

000 MOTION-R1: ENHANCING MOTION GENERATION 001 WITH DECOMPOSED CHAIN-OF-THOUGHT 002 AND RL BINDING 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012 Text-to-Motion generation has become a fundamental task in human-machine interaction,
013 enabling the synthesis of realistic human motions from natural language
014 descriptions. Although recent advances in large language models and reinforce-
015 ment learning have contributed to high-quality motion generation, two major chal-
016 lenges remain. Existing approaches often fail to capture the temporal and causal
017 complexities inherent in natural language, leading to oversimplified or incoherent
018 motions. Additionally, RL-based methods are frequently overly complex, hin-
019 dering their scalability and adaptability across various motion generation tasks.
020 To address these challenges, we propose **Motion-R1**, a novel framework that
021 combines decomposed Chain-of-Thought reasoning with reinforcement learning
022 to enhance both the quality and interpretability of generated motions. Specif-
023 ically, we introduce the **Decomposed CoT Data Engine**, which leverages an au-
024 tomated pipeline to synthesize high-quality reasoning data, allowing the model to
025 better capture the temporal dependencies and causal relationships of human motion.
026 We also propose **RL Binding**, a reinforcement learning strategy that incorpo-
027 rates multi-modal text-motion alignment into the RL reward function, guiding the
028 model to produce motions that are both semantically accurate and motionally real-
029 istic. Extensive experiments across benchmark datasets demonstrate that Motion-
030 R1 achieves state-of-the-art performance, with a 3.5% improvement in MM-Dist
031 on HumanML3D and improvements in R-Precision and FID on KIT-ML and BA-
032 BEL, surpassing existing methods across key metrics and highlighting its superior
033 capability in handling complex motion generation tasks.
034

035 1 INTRODUCTION 036

037 Text-to-Motion (T2M) generation Guo et al. (2022c); Tevet et al. (2023); Guo et al. (2022a) has
038 emerged as a fundamental task in human-machine interaction, enabling the synthesis of realistic
039 human motions from natural language descriptions. Driven by rapid advancements in large lan-
040 guage models (LLMs) Achiam et al. (2023); Li et al. (2023), recent T2M approaches Jiang et al.
041 (2023); Wang et al. (2024); Wu et al. (2024) have made significant strides in generating high-fidelity
042 motions that align with complex textual instructions. Reinforcement learning (RL) Kaelbling et al.
043 (1996) provides a promising approach to enhance motion generation by optimizing it for motion
044 quality. Recent works Liu et al. (2024); Haoru Wang et al. (2025) have successfully integrated RL
045 into motion generation, improving both text adherence and motion quality by aligning with human
046 perceptual preferences. However, despite significant advancements in motion generation, current
047 methods still face two major challenges.

048 (1) Existing approaches predominantly rely on end-to-end supervised learning Ahn et al. (2017);
049 Hong et al. (2022); Ahuja & Morency (2019), directly mapping textual inputs to motion sequences.
050 While this approach is simple, it fails to capture the deeper temporal and causal relationships inher-
051 ent in natural language. For instance, a high-level task like "making a cup of coffee" involves a series
052 of connected sub-actions (e.g., reaching, grasping, pouring, stirring, placing), which require care-
053 ful temporal ordering and causal reasoning. However, these methods often struggle to effectively
decompose such tasks, resulting in oversimplified or incoherent motion generation.

(2) RL-based methods, such as MotionRL Liu et al. (2024) and MotionCritic Haoru Wang et al. (2025), demonstrate improvements in motion quality but are often overly complex and over-engineered. These designs, though effective, limit their adaptability to real-world applications. The intricate nature of these RL models makes them difficult to scale and deploy across a wide range of motion generation tasks, especially when simplicity and efficiency are needed.

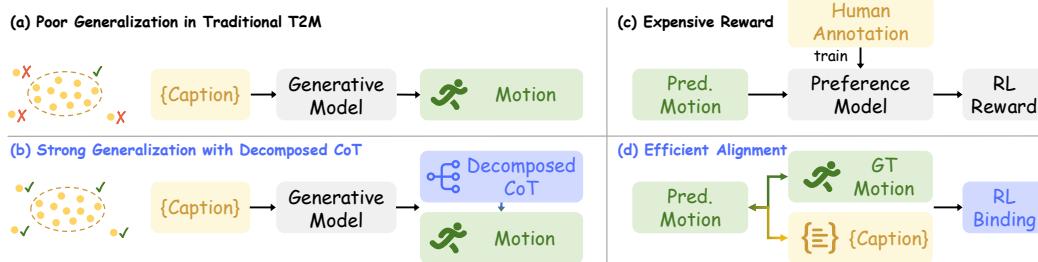


Figure 1: **Comparison of traditional approaches and our Motion-R1 framework.** (a) Traditional end-to-end models exhibit poor generalization on out-of-distribution motions. (b) Our Decomposed CoT Data Engine enables strong generalization by structuring high-level instructions into intermediate reasoning steps. (c) Existing RL-based methods rely on expensive human annotations to train preference models for reward signals. (d) Our RL Binding mechanism achieves efficient multi-modal alignment without additional annotation cost.

Our motivation is to advance motion generation by introducing a novel framework, **Motion-R1** that effectively addresses the key challenges in the field, as shown in Figure 1.

To tackle the first challenge, we propose a **Decomposed CoT Data Engine** which synthesizes high-quality, step-by-step reasoning data. Inspired by the recent success of Chain-of-Thought (CoT) Wei et al. (2022) prompting in enhancing reasoning capabilities of LLMs, we hypothesize that explicitly modeling intermediate reasoning steps can similarly benefit motion generation tasks. By decomposing high-level instructions into structured action plans, our engine leverages an automated CoT annotation pipeline that employs LLMs to generate structured motion planning paths, enabling models to better capture temporal dependencies, causal relationships, and fine-grained semantic nuances embedded in language. This approach not only enhances the realism and coherence of the generated motions but also reduces reliance on expensive manual annotation, making the process more efficient and scalable.

To address the second challenge, we introduce **RL Binding**, a novel reinforcement learning strategy that enhances motion generation by incorporating a multi-modal alignment mechanism within the RL framework. RL Binding simultaneously aligns the generated motion sequences with both the ground-truth motions and the corresponding textual descriptions. This dual alignment process ensures that the generated motions not only stay temporally consistent with real-world actions but also faithfully capture the semantic meaning conveyed in the textual instructions. By embedding these alignments directly into the RL reward function (specifically, the *motion similarity reward*, the *semantic similarity reward*, and the *format reward*), RL Binding guides the model to produce motions that are both semantically accurate and motionally realistic. This streamlined design simplifies the optimization process, improving both the quality and interpretability of the generated motions, while offering a highly adaptable and efficient solution for real-world applications.

Moreover, to demonstrate the effectiveness of our approach, we conduct extensive experiments on multiple benchmark datasets. Our method achieves a 3.5% improvement in MM-Dist on HumanML3D Guo et al. (2022a), while also setting new state-of-the-art records in R-Precision and FID on both KIT-ML Plappert et al. (2016) and BABEL Punnakkal et al. (2021). These results highlight the superiority of our method in both motion quality and task performance, showcasing its strong potential for real-world applications.

In general, our work’s contributions can be summarized in the following three folds:

- **Decomposed CoT Data Engine:** We introduce a novel framework for synthesizing high-quality, step-by-step reasoning data. By leveraging an automated CoT annotation pipeline powered by LLMs, our approach effectively captures the temporal dependencies and causal relationships inherent in motion generation. This method significantly improves the quality of generated motions

108 while reducing the reliance on costly manual annotation, making the process more efficient and
 109 scalable.

110 • **RL Binding Strategy:** We propose RL Binding, a novel reinforcement learning strategy that
 111 integrates multi-modal text-motion alignment into the reward function via the *motion similarity*
 112 *reward*, the *semantic similarity reward*, and the *format reward*, effectively guiding the model to
 113 generate motions that better adhere to textual instructions while maintaining high motion quality.
 114 The simplicity and effectiveness of RL Binding enhance the model’s ability to optimize across both
 115 modalities, resulting in improved precision and interpretability in motion generation.

116 • **Comprehensive Experimental Validation:** We conduct extensive experiments across multiple
 117 benchmark datasets, demonstrating the effectiveness of Motion-R1. On HumanML3D, it achieves
 118 a **3.5% improvement in MM-Dist**, with Diversity and R-Precision metrics reaching state-of-the-
 119 art or on-par performance. On KIT-ML, Motion-R1 sets **new records in R-Precision and FID**,
 120 outperforming existing methods. On BABEL, it achieves **state-of-the-art performance across**
 121 **all key metrics**, including R-Precision, FID, MM-Dist, and Diversity. These results highlight the
 122 model’s superior ability to generate diverse, high-fidelity, and semantically aligned motions.

124 2 RELATED WORK

125 **Multimodal Large Language Models** Recently, multimodal large language models
 126 (MLLMs) Wu et al. (2023); Koh et al. (2023); Tang et al. (2025) have shown impressive
 127 performance in various tasks, including text generation, reasoning, and even multimodal tasks. For
 128 example, models like GPT-4 Achiam et al. (2023) and BLIP-2 Li et al. (2023) have demonstrated
 129 the ability to understand and generate text and images. While recent MLLMs have significantly
 130 improved their perception and generation capabilities across diverse modalities, many complex
 131 real-world tasks demand not only understanding but also reasoning Banerjee et al. (2021); Xiong
 132 et al. (2024). Consequently, enhancing the reasoning abilities of MLLMs has become an important
 133 research direction.

