can conclude that

Prx∼N(0,I)

(
sign(wT · x+ t∗) ̸= sign(wT · x+ t̂)

)
≤ O(ϵ). Thus, with high probability

err(sign(wT · x+ t̂)) ≤ O(ϵ).

19

Finally, we count the number of queries used by Algorithm 3. In each round of the algorithm, we
perform O(log(1/ϵ)) binary searches to find the correct parameter t̃, each of which takes us only
Õ(1) queries. We also make Õ(d) queries to construct ĝi in each round of the algorithm. Thus, each
round of Algorithm 3 takes Õ(d+ log(1/ϵ)) queries. Since there are at most O(log(1/ϵ)) rounds,
the query complexity of Algorithm 3 is Õ(dpolylog(1/ϵ)).

E Omitted Proofs from Section 3.2

E.1 Proof of Lemma 3.11

Proof of Lemma 3.11. Denote by D− the conditional distribution of x ∼ N(0, I) given y(x) = −1.
Recall that

Pr
x∼N(0,I)

(y(x) = −1) ≥ Pr
x∼N(0,I)

(h∗(x) = −1)− ϵ ≥ (1− 1/C)p.

We will first show that Ex∼D−η(x) ≤ O(ϵ/p). Denote by Z :=
√
1− ρ2x + ρz, where x ∼

D−, z ∼ N(0, I), then

E
x∼D−

η(x) = Pr
x∼D−,z∼N(0,I)

1{h∗(
√

1− ρ2x+ ρz) ̸= y(
√
1− ρ2x+ ρz)} = Pr

Z
1{h∗(Z) ̸= y(Z)}.

Since z and x are independent, we notice that Z can be simulated via the following reject sampling
process. We draw x ∼ N(0, I) and Z ∼ N(0, I) to construct Z =

√
1− ρ2x+ ρz and accepted Z

when y(x) = −1. Since
√
1− ρ2N(0, I)+ρN(0, I) = N(0, I), Z can be seen as a reject sampling

process with an accepted rate at least (1− 1/C)p. Since the noise rate opt ≤ ϵ, we know that

E
x∼D−

η(x) = Pr
Z

1{h∗(Z) ̸= y(Z)} ≤ (1− 1/C)−1ϵ/p.

By Markov’s inequality, we know that with probability at least 3/4, η(x) ≤ 5ϵ/p, with x ∼ D−.

Next, we show that with a constant probability a negative example x must be close to the decision
boundary of h∗. We have

Pr
x∼D−

(
w∗ · x < −t∗ − 1

t∗

)
= Pr
x∼D−

(h∗(x) = −1) Pr
x∼D−|{h∗(x)=−1}

(
w∗ · x < −t∗ − 1

t∗

)
+ Pr
x∼D−

(h∗(x) = +1) Pr
x∼D−|{h∗(x)=+1}

(
w∗ · x < −t∗ − 1

t∗

)
≤ Pr
x∼D−|{h∗(x)=−1}

(
w∗ · x < −t∗ − 1

t∗

)
+ 1/C ≤ Pr

x∼N(0,I)|{h∗(x)=−1}

(
w∗ · x < −t∗ − 1

t∗

)
+ 2/C

=

∫ ∞

t∗+1/t∗
exp(−s2/2)ds/

∫ ∞

t∗
exp(−s2/2)ds+ 2/C ≤ exp(−

(t∗ + 1
t∗)

2 − (t∗)2

2
) + 2/C

= exp(− (2t∗ + 1/t∗)/t∗)

2
) + 2/C ≤ e−1 + 2/C,

where in the third inequality, we use Fact D.4.

Thus, by union bound, with probability at least 1/2, it simultaneously holds that η(x) ≤ 5ϵ/p and
w∗ · x ≤ −t∗ − 1/t∗.

20

E.2 Proof of Theorem 3.8

Proof of Theorem 3.8. We consider two cases. First, if t′ < 1, then each x(i)0 = zi is drawn from the
standard Gaussian. We have∥∥∥∥u0 − E

z∼N(0,I)
zh∗(z)

∥∥∥∥ =

∥∥∥∥u0 − E
z∼N(0,I)

zy(z) + E
z∼N(0,I)

zy(z)− E
z∼N(0,I)

zh∗(z)

∥∥∥∥
≤
∥∥∥∥u0 − E

z∼N(0,I)
zy(z)

∥∥∥∥+ ∥∥∥∥ E
z∼N(0,I)

zy(z)− E
z∼N(0,I)

zh∗(z)

∥∥∥∥
≤
∥∥∥∥u0 − E

z∼N(0,I)
zy(z)

∥∥∥∥+ sup
u∈Sd−1

E
z∼N(0,I)

|u · z|1(y(z) ̸= h∗(z))

≤
∥∥∥∥u0 − E

z∼N(0,I)
zy(z)

