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Abstract

Visual imitation learning enables robotic agents to acquire skills by observing expert
demonstration videos. In the one-shot setting, the agent generates a policy after
observing a single expert demonstration without additional fine-tuning. Existing
approaches typically train and evaluate on the same set of tasks, varying only object
configurations, and struggle to generalize to unseen tasks with different semantic or
structural requirements. While some recent methods attempt to address this, they
exhibit low success rates on hard test tasks that, despite being visually similar to
some training tasks, differ in context and require distinct responses. Additionally,
most existing methods lack an explicit model of environment dynamics, limiting
their ability to reason about future states. To address these limitations, we propose
a novel framework for one-shot visual imitation learning via world-model-guided
trajectory generation. Given an expert demonstration video and the agent’s initial
observation, our method leverages a learned world model to predict a sequence
of latent states and actions. This latent trajectory is then decoded into physical
waypoints that guide the agent’s execution. Our method is evaluated on two
simulated benchmarks and three real-world robotic platforms, where it consistently
outperforms prior approaches, with over 30% improvement in some cases. The
code is available at https://github.com/raktimgg/osvi-wm.

1 Introduction
Imitation is the sincerest of flattery.

— Charles Caleb Colton1

Intelligent beings like humans are capable of learning a wide range of skills by observing and imitating
others [50]. Even toddlers, with a basic understanding of the world’s dynamics, solve complex tasks
by watching expert demonstrations. Inspired by this natural learning process, principles have been
applied in robotics [13, 26, 35, 62] where expert demonstrations, typically collected through human
teleoperation, are used to teach agents to perform tasks through imitation. Imitation learning finds uses
across diverse domains, including medical robotics, collaborative robotics, and industrial automation.

In a successful imitation, the agent discovers the skill demonstrated by the expert, adapts it to its
own embodiment, and executes it within its environment [58]. In the one-shot visual imitation
(OSVI) setting, the agent must derive a policy from a single expert demonstration video, without
any additional training [12]. Notably, the expert and agent may differ in embodiment [10]; in
fact, both prior work [51, 43, 37] and our approach have utilized human demonstration videos as
input. Existing methods, however, often rely on the strong assumption that the training and testing
tasks are nearly identical, typically differing only in object locations. As a result, generalization

1Lacon: Or Many Things in Few Words, 1820.
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Figure 1: OSVI-WM infers the task from the expert demonstration and, along with the agent’s
observation “foresees” future latent states using a world-model-guided trajectory generation module.
The predicted trajectory is decoded into physical waypoints for control.

to semantically or structurally different tasks remains limited. MOSAIC [34] and AWDA [5] were
among the first to investigate generalization to unseen tasks. In particular, AWDA [5] demonstrated
that the performance of standard methods like [10, 60] degrades severely when evaluated on tasks
that differ even marginally from those seen during training. Although AWDA outperforms earlier
methods [10, 60], it exhibits low success rates on test tasks that are visually similar but contextually
different, such as opening vs. closing a sliding window. Moreover, none of these approaches
incorporates an explicit model of the environment’s dynamics, limiting their ability to reason about
long-term consequences or plan into the future.

Mathematically modeling the environment using raw camera images is challenging due to the presence
of diverse objects and their complex interactions. To address this, neural networks have been used to
learn world models that predict how the environment will evolve in response to the agent’s actions.
These models support applications in reinforcement learning [48, 21, 28, 39, 6, 23, 56] and behavior
cloning [8, 37]. Inspired by such advances, we propose OSVI-WM (Fig. 1), a framework for one-shot
visual imitation for unseen tasks using world-model-guided trajectory generation. Given an expert
demonstration video and the agent’s initial observation, OSVI-WM encodes each image into a shared
latent space representing the environment state for the respective image. These embeddings are
recursively processed through learnable action and world models to predict a trajectory of future
latent states, allowing the agent to plan into the future. Predicting actions in the latent space also
helps mitigate the multi-modality of real-world action distributions. The predicted latent trajectory is
then decoded into physical waypoints [5] using pooling and Multi-Layer Perceptron (MLP) layers.

