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Abstract

Most complex machine learning and modelling techniques are prone to over-
fitting and may subsequently generalise poorly to future data. Artificial neural
networks are no different in this regard and, despite having a level of implicit reg-
ularisation when trained with gradient descent, often require the aid of explicit
regularisers. We introduce a new framework, Model Gradient Similarity (MGS),
that (1) serves as a metric of regularisation, which can be used to monitor neu-
ral network training, (2) adds insight into how explicit regularisers, while derived
from widely different principles, operate via the same mechanism underneath by
increasing MGS, and (3) provides the basis for a new regularisation scheme which
exhibits excellent performance, especially in challenging settings such as high lev-
els of label noise or limited sample sizes.

1 Introduction

Since the inception of modern neural network architecture and training, many efforts have been
made to understand their generalisation properties. When neural networks are trained with Gradi-
ent Descent (GD) this induces implicit regularisation in the network, causing it to attain surprising
generalisation performance with no extra intervention. Despite this, neural networks will in many
instances overfit in the presence of noise and have been shown to have the capacity to completely
memorise data [Zhang et all, POTH]. Therefore, alongside the desire to understand how neural net-
works are implicitly regularised, explicit regularisation has been an ongoing pursuit to improve
generalisation even further.

A broad range of explicit regularisers now exist that attack the problem from many different angles.
Below, we provide a short overview of some of the most commonly used methods. Weight decay
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[Krogh and Hertz, T991]] places a L2-penalty on the parameters to encourage a minimum-norm
solution. Normalisation schemes, that normalise the data as it flows through the network, have
been shown to act as explicit regularisers [[offe and Szegedy, P0I5]. Double back-propagation
incorporates the gradients with respect to the loss itself as part of the loss, hence the name, as
the gradient of the gradient will be evaluated in the complete back-propagation step [[Drmcker and
LCe Cun, T99T]. Although these methods were initially used as a part of a energy minimisation
principle, they are now believed to help finding "flat minima", which have been shown to produce
solutions that generalise better [Zhao ef all, Z027]. Dropout turns off connections between neurons
during training and thus forces the network not to rely on any one given connection [Srivasfavaefall,
20T4]. Another way to view the learning problem is to ignore the network itself and instead focus on
the optimisation scheme. Here, a multitude of different learning rate and optimisers exist that offer
explicit regularisation. Some standout examples include Cyclical Learning Rate [Li and Yang, 2020]
and the Adam optimisation algorithm [Kingma and Ba, Z00T5]. More recently, especially in works
related to the Neural Tangent Kernel (NTK) [lacofef-all, Z0TH], focus has been put onto functional
regularisation. The core idea is to view the neural network architecture as being an opaque function
approximator and instead regularise it as it is viewed from function space rather than the parameter
space. This is usually achieved via a form of kernel ridge regression or an approximation thereof
[Bieffiefall, POTY9, Hoffman ef all, 2ZOTY].

Our contribution. In this article, a new framework called Model Gradient Similarity (MGS) is
introduced. MGS builds on the idea that regularisation and, to a large extent, generalisation, is tightly
connected to how the model evolves during training. We show that MGS can be used to analyse
neural network training, monitoring how model gradients evolve together. It is revealed that explicit
regularisers, despite their fundamentally different construction, operate via the same underlying
mechanisms in terms of increasing model gradient similarity. This insight lays the foundation for
a new class of regularisers aimed at directly boosting model gradient similarity. We derive two
simple MGS regularisation techniques from first principles and compare performance to a wide
range of regularisation methods. In a majority of the cases, the MGS regularisation achieves top
performance and exhibits robustness qualities. This suggests that the MGS framework opens the
door for the further development of both novel regularisers and the improvement of existing ones.

