

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

BNPO: BETA NORMALIZATION POLICY OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent studies, including DeepSeek-R1 and Kimi-k1.5, have demonstrated that reinforcement learning with rule-based, binary-valued reward functions can significantly enhance the reasoning capabilities of large language models. These models primarily utilize REINFORCE-based policy optimization techniques, such as REINFORCE with baseline and group relative policy optimization (GRPO). However, a key limitation remains: current policy optimization methods either neglect reward normalization or employ static normalization strategies, which fail to adapt to the dynamic nature of policy updates during training. This may result in unstable gradient estimates and hinder training stability. To address this issue, we propose Beta Normalization Policy Optimization (BNPO), a novel policy optimization method that adaptively normalizes rewards using a Beta distribution with dynamically updated parameters. BNPO aligns the normalization with the changing policy distribution, enabling more precise and lower-variance gradient estimation, which in turn promotes stable training dynamics. We provide theoretical analysis demonstrating BNPO’s variance-reducing properties and show that it generalizes both REINFORCE and GRPO under binary-valued reward settings. Furthermore, we introduce an advantage decomposition mechanism to extend BNPO’s applicability to more complex reward systems. Experimental results confirm that BNPO achieves state-of-the-art performance among policy optimization methods on reasoning tasks.

1 INTRODUCTION

Kimi-K1.5 (Team et al., 2025) and DeepSeek-R1 (Guo et al., 2025) have demonstrated that reinforcement learning can substantially enhance the reasoning capabilities of large language models. These models leverage reinforcement learning techniques built on rule-based, binary-valued outcome reward functions, and utilize policy optimization techniques such as REINFORCE with baseline (Kool et al., 2019) and group relative policy optimization (GRPO) (Shao et al., 2024).

In contrast to proximal policy optimization (PPO) (Schulman et al., 2017), which employs a critic network to estimate the baseline for policy gradients, REINFORCE with baseline and GRPO utilize Monte Carlo sampling for baseline estimation, reducing memory and computational overhead. Specifically, REINFORCE with baseline incorporates a state-dependent baseline compared to vanilla REINFORCE to reduce gradient variance, while GRPO further stabilizes training by normalizing rewards, thereby reducing gradient variance in high-variance reward scenarios.

Despite these advances, a fundamental limitation remains: current methods either lack reward normalization entirely or use fixed normalization terms throughout training. This is suboptimal, as the policy model evolves during training, fixed normalization cannot adapt to such dynamics, potentially resulting in inaccurate gradient estimates and unstable learning.

To overcome this limitation, we propose a novel policy optimization method, called Beta Normalization Policy Optimization (BNPO), which dynamically normalizes the reward function using a Beta distribution with its adaptive parameters. By evolving alongside the policy model, this normalization mechanism provides more accurate and lower-variance gradient estimates. Besides, we introduce an advantage decomposition mechanism to enhance BNPO’s ability to handle complex reward systems.

Our approach is motivated by the observation that, under binary-valued reward functions, the reward can be seen as a random variable with Bernoulli distribution, and its expectation naturally can be modeled as a random variable with Beta distribution. As training progresses and the policy evolves,

Figure 1: Probability density function of Beta distribution.

the distribution of expected rewards also shifts. BNPO explicitly accounts for these shifts by adjusting the normalization term accordingly.

We further present a theoretical analysis demonstrating that BNPO can effectively reduce the variance of policy gradient estimates when the Beta distribution parameters are appropriately set. Moreover, we show that BNPO generalizes both REINFORCE and GRPO in the binary-valued reward setting, highlighting its broad applicability and theoretical consistency. Finally, experimental results show that BNPO achieves state-of-the-art performance in policy optimization for reasoning tasks.

2 BACKGROUND

2.1 BETA DISTRIBUTION

The Beta distribution is a continuous probability distribution defined on the interval $[0, 1]$, making it particularly well-suited for modeling probabilities. In this paper, we use it to represent the distribution of the expectation of a binary-valued reward. Its probability density function is given by

$$f(p; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} p^{\alpha-1} (1-p)^{\beta-1}, \quad p \in [0, 1] \text{ or } p \in (0, 1), \quad \alpha > 0, \beta > 0, \quad (1)$$

where $B(\cdot, \cdot)$ denotes the Beta function, which serves as a normalization constant to ensure the probability density function integrates to one. Figure 1 illustrates the probability density function of the Beta distribution under various parameter settings.

The shape of the Beta distribution is primarily determined by the values of α and β , which control the concentration of probability mass and the skewness of the distribution. When $\alpha > 1$ and $\beta > 1$, the distribution is unimodal and bell-shaped, with the mode $\frac{\alpha-1}{\alpha+\beta-2}$ lying between 0 and 1. If $\alpha < 1$ and $\beta < 1$, the distribution becomes U-shaped, with higher densities near 0 and 1. When one of the parameters is less than 1 while the other is greater than 1, the distribution becomes highly skewed, concentrating mass near one endpoint. A special case occurs when $\alpha = \beta$, resulting in a symmetric distribution centered around $p = \frac{1}{2}$. This adaptability makes the Beta distribution a popular choice in probabilistic modeling contexts.

In terms of summary statistics, the mean of the Beta distribution is given by $\mathbb{E}[p] = \frac{\alpha}{\alpha+\beta}$, reflecting the balance between the two parameters. The variance is given by $\text{Var}[p] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$, which decreases as the sum $\alpha + \beta$ increases, indicating greater certainty or concentration around the mean.

2.2 POLICY OPTIMIZATION

Reinforcement learning provides an effective framework for training large language models by enabling them to learn policies through interaction with the environment and feedback signals. Among

108 various reinforcement learning methods, policy gradient techniques are particularly prominent due to
 109 their ability to scale to high-dimensional action spaces typical in language generation tasks. Given a
 110 outcome reward function $R(q, o)$, the objective function in policy gradient methods is defined as:
 111

$$\mathcal{L}(\theta) = \mathbb{E}_{q \sim \rho, o \sim \pi_\theta(\cdot|q)} [R(q, o)], \quad (2)$$

112 where ρ represents the distribution of questions q , and $\pi_\theta(\cdot|q)$ denotes the parameterized policy model
 113 that defines the distribution over outputs o . According to the policy gradient theorem (Sutton et al.,
 114 1999), the policy gradient for the objective in Eq.(2) is given by:
 115

$$\nabla_\theta \mathcal{L}(\theta) = \mathbb{E}_{q \sim \rho, o \sim \pi_\theta(\cdot|q)} [\nabla_\theta \log \pi_\theta(o|q) R(q, o)]. \quad (3)$$

116 In practice, directly using Eq. (3) can lead to high variance in gradient estimates (Barto, 2021), which
 117 negatively impacts training stability. To mitigate this, policy gradient methods typically introduce an
 118 advantage function $A(q, o)$:

$$\nabla_\theta \mathcal{J}(\theta) = \mathbb{E}_{q \sim \rho, o \sim \pi_\theta(\cdot|q)} [\nabla_\theta \log \pi_\theta(o|q) A(q, o)], \quad (4)$$