∥∥∥∥+ 2
√
eϵ
√
log(1/ϵ),

where the last inequality holds because of Fact D.5. Since each ziy(zi) is a standard Gaussian, by
Hoeffding’s inequality, we have

Pr(

∥∥∥∥u0 − E
z∼N(0,I)

zy(z)

∥∥∥∥ ≥ r ≤ 2 exp(−mr
2

d
) ≤ polylog(δ),

when m ≥ Ω̃(d/r2). By taking r = (20 log(1/ϵ))−1, we obtain that
∥∥u0 −Ez∼N(0,I) zy(z)

∥∥ ≤
(20 log(1/ϵ))−1 with high probability. Thus

∥∥∥∥u0 − E
z∼N(0,I)

zh∗(z)

∥∥∥∥ ≤ (20 log(1/ϵ))−1 + 2
√
eϵ
√
log(1/ϵ) ≤ O(log(1/ϵ)−1).

By Fact 3.4, we know that Ez∼N(0,I) zh
∗(z) = ξw∗ for some ξ ≥ e−1, which also implies that

∥u0∥ ≥ e−1/2, because u0 sufficiently close to Ez∼N(0,I) zh
∗(z).

Since

∥∥∥∥u0 − E
z∼N(0,I)

zh∗(z)

∥∥∥∥2 = ∥u0∥2 +
∥∥∥∥ E
z∼N(0,I)

zh∗(z)

∥∥∥∥2 − 2

∥∥∥∥ E
z∼N(0,I)

zh∗(z)

∥∥∥∥ ∥u0∥2 cos θ(w0, w
∗)

≥ 2

∥∥∥∥ E
z∼N(0,I)

zh∗(z)

∥∥∥∥ ∥u0∥ (1− cos θ(w0, w
∗))

= 4

∥∥∥∥ E
z∼N(0,I)

zh∗(z)

∥∥∥∥ ∥u0∥ sin2(θ(w0, w
∗)/2),

we get sin(θ(w0, w
∗)/2) ≤

√∥∥u0 −Ez∼N(0,I) zh∗(z)
∥∥2 /4 ∥∥Ez∼N(0,I) zh∗(z)

∥∥ ∥u0∥ ≤
O(1/ log(1/ϵ)). In particular as ϵ < 1/C for some large enough C, we conclude that
sin(θ(w0, w

∗)/2) ≤ max{min{1/t, 1/2}, O(η
√

log(1/η)}.
We next address the case when t > 1. By Lemma 3.11, we know that with probability at least 1/2,
we have η(x) ≤ 5ϵ/p and w∗ · x ∈ (−t∗ − 1/t∗,−t∗). We will assume these two events happen in
the rest of the proof. Let z ∼ N(0, I) and by Fact 3.10, define

h̃(z) := h∗(x̃0) = sign(w∗ · z + t∗ +
√
1− ρ2w∗ · x0
ρ

) .

21

By Lemma 3.11, we know that Prz∼N(0,I) h̃(z) ̸= ỹ(x0) = η(x0) ≤ 5ϵ/p. Similar to the first case,
we have∥∥∥∥u0 − E

z∼N(0,I)
zh̃(z)

∥∥∥∥ =

∥∥∥∥u0 − E
z∼N(0,I)

zỹ(x0) + E
z∼N(0,I)

zỹ(x0)− E
z∼N(0,I)

zh̃(z)

∥∥∥∥
≤
∥∥∥∥u0 − E

z∼N(0,I)
zh̃(z)

∥∥∥∥+ ∥∥∥∥ E
z∼N(0,I)

zh̃(z)− E
z∼N(0,I)

zh̃(z)

∥∥∥∥
≤
∥∥∥∥u0 − E

z∼N(0,I)
zỹ(x0)

∥∥∥∥+ sup
u∈Sd−1

E
z∼N(0,I)

|u · z|1(ỹ(x0) ̸= h̃(z))

≤
∥∥∥∥u0 − E

z∼N(0,I)
zỹ(x0)

∥∥∥∥+ 2
√
eη(x0)

√
log(1/η(x0))

≤ max{O(η(x0)
√

log(1/η(x0))), 1/(50
√

log(1/ϵ))}

≤ max{O(η
√
log(1/η)), 1/(50t))} ,

where in the second last inequality we use the fact that
∥∥u0 −Ez∼N(0,I) zỹ(x0)

∥∥ ≤
1/(100

√
log(1/ϵ)) ≤ 1/(100t) with high probability. Since ρ = 1/t, |t− t∗| ≤ 1/log(1/ϵ) and

t∗ ≤
√
log(1/ϵ)≪ log(1/ϵ), the threshold Tρ =

t∗+
√

1−ρ2w∗·x0

ρ can be bounded as follows.