2 Model Gradient Similarity

Let x € X denote an input observation in a data batch and y € Y the target. We will train the model
fo, parameterised by 6, using loss function £ via gradient descent (GD). Thus, the standard single-
observation batch update rule using GD at time 4 is 0,11 = 0; — nVoL (f(x),y), where 7 is the
learning rate. When training a neural network, fy shall represent the raw output from the network
before any additional normalisation is performed (e.g. softmax as in the case of classification).

The loss gradients with respect to the parameters VgL (loss-parameter gradient) are thus the main
contributing factor to the update of the model. In the general case for common losses, such as
mean-squared error or cross-entropy, we apply the chain rule to the loss-parameter gradient: VoL =
Vo fo - VL. We denote the two components as: the loss gradients with respect to the model output
V ;L (loss-model gradients) and the model gradients with respect to the model parameters Vg fg
(model-parameter gradients).

Studying the influence that certain input data has on other data points during training is a common
technique from robust statistics. The use of influence functions to study model behaviour has been
explored for neural networks to, for example, help identify important training samples and detect
mislabelled data [Koh and Liang, P0T7]. How learning one data point influences another has also
been used in algorithms for clustering data [Heand'Sii, Z020]. Recently this idea has been broadened
under the general concept of gradient similarity/coherence and has been suggested as an explanation
for a neural network’s ability to generalise [Faghri et all, 2070, Chatterjee and Zielinski, 2077]. It is
here, however, mainly considered from the perspective of the loss-parameter gradient V£ and not
the model-parameter gradients Vy fp. Contrary to the loss-parameter gradients, which diminish as
any minima is approached, the model-parameter gradients display different behaviour and describe
the evolution of the function realised by the model. To help understand why they can be useful
in understanding neural network generalisation and regularisation thereof, we will borrow some
inspiration about gradient similarity from Charpiat et al] [Z019] and use it to define the core ideas
behind MGS.
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Figure 1: An illustration on the connection between MGS and generalisation. The arrows
represent the model gradients, V fy, for each data point. Left: A model that exhibits low similarity
between its gradients. The model is free to adapt the gradients for each point and therefore learns
them individually. The most likely outcome then is that it will overfit the data and generalise poorly.
Right: A model that is required to maintain a level of similarity between its gradients. To lower the
overall loss, while maintaining model gradient similarity, the model is forced to learn from the data
in groups defined by similar gradients. Thus, the model will have to learn separations in the data
based on such groupings instead of each point individually.

2.1 Defining MGS and its Relation to Generalisation

When judging the similarity of two points & and x’ from the model’s point of view, one may be
inclined to simply compare the output fy(x) to the other fp(z’). Unfortunately, due to the non-linear
nature of neural networks, the same output might be produced for a number of different reasons and
it is therefore difficult to draw conclusions about similarity directly from the output.

An alternative notion of similarity between 2 and 2’ can be defined by how much changing the model
output for z (by training on this sample) changes the output for x’. If the points are dissimilar from
the model’s standpoint, then changing fy(z) should have little influence over fp(z’) and vice-versa.
That is, after one step using GD for a single input sample x the parameters are changed by:

60 = —nVofVL(f(x),y).
This induces the following change in the output of the model for that specific x:

forso(z) = fo(x) + Vo f(z)- 560 + O(]|06])*)

ey
~ fo(x) —n(Vof(z) Vof(z)) ViL(f(2),y).
On the other hand, this update will also yield a change in the model for another =’ given by:
fosso(z') = fo(a") + Vo f(a") - 60 + O(]|66]%) 2

~ fo(a) =n(Vof(2') - Vo f () VL (f(x),y).

Therefore, the kernel kg (z,z') = Vo f(z) - Vg f(2') (derived from the model-parameter gradients)
is crucial to understanding how the model evolves after one step of GD. It determines how much of
the loss-model gradient V ;£ (f(x),y) is used to update the model, up to a scaling by the learning
rate. Another way to look at it is that kg (x, ') describes the influence learning = has over z’. If
ko(x, ') is large, which occurs when the model gradients are similar, then an update for f(z) will
also move f(’) in the same direction. Likewise, if k(x, ') is small, meaning the model gradients
are dissimilar, then the update for f(z) will have little affect on f(z'). The cartoon example in
figure [ illustrates how this property can be useful to understand how a model generalises better if it
exhibits higher MGS.