134 Building on the success of CoT Wei et al. (2022) prompting in NLP, researchers have explored
 135 extending CoT-style reasoning to multimodal settings. For instance, models like LLaVA-CoT Xu
 136 et al. (2025) introduce a novel vision-language model capable of performing autonomous, structured,
 137 and multistage reasoning by decomposing complex questions into four stages: summary, caption,
 138 reasoning, and conclusion.

139 While structured reasoning enhances interpretability and controllability, recent studies Tan et al.
 140 (2025); Pan et al. (2025); Liu et al. (2025) show that it can be further optimized through reinforce-
 141 ment learning. Building on GRPO Guo et al. (2025), we introduce a decomposed CoT paradigm
 142 for structured motion reasoning and an RL Binding mechanism, together enabling interpretable and
 143 semantically aligned motion synthesis.

144 **Text-guided 3D Human Motion Generation** Text-guided 3D human motion generation has be-
 145 come a key research focus in recent years. Early methods Ahn et al. (2017); Ghosh et al. (2023)
 146 primarily relied on generative adversarial networks Goodfellow et al. (2014) to synthesize human
 147 motion from text descriptions. These methods often struggled with issues such as limited diversity.

148 To address these challenges, diffusion models Ho et al. (2020) have gained popularity in this field.
 149 Notable works Zhou & Wang (2022); Kim et al. (2023); Dabral et al. (2023) include MDM Tevet
 150 et al. (2023), which first applies diffusion modeling to motion synthesis; MotionDiffuse Zhang et al.
 151 (2022a) improves temporal consistency; MotionChain Jiang et al. (2024) explores fine-grained struc-
 152 ture and staged modeling; and MoMask Guo et al. (2024) employs masking strategies for improved
 153 training efficiency. However, these methods often rely on complex architectures and extensive train-
 154 ing data and are limited by their motion initialization.

155 In parallel, VQ-VAE-based methods Guo et al. (2022a); Hong et al. (2022); Petrovich et al. (2022);
 156 Guo et al. (2022b); Athanasiou et al. (2022); Zhang et al. (2024b; 2025b); Li et al. (2025); Zhang
 157 et al. (2024d;a) discretize motion representations to facilitate efficient sequence modeling and better
 158 alignment with language, providing a more interpretable latent space. Building on this, LLMs have
 159 been integrated into the generation process to enhance the quality and control of generated motions.
 160 For instance, T2M-GPT Zhang et al. (2023a) combines VQ-VAE with GPT in a two-stage frame-

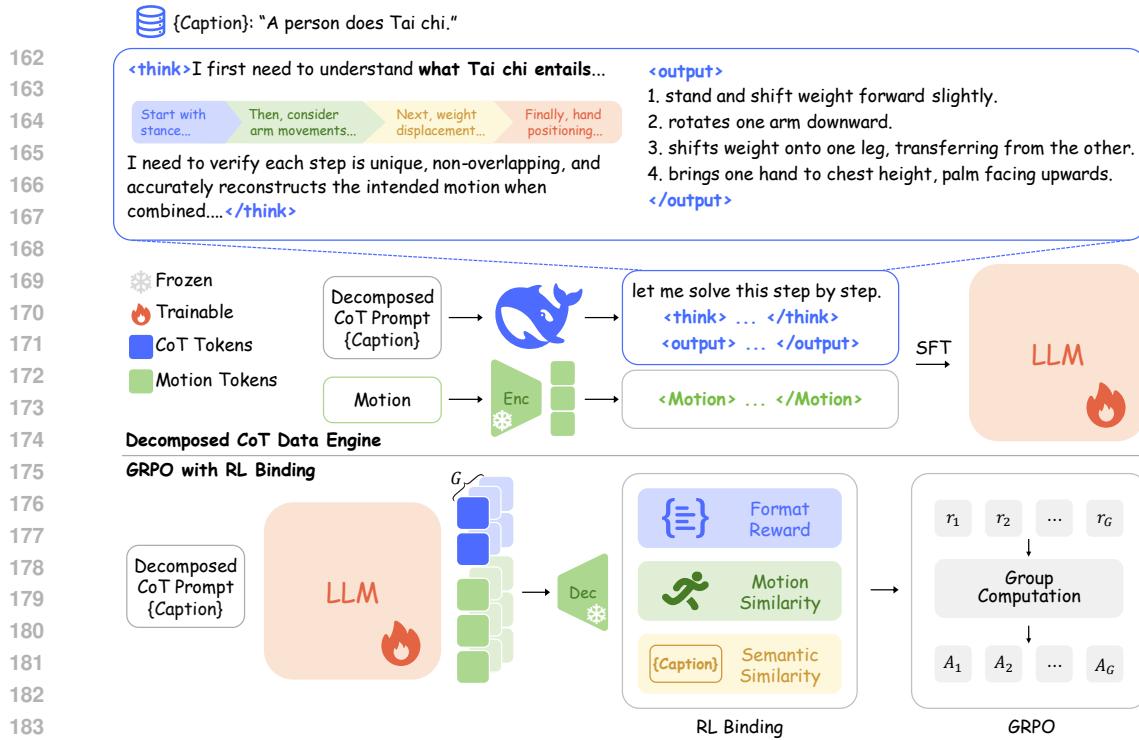


Figure 2: **Overview of the Motion-R1 framework.** Our method introduces two key innovations: (1) a Decomposed CoT Data Engine that generates structured motion planning traces (including `<think>`, `<output>`, and `<Motion>` tokens) via LLM reasoning, enabling fine-grained temporal and causal decomposition; (2) an RL Binding mechanism with GRPO-based training that streamlines optimization via embedded multi-modal alignment, ensuring semantic accuracy and motion realism without human annotations.

work for high-quality generation. Subsequent works such as MotionDiffuse Zhang et al. (2022b), MotionCLIP Tevet et al. (2022), and MotionGPT Jiang et al. (2023) integrate diffusion modeling, contrastive learning, and Transformer architectures to enhance fidelity and semantic consistency further. MotionAgent Wu et al. (2024) further incorporates semantic planning for robust generalization in complex task scenarios.

As the development of reinforcement learning, several approaches have emerged to enhance text-to-motion generation. InstructMotion Mao et al. (2024) uses trial-and-error in reinforcement learning for generalizable motion generation. AToM Han et al. (2024b) enhances the alignment between generated motion and text prompts using rewards from vision-language models. ReinDiffuse Han et al. (2024a) applies reinforcement learning to guide diffusion for motion synthesis. RLPF Yue et al. (2025) utilizes physical feedback from simulation environments to align motion models with humanoid policies. MotionRL Liu et al. (2024) leverages PPO Schulman et al. (2017) to improve generation based on human preferences and prior knowledge. MotionCritic Haoru Wang et al. (2025) introduces a critic model to align motions with textual semantics via preference optimization.

Despite recent advances, T2M methods largely rely on end-to-end mapping and lack explicit reasoning over complex instructions Zhang et al. (2024c; 2025a). Our approach addresses this by combining a decomposed CoT mechanism for interpretable motion reasoning with an RL Binding strategy for efficient multimodal alignment, enabling coherent and semantically grounded motion generation without costly annotations.

3 METHOD

3.1 MOTION-R1 FRAMEWORK

Motion-R1 comprises two core components: a pre-trained motion tokenizer and an LLM equipped with action-oriented reasoning capabilities. The motion tokenizer discretizes continuous motion sequences into motion tokens and reconstructs them back into smooth, coherent trajectories. Mean-

216 while, the LLM is designed to perform structured reasoning over natural language instructions,
 217 enabling it to decompose complex action descriptions into finer-grained and logically ordered sub-
 218 actions, a process we term decomposed CoT reasoning. Based on this structured interpretation, the
 219 model generates high-quality motion token sequences that faithfully reflect the intended behavior.
 220

221 As shown in Figure 2, our framework consists of two training stages. we employ the **Decomposed**
 222 **CoT Data Engine**, a novel automated pipeline for synthesizing high-quality, step-by-step reasoning
 223 data, which enables cold-start supervised tuning of the LLM to produce reasoning-augmented out-
 224 puts in the `<think>`, `<output>`, and `<Motion>` format. By distilling the reasoning capabilities
 225 of LLMs into structured motion planning paths, this stage provides interpretable supervision and
 226 reduces reliance on costly manual annotation, enabling efficient and scalable pretraining of LLMs.
 227

228 In the second stage, we refine the LLM via reinforcement learning using our proposed **RL Binding**
 229 strategy. Building on the GRPO Shao et al. (2024) framework, RL Binding streamlines optimization
 230 by embedding multi-modal alignment directly into the reward function, jointly evaluating embedded
 231 motion similarity with ground-truth trajectories and semantic consistency with textual descriptions.
 232 Unlike prior RL-based methods that rely on costly human annotations for preference models, RL
 233 Binding efficiently guides the model to generate motions that are both semantically faithful and
 234 motionally coherent. This design maintains simplicity and adaptability while enhancing precision,
 235 interpretability, and overall motion quality.
 236

