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ABSTRACT

Recent studies, including DeepSeek-R1 and Kimi-k1.5, have demonstrated that
reinforcement learning with rule-based, binary-valued reward functions can sig-
nificantly enhance the reasoning capabilities of large language models. These
models primarily utilize REINFORCE-based policy optimization techniques, such
as REINFORCE with baseline and group relative policy optimization (GRPO).
However, a key limitation remains: current policy optimization methods either
neglect reward normalization or employ static normalization strategies, which
fail to adapt to the dynamic nature of policy updates during training. This may
result in unstable gradient estimates and hinder training stability. To address this
issue, we propose Beta Normalization Policy Optimization (BNPO), a novel policy
optimization method that adaptively normalizes rewards using a Beta distribution
with dynamically updated parameters. BNPO aligns the normalization with the
changing policy distribution, enabling more precise and lower-variance gradient
estimation, which in turn promotes stable training dynamics. We provide theoret-
ical analysis demonstrating BNPO’s variance-reducing properties and show that
it generalizes both REINFORCE and GRPO under binary-valued reward settings.
Furthermore, we introduce an advantage decomposition mechanism to extend
BNPO’s applicability to more complex reward systems. Experimental results con-
firm that BNPO achieves state-of-the-art performance among policy optimization
methods on reasoning tasks.

1 INTRODUCTION

Kimi-K1.5 (Team et al., 2025) and DeepSeek-R1 (Guo et al., 2025) have demonstrated that rein-
forcement learning can substantially enhance the reasoning capabilities of large language models.
These models leverage reinforcement learning techniques built on rule-based, binary-valued outcome
reward functions, and utilize policy optimization techniques such as REINFORCE with baseline
(Kool et al., 2019) and group relative policy optimization (GRPO) (Shao et al., 2024).

In contrast to proximal policy optimization (PPO) (Schulman et al., 2017), which employs a critic
network to estimate the baseline for policy gradients, REINFORCE with baseline and GRPO utilize
Monte Carlo sampling for baseline estimation, reducing memory and computational overhead.
Specifically, REINFORCE with baseline incorporates a state-dependent baseline compared to vanilla
REINFORCE to reduce gradient variance, while GRPO further stabilizes training by normalizing
rewards, thereby reducing gradient variance in high-variance reward scenarios.

Despite these advances, a fundamental limitation remains: current methods either lack reward
normalization entirely or use fixed normalization terms throughout training. This is suboptimal, as the
policy model evolves during training, fixed normalization cannot adapt to such dynamics, potentially
resulting in inaccurate gradient estimates and unstable learning.

To overcome this limitation, we propose a novel policy optimization method, called Beta Normaliza-
tion Policy Optimization (BNPO), which dynamically normalizes the reward function using a Beta
distribution with its adaptive parameters. By evolving alongside the policy model, this normalization
mechanism provides more accurate and lower-variance gradient estimates. Besides, we introduce an
advantage decomposition mechanism to enhance BNPO’s ability to handle complex reward systems.

Our approach is motivated by the observation that, under binary-valued reward functions, the reward
can be seen as a random variable with Bernoulli distribution, and its expectation naturally can be
modeled as a random variable with Beta distribution. As training progresses and the policy evolves,
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Figure 1: Probability density function of Beta distribution.

the distribution of expected rewards also shifts. BNPO explicitly accounts for these shifts by adjusting
the normalization term accordingly.

We further present a theoretical analysis demonstrating that BNPO can effectively reduce the variance
of policy gradient estimates when the Beta distribution parameters are appropriately set. Moreover,
we show that BNPO generalizes both REINFORCE and GRPO in the binary-valued reward setting,
highlighting its broad applicability and theoretical consistency. Finally, experimental results show
that BNPO achieves state-of-the-art performance in policy optimization for reasoning tasks.