119 where $A(q, o)$ represents the relative advantage of a question-output pair (q, o) compared to other
 120 pairs. The use of $A(q, o)$ primarily serves to reduce the variance in policy gradient estimation:
 121

$$\text{Var}_{q \sim \rho, o \sim \pi_\theta(\cdot|q)} [\nabla_\theta \log \pi_\theta(o|q) A(q, o)]. \quad (5)$$

122 The advantage function is commonly formulated as $A(q, o) = \frac{R(q, o) - \mu}{\sigma}$, where μ serves as a baseline
 123 for $R(q, o)$ to compare and σ acts as a normalization term. With appropriate choices of μ and σ , the
 124 estimation of policy gradient remains unbiased while its variance is reduced.
 125

126 REINFORCE with baseline (Team et al., 2025; Kool et al., 2019) defines $A(q, o)$ as
 127

$$\begin{aligned} A(q, o) &= R(q, o) - \mathbb{E}_{o' \sim \pi_\theta(\cdot|q)} [R(q, o')] \\ &\approx R(q, o) - \text{Mean}(\{R(q, o'_j)\}_{j=1}^m), \end{aligned} \quad (6)$$

128 where the baseline is the mean reward over a sampled group of outputs $\{(q, o'_j)\}_{j=1}^m$. This Monte
 129 Carlo estimate approximates the expected reward $\mathbb{E}_{o' \sim \pi_\theta(\cdot|q)} [R(q, o')]$ and has been shown to
 130 effectively reduce the variance of policy gradient estimates (Wu et al., 2018).
 131

132 GRPO (Guo et al., 2025; Shao et al., 2024) defines $A(q, o)$ as:
 133

$$\begin{aligned} A(q, o) &= \frac{R(q, o) - \mathbb{E}_{o' \sim \pi_\theta(\cdot|q)} [R(q, o')]}{\sqrt{\text{Var}_{o' \sim \pi_\theta(\cdot|q)} [R(q, o')]} \\ &\approx \frac{R(q, o) - \text{Mean}(\{R(q, o'_j)\}_{j=1}^m)}{\sqrt{\text{Var}(\{R(q, o'_j)\}_{j=1}^m)}}, \end{aligned} \quad (7)$$

134 Compared to REINFORCE with baseline, GRPO further uses the standard deviation of the rewards
 135 over the sampled set $\{(q, o'_j)\}_{j=1}^m$ to normalize the reward function. This normalization term can
 136 further reduce the variance in estimating policy gradient for high-variance reward functions.
 137

138 PPO (Schulman et al., 2017) further enhances stability by incorporating importance sampling and a
 139 clipping mechanism for off-policy updates:
 140

$$\mathcal{L}(\theta) = \mathbb{E}_{q \sim \rho, o \sim \pi_{\theta_{\text{old}}}(o|q)} \left[\min\left(\frac{\pi_\theta(o|q)}{\pi_{\theta_{\text{old}}}(o|q)} A(q, o), \text{clip}\left(\frac{\pi_\theta(o|q)}{\pi_{\theta_{\text{old}}}(o|q)}, 1 - \varepsilon, 1 + \varepsilon\right) A(q, o)\right)\right], \quad (8)$$

141 where $\pi_{\theta_{\text{old}}}$ is the old policy and ε is a hyperparameter that controls the range of clipping.
 142

143 3 BETA NORMALIZATION POLICY OPTIMIZATION

144 In this section, we introduce our policy optimization method, BNPO, which employs a Beta dis-
 145 tribution to normalize binary-valued reward functions. BNPO adapts to the evolving policy model
 146

162 during training by dynamically adjusting the parameters of the Beta distribution. We then provide
 163 a theoretical proof demonstrating that BNPO effectively reduces the variance of policy gradient
 164 estimates. Furthermore, we show that BNPO generalizes both REINFORCE with baseline and GRPO
 165 in the context of binary-valued rewards. Finally, we present an advantage decomposition mechanism
 166 to extend BNPO’s applicability to more complex reward systems.
 167

168 **Beta normalization** We use the accuracy of an output o with respect to a question q as the reward
 169 function $R(q, o)$ as in DeepSeek-R1 (Guo et al., 2025), i.e.,
 170

$$R(q, o) = \begin{cases} 1, & \text{if } o \text{ contains the answer } a \text{ of the question } q, \\ 0, & \text{otherwise.} \end{cases} \quad (9)$$

173 Since the value of $R(q, o)$ is either 0 or 1, $R(q, o)$ can be treated as a random variable with Bernoulli
 174 distribution, i.e.,
 175

$$\begin{aligned} R(q, o) &\sim \text{Bernoulli}(p(q)), \quad 0 \leq p(q) \leq 1, \\ p(q) &= \mathbb{E}_{o \sim \pi_\theta(\cdot|q)}[R(q, o)|q], \end{aligned} \quad (10)$$

178 where $p(q)$ denotes the probability that output o is correct for question q , and it is also the expected
 179 reward under the distribution $\pi_\theta(\cdot|q)$. As mentioned in Section 2.1, the Beta distribution is very
 180 suitable for modeling probability. Thus, we model $p(q)$ as a random variable with Beta distribution
 181 $f_D(p(q); a, b)$, where the parameters a and b control the shape of the distribution. These parameters
 182 can be estimated using Monte Carlo sampling.
 183

184 As the policy model $\pi_\theta(\cdot|q)$ evolves during training, the distribution of $p(q)$ also changes dynamically.
 185 To account for these changes, we propose using an additional Beta distribution $f_N(p(q); \alpha, \beta)$ to
 186 normalize the reward function. The advantage function in our BNPO method is defined as:
 187

$$A_{\alpha, \beta}(q, o) = \frac{R(q, o) - p(q)}{f_N(p(q); \alpha, \beta)}, \quad (11)$$

188 where $p(q)$ serves as the baseline, as in REINFORCE with baseline and GRPO, and $f_N(p(q); \alpha, \beta)$
 189 is used to normalize the reward function $R(q, o)$.
 190

191 **The setting of α and β** We dynamically adjust the parameters (α, β) in $f_N(p(q); \alpha, \beta)$ to ensure
 192 that $A_{\alpha, \beta}(q, o)$ adapts to the evolving distribution $f_D(p(q); a, b)$ during training. The primary goal
 193 in setting α and β is to minimize the variance in policy gradient estimation. We present the following
 194 theorem to achieve it.
 195