237 By combining the Decomposed CoT Data Engine and RL Binding, Motion-R1 effectively captures
 238 temporal and causal structure while ensuring semantic fidelity and motion realism, providing a uni-
 239 fied framework for coherent, interpretable, and high-quality motion generation without the need for
 240 costly human annotations.
 241

242 3.2 MOTION TOKENIZER

243 To integrate motion data, which differs significantly from natural language in structure and modality,
 244 into the LLM framework, we adopt a VQ-VAE architecture as our motion tokenizer. This approach
 245 has been widely adopted in Zhang et al. (2023a); Jiang et al. (2023); Guo et al. (2024); Wu et al.
 246 (2024) and proven effective for 3D human motion data modeling.
 247

248 The motion tokenizer comprises an encoder E and a decoder D . Given an input motion sequence
 249 $\mathbf{m}_{1:T} \in \mathbb{R}^{T \times D}$, with T frames of D dimensions each, the encoder E maps the sequence to a
 250 latent representation $\mathbf{z}_{1:(T/l)} \in \mathbb{R}^{(T/l) \times d}$, where l is the temporal downsampling rate and d is the
 251 number of latent dimensions. Each latent vector \mathbf{z}_i is then quantized using a learnable codebook
 252 $\mathbf{C} = \{\mathbf{c}_n\}_{n=1}^N$, where N is the codebook size and $\mathbf{c}_n \in \mathbb{R}^d$ represents a discrete motion token. The
 253 quantization selects the nearest code vector to each embedding:
 254

$$\hat{\mathbf{z}}_i = \arg \min_{\mathbf{c}_n \in \mathbf{C}} \|\mathbf{z}_i - \mathbf{c}_n\|_2 \quad (1)$$

255 The original motion sequence is reconstructed as $\hat{\mathbf{m}}_{1:T} = D(\hat{\mathbf{z}}_{1:(T/l)})$. Following Zhang et al.
 256 (2023a), we train the VQ-VAE model using a composite objective that includes a reconstruction
 257 loss $L_{\text{reconstruct}}$, a codebook commitment loss L_{commit} , and an embedding loss L_{embed} .
 258

$$L_{\text{vq}} = L_{\text{reconstruct}} + L_{\text{commit}} + L_{\text{embed}} \quad (2)$$

259 Here, $L_{\text{reconstruct}}$ includes a smoothed L1 loss with velocity regularization to improve generation
 260 quality. To ensure stable and efficient training, we follow Zhang et al. (2023a) to incorporate
 261 exponential moving average (EMA) updates for the codebook along with codebook reset strategies.
 262

263 3.3 DECOMPOSED CoT DATA ENGINE

264 We introduce the **Decomposed CoT Data Engine**, an automated module for generating structured
 265 reasoning traces to guide text-to-motion generation. This engine leverages the reasoning and se-
 266 mantic planning capabilities of LLMs to transform free-form motion descriptions into high-quality,
 267 step-by-step CoT action plans, providing intermediate supervision that bridges language and motion.
 268

269 The engine starts by augmenting existing motion-language datasets using prompt-based LLM
 270 queries. We design comprehensive prompts that instruct the LLM to decompose tasks into logically
 271 ordered sub-actions while respecting temporal dependencies and action semantics. These prompts
 272

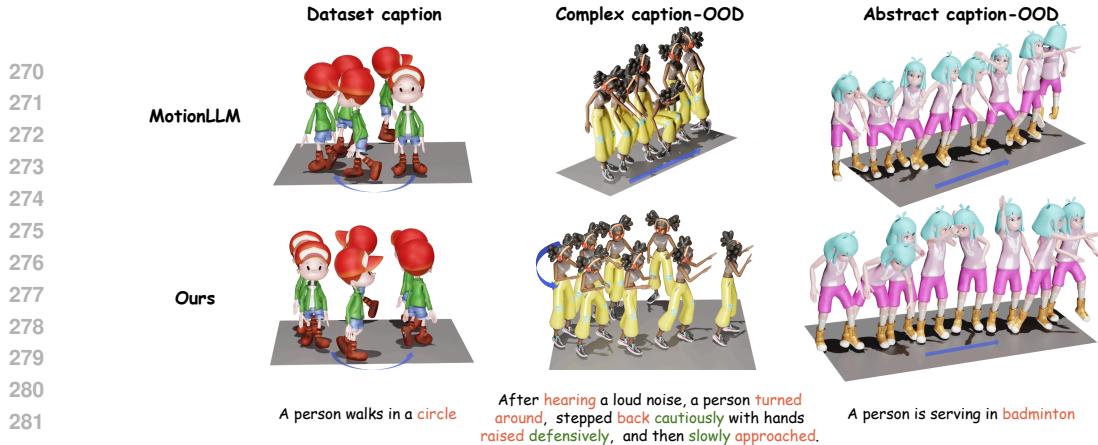


Figure 3: **Visualization comparisons** with MotionLLM Wu et al. (2024) on in-distribution and out-of-distribution prompts.

include clear instructions, output format constraints, and in-context examples to ensure structured reasoning outputs. The complete details of the prompt are provided in the Appendix A.2 material.

Generated CoT traces are then evaluated through an automated quality control pipeline. We employ DeepSeek-R1 Guo et al. (2025) to assess each trace for relevance, logical consistency, and conciseness. Traces that exhibit redundancy, overthinking, or verbosity are filtered and regenerated until they meet quality standards. This iterative filtering and regeneration process serves as our self-verification mechanism, ensuring high-quality training data. Figure 2 illustrates the full Motion-R1 pipeline, with the Decomposed CoT Data Engine highlighted to show the structured reasoning trace generation process. For the task “A person does Tai chi”, the engine identifies the main action, decomposes it into sub-actions such as “stand up”, “arm movements”, “weight displacement”, and “hand positioning”, and further elaborates each sub-action with motion-relevant details like movement direction and involved body parts.

Each validated CoT trace is paired with its original textual description and corresponding motion sequence, forming triplets of the form (description, decomposed CoT, motion). By distilling structured action plans, the Decomposed CoT Data Engine enables the model to capture fine-grained temporal and causal dependencies directly from language, significantly improving controllability, interpretability, and generalization in complex motion generation, while drastically reducing reliance on costly manual annotation.

3.4 TRAINING STRATEGY

3.4.1 COLD-START TRAINING WITH DECOMPOSED CoT

Inspired by DeepSeek-R1-Zero Guo et al. (2025), we first attempt end-to-end RL training to induce decomposed CoT reasoning and motion generation purely from reward signals. Yet this setting proves unstable, as the model often fails to produce coherent reasoning or valid motion tokens. This instability stems from two factors: motion generation requires long, structured sequences rather than short symbolic outputs, and motion tokens are newly introduced symbols with insufficiently trained embeddings to bridge the modality gap.

To mitigate these issues, we adopt a cold-start strategy based on supervised fine-tuning. Leveraging curated triplets of captions, decomposed CoT traces, and motions, we bootstrap the model’s capacity to produce structured reasoning and valid motion outputs, providing a stable foundation for subsequent RL optimization.

3.4.2 GRPO-BASED TRAINING WITH RL BINDING

To enhance alignment between textual instructions and generated motions without incurring costly human annotations, RL Binding formulates text-to-motion generation as a reinforcement learning problem, employing GRPO Shao et al. (2024) to optimize the generation policy efficiently.

324 For each text prompt q , a group of G outputs $\{o_1, o_2, \dots, o_G\}$ are sampled from the old policy
 325 model π_{old} . Each output is assigned a scalar reward, yielding a reward vector $\mathbf{r} = \{r_1, r_2, \dots, r_G\}$,
 326 computed by task-specific reward functions that evaluate the quality of each output. GRPO then
 327 updates the policy model by maximizing the following clipped objective:

$$\mathcal{J}_{\text{GRPO}}(\theta) =$$

$$\mathbb{E}_c \left[\frac{1}{G} \sum_{i=1}^G \min \left(\frac{\pi_\theta(o_i|q)}{\pi_{\text{old}}(o_i|q)} \hat{A}_i, \text{clip} \left(\frac{\pi_\theta(o_i|q)}{\pi_{\text{old}}(o_i|q)}, 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_i \right) - \beta \cdot D_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}) \right], \quad (3)$$

328 where ε and β are hyperparameters controlling the clipping range and KL regularization strength,
 329 respectively. π_{ref} denotes the reference policy model. The normalized advantage term is given by
 330 $\hat{A}_i = \frac{r_i - \text{mean}(\mathbf{r})}{\text{std}(\mathbf{r})}$, providing a normalized signal that facilitates stable and efficient policy updates.
 331

332 The reward mechanism in RL Binding focuses on motion similarity and semantic alignment, ensuring
 333 that generated motions are temporally coherent and semantically faithful to the textual input. A
 334 format reward is also included to maintain structural validity, collectively enabling effective rein-
 335 force learning without costly human annotations.

336 **Format Reward.** To ensure that the content generated by the model has a resolvable structure, we
 337 introduce Format Reward r_{format} . This reward detects through regularization expressions whether
 338 the generated results strictly follow the predefined format:

339 <think>{Decomposed CoT}</think><Motion>{Motion tokens}</Motion>.