−1 ≤
t∗ −

√
1− ρ2(t∗ + 1

t∗)

ρ
≤ Tρ ≤

t∗(1−
√
1− ρ2)

ρ
≤ tt∗/(t)2 ≤ 1 + o(1).

Fact 3.4 implies that Ez∼N(0,I) zh̃(z) = ξw∗ for some ξ ≥ e−1. Since u0 is close to Ez∼N(0,I) z,
∥u0∥ ≥ e−1/2. Thus, we obtain that

sin(θ(w0, w
∗)/2) ≤

√∥∥∥∥u0 − E
z∼N(0,I)

zh̃(z)

∥∥∥∥2 /4 ∥∥∥∥ E
z∼N(0,I)

zh∗(z)

∥∥∥∥ ∥u0∥
≤ max{min{1/t, 1/2}, O(η

√
log(1/η)}.

F Finding a Good Initialization with an Extreme Threshold

By Theorem 3.8, we know that Algorithm 2 can only find some w0 such that sin(θ0/2) ≤
O(η

√
log(1/η)), where η = ϵ/p when p is small such that η

√
log(1/η) > O(1/t). In this section,

we design an algorithm that finds a warm start with a non-negligible probability of success when the
threshold t∗ falls in this range. Formally, we prove the following theorem.
Theorem F.1. Let h∗(x) = sign(w∗ · x+ t∗) be a halfspace with bias p and y(x) be any labeling
function such that err(h∗) = opt ≤ ϵ ≤ 1/C for some large enough constant C. Let t be a scalar
such that t − 1/ log(1/ϵ) ≤ t∗ ≤ t and 1/(400t) ≤ η

√
log(1/η) ≤ 1/C for some large enough

constant C, where η = ϵ/p, Algorithm 5 makes M = Õ(1/p + d log(1/ϵ)) membership queries,
runs in poly(d,M) time and with probability at least 1/polylog(1/ϵ), outputs some w0 such that
sin(θ(w0, w

∗)/2) ≤ 1/t.

The high-level idea of our algorithm is as follows. Although Algorithm 2 will not provide us aw0 such
that θ0 ≤ O(1/t), θ0 is still smaller than a sufficiently small constant. We want to use the localization
technique to refine w0 so that after T rounds of refinement, sin(θT /2) ≤ σT = 1/t. Recall in
Appendix D, we introduce Definition D.2, (v, s, σ)-rejection procedure, which can be simulated using
membership query. Passing a Gaussian random point to the (v, s, σ)-rejection procedure, according
to Lemma D.3, we will get a another distribution over Rd × {±1} that behaves the same as another
halfspace h′.

In this section, we want to design a (v, s, σ)-rejection procedure such that the direction of the
halfspace h′ has a constant correlation with respect to w∗ and the noise level after the rejection
procedure is much smaller than the length of the Chow-Parameter of h′. Write w∗ = aiwi + biui.
We want to set up v = wi, σ = 1/t and s ∼ (ait, ait+ bi) uniformly. Such a method is called the
randomized threshold method in [DKS18]. This method has the following property.

22

Lemma F.2 (Proposition C.11 in [DKS18]). Let a, b, t > 0 such that a2 + b2 = 1 and t larger than
some constant C. Let w ∈ Sd−1. Let s ∼ [at, at + b] uniformly. For each x ∈ Rd, the expected
probability that x is accepted by the (w, s, σ)-rejection procedure is at most σ/b, where σ = 1/t.

Lemma F.2 implies that in expectation over the randomness of s, only σ/bi-fraction of the noisy
points will pass the (wi, s, σ)-rejection procedure. If we use query to simulate such a rejection
procedure, by Lemma D.3, with a constant probability, the noise rate among our queries would be
O(ϵ exp(s2/2)/bi). However, as we do not know bi, using some b that is slightly far from bi would
make the noise level too high for us to learn the signal we want. To overcome this, we design the
following test approach to show that given a b, we can with high probability check if it can be used to
construct the rejection procedure or not and in particular, when b− 1/ log(1/ϵ) < bi < b, such a b is
guaranteed to pass our test.

Lemma F.3. Let h∗(x) = sign(w∗ · x+ t∗) be a halfspace and y(x) be any labeling function such
that err(h∗) = opt ≤ ϵ. Let w ∈ Sd−1 be unit vector such that w∗ = a∗w + b∗u, a∗, b∗ > 0 and
(a∗)2 + (b∗)2 = 1, b < 1/4. Let t > 0 such that t exp(t2/2) ≤ 1/(Cϵ) for a sufficiently large
constant C. Let a, b ∈ (0, 1) such that a2 + b2 = 1. Let b, t, w, δ be input of Algorithm 4. Let
s ∼ (at, at+ b) uniformly. Denote by p(b, s) be bias of a halfspace with threshold Tbs := (t− as)/b.
Let ℓ(z) = sign((a∗σw + b∗u) · z + t∗ − a∗s) be a halfspace with bias ps, where If the probability
that ps > p(b, s)/4 is at most 1/2, then with probability at least 1− δ, Algorithm 4 output “No”. If
the probability that ps > p(b, s)/2 is at least 29/30, then with probability at least 1− δ, Algorithm 4
output “Yes”. Furthermore, the query complexity of Algorithm 4 is Õδ(1/p2(b, at)) = Õδ(1/