196 **Theorem 1.** *Let $q \sim \rho$ be a question and $o \sim \pi_\theta(\cdot|q)$ be an output with reward $R(q, o) \in \{0, 1\}$,
 197 where $R(q, o)$ follows a Bernoulli distribution with success probability $p(q) = \mathbb{E}_{o \sim \pi_\theta(\cdot|q)}[R(q, o)|q]$,
 198 and that $p(q)$ follows a Beta distribution $f_D(p(q); a, b)$. Define the BNPO gradient estimator as*

$$g_{\alpha, \beta} = \nabla_\theta \log \pi(o|q) \frac{R(q, o) - p(q)}{f_N(p(q); \alpha, \beta)},$$

200 where $f_N(p(q); \alpha, \beta)$ is a Beta distribution. Under the assumption $\nabla_\theta \log \pi(o|q)$ is uncorrelated
 201 with $\frac{R(q, o) - p(q)}{f_N(p(q); \alpha, \beta)}$, the variance of the policy gradient estimator $\text{Var}_{q \sim \rho, o \sim \pi_\theta(\cdot|q)}(g_{\alpha, \beta})$ is finite if
 202 and only if: $\alpha < \frac{a+3}{2}$ and $\beta < \frac{b+3}{2}$. Within this domain, $\text{Var}_{q \sim \rho, o \sim \pi_\theta(\cdot|q)}(g_{\alpha, \beta})$ attains a unique
 203 minimum at:
 204

$$\alpha = 1 + \frac{a}{3}, \quad \beta = 1 + \frac{b}{3}.$$

205 See Appendix C for the proof. The above theorem demonstrates that the optimal parameter settings
 206 for minimizing the variance of the policy gradient are $\alpha = 1 + \frac{a}{3}$ and $\beta = 1 + \frac{b}{3}$. Thus, the choice of
 207 (α, β) depends on the values of (a, b) . We estimate (a, b) using the method-of-moments approach
 208 and Monte Carlo sampling.
 209

210 Given the following relationships:
 211

$$\begin{aligned} \mathbb{E}[p(q)] &= \frac{a}{a+b}, \\ \text{Var}[p(q)] &= \frac{ab}{(a+b)^2(a+b+1)}, \end{aligned} \quad (12)$$

216 we can solve for a and b as:

$$\begin{aligned} 218 \quad a &= \left(\frac{\mathbb{E}[p(q)](1 - \mathbb{E}[p(q)])}{\text{Var}[p(q)]} - 1 \right) \mathbb{E}[p(q)], \\ 219 \\ 220 \quad b &= \left(\frac{\mathbb{E}[p(q)](1 - \mathbb{E}[p(q)])}{\text{Var}[p(q)]} - 1 \right) (1 - \mathbb{E}[p(q)]). \end{aligned} \quad (13)$$

222 We then estimate $\mathbb{E}[p(q)]$ and $\text{Var}[p(q)]$ using Monte Carlo methods to get a and b :

$$\begin{aligned} 224 \quad \mathbb{E}[p(q)] &\approx \text{Mean}(\{p(q_i)\}_{i=1}^n), \\ 225 \quad \text{Var}[p(q)] &\approx \text{Var}(\{p(q_i)\}_{i=1}^n). \end{aligned} \quad (14)$$

227 **The interpretation of α and β** The parameters α and β can be understood in terms of the mean
228 and variance of $f_D(p(q); a, b)$. The mean of $f_D(p(q); a, b)$ is given by $\frac{a}{a+b}$, representing the average
229 reward of all (q, o) pairs. The mode of $f_N(p(q); \alpha, \beta)$ is $\frac{\alpha-1}{\alpha+\beta-2} = \frac{a}{a+b}$, which corresponds to the
230 value at which $f_N(p(q); \alpha, \beta)$ attains its maximum. This shows that the mean of $f_D(p(q); a, b)$ is
231 equal to the mode of $f_N(p(q); \alpha, \beta)$. As a result, the reward function $R(q, o)$ is most normalized at
232 the average reward $\frac{a}{a+b}$.

234 The variance of $f_D(p(q); a, b)$ decreases/increases as the sum $a + b$ increases/decreases. Since
235 $\alpha + \beta = 2 + \frac{a+b}{3}$, the variance of $f_N(p(q); \alpha, \beta)$ behaves similarly: it decreases/increases as $a + b$
236 increases/decreases. Hence, $f_N(p(q); \alpha, \beta)$ adapts its parameters to align with the variance changes
237 of $f_D(p(q); a, b)$.

238 **REINFORCE and GRPO** We now demonstrate that BNPO generalizes both REINFORCE with
239 baseline and GRPO under binary-valued reward circumstances, reducing to each of these methods
240 under specific settings for α and β .

242 REINFORCE with baseline defines the advantage function $A(q, o)$ as

$$\begin{aligned} 243 \quad A(q, o) &= R(q, o) - \mathbb{E}_{o' \sim \pi_\theta(\cdot|q)} [R(q, o')] \\ 244 \\ 245 &= R(q, o) - p(q) \\ 246 \\ 247 &= \frac{R(q, o) - p(q)}{f_N(p(q); 1, 1)} \\ 248 \\ 249 &= A_{1,1}(q, o). \end{aligned} \quad (15)$$

250 Therefore, BNPO reduces to REINFORCE if $f_N(p(q); \alpha, \beta) = f_N(p(q); 1, 1)$. Since RLOO (Kool
251 et al., 2019; Ahmadian et al., 2024) is equivalent to REINFORCE with baseline up to a scaling
252 constant (Liu et al., 2025), BNPO can also reduce to RLOO.

253 GRPO defines the advantage function $A(q, o)$ as

$$\begin{aligned} 255 \quad A(q, o) &= \frac{R(q, o) - \mathbb{E}_{o' \sim \pi_\theta(\cdot|q)} [R(q, o')]}{\sqrt{\text{Var}_{o' \sim \pi_\theta(\cdot|q)} [R(q, o')]}} \\ 256 \\ 257 &= \frac{R(q, o) - p(q)}{\sqrt{p(q)(1 - p(q))}} \\ 258 \\ 259 &\propto \frac{R(q, o) - p(q)}{f_N(p(q); \frac{3}{2}, \frac{3}{2})} \\ 260 \\ 261 &= A_{\frac{3}{2}, \frac{3}{2}}(q, o). \end{aligned} \quad (16)$$

264 In training large language models, gradient clipping is commonly employed. Consequently, scaling
265 the loss function by a constant does not affect the parameter update process. Consequently, BNPO
266 reduces to GRPO if $f_N(p(q); \alpha, \beta) = f_N(p(q); \frac{3}{2}, \frac{3}{2})$.

268 REINFORCE with a baseline and GRPO can be viewed as special cases of BNPO with fixed values
269 of (α, β) . In contrast, BNPO dynamically adjusts (α, β) during training to better align with the
evolving policy model.