2 BACKGROUND

2.1 BETA DISTRIBUTION

The Beta distribution is a continuous probability distribution defined on the interval [0, 1], making it
particularly well-suited for modeling probabilities. In this paper, we use it to represent the distribution
of the expectation of a binary-valued reward. Its probability density function is given by

f(p;α, β) =
1

B(α, β)
pα−1(1− p)β−1, p ∈ [0, 1] or p ∈ (0, 1), α > 0, β > 0, (1)

where B(·, ·) denotes the Beta function, which serves as a normalization constant to ensure the
probability density function integrates to one. Figure 1 illustrates the probability density function of
the Beta distribution under various parameter settings.

The shape of the Beta distribution is primarily determined by the values of α and β, which control
the concentration of probability mass and the skewness of the distribution. When α > 1 and β > 1,
the distribution is unimodal and bell-shaped, with the mode α−1

α+β−2 lying between 0 and 1. If α < 1

and β < 1, the distribution becomes U-shaped, with higher densities near 0 and 1. When one of the
parameters is less than 1 while the other is greater than 1, the distribution becomes highly skewed,
concentrating mass near one endpoint. A special case occurs when α = β, resulting in a symmetric
distribution centered around p = 1

2 . This adaptability makes the Beta distribution a popular choice in
probabilistic modeling contexts.

In terms of summary statistics, the mean of the Beta distribution is given by E[p] = α
α+β , reflecting

the balance between the two parameters. The variance is given by Var[p] = αβ
(α+β)2(α+β+1) , which

decreases as the sum α+ β increases, indicating greater certainty or concentration around the mean.

2.2 POLICY OPTIMIZATION

Reinforcement learning provides an effective framework for training large language models by
enabling them to learn policies through interaction with the environment and feedback signals. Among
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various reinforcement learning methods, policy gradient techniques are particularly prominent due to
their ability to scale to high-dimensional action spaces typical in language generation tasks. Given a
outcome reward function R(q, o), the objective function in policy gradient methods is defined as:

L(θ) = Eq∼ρ, o∼πθ(·|q)

[
R(q, o)

]
, (2)

where ρ represents the distribution of questions q, and πθ(·|q) denotes the parameterized policy model
that defines the distribution over outputs o. According to the policy gradient theorem (Sutton et al.,
1999), the policy gradient for the objective in Eq.(2) is given by:

∇θL(θ) = Eq∼ρ, o∼πθ(·|q)

[
∇θ log πθ(o|q)R(q, o)

]
. (3)

In practice, directly using Eq. (3) can lead to high variance in gradient estimates (Barto, 2021), which
negatively impacts training stability. To mitigate this, policy gradient methods typically introduce an
advantage function A(q, o):

∇θJ (θ) = Eq∼ρ, o∼πθ(·|q)

[
∇θ log πθ(o|q)A(q, o)

]
, (4)

where A(q, o) represents the relative advantage of a question-output pair (q, o) compared to other
pairs. The use of A(q, o) primarily serves to reduce the variance in policy gradient estimation:

Varq∼ρ, o∼πθ(·|q)

[
∇θ log πθ(o|q)A(q, o)

]
. (5)

The advantage function is commonly formulated as A(q, o) = R(q,o)−µ
σ , where µ serves as a baseline

for R(q, o) to compare and σ acts as a normalization term. With appropriate choices of µ andσ, the
estimation of policy gradient remains unbiased while its variance is reduced.

REINFORCE with baseline (Team et al., 2025; Kool et al., 2019) defines A(q, o) as

A(q, o) =R(q, o)− Eo′∼πθ(·|q)

[
R(q, o′)

]
≈R(q, o)−Mean({R(q, o′j)}mj=1), (6)

where the baseline is the mean reward over a sampled group of outputs {(q, o′j)}mj=1. This Monte

Carlo estimate approximates the expected reward Eo′∼πθ(·|q)

[
R(q, o′)

]
and has been shown to

effectively reduce the variance of policy gradient estimates (Wu et al., 2018).