340 Here, curly braces and their enclosed content denote placeholders, representing the generated CoT
 341 and the corresponding motion tokens, respectively. If the generated content exactly matches this
 342 required format, we assign a reward of 1. Otherwise, the reward is set to 0.

343 **Motion Similarity Reward.** To enforce temporal and spatial consistency, RL Binding computes a
 344 motion similarity reward r_{motion} between the generated motion $\hat{\mathbf{m}}$ and the ground-truth motion \mathbf{m} .
 345 A pre-trained motion encoder f_{motion} Guo et al. (2022a) is used to extract feature embeddings, and
 346 the reward is defined as the cosine similarity between these embeddings:

$$r_{\text{motion}} = \frac{f_{\text{motion}}(\hat{\mathbf{m}}) \cdot f_{\text{motion}}(\mathbf{m})}{\|f_{\text{motion}}(\hat{\mathbf{m}})\|_2 \cdot \|f_{\text{motion}}(\mathbf{m})\|_2} \quad (4)$$

347 **Semantic Similarity Reward.** To ensure that the generated motion semantically corresponds to
 348 the input textual description T , RL binding evaluates the semantic similarity reward r_{semantic} , which
 349 measures the alignment between the motion embedding and the language embedding in a shared
 350 latent space. Both embeddings are extracted using pre-trained encoders f_{motion} and f_{text} , respectively
 351 (also from Guo et al. (2022a)). The reward is defined as:

$$r_{\text{semantic}} = \frac{f_{\text{motion}}(\hat{\mathbf{m}}) \cdot f_{\text{text}}(T)}{\|f_{\text{motion}}(\hat{\mathbf{m}})\|_2 \cdot \|f_{\text{text}}(T)\|_2} \quad (5)$$

352 These rewards are integrated into GRPO via groupwise preference ranking, enabling RL Binding to
 353 simultaneously enforce motion realism and semantic fidelity.

354 4 EXPERIMENTS

355 4.1 EXPERIMENTAL SETTINGS

356 **Datasets** We evaluate our method on two widely-used benchmarks: **HumanML3D** Guo et al.
 357 (2022a), **KIT-ML** Plappert et al. (2016) and **BABEL** Punnakkal et al. (2021). HumanML3D con-
 358 tains 14,616 motions and 44,970 textual descriptions, sourced AMASS Mahmood et al. (2019) and
 359 HumanAct12 Guo et al. (2020). KIT-ML includes 3,911 motion clips and 6,278 descriptions, de-
 360 rived from KIT Mandery et al. (2015) and CMU CMU Graphics Lab datasets. BABEL provides
 361 over 43 hours of motion capture sequences with 28k sequence-level and 63k frame-level action
 362 annotations from AMASS Mahmood et al. (2019).

363 **Evaluation Metrics** Following standard protocols Guo et al. (2022a); Zhang et al. (2023a); Wu
 364 et al. (2024), we report R-Precision@1/2/3, FID, Diversity, MM-Dist, and MModality. These met-
 365 rics respectively evaluate retrieval accuracy, distributional realism, sample diversity, text-motion
 366 alignment, and one-to-many generation ability.

Table 1: **Quantitative results of Motion-R1 on HumanML3D Guo et al. (2022a) and KIT-ML Plappert et al. (2016).** The evaluations are conducted 20 times to obtain a 95% confidence interval. Best results are highlighted in **bold** and the second best in underline.

Methods	R-Precision \uparrow			FID \downarrow	MM-Dist \downarrow	Diversity \uparrow	MModality \uparrow
	Top 1	Top 2	Top 3				
HumanML3D							
MDM (Tevet et al., 2023)	0.320 \pm .005	0.498 \pm .004	0.611 \pm .007	0.544 \pm .044	5.566 \pm .027	9.559 \pm .086	2.799 \pm .072
MLD (Chen et al., 2023)	0.481 \pm .003	0.673 \pm .003	0.772 \pm .002	0.473 \pm .013	3.196 \pm .010	9.724 \pm .082	2.413 \pm .079
MotionDiffuse (Zhang et al., 2022a)	0.491 \pm .001	0.681 \pm .001	0.782 \pm .001	0.630 \pm .001	3.113 \pm .001	9.410 \pm .049	1.553 \pm .042
T2M (Guo et al., 2022a)	0.457 \pm .002	0.559 \pm .007	0.740 \pm .003	1.067 \pm .002	3.340 \pm .008	9.188 \pm .002	2.090 \pm .083
TM2T (Guo et al., 2022b)	0.424 \pm .003	0.618 \pm .003	0.729 \pm .002	1.501 \pm .017	3.467 \pm .011	8.589 \pm .076	<u>2.424</u> \pm .093
T2M-GPT (Zhang et al., 2023a)	0.491 \pm .003	0.680 \pm .003	0.775 \pm .002	<u>0.116</u> \pm .004	3.118 \pm .011	9.761 \pm .081	1.856 \pm .011
MotionGPT (Jiang et al., 2023)	0.492 \pm .003	0.681 \pm .003	0.778 \pm .002	0.232 \pm .008	3.096 \pm .008	9.528 \pm .071	2.008 \pm .084
MoMask Guo et al. (2024)	0.521 \pm .002	<u>0.713</u> \pm .002	<u>0.807</u> \pm .002	0.045 \pm .002	<u>2.958</u> \pm .008	9.620 \pm .064	1.241 \pm .040
MotionChain (Jiang et al., 2024)	0.504 \pm .003	0.617 \pm .002	0.790 \pm .003	0.248 \pm .009	3.033 \pm .010	9.470 \pm .075	1.727 \pm .014
MotionLLM Wu et al. (2024)	0.515 \pm .004	0.691 \pm .003	0.801 \pm .004	0.230 \pm .009	2.967 \pm .020	9.908 \pm .102	2.142 \pm .014
MotionGPT-2 Wang et al. (2024)	0.496 \pm .002	0.691 \pm .003	0.782 \pm .004	0.191 \pm .004	3.080 \pm .013	9.860 \pm .026	2.137 \pm .022
Motion-R1	0.515 \pm .003	0.719 \pm .002	0.818 \pm .002	0.201 \pm .004	2.854 \pm .010	10.026 \pm .075	2.317 \pm .105
KIT-ML							
TM2T (Guo et al., 2022b)	0.280 \pm .005	0.463 \pm .006	0.587 \pm .005	3.599 \pm .153	4.591 \pm .026	9.473 \pm .117	3.292 \pm .081
T2M (Guo et al., 2022a)	0.361 \pm .006	0.559 \pm .007	0.681 \pm .007	3.022 \pm .107	3.488 \pm .028	10.720 \pm .143	2.052 \pm .107
MDM (Tevet et al., 2023)	0.164 \pm .004	0.291 \pm .004	0.396 \pm .004	<u>0.497</u> \pm .021	9.191 \pm .022	10.850 \pm .109	1.907 \pm .214
MotionDiffuse (Zhang et al., 2022a)	<u>0.417</u> \pm .004	0.621 \pm .004	0.739 \pm .004	1.954 \pm .062	<u>2.958</u> \pm .005	<u>11.100</u> \pm .143	0.730 \pm .013
MLD (Chen et al., 2023)	0.390 \pm .008	0.609 \pm .008	0.734 \pm .007	0.404 \pm .027	3.204 \pm .027	10.800 \pm .117	2.192 \pm .071
T2M-GPT (Zhang et al., 2023a)	0.416 \pm .006	0.627 \pm .006	0.745 \pm .006	0.514 \pm .029	3.007 \pm .023	10.920 \pm .108	1.570 \pm .039
AttT2M Zhong et al. (2023)	0.413 \pm .005	0.632 \pm .006	<u>0.751</u> \pm .006	0.870 \pm .039	3.039 \pm .021	10.960 \pm .123	<u>2.281</u> \pm .047
MotionLLM Wu et al. (2024)	0.409 \pm .006	0.624 \pm .007	0.750 \pm .005	0.781 \pm .026	<u>2.982</u> \pm .022	11.407 \pm .103	—
Motion-R1	0.431 \pm .003	0.638 \pm .002	0.761 \pm .003	0.287 \pm .004	3.196 \pm .040	10.875 \pm .052	2.262 \pm .014

Implementation Details We utilize DeepSeek-R1 Guo et al. (2025) to generate structured reasoning traces for complex motion descriptions, serving as intermediate representations that bridge textual prompts and motion tokens. Within Motion-R1, we adopt Qwen-2.5-3B-Instruct Team (2024) as the backbone model for its strong multi-step reasoning and efficient size, facilitating stable RL training. The generated CoTs condition motion synthesis and provide targets for GRPO optimization. Experiments are conducted on NVIDIA H20 GPUs. Additional experimental details are provided in Appendix A.3.

4.2 QUANTITATIVE EVALUATION

We evaluate the performance of Motion-R1 on HumanML3D and KIT-ML datasets, comparing it with state-of-the-art methods, ranging from VAE-based to diffusion-based models. For the diffusion-based model, we select MDM Tevet et al. (2023), MLD Chen et al. (2023), MotionDiffuse Zhang et al. (2022a). For the VAE-based model, we choose T2M Guo et al. (2022a), TM2T Guo et al. (2022b), T2M-GPT Zhang et al. (2023a), MotionGPT Jiang et al. (2023), MoMask Guo et al. (2024), MotionChain Jiang et al. (2024), MotionLLM Wu et al. (2024) and MotionGPT-2 Wang et al. (2024).