√
p)

In particular, when b∗ ≥ 1.5/t ≥ 1.5/
√
log(1/ϵ), |b− b∗| ≤ 1/ log(1/ϵ) and |t− t∗| ≤

1/ log(1/ϵ), with probability at least 1− δ, Algorithm 4 will output “Yes”.

Algorithm 4 ANGLE TEST(Check if b is a good approximation for sin θ(w∗, w))

Input: A direction w, confidence parameter δ ∈ (0, 1), threshold t > 0, parameter b
Output: “Yes” or “No”
Count← 0.
A← I − (1− σ2)wwt, σ = 1/t

Compute a =
√
1− b2

Let Tbs = (t− as)/b and p(b, s) be the bias of a halfspace with threshold Tbs
for i = 1 . . . T = O(log(1/δ)) do

Draw s ∼ [at, at+ b] uniformly
Draw m = Õ(1/p2(b, s)) z ∼ N(0, I) and query y(Az − sw).
Compute p̂s the empirical probability of y(Az − sw) = −1
if p̂s > p(b, s)/3 then

Count← Count+1
if Count > 3T/4 then

return “Yes”
elsereturn “No”

Proof of Lemma F.3. By Lemma D.3 and Lemma F.2, we know that over the randomness of s, with
probability at least 5/6, η := Prz∼N(0,I)(h

∗(Az − sw) ̸= y(Az − sw)) ≤ 6ϵ exp(s2/2)/b. We
assume, for now, such an event happens. We first show that such a noise rate is much smaller than
p(b, s). Write s = at+ ξ, where ξ ∈ [0, b], then we have

ϵ exp(s2/2)/b
1
Tbs

exp(−T 2
bs/2)

=
Tbsϵ

b
exp(

s2 + T 2
bs

2
) ≤ tϵ exp(s

2

2
+

(t− as)2

2b2
)

≤ t(t exp(t2/2))−1 exp(
s2

2
+

(t− as)2

2b2
)/C

= C−1 exp(− t
2

2
+

(at+ ξ)2

2
+

(b2t− aξ)2

2b2
)

= C−1 exp(
1

2
(ξ2 +

a2ξ2

b2
)) ≤ C−1e := (C ′)−1, (3)

23

where, in the first inequality, we use the fact that Tbs ≤ bt, in the second inequality, we use the fact
that t exp(t2/2) ≤ 1/(Cϵ) for a sufficiently large constant C, and in the last inequality, we use the
fact that a2 + b2 = 1, ξ2 < b2. By Fact D.4, we know that exp(−T 2

bs/2)/Tbs is at most 3 times
p(b, s), and thus η ≤ p(b, s)/C ′ for a large enough constant C ′.

By Fact 3.3, we know that the ground truth label ℓ(z) = h∗(Az − sw) = sign((a∗σw + b∗u) · z +
t∗ − a∗s). By Hoeffding’s inequality, with high probability, we are able to estimate the probability
of y(Az − sw) = −1 up to error p(b, s)/20 using Õ(1/p2(b, s)) queries. In particular, since
Tbs ≤ tb < 1/4, by Fact D.4, we know that p(b, s) > p1/4 and will cost us only Õ(1/

√
p) queries.

If the probability that ps > p(b, s)/4 is at most 1/2, then in each round i of Algorithm 4, with
probability at least 1/3 it holds simultaneously that ps < p(b, s)/4 and η ≤ p(b, s)/C ′. In this case,
with high probability p̂s < p(b, s)/3 and Count does not increase. Thus, with probability at least
1− δ, after T = O(log(1/δ)) rounds, Count < 3T/4 by Hoeffding’s inequality.

Similarly, if the probability that ps > p(b, s)/2 is at least 29/30, then in each round i of Algorithm 4,
with probability at least 4/5 it holds simultaneously that ps > p(b, s)/2 and η ≤ p(b, s)/C ′. In this
case, with high probability p̂s > p(b, s)/3 and Count increases. Thus, with probability at least 1− δ,
after T = O(log(1/δ)) rounds, Count > 3T/4 by Hoeffding’s inequality.