2.2 The contribution of MGS to Gradient Descent

If equations [ and @ above are combined, the complete update for a single step of gradient descent
with training data X, is:

fo150(X) = £4(X) + Vof(X) - 60 + O(||66]]%)
~ £)(X) — 1Ko(X) - V£ (E(X))
f@(xl) k(xhxl) k(l"l,xn) Vfﬁ(f(xl),yl)
= : = : : : :
Jo(wn) k(xn,21) -+ k(zn, ) Vfﬁ(f(xn), Yn)

Here Ky(X) = k(X, X) is the kernel matrix for data X . The update for each model output fp(x})
can thus be seen as a weighted average of the loss-model gradients V ¢ L (f(z;),y;):

fovso(wr) = folzr) —n Y k(zk,x;) - VL(f(2),95), wx € X. 3)

j=1

From equation B, it follows that the kernel ultimately controls the weighting of the loss-model gra-
dients: the greater the similarity exhibited between the model gradients, the greater the averaging
effect will be. This partially explains how GD induces implicit regularisation as, unless Ky(X) is
dominated by its diagonal, a model update for observation x; will also utilise the loss gradients of
other observations.

Furthermore, it has been observed from the Neural Tangent Theory perspective that Ky(X) will of-
ten align with the ideal kernel Y'Y in classification problems, which perfectly discriminates targets.
This phenomenon has already been investigated as one of the reasons behind implicit generalisation
for neural networks when trained with SGD [Kopitkov and Indelmar, 2020, Barafin_ef all, DOZT].
Here, we also see that the alignment will naturally engage the averaging effect, grouping gradients
according to their target classes. It is still unclear what the cause of the alignment is. However,
MGS provides an explanation as to why such an alignment is useful. More detail on the connection
to Neural Tangent Theory is presented in the supplementary material.

To summarise, apart from capturing to what extent the model gradients are aligned with each other,
MGS also determines how loss-model gradients for observations that have high MGS with each
other are averaged in the GD step.

2.3 Metrics to Quantify MGS

Since the kernel Ky(X) captures coordinated learning between similar observations (equation B), it
is desirable to identify metrics which can summarise the overall model gradient similarity in a batch
of data.

To find relevant metrics of Ky we note that the spectrum of Kq(X) = (Vo f(X))TVgf(X) is the
same as that of C' = Vy f(X) (Vg f(X))T'; the non-centered version of the sample covariance matrix

C = (Vof(X) = Vo f(X))(Vof(X) — Vof(X)7T. The spectrum of C' and C are interlaced as

their corresponding eigenvalues Ay < \; < ... <\, < A\,

We also note that the trace and determinant of C' are commonly used measures of the overall variance
and covariance for a given sample of data. Here, the model-parameter gradients V fy constitute the
data. Moreover, the trace and determinant of C' give a rough approximation of the same metrics of
C. Proofs of these two properties are given in the supplementary material.

Thus, the summary statistics tr Ky and det Ky can be seen as approximations of the model gradient
variance and covariance. Smaller values for the trace and determinant of the kernel, Ky, reflect a
higher degree of model gradient similarity and thus a larger averaging effect in equation B.

These metrics also serve as proxies for measuring the magnitude of the diagonal elements and rel-
ative magnitude of the diagonal-to-off-diagonal elements of K. From this perspective, smaller
values for the trace and determinant of the Ky reflect how well the kernel can be summarised by a
low-rank representation. Low-rank Ky can be viewed as indicative of coordinated learning in that it
restricts the number of independent directions in which the functions can evolve in equation 3.