GRPO (Guo et al., 2025; Shao et al., 2024) defines A(q, o) as:

A(q, o) =
R(q, o)− Eo′∼πθ(·|q)

[
R(q, o′)

]
√

Varo′∼πθ(·|q)[R(q, o
′)]

≈
R(q, o)−Mean({R(q, o′j)}mj=1)√

Var({R(q, o′j)}mj=1)
, (7)

Compared to REINFORCE with baseline, GRPO further uses the standard deviation of the rewards
over the sampled set {(q, o′j)}mj=1 to normalize the reward function. This normalization term can
further reduce the variance in estimating policy gradient for high-variance reward functions.

PPO (Schulman et al., 2017) further enhances stability by incorporating importance sampling and a
clipping mechanism for off-policy updates:

L(θ) = Eq∼ρ,o∼πθold (o|q)

[
min(

πθ(o|q)
πθold(o|q)

A(q, o), clip(
πθ(o|q)
πθold(o|q)

, 1− ε, 1 + ε)A(q, o))
]
, (8)

where πθold is the old policy and ε is a hyperparameter that controls the range of clipping.

3 BETA NORMALIZATION POLICY OPTIMIZATION

In this section, we introduce our policy optimization method, BNPO, which employs a Beta dis-
tribution to normalize binary-valued reward functions. BNPO adapts to the evolving policy model

3
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during training by dynamically adjusting the parameters of the Beta distribution. We then provide
a theoretical proof demonstrating that BNPO effectively reduces the variance of policy gradient
estimates. Furthermore, we show that BNPO generalizes both REINFORCE with baseline and GRPO
in the context of binary-valued rewards. Finally, we present an advantage decomposition mechanism
to extend BNPO’s applicability to more complex reward systems.

Beta normalization We use the accuracy of an output o with respect to a question q as the reward
function R(q, o) as in DeepSeek-R1 (Guo et al., 2025), i.e.,

R(q, o) =

{
1, if o contains the answer a of the question q,
0, otherwise.

(9)

Since the value of R(q, o) is either 0 or 1, R(q, o) can be treated as a random variable with Bernoulli
distribution, i.e.

R(q, o) ∼ Bernoulli (p(q)), 0 ≤ p(q) ≤ 1,

p(q) = Eo∼πθ(·|q)[R(q, o)|q], (10)

where p(q) denotes the probability that output o is correct for question q, and it is also the expected
reward under the distribution πθ(·|q). As mentioned in Section 2.1, the Beta distribution is very
suitable for modeling probability. Thus, we model p(q) as a random variable with Beta distribution
fD(p(q); a, b), where the parameters a and b control the shape of the distribution. These parameters
can be estimated using Monte Carlo sampling.

As the policy model πθ(·|q) evolves during training, the distribution of p(q) also changes dynamically.
To account for these changes, we propose using an additional Beta distribution fN (p(q);α, β) to
normalize the reward function. The advantage function in our BNPO method is defined as:

Aα,β(q, o) =
R(q, o)− p(q)
fN (p(q);α, β)

, (11)

where p(q) serves as the baseline, as in REINFORCE with baseline and GRPO, and fN (p(q);α, β)
is used to normalize the reward function R(q, o).

The setting of α and β We dynamically adjust the parameters (α, β) in fN (p(q);α, β) to ensure
that Aα,β(q, o) adapts to the evolving distribution fD(p(q); a, b) during training. The primary goal
in setting α and β is to minimize the variance in policy gradient estimation. We present the following
theorem to achieve it.
Theorem 1. Let q ∼ ρ be a question and o ∼ πθ(·|q) be an output with reward R(q, o) ∈ {0, 1},
where R(q, o) follows a Bernoulli distribution with success probability p(q) = Eo∼πθ(·|q)[R(q, o)|q],
and that p(q) follows a Beta distribution fD(p(q); a, b). Define the BNPO gradient estimator as

gα,β = ∇θ log π(o|q)
R(q, o)− p(q)
fN (p(q);α, β)

.

where fN (p(q);α, β) is a Beta distribution. Under the assumption ∇θ log π(o|q) is uncorrelated
with R(q,o)−p(q)

fN (p(q);α,β) , the variance of the policy gradient estimator Varq∼ρ, o∼πθ(·|q)(gα,β) is finite if

and only if: α < a+3
2 and β < b+3

2 . Within this domain, Varq∼ρ, o∼πθ(·|q)(gα,β) attains a unique
minimum at:

α = 1 +
a

3
, β = 1 +

b

3
.