Finally, we show that when |b∗ − b| ≤ 1/ log(1/ϵ) and when |t− t∗| ≤ 1/ log(1/ϵ), Algorithm 4
with high probability outputs “Yes”. To do this, we will show the true threshold of ℓ(z) is close to
Tbs. We have

t∗ − a∗s√
(b∗)2 + (a∗σ)2

− Tbs ≤
t∗ − a∗s

b∗
− t− as

b
≤ O(log(1/ϵ)−1)

b∗
+ |t− as|

∣∣∣∣ 1b∗ − 1

b

∣∣∣∣
≤ O(log(1/ϵ)−1/2) +

∣∣∣∣b2t(b− b∗)b∗b

∣∣∣∣
= O(log(1/ϵ)−1/2) +O(t log(1/ϵ)−1) = O(log(1/ϵ)−1/2).

By Fact D.4, it holds with probability 1 that ps > p(b, s)/2.

Now assume that we have sin(θi/2) ≤ σi, then bi ≤ 2σi. This implies that by testing b =

2σi − j
log(1/ϵ) for j = 0, 1, . . . , we only need O(log(1/ϵ)) rounds to find the correct b. With this

fact, we have the following Algorithm 5.

Proof of Theorem F.1. Let θi = θ(wi, w
∗) and writew∗ = aiwi+biui, where ai, bi > 0, a2i+b

2
i = 1.

By Algorithm 2, we know that with probability at least 1/3, sin(θ0/2) ≤ O(ϵ/p
√

log(p/ϵ)). We
will assume sin(θ0/2) ≤ ϵ/p

√
log(p/ϵ) holds throughout the proof, since the constant before

ϵ/p
√
log(p/ϵ) can always be assumed to be normalized as 1/C is large enough. In round i of the

algorithm, we write w∗ = aiwi + biui where ai, bi > 0, a2i + b2i = 1. Similar to the analysis
of Algorithm 3, we will show that if sin(θi/2) ≤ σi then with probability 1/3 it also holds that
sin(θi+1/2) ≤ σi+1. If this is true then since 1/t > 1/

√
log(1/ϵ) after O(log log(1/ϵ)) rounds, we

have sin(θT /2) ≤ 1/t with probability at least 1/polylog(1/ϵ).

Recall the notation in the proof of Lemma F.3. Given b̂, we define p(b̂, s) to be the bias of a
halfspace with a threshold Tb̂,s = (t − âs)/b̂. By Fact 3.3, we define ℓ(z) = h∗(Az − swi) =

sign((aiσwi + biu) · z + t∗ − ais) the ground truth label of y(Az − swi), ts to be its threshold and
ps to be the bias of ℓ(z).

By Lemma F.3, we know that as long as bi > 1.5/t, with high probability Algorithm 4 will output
“Yes” for some b̂ such that with probability at least 1/2, ps > p(b̂, s)/2 > p1/4. On the other hand, by
Equation (3), we know that with probability at least 5/6, η := Prz∼N(0,I)(ℓ(z) ̸= y(Az − swi)) ≤
p(b, s)/C ′ for a sufficiently large constant C ′. Thus, with a probability at least 1/3, ps > p(b̂, s)/2

and η ≤ p(b̂, s)/C ′ hold simultaneously. For now, we assume this happens and we will analyze the
smoothed label around some z0 such that y(Az0 − swi) = −1. By Fact 3.10, the smoothed label

24

Algorithm 5 INITIALIZATION 2(Finding a good initialization under extreme threshold)

Input: error parameter ϵ ∈ (0, 1), confidence parameter δ ∈ (0, 1), threshold t > 0
Output: w0 ∈ Sd−1

Run Algorithm 2 to get a w0 ∈ Sd−1. Let σ0 = ϵ/p
√
log(p/ϵ) be a parameter

for i = 0, . . . , T = O(log log(1/ϵ)) do
Run Algorithm 4 with input wi and b̂ = 2σi − j

log(1/ϵ) , j = 0, . . . , σi log(1/ϵ)

Let b̂ be the first parameter such that Algorithm 4 outputs “Yes”
If Algorithm 4 outputs “No” for all b̂ or the b̂ we use less than 1/t, then return wi.
Let â =

√
1− b̂2 and Tb̂,s = (t− âs)/b̂, where s ∼ [ât, ât+ b̂].

Estimate the probability p̂s of ps = y(Az − swi) = −1 for z ∼ N(0, I) up to error p1/4/100
using Õ(

√
1/p) queries. Let t̂s be the threshold of a halfspace with bias p̂s

A← I − (1− σ2)wiw
t
i , σ = 1/t

Draw z ∼ N(0, I) and query y(Az − swi) until some z0 such that y(Az0 − swi) = −1 is
drawn

Draw zi ∼ N(0, I), for i ∈ [m],m = Õ(d) and query fi(zi) := y(A(
√
1− ρz0+ρzi)−swi),

where ρ = 1/t̂s
gi ← 1

m

∑m
i=1 projw⊥

i
zifi(zi), wi+1 ← projSd−1(wi + µigi)