270 **Advantage decomposition** To extend our method to more complex reward systems beyond a
 271 single binary reward function, we introduce an advantage decomposition mechanism. This approach
 272 enables the separate normalization of each individual reward component, leading to a more accurate
 273 estimation of the overall advantage function. Such decomposition is particularly beneficial in settings
 274 with multiple reward signals. For example, DeepSeek-R1 employs both format and accuracy rewards
 275 to ensure that model outputs not only follow the required structure but also produce correct answers.

276 Given K binary-valued reward functions $\{R^{(1)}(q, o), R^{(2)}(q, o), \dots, R^{(K)}(q, o)\}$, we decompose
 277 the overall advantage function $A(q, o)$ into K sub-advantage functions $A^{(i)}(q, o)$ as follows:
 278

$$279 \quad 280 \quad 281 \quad A(q, o) = \frac{1}{K} \sum_{i=1}^K A^{(i)}(q, o) = \frac{1}{K} \sum_{i=1}^K \frac{R^{(i)}(q, o) - p(q)^{(i)}}{f_N(p(q)^{(i)}; \alpha^{(i)}, \beta^{(i)})}. \quad (17)$$

282 where each sub-advantage function $A^{(i)}(q, o)$ is computed for the corresponding reward function
 283 $R^{(i)}(q, o)$.
 284

285 Unlike previous methods that first sum multiple reward functions and then compute the final advantage
 286 function, our approach calculates the advantage function for each individual reward function first,
 287 and then averages them to obtain the final advantage function. The key benefit of this approach is that
 288 it allows for separate normalization of each reward function, ensuring that the normalization of one
 289 function does not interfere with others.
 290

291 **Extend BNPO to multi-valued or continuous rewards.** We present the detailed implementation
 292 of our BNPO in Alg.(1). Although our theoretical analysis of BNPO is based on binary-valued
 293 reward functions, the method remains applicable to general reward functions in practice. BNPO can
 294 be naturally extended to handle general reward functions by directly assuming that $p(q)$ follows a
 295 Beta distribution, without relying on the intermediate assumption that $R(q, o)$ is Bernoulli-distributed.
 296 This extension broadens the applicability of BNPO to arbitrary reward types.
 297

298 In this generalized setting, the solution to Theorem 1, originally derived for binary rewards, serves
 299 as an approximate solution. While it may not be strictly optimal, it remains effective in reducing
 300 gradient variance.
 301

300 4 RELATED WORK

302 Reinforcement learning has been widely adopted to align large language models with human preferences,
 303 as seen in systems like ChatGPT and DeepSeek-R1. ChatGPT (Ouyang et al., 2022) employs
 304 PPO for policy optimization, which relies on a critic network to better estimate policy gradients.
 305 However, training a critic network is computationally intensive and memory-demanding, particularly
 306 for large language models. To address this, models such as DeepSeek-R1 and Qwen (Yang et al.,
 307 2024a) adopt REINFORCE-based methods, which avoid the need for a critic network.
 308

309 The original REINFORCE algorithm (Williams, 1992) estimates gradients through Monte Carlo
 310 sampling but often suffers from high variance, which can hinder learning stability and efficiency. To
 311 mitigate this issue, RLOO (Kool et al., 2019) introduces a baseline function that uses the mean reward
 312 of a group of samples as a reference, significantly reducing gradient variance, especially when batch
 313 sizes are small. ReMax (Li et al., 2024) builds on this idea by employing greedy decoding to obtain a
 314 baseline. GRPO (Shao et al., 2024) further refines this idea by normalizing each reward using the
 315 standard deviation of the group, reducing variance even more. REINFORCE++ (Hu, 2025) goes a
 316 step further by leveraging the rewards of all samples to estimate the policy gradient, resulting in more
 317 stable and robust learning performance. However, these methods either lack proper normalization
 318 or rely on static normalization strategies, which are insufficient for adapting to the evolving nature
 319 of policy during training. In contrast, BNPO dynamically adjusts its normalization parameters in
 320 response to changes in the policy, effectively stabilizing training.
 321

322 Beyond policy optimization methods, normalization techniques are widely used in reinforcement
 323 learning. Reward and value normalization have been extensively studied, including adaptive rescaling
 324 approaches such as PopArt (Van Hasselt et al., 2016). Large-scale empirical analyses, such as Henderson
 325 et al. (2018), highlight the critical role of reward normalization in ensuring stable and reproducible
 326 training. In addition, PPO stabilizes training by clipping rewards and policy updates, which acts as
 327

324 **Algorithm 1** BNPO: Beta Normalization Policy Optimization

325 **Input:** Initial policy model π_{θ_0} , K binary-valued Reward model $R^{(i)}(q, o)$, training set \mathcal{D} ,
 326 number of steps S , number of PPO iterations T , batch size n , number of outputs m .

327 1: Initialize policy model $\pi_{\theta} \leftarrow \pi_{\theta_0}$.
 328 2: **for** step = 1 **to** S **do**
 329 3: Update the old policy model $\pi_{\theta_{\text{old}}} \leftarrow \pi_{\theta}$.
 330 4: Sample n questions q from \mathcal{D} .
 331 5: Sample m outputs $o \sim \pi_{\theta_{\text{old}}}(\cdot | q)$ for each question q .
 332 6: **for** each question-output pair (q, o) **do**
 333 7: **for** $i = 1$ **to** K **do**
 334 8: Compute the reward $R^{(i)}(q, o)$.
 335 9: **end for**
 336 10: **end for**
 337 11: **for** each question q **do**
 338 12: Estimate $p(q)$ in Eq.(10).
 339 13: **end for**
 340 14: Estimate the parameters a and b in $f_D(p(q); a, b)$ by Eq.(13) and Eq.(14).
 341 15: Set the the parameters α and β in $f_N(p(q); \alpha, \beta)$ as $\alpha = 1 + \frac{a}{3}$ and $\beta = 1 + \frac{b}{3}$.
 342 16: **for** each question-output pair (q, o) **do**
 343 17: Compute the advantage $A(q, o)$ by Eq.(11) and Eq.(17).
 344 18: **end for**
 345 19: **for** iteration = 1 **to** T **do**
 346 20: Update π_{θ} by maximizing Eq.(8).
 347 21: **end for**
 22: **end for**
 348 **Output:** Optimized policy model π_{θ} .

349
 350
 351 an implicit normalization mechanism to prevent excessively large gradient steps (Schulman et al.,
 352 2017). Collectively, these studies demonstrate the broad effectiveness of normalization techniques in
 353 reinforcement learning.

354
 355

5 EXPERIMENTS

 356

357 In this section, we first describe the experimental setup in Section 5.1, followed by the presentation of
 358 results in Section 5.2. We then analyze training stability in Section 5.3. We finally show the evolution
 359 of the normalization of BNPO in Section 5.4.

360
 361

5.1 EXPERIMENTAL SETTINGS

 362

363 **Models** To evaluate the effectiveness of BNPO, we conduct experiments on two publicly available
 364 base models of different scales: Qwen2.5-Math-1.5B and Qwen2.5-Math-7B (Yang et al., 2024a;b).