The predicted waypoints guide the agent’s execution and provide supervision for end-to-end training.
To enhance the world model’s ability to capture environment dynamics, an auxiliary loss is applied on
the predicted latent trajectory during training. Further, OSVI-WM supports re-planning: if the agent
doesn’t accurately complete the task by following the predicted waypoints, it takes a new observation
and plans a fresh set of waypoints based on its current state. Notably, unlike methods that rely on
large-scale pretraining or extensive demonstration data [37, 3, 55], OSVI-WM is trained directly
within the task domain. In summary, our main contributions are:

• An efficient end-to-end imitation learning architecture trained solely on in-domain data, without
requiring large-scale pretraining.

• A novel world-model-guided trajectory generation module tailored for OSVI on unseen tasks.

• Robustness enhancement at test time by using a waypoint controller with re-planning.

• Extensive experiments in both simulated and real-world settings, demonstrating that OSVI-WM
outperforms existing methods on unseen tasks.
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2 Related Works

One-Shot Imitation Learning: Imitation learning, or learning from demonstrations, is broadly
categorized into inverse reinforcement learning [1, 40] and behavior cloning [46, 31, 7, 22, 42].
While the field has been extensively studied for years, a comprehensive review is beyond the scope
of this paper; we, therefore, refer readers to existing surveys [13, 35, 62]. Our method falls under
behavior cloning, specifically in the one-shot visual imitation (OSVI) setting. In standard behavior
cloning, expert demonstrations and corresponding expert actions are available to train the agent. In
contrast, OSVI [12] provides only a video of the expert performing the task, without access to the
underlying actions. One of the earliest works on OSVI [12] introduced the problem setting and
proposed a soft-attention-based learning framework for block stacking. Since then, a number of
methods [15, 10, 4, 63, 27] have improved performance in this setting. While ego-centric setups (e.g.,
DINOBot [11]) have been explored, we focus on methods using external camera views. One such
work, T-OSVI [10], uses transformers [49] to model long-range dependencies in demonstrations, and
like many other works [29, 51, 60], it supports expert-agent embodiment mismatch.

While these approaches have shown promising results, they are typically evaluated on the same tasks
that were used for training with minor variations, such as changes in object positions or quantities.
MOSAIC [34] proposed a more challenging setup with completely unseen test tasks, building on
which, AWDA [5] demonstrated that existing methods like T-OSVI [10] and DAML [60] perform
poorly in such settings. AWDA improved generalization through attributed waypoints, demonstration
augmentation, and image mixup, but achieved low success rates on hard tasks requiring different
responses despite visual similarity. While IMOP [63] used point clouds to aid generalization, we
focus solely on monocular RGB images, which are more accessible and require no specialized
hardware. Notably, none of these approaches models environment dynamics, limiting their ability to
reason about future states. OSVI-WM addresses this gap through a world-model-guided trajectory
generation module that enables future-aware planning and improved generalization to unseen tasks.

World Model in Robotics: Intelligent beings like animals are believed to possess internal models
of the world that support control and planning for task execution [52, 53, 16, 38]. Inspired by this,
researchers have increasingly explored the use of world models in robotics [45]. In reinforcement
learning (RL), several works [17, 28, 19–21, 18, 39, 56, 6, 44, 14] have focused on learning world
models from agent rollouts. These models are then used as environments for RL policy training, often
also predicting rewards based on the agent’s actions. Most prior works train world models directly in
the pixel space, i.e., conditioned on the current image and action, the model predicts the next-frame
image, often also integrated with diffusion-based frameworks. These world models, however, requires
modeling low-level pixel details that are often irrelevant for downstream tasks [2]. To address this,
recent methods [24, 23, 36, 30] learn world models in a latent embedding space, allowing for more
efficient and abstract representations of the environment.

Beyond RL, world models have been explored for broader robotic learning tasks. For instance,
SWIM [37] pre-trains a world model from human videos and fine-tunes it on robot data in an
unsupervised manner. GR1 [54] and [59] propose pre-training strategies to improve downstream
robotic motor control. Most of these approaches, however, rely on large-scale internet data or massive
pretraining datasets, leading to high computational demands. DynaMo [8], in contrast, proposed
in-domain latent dynamics pretraining for the encoder, which was used to train downstream policies.
Similarly, DINO-WM [64] used the pre-trained DINOv2 [41] model (with frozen weights) to build
in-context world models and applied model predictive control based optimization for task execution.
Inspired by these advances, our proposed framework, OSVI-WM, learns a world model entirely from
in-domain data. It predicts latent trajectories based on an expert demonstration and the agent’s current
observation. Unlike prior work, OSVI-WM, including its world model, is trained end-to-end, without
any pretraining, simplifying the pipeline and reducing computational complexity.