σi+1 ← (1− 1/C2)σi µi+1 = (1− 1/C1)σi+1

return wT

around z0 with respect to halfspace ℓ(z) can be seen as a halfspace

ℓz0(zi) = sign(Wi · zi + Tρ,s),

where Wi := (aiσwi + biui)/
√

(aiσ)2 + b2i and Tρ,s =
ts+
√

1−ρ2Wi·z0
ρ

By Fact 3.10 and Lemma 3.11, we know that with probability at least 1/2, such a z0 satisfies

1. Wi · z0 ∈ (−ts − 1/ts,−ts)

2. the noise level of the smoothed label is at most 5η/ps ≤ 1/C ′′ for some large enough
constant C ′′

Since ps > p(b̂, s)/2, we can bound the threshold Tρ,s by

−2 ≤
ts −

√
1− ρ2(ts + 1

ts
)

ρ
≤ Tρ,s ≤

ts(1−
√

1− ρ2)
ρ

≤ ts/t̂s ≤ 2, (4)

because t̂s is at least close to ts up to a small constant factor, otherwise p̂s would be far from ps. Com-
bine Equation (4) and Fact 3.4, we know that Ez′∼N(0,I) projw⊥

i
z′ℓz0(z

′) = ϕ uibi√
(aiσ)2+b2i

, for some

ϕ ∈ (e−2, 1). Since the noise level of the smoothed label around z0 is as small as 1/C ′′ for some large
enough constant C ′′, by Hoeffding’s inequality, we know that

∥∥∥gi −Ez′∼N(0,I) projw⊥
i
z′ℓz0(z

′)
∥∥∥

can be smaller than some tiny constant with high probability.

As it always holds that σi ≥ 1/t for each i, we will consider two cases. In the first case, sin(θi/2) ≤
3σi/4 and ∥gi∥ is bounded by some universal constant.

In the second case, we have 3σi/4 ≤ sin(θi/2) ≤ σi. In this case we know that
Ez′∼N(0,I) projw⊥

i
z′ℓz0(z

′) = ϕ uibi√
(aiσ)2+b2i

= ψui for some ψ ≥ e−4, which implies that

Ez′∼N(0,I) projw⊥
i
z′ℓz0(z

′) · ui ≥ ψ bi√
(aiσ)2=b2i

≥ e−5. Using Lemma 3.2, we know that

sin(θi+1/2) ≤ (1− 1/C1)σi = σi+1.

Finally, we prove the query complexity of Algorithm 5. By Theorem 3.8, it takes us Õ(1/p +
d log(1/ϵ)) queries to get some w0 by running Algorithm 2. After obtaining w0, in each round of

25

Algorithm 4, we will run Algorithm 4 O(log(1/ϵ)) times to find a desired b̂ and each round takes
us Õ(1/p2(b̂)) ≤ 1/p2c ≤ 1/

√
p queries, because p(b̂) is the bias of a halfspace with threshold

Tb̂ = b̂t, which is smaller than t by a tiny constant factor. Furthermore, after obtaining b̂ it takes us
Õ(1/p(b̂) + d log(1/ϵ)) queries to perform the gradient descent update. So, in total Algorithm 5 has
query complexity at most Õ(1/p+ d log(1/ϵ)).

G Proof of Theorem 1.2

Proof of Theorem 1.2. We first show the correctness of Algorithm 1. When we run Algorithm 1, we
will start with some interval [ta, tb] such that any halfspace with a threshold t ∈ [ta, tb] must have bias
Θ(p). Next, Algorithm 1 partition [ta, tb] into grid such that |tj+1 − tj | ≤ 1/ log(1/ϵ). This implies
that there must be some tj ∈ [ta, tb] such that tj − 1/ log(log(1/ϵ)) ≤ t∗ ≤ tj . By Theorem 3.8
and Algorithm 5, as long as p > Cϵ, with probability at least 1/polylog(1/ϵ), we can find some
w0 such that sin(θ0/2) ≤ min{1/tj , 1/2}. In particular, by running Algorithm 2 or Algorithm 5
polylog(1/ϵ) times, at least one of these w0 satisfies the condition. Furthermore, with such a w0, we
know from Theorem 3.1 that we can with high probability get some ĥ such that err(ĥ) ≤ O(opt+ ϵ).
Thus within the list C of the candidate hypotheses maintained by Algorithm 1 at least one of them has
error O(opt + ϵ). By Lemma C.1, we can with high probability find a hypothesis among C, whose
error is at most 10 times the error of the best hypothesis in C and thus has error O(opt + ϵ).