365 **Methods** We compare BNPO method against several policy optimization methods, including
 366 REINFORCE, ReMax, GRPO, and REINFORCE++. Since RLOO is equivalent to REINFORCE
 367 with a baseline, we only report the results for REINFORCE with baseline.

368 **Datasets** For training, we utilize the full MATH dataset (Hendrycks et al., 2021), which consists of
 369 7,500 diverse mathematical problems spanning a wide range of topics and difficulty levels.

370 For evaluation, we use four benchmark datasets: MATH500 (Hendrycks et al., 2021; Lightman
 371 et al., 2023), AMC23 (Art of Problem Solving, 2025b), AIME2024 and AIME2025 (Art of Problem
 372 Solving, 2025a).

373 **Metrics** We use pass@1 as the evaluation metric. For the AMC23, AIME 2024, and AIME 2025
 374 datasets, we run the test set 16 times and report the average results, as these test sets are relatively
 375 small. We report the best average performance during training.

378
379 Table 1: The performance of different policy optimization methods on math datasets.
380
381

Methods	MATH500	AMC23	AIME2024	AIME2025	Average
<i>Qwen2.5-Math-1.5B</i>					
Base	28.0	27.3	6.0	3.1	16.1
REINFORCE	72.2	53.6	18.3	11.5	38.9
ReMax	73.2	53.3	17.1	9.6	38.3
GRPO	75.0	52.0	15.6	11.0	38.4
REINFORCE++	73.8	52.0	16.7	9.8	38.1
BNPO	74.0	54.5	17.9	11.3	39.4
<i>Qwen2.5-Math-7B</i>					
Base	41.4	32.5	11.0	5.0	22.5
REINFORCE	78.2	65.6	32.9	11.7	47.1
ReMax	77.8	63.6	33.5	15.4	47.6
GRPO	78.6	64.5	32.3	12.9	47.1
REINFORCE++	78.6	64.4	32.1	12.3	46.8
BNPO	77.0	68.8	32.1	13.3	47.8

398 **Hyperparameters** For all methods, we set the batch size 32, number of outputs to 16, number of
 399 PPO iterations to 1, number of epochs to 5, and learning rate to 10^{-6} . The temperature is set to 1.0
 400 during training and 0.6 during evaluation. We use the chat template of Qwen2.5-Math-7B and set the
 401 maximum question length to 1024 and the maximum output length to 3072, corresponding to the
 402 maximum context length of 4096 for Qwen-Math-1.5B and Qwen-Math-7B.

403 5.2 RESULTS

404 As shown in Table 1, BNPO achieves the highest average performance among all policy optimization
 405 methods for both the Qwen2.5-Math-1.5B and Qwen2.5-Math-7B base models, demonstrating its
 406 effectiveness and versatility. Notably, BNPO trained on Qwen2.5-Math-7B delivers significant
 407 improvements on the AMC23 dataset. In contrast, REINFORCE, GRPO, and REINFORCE++,
 408 which either lack normalization or rely on static normalization, exhibit suboptimal performance.
 409 Although ReMax achieves performance comparable to BNPO on the Qwen2.5-Math-7B model, it
 410 requires additional sampling to dynamically estimate the baseline, resulting in approximately 25%
 411 longer training times in our experiments.

414 5.3 TRAINING STABILITY

415 We have demonstrated in Theorem 1 that BNPO effectively reduces gradient variance, thereby
 416 enhancing training stability. Given the substantial computational cost of training large language
 417 models, maintaining stable training dynamics is crucial. To evaluate this, we use the gradient norm,
 418 an indicator of policy variance, as a proxy for training stability.

419 As shown in Figure 2, BNPO exhibits the highest stability among the methods, with consistently stable
 420 gradient norms throughout training. In contrast, GRPO, REINFORCE, Remax and REINFORCE++
 421 show more significant fluctuations, indicating less stable training. These results highlight the benefit
 422 of BNPO’s dynamic normalization mechanism over the static normalization used in GRPO and
 423 REINFORCE++.

426 5.4 EVOLUTION OF NORMALIZATION

427 Our BNPO method dynamically adjusts the parameters (α, β) in the normalization $f_N(p(q); \alpha, \beta)$
 428 to ensure that the advantage function $A_{\alpha, \beta}(q, o)$ remains aligned with the evolving expected reward
 429 distribution $f_D(p(q); a, b)$ throughout training. We have further provided an interpretation of α and
 430 β in terms of the mean and variance of $f_D(p(q); a, b)$, demonstrating how they can be related to
 431 $\mathbb{E}[p(q)]$ and $\text{Var}[p(q)]$.

Figure 2: The norm of gradient during training.

Figure 3: The values of $(\mathbb{E}[p(q)], \text{Var}[p(q)], \alpha, \beta)$ during training.

6 CONCLUSION

In this paper, we propose a new policy optimization methods, BNPO, which use Beta distribution to normalize the reward function. We find that the expectation of a binary-valued reward function can be treated as a random variable with Beta distribution, thus, we use another Beta distribution as the normalize term. BNPO can adaptively adjust its parameters in normalization term to match with the evolution of distribution of the expected reward. We theoretically prove that BNPO can effectively reduce the variance in estimating policy gradient. We also that BNPO can reduces to REINFORCE with baseline and GRPO under binary-valued reward circumstance. In order to account for more complex reward systems, we further propose a advantage decomposition mechanism to make BNPO more applicable. Finally, we conduct extensive experiments to verify the effectiveness of our BNPO.

486 REFERENCES
487

488 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
489 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
490 from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.

491 Art of Problem Solving. Aime problems and solutions, 2025a. URL https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions. Accessed: 2025-04-20.

492 Art of Problem Solving. Amc problems and solutions, 2025b. URL https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions. Accessed: 2025-04-20.

493

494 Andrew G Barto. Reinforcement learning: An introduction. by richard's sutton. *SIAM Rev*, 6(2):423,
495 2021.

496

497 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
498 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
499 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

500

501 Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
502 Deep reinforcement learning that matters. In *Proceedings of the AAAI conference on artificial
503 intelligence*, volume 32, 2018.

504

505 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
506 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
507 preprint arXiv:2103.03874*, 2021.

508

509 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv
510 preprint arXiv:2501.03262*, 2025.

511

512 Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline for
513 free!, 2019.

514

515 Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: a
516 simple, effective, and efficient reinforcement learning method for aligning large language models.
517 In *Proceedings of the 41st International Conference on Machine Learning*, pp. 29128–29163,
518 2024.

519

520 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
521 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth
522 International Conference on Learning Representations*, 2023.

523

524 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
525 Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*,
526 2025.

527

528 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
529 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
530 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
531 27744, 2022.