From a practical standpoint, the exact values of these metrics are not important. Rather, we wish to
monitor how they evolve during training. Utilising the kernel also constitutes a pragmatic solution
since calculating C', of size p X p, is near infeasible for larger networks, whereas Ky is only of size
n X n, where p and n are the number of parameters and data batch respectively, and generally n < p.

3 Tracking MGS Metrics During Training

Let us now investigate how the metrics tr Ky and det Ky evolve during training. Using these metrics,
a wide range of regularisers, representing the most commonly used ones, are compared. Addition-
ally, two new regularisation methods based on MGS are plotted alongside as a reference. These are
introduced in the next section.

The results are shown in figures I, B, and B. In each example, all methods have their hyper-
parameters tuned, using grid search and cross-validation. Additionally the results are aggregated
after using different training splits and network initialisations. Figure I presents results from a
simple fully-connected network (FCN) architecture trained on a toy problem generated from two
concentric cirles perturbed with noise. Figure B stems from training a large convolution network
(AlexNet) on a corrupted version of MNIST with label noise and restricted training size. Figure @
is created in a similar way but instead uses the more difficult Fashion MNIST dataset [Xiao efall,
20T7] and a network with residual connections (ResNet20) to verify if the phenomenon still occurs
in more complex scenarios. In each example, despite being different problems and different architec-
tures, all regularisation methods exhibit the same behaviour: when regularisation is applied the rate
of MGS metric growth is decreased, indicating higher model gradient similarity. Furthermore, the
test accuracy or generalisation performance (figures B & H) is strongly correlated with the evolution
of the MGS metrics. The slower the rate of MGS growth, the better the final generalisation, and
when the growth plateaus so does the test accuracy.

We list some interesting observations from the MNIST example in figure 3:

* The unregularised network (gray) goes through a rapid boost in accuracy and then quickly
overfits. When test accuracy peaks, there is a small plateau in the MGS metrics. However,
once it starts to decline in accuracy, the MGS metrics again grow, indicating model gradient
similarity is decreased.

* Weight penalty (blue) is able to regularise the network initially, but also eventually overfits.
This is reflected in the MGS metrics as they plateau when test accuracy peaks and then start
to increase at a seemingly proportional rate to the decline in performance.

* All methods that achieve high test accuracy control the growth of the MGS metrics. Still,
many of them begin to overfit towards the end of training which coincides with the MGS
metrics also gradually increasing.

* Only the MGS penalty (to be introduced in the next section) is able to maintain a stable test
accuracy

* Dropout (brown) has gaps in its determinant metric. This means that it is causing Ky to be
singular which could have ramifications on the stability of the training.

More extensive test bench experiments are provided in section B.

4 MGS regularisation

In the previous section, we saw a clear connection between boosting MGS (reflected by lower MGS
metrics) and the ability of the network to generalise. The effect on MGS by the explicit regularisers
was common to all the methods despite their widely differing design. Thus, we may think of each
regularisation method as acting as a proxy for enforcing model gradient similarity. This motivates
the construction of a new regularisation scheme that directly optimises MGS.

We thus modify the original loss to include a new penalty term g(Ky(X))) which acts on the MGS
kernel:

L(F(X),Y) = L(f(X),Y) + g(Kq(X))



Unregularised Weight penalty MGS penalty (det)

-1.0 -05

log(det Kp)

0 20 a0 60 80 100 0 20 40 60 80 100

—— Unregularised —— Dropout —— Loss gradient penalty (data) ~——— RKHS norm penalty —— MGS penalty (det)
—— Learning rate (Inverse time decay) —— Weight penalty ~—— Loss gradient penalty (parameter) = —— MGS penalty (trace)