Next, we prove the query complexity of Algorithm 1. According to Appendix C.2, we know that
finding an interval [ta, tb] costs us Õ(min{1/p, 1/ϵ}) queries. If we find p < Cϵ then we are done.
Otherwise, we will run the initialization algorithm and the refinement algorithm. By Theorem 3.8
and Algorithm 5, each time we run an initialization algorithm, it takes us Õ(1/p+ dpolylog(1/ϵ))

queries. By Algorithm 3, each time we run Algorithm 3, it takes us Õ(d log(1/ϵ) queries. Since we
will run these algorithms at most polylog(1/ϵ) times. We will in total make Õ(1/p+dpolylog(1/ϵ))
queries. Finally, by Lemma C.1, finding a good hypothesis from the list of candidate hypotheses
will only take us polylog(1/ϵ) queries. Thus, we conclude the query complexity of Algorithm 1 is
Õ(min{1/p, 1/ϵ}+ dpolylog(1/ϵ)).

H Implementing the Learning Algorithm via A Small-Class Oracle

In this section, we discuss how to implement Algorithm 1 to get an even smaller query complexity
Õδ(d · polylog(1/ϵ)), assuming there is an oracle that can return a random small-class example.
Before presenting the definition of the small-class oracle, we remind the reader that the notation Õ
hides the dependence on polylog(1/ϵ), and the notation Oδ hides the dependence on polylog(1/δ).
A small class oracle is defined as follows.

Definition H.1 (Small-Class Oracle). Let D be a distribution over Rd × {±1} and h∗ = sign(w∗ ·
x+ t∗), w∗ ∈ Sd−1, t∗ > 0 be an optimal halfspace such that err(h∗) = opt = minh∈H err(h). A
small-class oracle EX(−)(D) draws (x, y) ∼ D |y=1 and returns x.

In other words, a small-class oracle simulates the following rejection sampling procedure, where
a learner keeps drawing x ∼ N(0, I), querying its label and stops when it sees some x0 with
y(x0) = −1. Such a procedure requires Ω(1/p) queries to implement, which is costly when p is
small.

By Theorem 3.1, even without the small-class oracle, the query complexity of Algorithm 3 is always
Õδ(d · polylog(1/ϵ)). Thus, a small-class oracle would only help reduce the query complexity of
Algorithm 2 and Algorithm 5. In the rest of the section, we show that by calling the small-class
oracle Õδ(1) = Oδ(polylog(1/ϵ)) times, we can reduce the query complexity of Algorithm 2 and
Algorithm 5 to Õδ(d · polylog(1/ϵ)).

26

We first consider Algorithm 2. By Theorem 3.8, the query complexity of Algorithm 2 is Õ(1/p+

d log(1/ϵ)), where Line 3 in Algorithm 2 takes ˜1/p queries to find a random small-class example and
Line 4-Line 5 in Algorithm 2 takes Õ(d log(1/ϵ)) queries. As a small-class oracle simulates the same
rejection sampling procedure as Line 3 in Algorithm 2, we can implement Line 3 in Algorithm 2 with
a single small-class oracle. Thus, by a single call of the small-class oracle, we are able to implement
Algorithm 2 with Õδ(d · polylog(1/ϵ)) query complexity.

Next, we consider Algorithm 5. Each implementation of Algorithm 5 runs in O(log log(1/ϵ))
iterations. In each iteration, we call Algorithm 4 polylog(1/ϵ) times in Line 5, use queries to estimate
p̂s in Line 9, find a single-small class example in Line 11 and improve the current hypothesis with
Õ(d) queries in Line 12. Furthermore, only operations in Line 5, Line 9, and Line 11 have query
complexity much larger than polylog(1/ϵ). Thus, we only need to show with a small-class oracle,
we can significantly reduce the query complexity of these steps.

We start with Algorithm 4. In Line 9 in Algorithm 4, we use query to estimate the probability of
y(Az−sw) = −1 with an error up to error p(b, s). By Lemma D.3, we know that if we pass a random
sample x ∼ N(0, I) to the (w, s, σ)-rejection procedure, then the resulting distribution isN(−sw,A).
Thus, the probability of y(Az − sw) = −1 is exactly equal to the fraction of negative examples
among examples that pass the (w, s, σ)-rejection procedure. Specifically, for the (w, s, σ)-rejection
procedure, we denote by q the probability that a random example passes the rejection procedure and
denote by q− the probability that a random negative example passes the rejection procedure and p the
fraction of the negative example. Then we have Prz∼N(0,I) (y(Az − sw) = −1) = pq−/q. This
implies that if we know p and q−, then estimating Prz∼N(0,I) (y(Az − sw) = −1) is equivalent to
estimating q−, which can be done by calling the small-class oracle several times and estimate the
probability that these examples pass the (w, s, σ)-rejection procedure. By Lemma D.3, we know
that σ exp(−s2/(2(1 − σ2))) can be computed precisely using the parameter s, σ. However, we
do not know p precisely, as this requires us to know t∗ up to a high accuracy. To overcome this
difficulty, we use p̂, the bias of a halfspace with threshold t, because we only need to ensure the
correctness of the algorithm when our guess t is close to t∗. In fact, when |t− t∗| ≤ 1/ log(1/ϵ),
p̂ ∈ [(1− 1/C)p, (1 + 1/C)p] for some large enough constant C, which is enough for ensuring the
correctness of Algorithm 4. So, to estimate Prz∼N(0,I) (y(Az − sw) = −1) up to error p(b, s), we
only need to estimate q− up to error qp(b, s)/p̂. We have

p(b, s)q−
p̂

≥ Ω

(
σ exp(−s2/2) 1

Tbs
exp(−T 2

bs/2)
1
t exp(−t2/2)