See Appendix C for the proof. The above theorem demonstrates that the optimal parameter settings
for minimizing the variance of the policy gradient are α = 1+ a

3 and β = 1+ b
3 . Thus, the choice of

(α, β) depends on the values of (a, b). We estimate (a, b) using the method-of-moments approach
and Monte Carlo sampling.

Given the following relationships:

E[p(q)] =
a

a+ b
,

Var[p(q)] =
ab

(a+ b)2(a+ b+ 1)
, (12)
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we can solve for a and b as:

a =
(E[p(q)](1− E[p(q)])

Var[p(q)]
− 1

)
E[p(q)],

b =
(E[p(q)](1− E[p(q)])

Var[p(q)]
− 1

)
(1− E[p(q)]). (13)

We then estimate E[p(q)] and Var[p(q)] using Monte Carlo methods to get a and b:

E[p(q)] ≈ Mean({p(qi)}ni=1),

Var[p(q)] ≈ Var({p(qi)}ni=1). (14)

The interpretation of α and β The parameters α and β can be understood in terms of the mean
and variance of fD(p(q); a, b). The mean of fD(p(q); a, b) is given by a

a+b , representing the average
reward of all (q, o) pairs. The mode of fN (p(q);α, β) is α−1

α+β−2 = a
a+b , which corresponds to the

value at which fN (p(q);α, β) attains its maximum. This shows that the mean of fD(p(q); a, b) is
equal to the mode of fN (p(q);α, β). As a result, the reward function R(q, o) is most normalized at
the average reward a

a+b .

The variance of fD(p(q); a, b) decreases/increases as the sum a + b increases/decreases. Since
α+ β = 2 + a+b

3 , the variance of fN (p(q);α, β) behaves similarly: it decreases/increases as a+ b
increases/decreases. Hence, fN (p(q);α, β) adapts its parameters to align with the variance changes
of fD(p(q); a, b).

REINFORCE and GRPO We now demonstrate that BNPO generalizes both REINFORCE with
baseline and GRPO under binary-valued reward circumstances, reducing to each of these methods
under specific settings for α and β.

REINFORCE with baseline defines the advantage function A(q, o) as

A(q, o) = R(q, o)− Eo′∼πθ(·|q)

[
R(q, o′)

]
= R(q, o)− p(q)

=
R(q, o)− p(q)
fN (p(q); 1, 1)

= A1,1(q, o). (15)

Therefore, BNPO reduces to REINFORCE if fN (p(q);α, β) = fN (p(q); 1, 1). Since RLOO (Kool
et al., 2019; Ahmadian et al., 2024) is equivalent to REINFROCE with baseline up to a scaling
constant (Liu et al., 2025), BNPO can also reduce to RLOO.

GRPO defines the advantage function A(q, o) as

A(q, o) =
R(q, o)− Eo′∼πθ(·|q)

[
R(q, o′)

]
√

Varo′∼πθ(·|q)[R(q, o
′)]

=
R(q, o)− p(q)√
p(q)(1− p(q))

∝ R(q, o)− p(q)
fN (p(q); 3

2 ,
3
2 )

= A 3
2 ,

3
2
(q, o). (16)

In training large language models, gradient clipping is commonly employed. Consequently, scaling
the loss function by a constant does not affect the parameter update process. Consequently, BNPO
reduces to GRPO if fN (p(q);α, β) = fN (p(q); 3

2 ,
3
2 ).