We follow the same evaluation settings as prior work Guo et al. (2022a); Wu et al. (2024) and the BABEL setup from Zhuo et al. (2024). Quantitative results on HumanML3D and KIT-ML are shown in Table 1. Results on BABEL are provided in the Appendix A.4.

On HumanML3D, Motion-R1 attains strong and balanced performance across semantic and motion-quality metrics. It achieves R-Precision@1/2/3 = **0.515** / **0.719** / **0.818**, with the latter two values being the best in the table and R-Precision@1 at near-top level. In terms of realism, Motion-R1 yields a competitive FID of **0.201**, comparable to recent strong baselines (e.g., MotionGPT-2: 0.191, MotionGPT: 0.232). Motion-R1 also attains the lowest MM-Dist (**2.854**), indicating superior alignment in the joint motion–language embedding space, and the highest Diversity score (**10.026**), suggesting better modeling of the one-to-many nature of text-to-motion. Its MModality score (**2.317**) is likewise competitive with top methods. Together, these results indicate that the combination of decomposed CoT supervision and RL Binding yields motions that are both semantically aligned and high-fidelity.

On KIT-ML, Motion-R1 consistently leads the comparators on retrieval and fidelity metrics: R-Precision@1/2/3 = **0.431** / **0.638** / **0.761** (all best), and FID = **0.287** (best). While MM-Dist (3.196) is not the lowest in the table, Motion-R1 maintains strong Diversity (**10.875**) and solid MModality (**2.262**), demonstrating robust generalization across a dataset with different statistics. Overall, Motion-R1 provides a favorable trade-off between semantic alignment, motion realism, and diversity on both benchmarks, empirically supporting the effectiveness of the Decomposed CoT Data Engine and RL Binding.

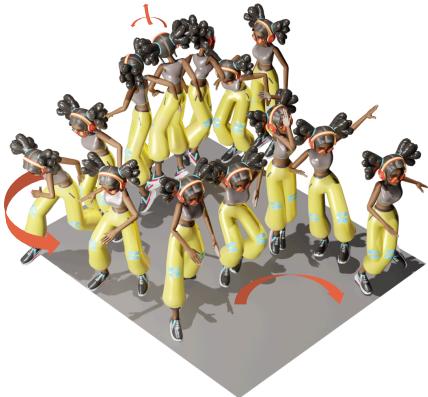
432 4.3 QUALITATIVE ANALYSIS AND VISUALIZATION
433

434 To complement the quantitative evaluation, we provide qualitative comparisons between Motion-
435 R1 and existing state-of-the-art methods. We divide this section into two parts: (1) in-distribution
436 prompts from standard benchmarks, and (2) out-of-distribution instructions that require composi-
437 tional reasoning and generalization. These visualizations highlight the advantages of Motion-R1
438 in producing semantically coherent, diverse, and controllable motion sequences. Note that more
439 visualizations are provided in supplementary video.

440

441

Complex caption-OOD



442

443

444

445

446

447

448

449

450

451

452

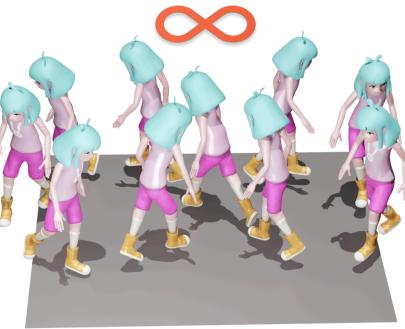
453

454

455

456

Abstract caption-OOD



455 A person jumped up happily, raised his hand and spun excitedly.

456 Walking slowly along the path shaped like an infinity symbol

457

458

457 Figure 4: **Motion-R1 results on out-of-distribution prompts.** Left: Complex caption with multi-
458 step reasoning. Right: Abstract caption requiring semantic understanding.

459

460

461

462

463

460 **In-Distribution Visualization.** We visualize results and compare Motion-R1 with MotionLLM as
461 shown in Figure 3 (left). Motion-R1 generates smooth, coherent sequences that respect spatial and
462 temporal semantics — for example, producing a continuous circular walk with natural timing, while
463 MotionLLM Wu et al. (2024) often fails to complete the circle or exhibits abrupt stops.

464

465

466

467

468

469

470

464 **Out-of-Distribution Visualization.** To evaluate generalization, we show two out-of-distribution
465 prompts in Figure 3 (middle, right). For “After hearing a loud noise...”, Motion-R1 clearly sepa-
466 rates reaction, retreat, and re-approach; MotionLLM merges steps or omits gestures. For “A person
467 is serving in badminton,” Motion-R1 produces a plausible serve motion with arm lift and forward
468 strike, while MotionLLM generates generic or repetitive movements. More examples in Figure 4
469 further demonstrate Motion-R1’s ability to interpret abstract instructions and maintain temporal co-
470 herence. All results are generated without post-processing.

471

472

473

471 These examples show that Motion-R1 generalizes well to unseen instructions through explicit CoT-
472 style reasoning, whereas baseline methods struggle with long-horizon dependencies and abstract
473 actions.

474

475

4.4 ABLATION STUDY

476

477

478

479

480

477 To assess the contribution of each component in our framework, we conduct an ablation study on
478 the HumanML3D dataset, as shown in Table 2. Specifically, we evaluate the impact of three key
479 components: Decomposed CoT Data Engine and RL Binding (the semantic similarity reward (R_{sem}),
480 and the motion similarity reward (R_{motion})).

481

482

483

484

481 All ablated variants achieve comparable performance, showing the robustness of our design. Using
482 the Decomposed CoT Data Engine alone yields the weakest results (R-Precision Top-1: 0.340 ± 0.002 ,
483 FID: 0.530 ± 0.015), while adding either R_{sem} or R_{motion} significantly improves alignment (Top-1:
484 0.483 ± 0.002 , FID: 0.281 ± 0.008).

485

485 With all components combined, the model reaches the best or second-best performance across most
486 metrics, including the lowest FID (0.201 ± 0.004) and highest Diversity (10.026 ± 0.075). These re-

486 Table 2: **Ablation study on HumanML3D** Guo et al. (2022a). CoT, R_{sem} , and R_{motion} denote De-
 487 composed CoT Data Engine, the semantic similarity reward, and the motion similarity reward, re-
 488 spectively, with additional columns showing effects of self-verification mechanism and LLM choice
 489 for Decomposed CoT Data Engine. Best results are highlighted in **bold** and the second best in
 490 underline.

491	CoT	R_{sem}	R_{motion}	Verification	CoT LLM	R Precision \uparrow			FID \downarrow	MM-Dist \downarrow	Diversity \uparrow	MModality \uparrow
						Top 1	Top 2	Top 3				
492	✓			✓	Deepseek-R1	0.340 \pm .002	0.503 \pm .002	0.603 \pm .002	0.530 \pm .015	4.216 \pm .015	9.696 \pm .090	4.762 \pm .249
493	✓	✓		✓	Deepseek-R1	0.482 \pm .002	0.690 \pm .003	0.799 \pm .001	0.297 \pm .004	2.963 \pm .004	9.537 \pm .021	2.317 \pm .015
494	✓		✓	✓	Deepseek-R1	0.483 \pm .002	0.690 \pm .002	0.799 \pm .002	0.281 \pm .008	2.947 \pm .007	9.848 \pm .082	1.903 \pm .276
495	✓			✓	Deepseek-R1	0.489 \pm .002	0.688 \pm .003	0.764 \pm .002	0.234 \pm .003	3.127 \pm .012	9.785 \pm .084	2.408 \pm .078
496	✓	✓	✓	✓	GPT-4o	0.520 \pm .002	<u>0.709</u> \pm .003	<u>0.812</u> \pm .003	0.213 \pm .009	2.895 \pm .011	<u>9.963</u> \pm .063	2.445 \pm .094
497	✓	✓	✓	✓	Deepseek-R1	<u>0.515</u> \pm .003	0.719 \pm .002	0.818 \pm .002	0.201 \pm .004	2.854 \pm .010	10.026 \pm .075	2.317 \pm .105

498
 499
 500 sults confirm the complementary roles of structured reasoning and semantic/motion-level rewards in
 501 producing diverse, semantically faithful, and high-quality motion.

502 We also examine the effects of self-verification mechanism and different LLM choices for Decom-
 503 posed CoT Data Engine. For self-verification mechanism, Manual evaluation of approximately 500
 504 randomly sampled data points from the HumanML3D dataset reveals that the initial error rate in
 505 decomposed CoT generation is around 20%, primarily due to format violations, hallucinations, re-
 506 dundant steps and repetitions. After self-verification, the error rate decreases to approximately 3%.
 507 The ablation results show that without self-verification, performance drops significantly, while self-
 508 verification restores optimal performance. Regarding LLM choices, experiment using GPT-4o Hurst
 509 et al. (2024) shows competitive results compared to Deepseek-R1 Guo et al. (2025), confirming that
 510 our framework’s effectiveness stems from the overall design rather than dependency on particular
 511 model selections.