)
≥ Ω

(
1

Tbs
exp

(
(t2 − s2 − T 2

bs)/2)
))

≥ Ω

(
1

Tbs
exp

(
(t2 − s2 − T 2

bs)/2)
))

= Ω

(
1

Tbs
exp

(
(t2 − (at+ ξ)2 −

(
t− a(at+ ξ)

b

)2

/2)

))
= Ω(1/Tbs) ≥ Ω(1/ log(1/ϵ)), (5)

where we use Fact D.4 and s = at + ξ, ξ ∈ [0, b]. This implies that we only need to call
a small class oracle Õδ(1) = Oδ(polylog(1/ϵ)) times to estimate q− and thus can compute
Prz∼N(0,I) (y(Az − sw) = −1) up to error p(b, s). In particular, in this implementation, we only
need to call the small-class oracle and do not need to make membership queries.

Similarly, to implement Line 9 in Algorithm 5, we also only need to call the small-class oracle Õδ(1)
times and do not need to make membership queries.

Finally, we show that by calling the small-class oracle Õδ(1) times, we are able to implement Line 11
in Algorithm 5. By Lemma D.3, Line 11 in Algorithm 5 draws a random negative example that passes
the (wi, s, σ)-rejection procedure. By Lemma F.3, we know that ps = pq−/q ≥ Ω(p(b, s)). This
implies that q− ≥ Ω(p(b, s)q/p) ≥ Ω(1/ log(1/ϵ)), by Equation (5). Thus, with high probability,
we only need to pass Oδ(log(1/ϵ)) examples from the small class oracle to the (wi, s, σ)-rejection
procedure to get one negative example that passes this rejection procedure. Thus, in each iteration of
Algorithm 5, we will call Õδ(1) times the small-class oracle and make Õδ(d) membership queries.

In summary, we count the number of queries in Algorithm 1 using the new implementation with
a small class oracle. Notice that with a small-class oracle, we do not need to worry about using
some guess t much larger than t∗ because the query complexity in the initialization step now has no
dependence on the bias of the target halfspace. So we do not need to implement line 4 in Algorithm 1

27

but only need to guess t′ = i/ log(1/ϵ) for i = 0, . . . , ⌈polylog(1/ϵ)⌉. This means in Algorithm 1,
we will call Algorithm 2 and Algorithm 5 in total at most polylog(1/ϵ) times, so we will make Õδ(1)
small-class oracles and make Õδ(d · polylog(1/ϵ)) membership queries.

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract summarizes the results provided in Theorem 1.1 and Theorem 1.2.
The introduction summarizes the motivations of this paper and describes prior work’s
contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this paper are discussed in the introduction of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

29

Answer: [Yes]
Justification: The statement of each theorem provides all the assumptions and we provide
complete proofs for all statements that are either in the main body of the paper or in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper is theoretical and does not contain experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

30

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper is theoretical and does not contain experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper is theoretical and does not contain experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper is theoretical and does not contain experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This paper is theoretical and does not contain experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms in every respect with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is theoretical and we do not see any immediate implications on
society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

32

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper is theoretical.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This work does not use any assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

33

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not use any assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

	Introduction
	Preliminaries

	Nearly-Tight Lower Bound on Label Complexity: Proof of th low
	Robust Learning of General Halfspaces with MQs: Proof of th main
	Refining A Warm-Start
	Finding A Good Gradient via Localization
	Robustness Analysis

	Finding A Good Initialization

	Active Learning with Membership Queries and Label Queries
	Omitted Proofs in sec lower bound
	Proof of lm reduction
	Proof of lm deterministic
	Proof of lm high probability

	Omitted Details in sec overview
	Discussion on the Noise Level opt
	Approximate Bias Estimation Using Queries

	Omitted Proofs from sec refine
	Proof of lm gradient descent
	Proof of lm correct threshold
	Proof of lm noise rate
	Proof of lm noisy threshold
	Proof of th refine

	Omitted Proofs from sec initialization
	Proof of lm noisy smoothed label
	Proof of th initialization 1

	Finding a Good Initialization with an Extreme Threshold
	Proof of th main
	Implementing the Learning Algorithm via A Small-Class Oracle