532

533 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
534 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

535

536 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
537 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
538 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

539

540 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
541 for reinforcement learning with function approximation. *Advances in neural information processing
542 systems*, 12, 1999.

540 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
541 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
542 llms. *arXiv preprint arXiv:2501.12599*, 2025.

543 Hado P Van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver. Learning
544 values across many orders of magnitude. *Advances in neural information processing systems*, 29,
545 2016.

546 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
547 learning. *Machine learning*, 8:229–256, 1992.

548 Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,
549 Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
550 factorized baselines. *arXiv preprint arXiv:1803.07246*, 2018.

551 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
552 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
553 arXiv:2412.15115*, 2024a.

554 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
555 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
556 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

A FURTHER ELABORATION

Reasons for Using the Beta Distribution We model $p(q)$ using a Beta distribution, as this choice is particularly suitable and widely adopted for modeling probabilities, as discussed in Section 2.1. Moreover, $p(q)$ can be interpreted as the probability that question q is correctly answered.

Additionally, we observe that the normalization terms in REINFORCE and GRPO correspond to Beta distributions. This observation suggests that BNPO, which generalizes existing policy optimization methods, benefits from modeling $p(q)$ with a Beta distribution to achieve improved performance.

While other parameterized distributions could, in principle, be used to model $p(q)$, the Beta distribution offers several distinct advantages:

- **Natural support on $[0, 1]$:** The Beta distribution is inherently defined on the interval $[0, 1]$, making it ideal for modeling probabilities. In contrast, many alternative distributions do not possess this property.
- **Ease of parameter estimation:** The parameters of the Beta distribution can be efficiently estimated using Eq.(13). For many other distributions, parameter estimation may be analytically intractable or computationally intensive.
- **Analytical gradient variance minimization:** When $p(q)$ follows a Beta distribution, it is possible to derive an analytical solution for minimizing gradient variance, as shown in Theorem 1. For most other distributions, obtaining such a solution is unlikely.

These reasons collectively motivate our use of the Beta distribution for modeling $p(q)$.

B FURTHER EXPERIEMTNCS

Table 2: Standard deviation of 3 training runs.

Methods	MATH500	AMC23	AIME2024	AIME2025	Avg
REINFORCE	0.008	0.00392	0.003125	0.00208	0.00031
ReMax	0.009	0.003125	0.004165	0.0	0.000425
GRPO	0.009	0.00625	0.00625	0.00417	0.000165
REINFORCE++	0.002	0.002555	0.00729	0.0031265	0.00113
BNPO	0.002	0.00781	0.003125	0.00729	0.000155

Note: Avg is computed by first averaging the performance across the four datasets for each run and then calculating the standard deviation of these averages.

Table 3: Gradient variance.

Step	100	200	300	400	500	600	700	800	900	1000	1100
REINFORCE	354	233	127	143	162	118	133	140	196	180	256
REMAX	702	475	385	269	250.743	108	130	172	200	404	423
GRPO	2652	1552	1183	505	552	673	537	610	807	606	862
REINFORCE++	764	1455	1407	612	741	722	1402	739	1060	936	1146
BNPO	235	243	71	123	133	71	115	102	156	131	163

Standard deviation We present the standard deviations of the performance across different training runs for various methods. Table 2 shows that the standard deviations are low, especially for the standard deviation of average performance (Avg), and BNPO achieves the lowest standard deviations among all methods.

Gradient variance Computing the gradient variance requires sampling multiple batches, which is computationally expensive. Therefore, we compute it only once every 100 training steps. The results, presented in Table 3, show that our BNPO method achieves significantly lower gradient variance compared to the other methods.

Figure 4: The maximum value of $A_{\alpha, \beta}(q, o)$.

Figure 5: The minimum value of $f_N(p; \alpha, \beta)$.

Table 4: The performance of policy optimization methods with and without advantage decomposition.

Methods	MATH500	AMC23	AIME2024	AIME2025	Average
<i>Qwen2.5-1.5B-Instruct</i>					
Base	14.2	7.3	1.3	0.2	5.8
GRPO	60.0	35.5	4.6	0.8	25.2
REINFORCE++	58.2	32.2	6.0	1.9	24.6
AD-GRPO	61.6	34.1	3.8	2.9	25.6
AD-REINFORCE++	58.0	35.6	4.2	1.9	24.9
AD-BNPO	61.4	36.3	3.8	1.9	25.8

Advantage decomposition To evaluate the effectiveness of the advantage decomposition method, we incorporate an additional format reward following DeepSeek-R1. Since Qwen2.5-Math-1.5B and Qwen2.5-Math-7B exhibit limited instruction-following capabilities, making it difficult for them to learn from the format reward, we use Qwen2.5-1.5B-Instruct as the base model. We denote GRPO and REINFORCE++ with advantage decomposition as AD-GRPO and AD-REINFORCE++, respectively. Note that REINFORCE and ReMax do not include normalization and are therefore excluded from this comparison.

As shown in Table 4, both AD-GRPO and AD-REINFORCE++ achieve slight improvements over their original counterparts. BNPO continues to deliver the best average performance. However, since the format reward surpasses 90% after only 100 training iterations, the overall performance gains from advantage decomposition are relatively modest.

Advantage function Due to the boundness of the reward ($R(q, o) \in \{0, 1\}$), normalizing the reward would not lead to instability. To demonstrate it, we show the maximum value of the absolute value of the advantage (or the normalized reward) at each step. As shown in Figure 4, the normalized reward always remains at a relatively small value. We also show the minimum value of the normalization term $f_N(p; \alpha, \beta)$ at each step. As shown in Figure 5, the minimum value of $f_N(p; \alpha, \beta)$ always remained consistently around 1.

Performance Since the best performance for different datasets may be achieved at different training steps. The reported best average performance does not mean that it is the best performance of each dataset. Thus, we further report the best performance of each individual dataset during training. As shown in the Table 5, BNPO can achieves consistent improvement on different datasets and achieve good performance on complex datasets.

Beta distribution Since we model $p(q)$ as a random variable with Beta distribution $f_D(p(q); a, b)$, we evaluate how well this distribution fits the empirical data. To evaluate estimation error, we use the average of log-likelihood to measure the goodness of fit. As shown in Figure 6, the statistic remains within a relatively small range in most steps, indicating that the fitted distribution matches the empirical distribution and introduces a small amount of bias.

Table 5: The performance of different policy optimization methods on math datasets.

Methods	MATH500	AMC23	AIME2024	AIME2025
<i>Qwen2.5-Math-1.5B</i>				
Base	28.0	27.3	6.0	3.1
REINFORCE	74.8	54.9	18.3	11.9
ReMax	74.4	54.7	19.0	11.0
GRPO	74.6	54.8	19.0	11.0
REINFORCE++	75.4	53.8	19.2	10.4
BNPO	75.0	55.0	19.8	13.1
<i>Qwen2.5-Math-7B</i>				
Base	41.4	32.5	11.0	5.0
REINFORCE	79.6	66.1	33.1	15.0
ReMax	79.6	66.6	33.5	15.4
GRPO	81.6	65.7	32.5	13.3
REINFORCE++	79.8	65.0	32.3	13.1
BNPO	79.8	68.8	33.5	15.6

Figure 6: The average of log-likelihood.