3 Our Method

Problem Formulation: We formulate the problem following prior work in OSVI [10, 34, 5]. Let
T = {T1, . . . , TK} denote a set of tasks, partitioned into disjoint training (Ttrain) and test (Ttest)
sets. In contrast to [10] and consistent with [5], our setup uses different training and test tasks, rather
than minor variations of the same task. Each training task consists of multiple sequences of expert and
agent trajectories. The expert trajectory comprises demonstration video frames {E1, . . . , EN}, while
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Figure 2: OSVI-WM: The expert demonstration frames E1, . . . , EN and the agent’s current observa-
tion R1 are encoded into a latent space using a ResNet encoder. A world-model-guided trajectory
generation module predicts future latent states r2, . . . , rM , which are decoded into physical waypoints
for control. During training, supervision is applied on the predicted waypoints and latent states.

the agent trajectories are represented by observation-state pairs (R,S) where R = {R1, . . . , RM}
denotes the observation frames and S denotes the corresponding agent states. Within each task, all
expert and agent trajectories correspond to variations (e.g., different object configurations) of the
same high-level task. The model, trained on Ttrain, is evaluated on Ttest, which contains only expert
demonstration videos (no agent rollouts). The performance is measured by recording the success rate
of the agent in completing these test tasks. The key challenges in this setup are: (a) test tasks Ttest
differ from the training tasks Ttrain; (b) the expert and the agent may have different embodiments;
(c) there is no direct alignment between expert and agent states or actions; and (d) to avoid reliance
on costly large-scale data, the method should be trained in-domain.

Method Overview: Given expert demonstration video frames E1, . . . , EN and the agent’s initial
observation R1, OSVI-WM (Fig. 2) encodes them using a shared ResNet-18 [25] encoder to obtain
latent states for the expert and agent. These are passed to the world-model-guided trajectory generation
module (Sec. 3.1) to predict a trajectory of future latent states, which is pooled, first spatially, then
temporally, into a compact representation. Using this as input, an MLP-based waypoint predictor
generates physical waypoints (Sec. 3.2). Loss functions are applied to the predicted waypoints and
the latent states predicted by the world model (Sec. 3.3).

3.1 World-Model-Guided Trajectory Generation

Figure 3: WM-Guided Trajectory Gen-
eration: Starting with the agent’s ini-
tial observation and the expert demon-
stration, future states are recursively pre-
dicted using action and world models.

The expert demonstration and the agent’s initial observa-
tion frames are each processed through a ResNet-18 [25]
encoder, producing feature maps of shape (F,H,W ) be-
fore the encoder’s global pooling layer, where F = 512
and (H,W ) depend on the input resolution. These fea-
tures are flattened to produce latent states for the expert
frames (e1, . . . , eN ) and the agent’s observation (r1), each
frame with shape (F ×H ×W ). A latent state is a com-
pact, abstract representation of the environment that en-
codes key features such as the configuration of objects
and dynamic elements. A latent action similarly repre-
sents an abstract transformation that drives state transi-
tions. Operating in this latent space further helps mitigate
the multi-modality of real-world action distributions. The
world-model-guided trajectory generation module consists of an action model π and world model W .
At timestep i, π predicts latent action ai using the agent’s current and past latent states along with the
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expert demonstration’s latent states. This action is used by W to predict the agent’s next latent state:

ai = π(ri, . . . , r1, eN , . . . , e1), ri+1 = W(ri, ai, . . . , r1, a1); i = {1, . . . ,M − 1}. (1)

This multi-step recursive process (Fig. 3) generates all future latent states of the agent (r2, . . . , rM ),
forming the generated trajectory. The world model (WM) essentially learns the environment’s
dynamics to predict the next latent state based on the current latent state and latent action.