Figure 2: FCN on two-circle classification. Top: Decision boundaries are shown to visualise
how well the network has generalised for each method. Bottom: MGS metrics vs. epochs for each
regulariser are tracked during the training period. The connection between network generalisation
and the MGS metrics is clear. For an unregularised network which overfits the data, MGS metrics
grow rapidly. Once any explicit regularisation is used, MGS metric growth is slowed. Coupled with
this, the decision boundaries approach the true model for methods that constrain the MGS metrics
better. (Complete set of decision boundaries are provided in the supplementary material.)
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Figure 3: AlexNet on corrupted MNIST. Left: Test accuracy vs. training epochs. Middle and
Right: MGS metrics vs. training epochs. Test accuracy is clearly coupled to MGS evolution. All
methods that yield high final test accuracy exhibit small and slow-increasing MGS metrics, indicat-
ing a higher degree of model gradient similarity.



Aggregated test accuracy log(trKpg) log(det Kp)

©

~
3
s

o

«

—— Unregularised —— Dropout —— Loss gradient penalty (data) —— MGS penalty (trace)
Learning rate (ADAM) —— Weight penalty —— Loss gradient penalty (parameter)

Figure 4: ResNet20 on corrupted Fashion MNIST. Left: Test accuracy vs. training epochs.
Middle and Right: MGS metrics vs. training epochs. Even in this scenario using a more complex
network, with residual connections, and a harder dataset, the coupling between test accuracy and
MGS evolution is clear. Regularisers that achieve higher test accuracy also minimise the MGS
metrics. Of note is the ADAM optimiser which first achieves good test accuracy but then quickly
overfits, this is shown directly in the MGS metrics as well.

We already have two prime candidates for g, namely the previously investigated MGS metrics:

gur(Kp(X)) = atr Kp(X) =a Y A

gaet(Ko(X)) = adet Ko(X) = alog [ [N | ,

where « is a penalty factor and \; are the eigenvalues from the spectral decomposition of Ky. As
previously mentioned in section P73, smaller values for these penalty metrics reflect higher model
gradient similarity. Adding an explicit penalty on these metrics thus forces the network to learn data
in groups and preventing it from learning points individually (over-fitting or memorization).

The evolution of the two were shown in figures 0, @ and 8. The metrics seem to behave similarly.
However, gi,(Kp) is more efficient to compute as it does not require either the complete spectral
decomposition nor the full gradient similarity kernel to be computed. However, since both metrics
are gradient based, they are, of course, computationally more burdensome than commonly used
regularisers such as weight decay. For calculations of the penalties we make use of Neural Tangents
[Novak efall, ZO0T9] and Fast Finite Width NTK [Novak ef all, 2027 libraries which are built on JAX
[Bradbury et all [POTR]].

We note that the penalties are equivalent to penalising the arithmetic and geometric mean of the
eigenvalues of the kernel, respectively. The former will mainly be affected by large leading eigen-
values. The latter essentially penalises the eigenvalues of the kernel on a log-scale and may thus take
more of the overall structure of the kernel into account. Supplemental figure A.1 depicts results on
the toy two-circle data from using both penalties. The differences are subtle. For pragmatic consid-
erations, on real data we therefore utilise only the trace penalty for explicit regularisation, but both
metrics can be used for monitoring neural network training.

Details on how K is calculated with regards to mini-batches, vector-outputs and large data sets are
provided in the supplementary material.

5 Experiments

We compare the performance of optimising MGS directly versus the most common, explicit regu-
larisers. Although there exists a plethora of explicit regularisers and modifications thereof, the ones
chosen are a representative of the main types of regularisers with the most widespread use in prac-
tice. As the aim is to compare performance between regularisers, a systematic investigation is done
where the regularisers are rigorously tested against common overfitting scenarios caused by target
noise and training size. Two main tests are done, one on a classification problem and the other on
a regression problem. For each test two different types of architectures are chosen. This is to test
how universal each method is in handling vastly different problems and networks. Finally, a test



Table 1: Test accuracy for corrupted MNIST dataset using a LeNet-5 architecture. Final test
accuracy and one standard deviation is shown with the maximum test accuracy in parenthesis un-
derneath. Noise column represents percentage of training labels that have been randomly flipped.
Note the ability of MGS to handle large amounts of noise. Comparing max accuracy (in paren-
thesis) during training to final accuracy, MGS is also the most consistent and is not susceptible to
overfitting.