The values of $(\mathbb{E}[p(q)], \text{Var}[p(q)])$ We show the curves of $E[p]$ and $\text{Var}[p]$ in Figure 7 and Figure 8 separately, which clearly show that both quantities vary throughout training. Beta Normalization is introduced precisely to adapt to this dynamic behavior and to mitigate the resulting instability in the distribution of p .

C PROOF

Theorem 1. Let $q \sim \rho$ be a question and $o \sim \pi_\theta(\cdot|q)$ be an output with reward $R(q, o) \in \{0, 1\}$, where $R(q, o)$ follows a Bernoulli distribution with success probability $p(q) = \mathbb{E}_{o \sim \pi_\theta(\cdot|q)}[R(q, o)|q]$, and that $p(q)$ follows a Beta distribution $f_D(p(q); a, b)$. Define the BNPO gradient estimator as

$$g_{\alpha, \beta} = \nabla_\theta \log \pi(o|q) \frac{R(q, o) - p(q)}{f_N(p(q); \alpha, \beta)}.$$

where $f_N(p(q); \alpha, \beta)$ is a Beta distribution. Under the assumption $\nabla_\theta \log \pi(o|q)$ is uncorrelated with $\frac{R(q, o) - p(q)}{f_N(p(q); \alpha, \beta)}$, the variance of the policy gradient estimator $\text{Var}_{q \sim \rho, o \sim \pi_\theta(\cdot|q)}(g_{\alpha, \beta})$ is finite if and only if: $\alpha < \frac{a+3}{2}$ and $\beta < \frac{b+3}{2}$. Within this domain, $\text{Var}_{q \sim \rho, o \sim \pi_\theta(\cdot|q)}(g_{\alpha, \beta})$ attains a unique minimum at:

$$\alpha = 1 + \frac{a}{3}, \quad \beta = 1 + \frac{b}{3}.$$

Figure 7: The values of $\mathbb{E}[p(q)]$ during training.Figure 8: The values of $\text{Var}[p(q)]$ during training.

786 *Proof.* 1. VARIANCE EXPRESSION

788 Expand the variance using its definition:

$$\begin{aligned} 790 \text{Var}(g_{\alpha, \beta}) &= \mathbb{E} \left[\left(\nabla_{\theta} \log \pi(o | q) \cdot \frac{R(q, o) - p(q)}{f_N(p(q); \alpha, \beta)} \right)^2 \right] \\ 791 &\quad - \left(\mathbb{E} \left[\nabla_{\theta} \log \pi(o | q) \cdot \frac{R(q, o) - p(q)}{f_N(p(q); \alpha, \beta)} \right] \right)^2. \\ 793 & \end{aligned}$$

795 Simplify the mean term using the assumption and $\mathbb{E}[\frac{R(q, o) - p(q)}{f_N(p(q); \alpha, \beta)} | q] = 0$:

$$797 \mathbb{E} \left[\nabla_{\theta} \log \pi(o | q) \cdot \frac{R(q, o) - p(q)}{f_N(p(q); \alpha, \beta)} \right] = 0.$$

800 Therefore:

$$801 \text{Var}(g_{\alpha, \beta}) = \mathbb{E} \left[(\nabla_{\theta} \log \pi(o | q))^2 \cdot \frac{(R(q, o) - p(q))^2}{f_N(p(q); \alpha, \beta)^2} \right].$$

804 Under the assumption, the variance of the gradient estimator $g_{\alpha, \beta}$ is proportional to:

$$805 \text{Var}(g_{\alpha, \beta}) \propto \mathbb{E}_{q \sim \rho} \mathbb{E}_o \left[\frac{(R(q, o) - p(q))^2}{f_N(p(q); \alpha, \beta)^2} \right].$$

808 For $R(q, o) \in \{0, 1\}$, we have that

$$809 \mathbb{E}_o [(R - p(q))^2 | q] = p(q)(1 - p(q)).$$

810 Substituting the weight function:
 811

$$\begin{aligned} 812 \frac{p(q)(1-p(q))}{f_N(p(q); \alpha, \beta)^2} &= \frac{p(q)(1-p(q))}{\left(\frac{1}{B(\alpha, \beta)} p(q)^{\alpha-1} (1-p(q))^{\beta-1}\right)^2} \\ 813 \\ 814 &= B(\alpha, \beta)^2 \cdot p(q)^{3-2\alpha} (1-p(q))^{3-2\beta}. \\ 815 \end{aligned}$$

816 Unper $p \sim f_D(p(q); a, b)$, the expectation integrates the above expression over the Beta-distributed p
 817 becomes
 818

$$\mathbb{E}_p [p^{3-2\alpha} (1-p)^{3-2\beta}] = \frac{B(a+3-2\alpha, b+3-2\beta)}{B(a, b)},$$

819 Thus, we have that
 820

$$\text{Var}(g_{\alpha, \beta}) \propto B(\alpha, \beta)^2 \cdot \frac{B(a+3-2\alpha, b+3-2\beta)}{B(a, b)}.$$

825 2. DOMAIN OF FINITENESS

826 The Beta function $B(x, y)$ converges iff $x > 0$ and $y > 0$. For convergence of $B(a+3-2\alpha, b+3-2\beta)$:

$$\begin{aligned} 827 \quad a+3-2\alpha &> 0 \implies \alpha < \frac{a+3}{2}, \\ 828 \quad b+3-2\beta &> 0 \implies \beta < \frac{b+3}{2}. \\ 829 \end{aligned}$$

830 3. BOUNDARY BEHAVIOR

831 As $\alpha \rightarrow \frac{a+3}{2}^-$ or $\beta \rightarrow \frac{b+3}{2}^-$:

$$832 \quad B(a+3-2\alpha, b+3-2\beta) \rightarrow \infty \implies \text{Var}(g_{\alpha, \beta}) \rightarrow +\infty.$$

833 4. OPTIMAL PARAMETERS

834 Define $L(\alpha, \beta) = \ln \text{Var}(g_{\alpha, \beta})$:

$$835 \quad L = 2 \ln B(\alpha, \beta) + \ln B(a+3-2\alpha, b+3-2\beta) - \ln B(a, b).$$

836 The partial derivatives are:

$$837 \quad \frac{\partial L}{\partial \alpha} = 2 [\psi(\alpha) - \psi(\alpha + \beta)] - 2 [\psi(a+3-2\alpha) - \psi(a+b+6-2\alpha-2\beta)],$$

$$838 \quad \frac{\partial L}{\partial \beta} = 2 [\psi(\beta) - \psi(\alpha + \beta)] - 2 [\psi(b+3-2\beta) - \psi(a+b+6-2\alpha-2\beta)],$$

839 where $\psi(x) = \frac{d}{dx} \ln \Gamma(x)$ and $\Gamma(x)$ is the gamma function. Setting $\partial L / \partial \alpha = 0$ and $\partial L / \partial \beta = 0$:

$$840 \quad \psi(\alpha) - \psi(\alpha + \beta) = \psi(a+3-2\alpha) - \psi(a+b+6-2\alpha-2\beta).$$

$$841 \quad \psi(\beta) - \psi(\alpha + \beta) = \psi(b+3-2\beta) - \psi(a+b+6-2\alpha-2\beta).$$

842 Substituting $\alpha = 1 + \frac{a}{3}$ and $\beta = 1 + \frac{b}{3}$ satisfies this identity through digamma function properties.