Within the action model π, at each step i, the expert states {eN , . . . , e1} and agent states {ri, . . . , r1}
are concatenated along the temporal dimension, resulting in shape (N + i, F ×H ×W ). This is
processed through causal transformer blocks, and the output corresponding to the final temporal
index is used as the latent action ai. For the world model W , the latent actions {ai, . . . , a1} are
concatenated with the corresponding agent states {ri, . . . , r1} along the feature dimension to obtain
shape (i, 2F ×H ×W ). This sequence is processed through a causal transformer, and the output at
the last time step is projected to shape (F ×H ×W ) to produce the next state ri+1.

3.2 Predicting Waypoints

Spatial and Temporal Pooling: The predicted trajectory of future states (r2, . . . , rM ) is reshaped
back to shape (F,H,W ) at each timestep to retain spatial structure. A spatial pooling module [10]
then applies a 2D softmax across each feature map and computes an expected 2D coordinate over a
[−1, 1] grid for each feature dimension. These coordinates are concatenated, producing a spatially
pooled output of shape 2F for each of the M − 1 timesteps (r̄2, . . . , r̄M ). Sinusoidal positional
embeddings are then added along the temporal dimension, and an attention pooling module with a
learned query summarizes the sequence into a single 2F -dimensional vector.

Attributed Waypoint Prediction: The pooled vector is passed through a two-layer MLP to predict 5
attributed waypoints, each of dimension 4. Following [5], each waypoint encodes the end-effector’s
3D position in the camera’s coordinate frame and a binary gripper state (open/closed). These positions
are transformed into the robot’s coordinate frame using a known camera-to-robot transformation. A
waypoint controller, using inverse kinematics of the robot, computes low-level control commands
for execution. To ensure accurate grasping, especially in the final centimeters before contact, we
follow [5] and use an end-effector-mounted depth camera to correct residual pose errors.

Waypoint Re-Planning: To improve robustness during execution, OSVI-WM supports waypoint
re-planning, which activates if the agent fails to complete the task using the predicted waypoints. In
simulation, success or failure is automatically determined from environment configurations. Although
we do not use re-planning on real-world benchmarks in this work, success (or completion) signals
could be obtained via learned reward/value models [24] or vision–language-based completion detec-
tors [32, 57]. In OSVI-WM, once all waypoints are executed, the agent captures a new observation,
which, combined with the original expert demonstration, generates updated waypoints. Notably
OSVI-WM outperforms existing baselines even without re-planning (Fig. 8).

3.3 OSVI-WM Training

Loss Functions: We jointly optimize the world model and the waypoint predictions. To supervise
the world model, ground-truth agent observations R2, . . . , RM from the training set are encoded
into latent states using our encoder, followed by the spatial pooling layer to produce r̂2, . . . , r̂M . An
L1 loss is applied between these and the predicted latent states after spatial pooling (r̄2, . . . , r̄M ):
Lwm = 1

M−1

∑M
i=2 ∥r̄i − r̂i∥1. To prevent model collapse and ensure stable training, we apply

a stop-gradient to r̂2, . . . , r̂M , preventing backpropagation through the ground-truth latent states.
For waypoint supervision, we interpolate the ground-truth agent trajectory into a denser sequence
and use the differentiable soft dynamic time-warping loss [9] (Lsdtw). Although only 5 waypoints
are used at inference, we follow [5] and predict multiple sets (1 to 5 waypoints) during training,
applying separate losses for each set to improve supervision across different trajectory granularities.
The overall training objective is L = Lsdtw + α(τ)Lwm where α(τ) is a scheduling factor that
balances the two loss terms based on the training iteration τ . For the Meta-World [61] benchmark
experiments in Sec. 4, α(τ) is initialized to 1 and decays exponentially to 0.05 by the end of training.
For Human-Franka-PP, α(τ) = 10; for all other datasets, we keep α(τ) = 1.

Training Settings: Each expert demonstration is downsampled to N = 10 frames, and each agent
trajectory to M = 6 frames. Following prior work [10, 5], we pair every expert demonstration
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Figure 4: Simulation Environments: Test tasks are different from the ones used for training.
Additionally, Pick-and-Place uses different embodiments for expert and agent.