Noise Unregularised Dropout Weight Loss grad. MGS

0% 89.6 £1.3 95.8 0.5 83.14£9.6 95.1 £0.5 95.2+0.3
(90.2) (95.9) (87.1) (95.1) (95.2)

30% 62.0 £2.5 80.9 £2.9 72.2 +4.2 88.7 £2.0 93.1 £0.7
(85.2) (92.0) (79.2) (92.0) (93.4)

60% 37.3+2.9 59.2 +4.1 10.0 £0.4 80.7 £5.9 884 +1.4
(73.7) (83.7) (62.3) (81.4) (89.1)

0% 239 +2.4 39.5 +4.7 10.1 £0.5 15.1+£54 74.5 +4.0
(62.4) (56.6) (23.5) (17.2) (75.1)

of robustness to variability found in common training setups is performed. Complete details on the
experiments, complete results and code to run them can be found in the supplementary material.

5.1 Classification: corrupted MNIST

We generate a corrupted version of the popular MNIST dataset by applying a motion blur to each
training image. The test set is kept uncorrupted, which ascertains how well the network generalises:
if the network overfits the training set, it will learn the corrupted version and perform poorly on the
clean data. A testbench of challenging scenarios are created by varying the amount of label noise and
training size. Each regularisation method is tuned in an identical setting, of medium difficulty, and
then retains the chosen hyper-parameters for the entire testbench. This ensures an even playing field
and that each method is given the same starting point. For each testing scenario, multiple runs are
performed using a new network initialisation and resampling of the training data. No early stopping
is used as we purely want to test how well each regularisation method can prevent over-fitting on its
own.

Table 0 shows the results for 4 scenarios from the 143 scenario large testbench (see supplemental).
In this scenario 3000 samples are used for training at 4 noise levels. It is immediately clear that MGS
achieves the best performance overall in many aspects. Not only does it reach higher accuracy levels
than the other methods, it is also robust in its performance. This can be seen both by the standard
deviation of its final test accuracy, but also when comparing the max test accuracy to its final one.
When comparing the maximum values, it is also evident that early stopping would not have resulted
in better performance for any of the methods compared to the final MGS result. Additionally in
supplemental figures A.2 and A.3, the evolution of test accuracy during training is depicted, visually
showing that early stopping techniques do not exhibit improved performance over MGS. Indeed,
MGS max and final test accuracy essentially coincide, indicating that MGS regularised networks do
not overfit. The same conclusions hold true for a fully connected network (see supplemental) where
performance is overall worse for all methods but MGS outperforms the others.

5.2 Regression: Facial Keypoints

A similar setup to the classification is created using corrupted version of the Facial Keypoints data
set was used as a regression benchmark. Based on images of human faces, the problem is to predict
the coordinates of 15 key facial features. Each image is first corrupted using a motion blur. Noise is
then introduced by adding normally distributed values, using different scale parameters, to the target
variables. Here, we fixed the number of training samples while the amount of target noise was varied.
Each method is tuned using the same scenario first. Once again no early stopping is used. Similar
conclusions can be drawn as from the classification results. The results are visible in table @ where
the noise column corresponds to the scale parameter of the normally distributed noise. Interestingly,
only Dropout and MGS were actually able to converge to a satisfactory performance level. However,



Table 2: Test loss for the corrupted Facial Keypoints dataset using a LeNet-5 architecture. Final
test loss and one standard deviation is shown with the minimum test loss in parenthesis underneath.
Only Dropout and MGS achieve an acceptable level of final test loss. The other methods also provide
a marginal increase in performance compared to the unregularised network. In the supplemental we
compare results on a FCN architecture for which only MGS is able to attain good performance.