512 4.5 USER STUDY

514 To evaluate the perceptual quality of our generated motions, we conduct a user study comparing
 515 our method with baseline approaches. We randomly select 100 composite action descriptions as test
 516 samples, where each description’s generated results from three methods (MotionAgent Wu et al.
 517 (2024), MoMask Guo et al. (2024), ours) are displayed side-by-side. Fifty users independently select
 518 the best method for semantic consistency and motion fluency respectively for each description. The
 519 results are shown in Table 3, demonstrating that our method significantly outperforms baselines in
 520 both semantic consistency and motion fluency.

521 Table 3: **User study on semantic consistency and motion fluency.** 100 composite action descrip-
 522 tions were evaluated by 50 users, who independently selected the best method for each dimension.
 523 Best results are highlighted in **bold** and the second best in underline.

525	Methods	Semantic Consistency	Motion Fluency
526	MotionAgent Wu et al. (2024)	<u>28.4%</u>	<u>32.6%</u>
527	MoMask Guo et al. (2024)	25.8%	28.2%
528	Motion-R1	45.8%	39.2%

531 5 CONCLUSION

533 In this work, we introduced **Motion-R1**, a unified framework for text-to-motion generation that
 534 integrates a Decomposed CoT Data Engine and RL Binding. The Decomposed CoT Data En-
 535 gine generates structured, step-by-step reasoning traces to decompose complex language into inter-
 536 pretable action plans, while RL Binding optimizes motion synthesis through GRPO with semantic
 537 and motion-level reward alignment. Together, these innovations enable coherent, semantically faith-
 538 ful, and high-quality motion generation without relying on costly human annotations, improving
 539 controllability, diversity, and generalization.

540

6 ETHICS STATEMENT

541
 542 This work introduces Motion-R1, a framework for text-to-motion generation. While the method
 543 enables high-fidelity and semantically aligned motion synthesis, it shares general risks associated
 544 with generative models, including the potential misuse for creating misleading, unsafe, or inappro-
 545 priate motion sequences. We strongly discourage such applications and emphasize that Motion-R1
 546 is intended strictly for research, educational, and other socially beneficial purposes. Users should
 547 exercise caution, ensure compliance with ethical guidelines, and consider privacy and consent when
 548 applying the model to real-world scenarios.

549
 550

7 REPRODUCIBILITY STATEMENT

551
 552 We are committed to ensuring the reproducibility of our work. Details of the framework, training
 553 protocols, and hyperparameters are provided in Section 3, Subsection 4.1 and Appendix A.2; A.3.
 554 Code for our method will be made publicly available to support replication and future research.

555

REFERENCES

- 556
 557
 558 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 559 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 560 report. *arXiv preprint arXiv:2303.08774*, 2023.
- 561
 562 Hyemin Ahn, Timothy Ha, Yunho Choi, Hwiyeon Yoo, and Songhwai Oh. Text2action: Generative
 563 adversarial synthesis from language to action, 2017.
- 564 Chaitanya Ahuja and Louis-Philippe Morency. Language2pose: Natural language grounded pose
 565 forecasting, 2019.
- 566 Nikos Athanasiou, Mathis Petrovich, Michael J. Black, and Gü̈l Varol. Teach: Temporal action
 567 composition for 3d humans, 2022.
- 568 Pratyay Banerjee, Tejas Gokhale, Yezhou Yang, and Chitta Baral. Weakly supervised relative spatial
 569 reasoning for visual question answering. In *Proceedings of the IEEE/CVF International Confer-
 570 ence on Computer Vision*, pp. 1908–1918, 2021.
- 571
 572 Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, Jingyi Yu, and Gang Yu. Execut-
 573 ing your commands via motion diffusion in latent space, 2023.
- 574
 575 CMU Graphics Lab. CMU Graphics Lab Motion Capture Database. <http://mocap.cs.cmu.edu/>.
- 576
 577 Rishabh Dabral, Muhammad Hamza Mughal, Vladislav Golyanik, and Christian Theobalt. Mofu-
 578 sion: A framework for denoising-diffusion-based motion synthesis, 2023.
- 579
 580 Anindita Ghosh, Noshaba Cheema, Cennet Oguz, Christian Theobalt, and Philipp Slusallek. Syn-
 581 thesis of compositional animations from textual descriptions, 2023.
- 582
 583 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 584 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information
 585 processing systems*, 27, 2014.
- 586
 587 Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng, Minglun Gong, and
 588 Li Cheng. Action2motion: Conditioned generation of 3d human motions. In *Proceedings of the
 589 28th ACM International Conference on Multimedia*, pp. 2021–2029, 2020.
- 590
 591 Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
 592 diverse and natural 3d human motions from text. In *Proceedings of the IEEE/CVF Conference on
 593 Computer Vision and Pattern Recognition (CVPR)*, pp. 5152–5161, June 2022a.
- 594
 595 Chuan Guo, Xinxin Zuo, Sen Wang, and Li Cheng. Tm2t: Stochastic and tokenized modeling for
 596 the reciprocal generation of 3d human motions and texts, 2022b.

- 594 Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Sen Wang, and Li Cheng. Momask: Gener-
 595 ative masked modeling of 3d human motions. In *Proceedings of the IEEE/CVF Conference on*
 596 *Computer Vision and Pattern Recognition*, pp. 1900–1910, 2024.
- 597
- 598 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 599 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 600 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 601
- 602 Wen Guo, Yuming Du, Xi Shen, Vincent Lepetit, Xavier Alameda-Pineda, and Francesc Moreno-
 603 Noguer. Back to mlp: A simple baseline for human motion prediction, 2022c.
- 604
- 605 Gaoge Han, Mingjiang Liang, Jinglei Tang, Yongkang Cheng, Wei Liu, and Shaoli Huang. Rein-
 606 diffuse: Crafting physically plausible motions with reinforced diffusion model, 2024a. URL
 607 <https://arxiv.org/abs/2410.07296>.
- 608
- 609 Haonan Han, Xiangzuo Wu, Huan Liao, Zunnan Xu, Zhongyuan Hu, Ronghui Li, Yachao Zhang,
 610 and Xiu Li. Atom: Aligning text-to-motion model at event-level with gpt-4vision reward, 2024b.
 611 URL <https://arxiv.org/abs/2411.18654>.
- 612
- 613 Wentao Zhu Haoru Wang, Yishu Xu Luyi Miao, Qi Tian Feng Gao, and Yizhou Wang. Aligning
 614 human motion generation with human perceptions, 2025. URL <https://arxiv.org/abs/2407.02272>.
- 615
- 616 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *arXiv preprint*
 617 *arXiv:2006.11239*, 2020.
- 618
- 619 Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang Cai, Lei Yang, and Ziwei Liu. Avatarclip:
 620 Zero-shot text-driven generation and animation of 3d avatars, 2022.
- 621
- 622 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 623 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 624 *arXiv:2410.21276*, 2024.
- 625
- 626 Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion as
 627 a foreign language, 2023.
- 628
- 629 Biao Jiang, Xin Chen, Chi Zhang, Fukun Yin, Zhuoyuan Li, Gang YU, and Jiayuan Fan. Motion-
 630 chain: Conversational motion controllers via multimodal prompts, 2024.
- 631
- 632 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
 633 survey. *Journal of artificial intelligence research*, 4:237–285, 1996.
- 634
- 635 Jihoon Kim, Jiseob Kim, and Sungjoon Choi. Flame: Free-form language-based motion synthesis
 636 & editing, 2023.
- 637
- 638 Jing Yu Koh, Daniel Fried, and Russ R Salakhutdinov. Generating images with multimodal language
 639 models. *Advances in Neural Information Processing Systems*, 36:21487–21506, 2023.
- 640
- 641 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 642 pre-training with frozen image encoders and large language models. In *International conference*
 643 *on machine learning*, pp. 19730–19742. PMLR, 2023.
- 644
- 645 Zhengdao Li, Siheng Wang, Zeyu Zhang, and Hao Tang. Remomask: Retrieval-augmented masked
 646 motion generation. *arXiv preprint arXiv:2508.02605*, 2025.
- 647
- 648 Xiaoyang Liu, Yunyao Mao, Wengang Zhou, and Houqiang Li. Motionrl: Align text-to-motion
 649 generation to human preferences with multi-reward reinforcement learning, 2024. URL <https://openreview.net/forum?id=v1OQ0kNq0w>.
- 650
- 651 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
 652 zero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint*
 653 *arXiv:2503.06520*, 2025.