Figure 5: Real-World Environments: (a) Pick-and-place setup with expert (gray) and agent (white)
Franka arms mounted at different locations. (b) Similar setup with a human expert and Franka agent.
(c) Box push setup with human expert and Franka agent.

with every agent trajectory within the same task, resulting in a combinatorial dataset expansion. We
train for 10 epochs in simulation and 100 in real-world settings using AdamW [33] optimizer with
a one-cycle learning rate scheduler [47] (start: 0.0002, end: 2 × 10−7), and a batch size of 128.
We apply asymmetric demonstration image mixup [5] regularization to help the model focus on
task-relevant cues rather than video semantics. Although training runs for 10 epochs, we use early
stopping for Meta-World to avoid overfitting and report results using the overall best-performing
checkpoint. For simulation runs, we used an RTX A4000 GPU with 128 GB RAM and Intel i9 CPU,
and for real-world, we used an RTX 2080 Ti, 64 GB RAM, and Intel i7 CPU.

4 Experiments

Our experiments are designed to address the following key questions: (a) How well does OSVI-WM
generalize to novel, unseen tasks? (b) Can OSVI-WM be used for real-world robotic tasks? (c) What
is the impact of the world-model-guided trajectory generation module on overall performance? (d)
Which components of OSVI-WM are most critical to its success?

4.1 Evaluation Settings

Environments: We evaluate OSVI-WM on simulation (Fig. 4) and real-world benchmarks (Fig. 5):

(a) Meta-World [61]: A simulation benchmark of 50 manipulation tasks, split into 46 for
training and 4 for testing following [5]. Test tasks are different from train tasks and are
divided into ‘easy’ tasks (Button-Press-V2, Pick-Place-Wall-V2), which differ from training
tasks due to the presence/absence of distractor, and ‘hard’ tasks Window-Open-V2, Door-
Unlock-V2, which, despite being visually similar to Window-Close-V2 and Door-Lock-V2
from the training set, respectively, differ in context and require distinct responses.

(b) Pick-and-Place [10]: A simulated benchmark involving 4 objects and 4 targets, yielding 16
tasks. Following [5], we use 14 tasks for training and 2 for testing. This benchmark features
different embodiments: the expert uses a Sawyer arm, and the agent uses a Franka arm.

(c) Two-Franka-PP (Fig. 5a): A real-world setup with two Franka arms mounted at different
tabletop locations, with the gray arm as the expert and the white arm as the agent. The tasks
are similar to Pick-and-Place above, with two objects and two targets (4 tasks total). We
use 3 tasks for training and 1 for testing. The difference in mounting location between the
expert and agent introduces additional imitation complexity.

(d) Human-Franka-PP (Fig. 5b): Similar to Two-Franka-Env, but the expert is a human arm
and the agent is a Franka robot. This greater embodiment mismatch increases task difficulty.
As before, we use 3 tasks for training and 1 for testing.
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Table 1: Success rates (in %) comparison on the Meta-World [61] and Pick-and-Place [10] simulation
benchmarks. Best results are highlighted. We also report if a method uses additional training data.

Method Add. Data Pick Place Meta-World
Easy Hard All

DAML [60] No 1 4 8 6
T-OSVI [10] No 10 50 7 28.5
AWDA [5] No 100 74 11 42.5
AWDA [5] Yes 100 73 30 51.5
OSVI-WM (Ours) No 100 96 71.5 83.8

Table 2: Real-World experiments: Success rates and execution breakdowns (in %) are reported.
T-OSVI* denotes T-OSVI [10] aided with end-effector depth sensing for improved grasping.

Two-Franka-PP Human-Franka-PP Human-Franka-Push
Method Breakdown Breakdown Breakdown

Overall
Success

Reach
Obj.

Grasp
Obj.

Overall
Success

Reach
Obj.

Grasp
Obj.

Overall
Success

Reach
Obj.

T-OSVI [10] 0 52 0 0 0 0 16 96
T-OSVI* [10] 4 52 36 0 0 0 - -
AWDA [5] 88 88 88 92 92 92 76 100
OSVI-WM (Ours) 96 96 96 92 92 92 100 100

(e) Human-Franka-Push (Fig. 5c): This features two colored boxes on a tabletop. The task
involves selecting a box and pushing it either forward or backward (four tasks total). We
train on three and test on the held-out one. The expert is a human and agent is a Franka arm.