Noise  Unregularised Dropout Weight Loss grad. MGS
0 68.2 £36.7 149 +2.2 113.2 £53.2 4_21172441 141 £1.0
(54.2) (13.9) (90.3) (‘104_6) (13.8)
10 54.8 £24.0 154422 92.6 +46.5 4-21385826 14.3 £1.1
(45.2) (14.4) (69.0) (_140.35) (13.6)
102.0 166422 8384527 266.1 15313
20 +116.2 (15.3) (49.3) +233.1 (14.7)
(48.2) ‘ ’ (115.9) '
229.4
30 94.8 £131.5 19.7 £2.8 70.6 £58.0 +995.7 17.8 £2.0
(39.0) (17.7) (41.9) (151.5) (16.9)
Loss grad. Weight Dropout

Training size

\100% (test accuracy)

Lap,
¢/ nojse gpoch®

—— Median
== Quartile

Batch size Learning rate

= Loss grad. = \Weight == Dropout =—— MGS

Figure 5: Test accuracy quantiles after varying different parameters controlling training. MGS
is plotted in red against the other methods. MGS outperforms the other regularisers, and is also the
most robust with regards to changes in the training setup, in all but one case. The only area in which
it shows a degradation in performance is when the learning rate is changed. However this seems to
affect all methods, but weight penalty to a lesser degree.

when results are compared for a FCN architecture (table B2, supplemental), Dropout falls into the
same category as the other methods while MGS performance remains high. This shows a weakness
in a method such as Dropout: that it is inevitably architecture dependent.

5.3 Training parameter robustness

Finally, we test the robustness of each regularisation method by changing: amount of training size,
label noise, batch size, learning rate, and epochs. A middle-ground scenario was chosen from this
MNIST testbench as a starting point to tune each method. Then, the five training variables were
changed individually to both higher and lower values, tracking the performance of each method
after training. Consistent with the current findings, MGS outperforms each method substantially. In
figure B we use radar charts to summarise the test bench results.

We note that MGS is the least affected by a change in all but one of the test parameters or conditions,
and exhibits superior performance compared to the other regularisers. Performance is only affected
by learning rate to some extent. This is not unexpected as the same can be seen for the other methods
apart from weight penalty. Also, as is evident from the GD update step (equation [), the one directly
contributing training parameter in MGS is the learning rate.



6 Conclusion

We introduced the concept of Model Gradient Similarity (MGS) and discussed its connections to
regularisation for models trained with gradient descent and the generalisation properties of neural
networks. We proposed metrics that can be used to summarise MGS for a model and track the
training of different neural network architectures for various learning problems.

It was shown that a wide range of explicit regularisers all appeared to attempt to enforce higher
model gradient similarity, i.e. lower MGS metrics. Moreover, higher test accuracy performance was
shown to be reflected in lower MGS metric values.

Based on these findings, a new type of regulariser, geared toward direct control of MGS, was de-
signed and found to achieve top performance in several rigorous test bench experiments. Its overall
robustness to label noise and training parameter settings was also an indication that directly optimis-
ing MGS comes closer to a more holistic approach to regularisation.

Taken together, these results provided insight into the underlying mechanisms of neural network
regularisation. Due to the higher computational costs for gradient based regularisers, such as the
MGS metric penalities introduced here or loss-gradient penalties, their use for direct optimisation
is not always efficient. To scale for use in larger networks and in more complex settings, additional
work is needed to obtain more efficient ways to compute or approximate the MGS kernel or metrics
thereof. Future work could thus focus both on how MGS can be used to design new regularisers
as well as to improve upon existing ones. The MGS metrics can be useful as KPI's for measur-
ing a network’s current capacity for under/over-fitting. Finally, the grouping effect of regularised
neural network training, where model gradient similarity encourages coordinated learning across
observations, suggests that MGS regularisation can be explored for joint prediction modeling and
clustering.
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