843 5. STRICT CONVEXITY

844 We compute the Hessian matrix H for $L(\alpha, \beta)$ at (α_0, β_0) .

845 Let $\psi_1(x) = \frac{d}{dx} \psi(x)$ be the trigamma function. Let $X_\alpha = \alpha_0 = 1 + a/3$ and $X_\beta = \beta_0 = 1 + b/3$.
 846 Let $S_{sum} = \alpha_0 + \beta_0 = 2 + (a+b)/3$.

847 The arguments for the other digamma terms at the solution become: $a - 2\alpha_0 + 3 = 1 + a/3 = X_\alpha$.
 848 $b - 2\beta_0 + 3 = 1 + b/3 = X_\beta$. $a + b - 2\alpha_0 - 2\beta_0 + 6 = (a+b)/3 + 2 = S_{sum}$.

864 The second partial derivatives are:
 865

$$866 \frac{\partial^2 L}{\partial \alpha^2} = 2\psi_1(\alpha) - 2\psi_1(\alpha + \beta) + 4\psi_1(a - 2\alpha + 3) - 4\psi_1(a + b - 2\alpha - 2\beta + 6).$$

868 At (α_0, β_0) : $H_{11} = 2\psi_1(X_\alpha) - 2\psi_1(S_{sum}) + 4\psi_1(X_\alpha) - 4\psi_1(S_{sum}) = 6\psi_1(X_\alpha) - 6\psi_1(S_{sum})$.
 869 By symmetry: $H_{22} = 6\psi_1(X_\beta) - 6\psi_1(S_{sum})$. The mixed partial derivative:
 870

$$871 \frac{\partial^2 L}{\partial \alpha \partial \beta} = -2\psi_1(\alpha + \beta) - (-2)\psi_1(a + b - 2\alpha - 2\beta + 6)(-2) \\ 872 = -2\psi_1(\alpha + \beta) - 4\psi_1(a + b - 2\alpha - 2\beta + 6).$$

874 At (α_0, β_0) : $H_{12} = -2\psi_1(S_{sum}) - 4\psi_1(S_{sum}) = -6\psi_1(S_{sum})$.
 875

876 For a minimum, H must be positive definite.

877 1. $H_{11} > 0$: $H_{11} = 6(\psi_1(X_\alpha) - \psi_1(S_{sum})) = 6(\psi_1(1 + a/3) - \psi_1(2 + (a + b)/3))$. Since
 878 $a, b > 0$, we have $X_\beta = 1 + b/3 > 0$. Thus $X_\alpha = 1 + a/3 < 1 + a/3 + (1 + b/3) = S_{sum}$. The
 879 trigamma function $\psi_1(x)$ is strictly decreasing for $x > 0$. Since $X_\alpha < S_{sum}$ (and $X_\alpha, S_{sum} > 0$),
 880 $\psi_1(X_\alpha) > \psi_1(S_{sum})$. Thus $H_{11} > 0$. Similarly $H_{22} > 0$.

881 2. $\det(H) = H_{11}H_{22} - H_{12}^2 > 0$:

$$883 \det(H) \\ 884 = (6\psi_1(X_\alpha) - 6\psi_1(S_{sum}))(6\psi_1(X_\beta) - 6\psi_1(S_{sum})) - (-6\psi_1(S_{sum}))^2 \\ 885 = 36[\psi_1(X_\alpha)\psi_1(X_\beta) - \psi_1(X_\alpha)\psi_1(S_{sum}) - \psi_1(X_\beta)\psi_1(S_{sum}) + \psi_1(S_{sum})^2 - \psi_1(S_{sum})^2] \\ 886 = 36[\psi_1(X_\alpha)\psi_1(X_\beta) - \psi_1(S_{sum})(\psi_1(X_\alpha) + \psi_1(X_\beta))].$$

888 For $\det(H) > 0$, we need $\psi_1(X_\alpha)\psi_1(X_\beta) - \psi_1(S_{sum})(\psi_1(X_\alpha) + \psi_1(X_\beta)) > 0$. Since $\psi_1(x) > 0$
 889 for $x > 0$, we can divide by $\psi_1(X_\alpha)\psi_1(X_\beta)\psi_1(S_{sum})$:
 890

$$891 \frac{1}{\psi_1(S_{sum})} - \left(\frac{1}{\psi_1(X_\beta)} + \frac{1}{\psi_1(X_\alpha)} \right) > 0 \implies \frac{1}{\psi_1(X_\alpha + X_\beta)} > \frac{1}{\psi_1(X_\alpha)} + \frac{1}{\psi_1(X_\beta)}.$$

893 Let $f(x) = 1/\psi_1(x)$. The inequality is $f(X_\alpha + X_\beta) > f(X_\alpha) + f(X_\beta)$. The function $f(x) =$
 894 $1/\psi_1(x)$ is strictly convex on $(0, \infty)$.
 895

896 As $x \rightarrow 0^+$, $\psi_1(x) \rightarrow \infty$, so $f(x) = 1/\psi_1(x) \rightarrow 0$. So we can define $f(0) = 0$. For a
 897 strictly convex function f with $f(0) = 0$: For $x, y > 0$, $f(x) = f(\frac{x}{x+y}(x+y) + \frac{y}{x+y} \cdot 0) <$
 898 $\frac{x}{x+y}f(x+y) + \frac{y}{x+y}f(0) = \frac{x}{x+y}f(x+y)$. Similarly, $f(y) < \frac{y}{x+y}f(x+y)$. Summing these
 899 gives $f(x) + f(y) < f(x+y)$. The strict inequality holds because $X_\alpha = 1 + a/3 > 0$ and
 900 $X_\beta = 1 + b/3 > 0$. Therefore, the Hessian matrix is positive definite at (α_0, β_0) . Since the domain
 901 for (α, β) (where variance is finite, and $\alpha, \beta > 0$) is a convex set, this implies that (α_0, β_0) is a
 902 unique minimum. \square

903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917