In the pick-and-place tasks above, sequences from test object-target pairs are excluded from training.
While this may appear to be an extension of training tasks, most prior methods require training on all
pairs to succeed. Generalizing to an unseen pair requires the model to truly follow the expert, rather
than rely solely on scene semantics. Additional environmental details are in the appendix.

Baselines: As noted in Sec. 1 and Sec. 2, most one-shot visual imitation methods are evaluated on
tasks that are minor variations of training tasks. AWDA [5] is the only method that uses the same
sensors and environment settings as ours and evaluates on unseen test tasks, making it our primary
baseline. We also compare against two widely used methods: DAML [60] and T-OSVI [10]. In
real-world experiments, T-OSVI fails to achieve successful grasps. To mitigate this, we augment it
with the same depth-based gripper correction used in OSVI-WM and AWDA, where an end-effector-
mounted depth camera corrects residual pose errors. We refer to this variant as T-OSVI* and report
its results in Table 2. For OSVI-WM, re-planning is used only on the MetaWorld ‘hard’ tasks, as we
observe strong performance even without it on all other benchmarks.

4.2 Results

How well does OSVI-WM generalize to novel, unseen tasks? We compare OSVI-WM against
baseline methods in Table 1 on the Pick-and-Place [10] and Meta-World [61] benchmarks. OSVI-WM
is evaluated over 100 rollouts per task with varied object configurations, and success rates are reported.
Baseline results are reported from [5]. OSVI-WM outperforms prior methods, achieving success rates
up to 30% higher than AWDA even when AWDA uses additional training data. OSVI-WM’s ability
to predict future latent states enables effective planning, resulting in strong performance even on the
Meta-World ‘hard’ tasks. Failure cases in this setting often occurred in edge cases where objects,
such as windows or doors, were positioned far from the agent, making manipulation challenging due
to depth ambiguity in external RGB observations. Nonetheless, OSVI-WM achieves a 71.5% success
rate on these tasks, outperforming all baselines.

Can OSVI-WM be used for real-world robotic tasks? We evaluate OSVI-WM and baselines on the
real-world setups, each tested over 25 rollouts using the same 25 object configurations across methods
for fair comparison (Table 2). These setups introduce added complexity: in Two-Franka-PP, the expert
and agent robots are mounted at different locations, while in Human-Franka-PP and Human-Franka-
Push, the expert is a human. Despite these challenges, OSVI-WM achieves consistently high success
rates, showing strong real-world applicability. The table also breaks performance into sub-tasks like
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Figure 6: Real-World Qualitative Example: The human expert demonstrates the test task of picking
and placing a can in the green target, which the agent successfully imitates using OSVI-WM.

Figure 7: Ablation study on the world model (WM) and
WM loss. Using both achieves the best performance.

Figure 8: Ablation Study on OSVI-
WM’s Re-Planning (RP).

reaching and grasping. In Two-Franka-PP, T-OSVI [10] reaches the object in 52% of trials but fails
to grasp it. T-OSVI* (i.e., T-OSVI with grasp correction) improves grasping to 36% but completes
the full task only once (4%). AWDA succeeds in 88% of the trials, failing due to incorrect object
selection. OSVI-WM performs best, succeeding in 96% of the trials. Human-Franka-PP is more
challenging due to the embodiment gap. In this setting, T-OSVI and T-OSVI* fail to reach the correct
object, while AWDA and OSVI-WM both succeed in 92 % of the trials. In Human-Franka-Push, all
methods consistently reach the correct object. However, due to the low margin for error in this setting,
AWDA and T-OSVI often collided with the object during fine manipulation, leading to reduced
success rates of 76% and 16%, respectively. OSVI-WM executed these movements more accurately,
achieving 100% success. Since there is no grasping involved in this task, we do not run T-OSVI*.