- 648 Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black.
 649 AMASS: Archive of motion capture as surface shapes. In *International Conference on Computer*
 650 *Vision*, pp. 5442–5451, October 2019.
- 651 Christian Mandery, Ömer Terlemez, Martin Do, Nikolaus Vahrenkamp, and Tamim Asfour. The kit
 652 whole-body human motion database. In *2015 International Conference on Advanced Robotics*
 653 (*ICAR*), pp. 329–336, 2015. doi: 10.1109/ICAR.2015.7251476.
- 654 Yunyao Mao, Xiaoyang Liu, Wengang Zhou, Zhenbo Lu, and Houqiang Li. Learning generalizable
 655 human motion generator with reinforcement learning, 2024. URL <https://arxiv.org/abs/2405.15541>.
- 656 Jiazhen Pan, Che Liu, Junde Wu, Fenglin Liu, Jiayuan Zhu, Hongwei Bran Li, Chen Chen, Cheng
 657 Ouyang, and Daniel Rueckert. Medvlm-r1: Incentivizing medical reasoning capability of vision-
 658 language models (vlms) via reinforcement learning. *arXiv preprint arXiv:2502.19634*, 2025.
- 659 Mathis Petrovich, Michael J. Black, and Gü̈l Varol. Temos: Generating diverse human motions from
 660 textual descriptions, July 2022.
- 661 Matthias Plappert, Christian Mandery, and Tamim Asfour. The kit motion-language dataset. *Big*
 662 *Data*, 4(4):236–252, 2016. ISSN 2167-6461, 2167-647X. doi: 10.1089/big.2016.0028.
- 663 Abhinanda R. Punnakkal, Arjun Chandrasekaran, Nikos Athanasiou, Alejandra Quiros-Ramirez,
 664 and Michael J. Black. BABEL: Bodies, action and behavior with english labels. In *Proceedings*
 665 *IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)*, pp. 722–731, June 2021.
- 666 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 667 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- 668 Yonatan Shafir, Guy Tevet, Roy Kapon, and Amit H Bermano. Human motion diffusion as a gener-
 669 ative prior. *arXiv preprint arXiv:2303.01418*, 2023.
- 670 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 671 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 672 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.
- 673 Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
 674 Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. *arXiv preprint*
 675 *arXiv:2503.20752*, 2025.
- 676 Yunlong Tang, Jing Bi, Siting Xu, Luchuan Song, Susan Liang, Teng Wang, Daoan Zhang, Jie An,
 677 Jingyang Lin, Rongyi Zhu, et al. Video understanding with large language models: A survey.
 678 *IEEE Transactions on Circuits and Systems for Video Technology*, 2025.
- 679 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.
- 680 Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano, and Daniel Cohen-Or. Motionclip: Ex-
 681 posing human motion generation to clip space. *arXiv preprint arXiv:2203.08063*, 2022.
- 682 Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano.
 683 Human motion diffusion model. In *The Eleventh International Conference on Learning Repre-
 684 sentations*, 2023. URL <https://openreview.net/forum?id=SJ1kSyO2jwu>.
- 685 Yuan Wang, Di Huang, Yaqi Zhang, Wanli Ouyang, Jile Jiao, Xuetao Feng, Yan Zhou, Pengfei Wan,
 686 Shixiang Tang, and Dan Xu. Motiongpt-2: A general-purpose motion-language model for motion
 687 generation and understanding, 2024.
- 688 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 689 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 690 models. In *NeurIPS*, 2022.

- 702 Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and Philip S Yu. Multimodal large
 703 language models: A survey. In *2023 IEEE International Conference on Big Data (BigData)*, pp.
 704 2247–2256. IEEE, 2023.
- 705 Qi Wu, Yubo Zhao, Yifan Wang, Xinhang Liu, Yu-Wing Tai, and Chi-Keung Tang. Motion-
 706 agent: A conversational framework for human motion generation with llms. *arXiv preprint*
 707 *arXiv:2405.17013*, 2024.
- 709 Siheng Xiong, Yuan Yang, Ali Payani, James C Kerce, and Faramarz Fekri. Teilp: Time predic-
 710 tion over knowledge graphs via logical reasoning, 2024. URL <https://arxiv.org/abs/2312.15816>.
- 712 Guowei Xu, Peng Jin, Hao Li, Yibing Song, Lichao Sun, and Li Yuan. LLaVA-CoT: Let Vision
 713 Language Models Reason Step-by-Step, 2025.
- 715 Junpeng Yue, Zepeng Wang, Yuxuan Wang, Weishuai Zeng, Jiangxing Wang, Xinrun Xu, Yu Zhang,
 716 Sipeng Zheng, Ziluo Ding, and Zongqing Lu. Rl from physical feedback: Aligning large motion
 717 models with humanoid control, 2025. URL <https://arxiv.org/abs/2506.12769>.
- 719 Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Yong Zhang, Hongwei Zhao, Hongtao Lu,
 720 Xi Shen, and Ying Shan. Generating human motion from textual descriptions with discrete
 721 representations. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 722 *recognition*, pp. 14730–14740, 2023a.
- 723 Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei
 724 Liu. Motiondiffuse: Text-driven human motion generation with diffusion model. *arXiv preprint*
 725 *arXiv:2208.15001*, 2022a.
- 726 Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei
 727 Liu. Motiondiffuse: Text-driven human motion generation with diffusion model, 2022b.
- 729 Qinsheng Zhang, Jiaming Song, Xun Huang, Yongxin Chen, and Ming-Yu Liu. Diffcollage: Parallel
 730 generation of large content with diffusion models. In *2023 IEEE/CVF Conference on Computer*
 731 *Vision and Pattern Recognition (CVPR)*, pp. 10188–10198. IEEE, 2023b.
- 733 Zeyu Zhang, Hang Gao, Akide Liu, Qi Chen, Feng Chen, Yiran Wang, Danning Li, Rui Zhao, Zhen-
 734 ming Li, Zhongwen Zhou, et al. Kmm: Key frame mask mamba for extended motion generation.
 735 *arXiv preprint arXiv:2411.06481*, 2024a.
- 736 Zeyu Zhang, Akide Liu, Qi Chen, Feng Chen, Ian Reid, Richard Hartley, Bohan Zhuang, and Hao
 737 Tang. Infinimotion: Mamba boosts memory in transformer for arbitrary long motion generation.
 738 *arXiv preprint arXiv:2407.10061*, 2024b.
- 740 Zeyu Zhang, Akide Liu, Ian Reid, Richard Hartley, Bohan Zhuang, and Hao Tang. Motion mamba:
 741 Effcient and long sequence motion generation. In *European Conference on Computer Vision*, pp.
 742 265–282. Springer, 2024c.
- 743 Zeyu Zhang, Yiran Wang, Biao Wu, Shuo Chen, Zhiyuan Zhang, Shiya Huang, Wenbo Zhang,
 744 Meng Fang, Ling Chen, and Yang Zhao. Motion avatar: Generate human and animal avatars with
 745 arbitrary motion. *arXiv preprint arXiv:2405.11286*, 2024d.
- 747 Zeyu Zhang, Yiran Wang, Danning Li, Dong Gong, Ian Reid, and Richard Hartley. Flashmo: Geo-
 748 metric interpolants and frequency-aware sparsity for scalable efficient motion generation. In *The*
 749 *Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025a.
- 750 Zeyu Zhang, Yiran Wang, Wei Mao, Danning Li, Rui Zhao, Biao Wu, Zirui Song, Bohan Zhuang,
 751 Ian Reid, and Richard Hartley. Motion anything: Any to motion generation. *arXiv preprint*
 752 *arXiv:2503.06955*, 2025b.
- 754 Chongyang Zhong, Lei Hu, Zihao Zhang, and Shihong Xia. Attt2m: Text-driven human motion
 755 generation with multi-perspective attention mechanism. In *Proceedings of the IEEE/CVF inter-*
 national conference on computer vision, pp. 509–519, 2023.

- 756 Zixiang Zhou and Baoyuan Wang. Ude: A unified driving engine for human motion generation,
757 2022.
- 758 Wenjie Zhuo, Fan Ma, and Hehe Fan. Infinidreamer: Arbitrarily long human motion generation via
759 segment score distillation. *arXiv preprint arXiv:2411.18303*, 2024.
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809

810 A APPENDIX
811812
813 A.1 STATEMENT ON THE USE OF LLM
814815 Large Language Models (ChatGPT by OpenAI) were used exclusively to improve the clarity and
816 fluency of English writing. They were not involved in research ideation, experimental design, data
817 analysis, or interpretation. The authors take full responsibility for all content.
818819
820 A.2 DETAILS OF PROMPT
821822
823 To enable reasoning-aware motion generation, we design three distinct types of prompts that cor-
824 respond to different training phases and supervision signals. These prompts guide the LLM during
825 both supervised and reinforcement learning stages in a progressively structured manner.
826827
828 A.2.1 DECOMPOSED COT DATA ENGINE
829830 The following prompt is used in the Decomposed CoT Data Engine, which encourages the language
831 model to generate structured reasoning traces and explicit motion planning steps based on free-form
832 motion descriptions.
833834 You are an assistant who helps users understand descriptions
835 of human motions. The user begins by describing the motion
836 they envision, and you help break that description down into
837 a few simple descriptions of the action and show the thought
838 process.
839#² Instruction:1. User-Provided Description: The user's description may
840 include both straightforward and abstract descriptions of
841 human motion, such as "A person ties their shoelaces" or "A
842 person waves goodbye."2. Reasoning process: For each human motion description, you
843 first think about the reasoning process in the mind to decide
844 how to break down the description into simple, atomic motions.
845 Ensure that each atomic motion is independent and focuses
846 on a straightforward, non-elaborate motion description. If
847 user's description is already simple and atomic, you don't
848 need to break it down. Show your work in <think> </think>
849 tags. Think step by step inside <think> tags. Then generate
850 motions matching the atomic motion descriptions.
851#² Response Format:Your response should include a step-by-step thinking process:
<think>...</think>#² Examples:

Example 1:

- User: "a person waves goodbye."