REINFORCE with a baseline and GRPO can be viewed as special cases of BNPO with fixed values
of (α, β). In contrast, BNPO dynamically adjusts (α, β) during training to better align with the
evolving policy model.
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Advantage decomposition To extend our method to more complex reward systems beyond a
single binary reward function, we introduce an advantage decomposition mechanism. This approach
enables the separate normalization of each individual reward component, leading to a more accurate
estimation of the overall advantage function. Such decomposition is particularly beneficial in settings
with multiple reward signals. For example, DeepSeek-R1 employs both format and accuracy rewards
to ensure that model outputs not only follow the required structure but also produce correct answers.

Given K binary-valued reward functions {R(1)(q, o), R(2)(q, o), · · · , R(K)(q, o)}, we decompose
the overall advantage function A(q, o) into K sub-advantage functions A(i)(q, o) as follows:

A(q, o) =
1

K

K∑
i=1

A(i)(q, o) =
1

K

K∑
i=1

R(i)(q, o)− p(q)(i)

fN (p(q)(i);α(i), β(i))
. (17)

where each sub-advantage function A(i)(q, o) is computed for the corresponding reward function
R(i)(q, o).

Unlike previous methods that first sum multiple reward functions and then compute the final advantage
function, our approach calculates the advantage function for each individual reward function first,
and then averages them to obtain the final advantage function. The key benefit of this approach is that
it allows for separate normalization of each reward function, ensuring that the normalization of one
function does not interfere with others.

Extend BNPO to multi-valued or continuous rewards. We present the detailed implementation
of our BNPO in Alg.(1). Although our theoretical analysis of BNPO is based on binary-valued
reward functions, the method remains applicable to general reward functions in practice. BNPO can
be naturally extended to handle general reward functions by directly assuming that p(q) follows a
Beta distribution, without relying on the intermediate assumption that R(q, o) is Bernoulli-distributed.
This extension broadens the applicability of BNPO to arbitrary reward types.

In this generalized setting, the solution to Theorem 1, originally derived for binary rewards, serves
as an approximate solution. While it may not be strictly optimal, it remains effective in reducing
gradient variance.

4 RELATED WORK

Reinforcement learning has been widely adopted to align large language models with human prefer-
ences, as seen in systems like ChatGPT and DeepSeek-R1. ChatGPT (Ouyang et al., 2022) employs
PPO for policy optimization, which relies on a critic network to better estimate policy gradients.
However, training a critic network is computationally intensive and memory-demanding, particularly
for large language models. To address this, models such as DeepSeek-R1 and Qwen (Yang et al.,
2024a) adopt REINFORCE-based methods, which avoid the need for a critic network.

The original REINFORCE algorithm (Williams, 1992) estimates gradients through Monte Carlo
sampling but often suffers from high variance, which can hinder learning stability and efficiency. To
mitigate this issue, RLOO (Kool et al., 2019) introduces a baseline function that uses the mean reward
of a group of samples as a reference, significantly reducing gradient variance, especially when batch
sizes are small. ReMax (Li et al., 2024) builds on this idea by employing greedy decoding to obtain a
baseline. GRPO (Shao et al., 2024) further refines this idea by normalizing each reward using the
standard deviation of the group, reducing variance even more. REINFORCE++ (Hu, 2025) goes a
step further by leveraging the rewards of all samples to estimate the policy gradient, resulting in more
stable and robust learning performance. However, these methods either lack proper normalization
or rely on static normalization strategies, which are insufficient for adapting to the evolving nature
of policy during training. In contrast, BNPO dynamically adjusts its normalization parameters in
response to changes in the policy, effectively stabilizing training.