We present a qualitative example of OSVI-WM in the Human-Franka-PP real-world setup. In
Fig. 6a, a human expert demonstrates the task of placing a can on a green target. Using only this
demonstration, the agent (white Franka arm) successfully completes the task (Fig. 6b), despite
changes in object locations and embodiment differences. This task was excluded from training,
illustrating OSVI-WM’s ability to generalize to unseen tasks by following the expert’s intent rather
than relying solely on visual semantics. This example showcases OSVI-WM’s effectiveness under
all key conditions outlined in our problem setup: unseen tasks, embodiment mismatch, unaligned
trajectories, and in-domain training. More visualizations on different tasks are in the appendix.

What is the impact of the world-model-guided trajectory generation module? We assess the
impact of this module through two ablations on the Meta-World dataset. The first removes the world
model loss Lwm; the second removes the world-model-guided trajectory generation module entirely,
replacing it with a single action model that predicts an action vector from the expert demonstration
and the agent’s initial observation. This vector is passed through the pooling and waypoint prediction
modules. As shown in Fig. 7, removing the world model yields the lowest performance, while
adding it without Lwm provides limited gains. The loss Lwm is applied to future latent states
predicted by the world model and is independent of ground-truth waypoint supervision. It acts as an
auxiliary dynamics-consistency regularizer and encourages robust, task-agnostic representations, thus
improving generalization to unseen tasks. Hence, combining the world model with Lwm achieves the
best performance, underscoring the importance of both the module and its training signal.
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Figure 9: (a) An example ground truth rollout of the Button-Press-V2 task from Meta-World [61]. (b)
Latent trajectory generated using OSVI-WM’s world model decoded into images for visualization.
In Fig.9, we visualize the predicted trajectory generated by OSVI-WM’s world model on the Button-
Press-V2 task [61]. To convert the latent states into images, we train a Transpose Convolution-based
image predictor. Images from the task are encoded using OSVI-WM’s trained encoder and spatial
pooling layer, and the image predictor is trained to predict back the pixels. During evaluation,
we generate the future latent states (r2, . . . , rM ) using the expert demonstration and initial agent
frame, and decode them into images (Fig.9b) using the image predictor. A ground truth rollout
is shown for comparison in Fig. 9a. Two key observations emerge: (a) the predicted trajectory
captures meaningful, task-completing states, effectively summarizing the task; (b) the latent states
are informative enough to reconstruct interpretable images. As expected, later states appear more
pixelated due to accumulated errors in recursive latent state predictions. Despite this, the decoded
trajectory clearly reflects the full task execution and produces accurate downstream performance.

Which components of OSVI-WM are most critical to its success? As shown above, the
world-model-guided trajectory generation module, along with supervision from the WM loss
Lwm, is critical to OSVI-WM’s success. Re-planning further boosts performance, particu-
larly on the challenging Meta-World ‘hard’ tasks. Fig. 8 isolates the impact of re-planning,
showing an approximate 30-point gain. For comparison, we also report the average success
rate of AWDA [5] (with additional training data). Notably, even without re-planning, OSVI-
WM outperforms AWDA. Table 3 presents further ablation studies evaluating key architectural
choices. Removing stop-gradient in the WM loss significantly degrades performance, dropping
Meta-World accuracy by 7% and Pick-and-Place by 80%, clearly indicating model collapse.

Table 3: Ablation results (avg. success rates) on the Pick-
Place [10] and Meta-World [61], evaluating the impact of differ-
ent architectural choices by individually disabling them.

Stop Grad Spatial Pool Multi-Step Benchmarks
in WM Loss after WM Prediction Pick-Place Meta-World

× ✓ ✓ 20 76.5
✓ × ✓ 15 79.5
✓ ✓ × 100 67.3
✓ ✓ ✓ 100 83.8

Applying spatial pooling before
the world-model-guided trajectory
generation block introduces an in-
formation bottleneck, resulting in a
85% drop in Pick-and-Place and an
4% drop in Meta-World. Switching
from multi-step recursive to single-
step trajectory prediction has no ef-
fect on Pick-and-Place but lowers
Meta-World performance by over
15% due to Meta-World’s greater
complexity. Together, these results
show that OSVI-WM’s effectiveness stems from key components: (a) the world-model-guided tra-
jectory generation with WM loss, (b) re-planning, (c) stop-gradient in WM supervision, (d) spatial
pooling after the world model, and (e) multi-step trajectory prediction. Regularization strategies like
asymmetric demonstration image mixup [5] further improve generalization.