- Assistant:

<think> The user wants me to break down the action "a person
852 waves goodbye" into simpler steps if necessary. Waving
853 goodbye is already a fairly atomic action, as it describes a
854 single, recognizable motion.

Therefore, the correct response would be:

1. wave hand.

</think>

```

864     ### Example 2:
865     - User: "a person ties their shoelaces and stands up."
866     - Assistant:
867     <think> The user wants me to break down the description
868     "a person ties their shoelaces and stands up" into simple
869     steps. First, I need to visualize tying shoelaces: it
870     involves bending down, grabbing the laces, tying them, and
871     then standing up. Since "tie shoelaces" can be kept as a
872     single action for simplicity, I'll treat that as one step.
873     Then comes standing up.
874     Let me ensure temporal and logical order: first bend down and
875     tie, then stand up. Each step is independent and physically
876     distinct.
877     Therefore, the correct response would be:
878     1. bend down and tie shoelaces.
879     2. stand up.
880     </think>
881     ### Example 3:
882     - User: "a person opens a door and enters the room."
883     - Assistant:
884     <think> The user wants me to simplify the motion "a person
885     opens a door and enters the room." This involves first
886     manipulating the door, then walking through the doorway. I
887     should break this into: (1) reach and grasp the doorknob, (2)
888     pull or push the door, (3) walk forward through the doorway.
889     Check that each is a simple motor action. Yes, these three
890     steps should be clear and sequential.
891     Therefore, the correct response would be:
892     1. reach and grasp the doorknob.
893     2. open the door.
894     3. walk forward through the doorway.
895     </think>
896
897     A.2.2 MOTION-R1
898
899     Used in the final training stage, this unified format integrates both reasoning and motion generation
900     to reinforce semantic decomposition and executable token prediction jointly.
901
902     You are an assistant who helps users generate 3D human motion
903     representations. The users will describe a motion, your job
904     is to break it down into a short sequence of atomic physical
905     actions. Show your reasoning inside <think> </think> and
906     output motion in <Motion> </Motion> tags.
907     Response Format: Let me think step by step.
908     <think>...</think> <Motion>...</Motion>
909
910     A.2.3 MOTION-R1 w/o DECOMPOSED CoT
911
912     This form is used for training w/o decomposed CoT. No reasoning steps are involved, and the model
913     directly maps textual descriptions to motion token sequences. This prompt is structurally simple and
914     helps the model learn basic text-to-motion alignment without reasoning supervision.
915
916     You are an assistant who helps users generate 3D human motion
917     representations. The users begin by describing the motion
918     they envision. Show output motion in <Motion> </Motion> tags.
919     Response Format: <Motion>...</Motion>

```

918 A.3 EXPERIMENTAL SETTINGS
919920 A.3.1 EVALUATION METRICS
921922 Following Guo et al. (2022a); Zhang et al. (2023a); Wu et al. (2024), our evaluation metrics are
923 summarized as follows:924 1) *R-Precision*. It compares each motion sequence with 32 textual descriptions of one true match
925 and 31 randomly sampled negative examples. Retrieval accuracy is measured by checking whether
926 the correct description appears within the top-1, top-2, or top-3 nearest neighbors in the ranked list.927 2) *FID*. FID measures the distributional similarity between real and generated motion features. Let
928 (μ_r, Σ_r) and (μ_g, Σ_g) be the means and covariances of real and generated feature distributions,
929 respectively. The FID score is computed as:

930
$$\text{FID} = \|\mu_r - \mu_g\|^2 + \text{Tr}(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{1/2}) \quad (6)$$

931

932 3) *Diversity*. To assess the variation within generated motion sequences, we follow the protocol
933 introduced by Guo et al. Guo et al. (2022a). Specifically, we randomly sample S_{dis} pairs of motions
934 from the generated set, and compute the average ℓ_2 distance between each pair’s motion features.
935 Let $f_{\text{pred},i}$ and $f'_{\text{pred},i}$ denote the feature embeddings of the i -th sampled pair, the diversity is defined
936 as:

937
$$\text{Diversity} = \frac{1}{S_{\text{dis}}} \sum_{i=1}^{S_{\text{dis}}} \|f_{\text{pred},i} - f'_{\text{pred},i}\|_2 \quad (7)$$

938

939 In our implementation, we set $S_{\text{dis}} = 300$ to ensure stable and comparable estimates across methods.940 4) *Multimodal Distance (MM-Dist)*. MM-Dist evaluates the alignment between generated motions
941 and their corresponding text descriptions. It is defined as the cosine similarity between the embed-
942 dings of a generated motion and its conditioning text, extracted using a pretrained joint encoder.943 5) *Multimodality (MModality)*. Multimodality assesses the model’s ability to generate diverse mo-
944 tions conditioned on the same textual input. It is computed by generating multiple motions from
945 a single description and measuring the average pairwise Euclidean distance between their feature
946 embeddings. Higher scores indicate a greater ability to model one-to-many mappings between text
947 and motion.948 A.3.2 TRAINING DETAILS
949950 We first fine-tune the pre-trained model on MotionCoT data using supervised learning with a batch
951 size of 8 and a learning rate of 1×10^{-4} , scheduled by cosine decay.952 Building on this, GRPO training is implemented with group size $G = 8$, clipping range $\varepsilon = 0.2$,
953 and KL penalty coefficient $\beta = 0.001$ for stable policy optimization.954 A.3.3 EXPERIMENTS COMPUTE RESOURCES
955956 All experiments were conducted on a server with 8xNVIDIA H20 GPUs. The SFT training took
957 approximately 2 hours on 8 GPUs, while GRPO-based reinforcement learning required around 4
958 hours under the same configuration. Evaluation on HumanML3D and KIT-ML datasets consumed
959 about 1 GPU-hours per run, repeated across 20 trials for statistical robustness.960 Inference time analysis was conducted under the same NVIDIA H20 and prompt conditions. Over
961 10 runs, our method takes 2.23 seconds while MotionLLM Wu et al. (2024) takes 2.11 seconds,
962 showing no significant difference in inference time. Despite comparable inference speed, our
963 method achieves superior performance in both quantitative and qualitative evaluations.964 A.4 QUALITATIVE RESULTS ON BABEL
965966 Results on **BABEL**. Table 4 reports results on the BABEL Punnakkal et al. (2021) dataset, which
967 contains long, multi-label activity annotations. Motion-R1 outperforms prior methods across all
968 metrics. It achieves the highest R-Precision (**0.536** \pm 0.004), surpassing InfiniDreamer (**0.522** \pm 0.008)

972 and other baselines, indicating stronger text–motion semantic alignment. In terms of motion fi-
 973 delity, Motion-R1 attains a substantially lower FID of $0.53 \pm .006$, nearly halving the best baseline
 974 ($1.14 \pm .05$ from DoubleTake/InfiniDreamer). For motion–language embedding distance, Motion-
 975 R1 also sets the best score ($6.16 \pm .141$), suggesting better cross-modal consistency. Moreover, its
 976 Diversity ($8.90 \pm .095$) exceeds even ground-truth motion (8.52), reflecting the ability to synthesize
 977 varied yet realistic motions.

978 Overall, these results demonstrate that Motion-R1 generalizes effectively to BABEL, producing
 979 semantically accurate, diverse, and high-fidelity motions under complex multi-label activity settings.
 980

981
 982 **Table 4: Quantitative results of Motion-R1 on BABEL Punnakkal et al. (2021).** The evaluations
 983 are conducted 20 times to obtain a 95% confidence interval. Best results are highlighted in **bold** and
 984 the second best in underline.

Methods	R-Precision \uparrow	FID \downarrow	MM-Dist \downarrow	Diversity \uparrow
Ground Truth	$0.629 \pm .001$	$0.0004 \pm .00$	$3.51 \pm .01$	$8.52 \pm .09$
TEACH Athanasiou et al. (2022)	$0.461 \pm .012$	$1.43 \pm .04$	$7.93 \pm .01$	$7.71 \pm .11$
DoubleTake Shafir et al. (2023)	$0.483 \pm .009$	<u>$1.14 \pm .05$</u>	$6.97 \pm .01$	<u>$8.28 \pm .09$</u>
DiffCollage Zhang et al. (2023b)	$0.487 \pm .009$	$1.83 \pm .05$	$6.74 \pm .01$	$7.89 \pm .11$
InfiniDreamer Zhuo et al. (2024)	$0.522 \pm .008$	<u>$1.14 \pm .11$</u>	<u>$6.35 \pm .01$</u>	$7.97 \pm .05$
Motion-R1	$0.536 \pm .004$	$0.53 \pm .006$	$6.16 \pm .141$	$8.90 \pm .095$

A.5 LIMITATIONS

996 Despite its advantages, Motion-R1 has limitations. The Decomposed CoT Data Engine relies on
 997 general-purpose LLMs, which may produce noisy or suboptimal plans under ambiguous instruc-
 998 tions. Furthermore, while RL Binding streamlines policy optimization, careful design of motion-
 999 and semantic-level rewards remains crucial. Future work will explore adaptive reward learning and
 1000 interactive feedback mechanisms to further enhance motion quality and robustness.

1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025