Division of train and test tasks: The choice of train–test task division affects performance, especially
in the Meta-World simulation environment. During training, the model learns two key components:
inferring tasks from the expert and acquiring the skills needed to complete these tasks. Hence, careful
consideration is required when choosing training tasks to ensure meaningful generalization to unseen
tasks. To further investigate this, we conducted two ablation studies on the Meta-World benchmark.
In the first, we excluded all button-related tasks (Button-Press-Topdown, Button-Press-Topdown-Wall,
Button-Press-Wall) from training and evaluated on Button-Press. The model still achieved a 97%
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success rate, nearly identical to when the button-related tasks were included. This is because button
pressing is relatively kinematically less complicated and the required skills were already acquired
from other training tasks. In the second ablation, we removed Window-Close from the training set
and evaluated on Window-Open. Here, performance decreased from 95% to 80%.The sliding window
tasks here involve more complex physical dynamics. So the absence of related training data led to a
noticeable drop in generalization. If the training set included a very large variety of tasks with diverse
motions and skills, the model would potentially perform well on any task, even if no similar tasks
were present in the training set. However, this approach would require large out-of-context datasets,
significant training resources, and extended training times. In OSVI-WM, we follow the train–test
split proposed in AWDA [5] for consistency with prior work.

5 Conclusion

We introduced OSVI-WM, a novel framework for one-shot visual imitation on unseen tasks. Given a
single expert demonstration and the agent’s initial observation, OSVI-WM encodes them into latent
states and uses a world-model-guided approach to predict a trajectory of future latent states. This
trajectory is decoded into physical waypoints that control the robot. Extensive experiments in both
simulation and real-world settings demonstrate OSVI-WM’s strong performance, and ablation studies
confirm the importance of key design choices in the framework. By generalizing effectively from a
single demonstration to unseen tasks, OSVI-WM takes a step toward enabling autonomous robotic
systems capable of operating in complex, real-world domains such as industrial automation and
medical assistance, without constant human supervision.

Limitations: While OSVI-WM demonstrates promising results, there are limitations that open
avenues for future work. Like prior work [10, 5, 34], it only predicts 3D positions and a gripper state,
without modeling the end-effector’s orientation. This may limit its applicability to tasks requiring
rotational actions, such as screwing or side-grasping. The current formulation focuses on single-task
execution; extending the framework to sequential or multi-task settings is an interesting direction
for future work. The division of train and test task can potentially influence the performance of
OSVI-WM as detailed in Section 4. Further, although the test tasks are unseen during training,
they belong to the same family of manipulators as the training data. While these limitations do not
hinder current performance, they highlight promising directions for enhancing the framework in more
complex task settings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s core contribution: a
framework for one-shot visual imitation for unseen tasks via world-model-based trajectory
synthesis. This has been described in detail in Sections 1, 2, and 3 and supported with
experiments on benchmark environments demonstrating generalization to unseen tasks
(Section 4), aligning well with the stated contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses the limitations in the second paragraph of Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient detail in Sections 3 and 4 to reproduce the main
experiments, with additional implementation specifics in the appendix. Code will be released
upon acceptance, further supporting reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper uses publicly available simulation benchmarks. The code and
real-world experimental data will be made publicly available through the Github repository
linked in the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides comprehensive training and evaluation details, including
data splits, hyperparameters, and optimization settings in Sections 3.3 and 4, with additional
specifics in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided extensive experiments showing the benefits of the proposed
approach. Since we have empirically found the model’s output waypoints to be highly
repeatable for the same environment configuration, error bars are not explicitly provided.
In Section 4, we report mean success rates over multiple rollouts with different environ-
ment configurations and initialization showing the performance improvements over prior
baselines.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources used are provided in Section 3.3 of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The paper discusses, in the introduction and conclusion, how the proposed
methodology for one-shot imitation learning can positively impact society by enabling
autonomous robotic systems in areas such as medical assistance and industrial automation.
Since the paper addresses foundational research, there are no known negative societal
impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in the paper are properly cited, the license and terms of use
explicitly mentioned and properly respected.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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