Beyond policy optimization methods, normalization techniques are widely used in reinforcement
learning. Reward and value normalization have been extensively studied, including adaptive rescaling
approaches such as PopArt (Van Hasselt et al., 2016). Large-scale empirical analyses, such as Hender-
son et al. (2018), highlight the critical role of reward normalization in ensuring stable and reproducible
training. In addition, PPO stabilizes training by clipping rewards and policy updates, which acts as

6
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Algorithm 1 BNPO: Beta Normalization Policy Optimization

Input: Initial policy model πθ0 , K binary-valued Reward model R(i)(q, o), training set D,
number of steps S, number of PPO iterations T , batch size n, number of outputs m.

1: Initialize policy model πθ ← πθ0 .
2: for step = 1 to S do
3: Update the old policy model πθold ← πθ.
4: Sample n questions q from D.
5: Sample m outputs o ∼ πθold(·|q) for each question q.
6: for each question-output pair (q, o) do
7: for i = 1 to K do
8: Compute the reward R(i)(q, o).
9: end for

10: end for
11: for each question q do
12: Estimate p(q) in Eq.(10).
13: end for
14: Estimate the parameters a and b in fD(p(q); a, b) by Eq.(13) and Eq.(14).
15: Set the the parameters α and β in fN (p(q);α, β) as α = 1 + a

3 and β = 1 + b
3 .

16: for each question-output pair (q, o) do
17: Compute the advantage A(q, o) by Eq.(11) and Eq.(17).
18: end for
19: for iteration = 1 to T do
20: Update πθ by maximizing Eq.(8).
21: end for
22: end for
Output: Optimized policy model πθ.

an implicit normalization mechanism to prevent excessively large gradient steps (Schulman et al.,
2017). Collectively, these studies demonstrate the broad effectiveness of normalization techniques in
reinforcement learning.

5 EXPERIMENTS

In this section, we first describe the experimental setup in Section 5.1, followed by the presentation of
results in Section 5.2. We then analyze training stability in Section 5.3. We finally show the evolution
of the normalization of BNPO in Section 5.4.

5.1 EXPERIMENTAL SETTINGS

Models To evaluate the effectiveness of BNPO, we conduct experiments on two publicly available
base models of different scales: Qwen2.5-Math-1.5B and Qwen2.5-Math-7B (Yang et al., 2024a;b).

Methods We compare BNPO method against several policy optimization methods, including
REINFORCE, ReMax, GRPO, and REINFORCE++. Since RLOO is equivalent to REINFORCE
with a baseline, we only report the results for REINFORCE with baseline.

Datasets For training, we utilize the full MATH dataset (Hendrycks et al., 2021), which consists of
7,500 diverse mathematical problems spanning a wide range of topics and difficulty levels.

For evaluation, we use four benchmark datasets: MATH500 (Hendrycks et al., 2021; Lightman
et al., 2023), AMC23 (Art of Problem Solving, 2025b), AIME2024 and AIME2025 (Art of Problem
Solving, 2025a).

Metrics We use pass@1 as the evaluation metric. For the AMC23, AIME 2024, and AIME 2025
datasets, we run the test set 16 times and report the average results, as these test sets are relatively
small. We report the best average performance during training.

7
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Table 1: The performance of different policy optimization methods on math datasets.
Methods MATH500 AMC23 AIME2024 AIME2025 Average

Qwen2.5-Math-1.5B

Base 28.0 27.3 6.0 3.1 16.1
REINFORCE 72.2 53.6 18.3 11.5 38.9
ReMax 73.2 53.3 17.1 9.6 38.3
GRPO 75.0 52.0 15.6 11.0 38.4
REINFORCE++ 73.8 52.0 16.7 9.8 38.1
BNPO 74.0 54.5 17.9 11.3 39.4

Qwen2.5-Math-7B

Base 41.4 32.5 11.0 5.0 22.5
REINFORCE 78.2 65.6 32.9 11.7 47.1
ReMax 77.8 63.6 33.5 15.4 47.6
GRPO 78.6 64.5 32.3 12.9 47.1
REINFORCE++ 78.6 64.4 32.1 12.3 46.8
BNPO 77.0 68.8 32.1 13.3 47.8

Hyperparameters For all methods, we set the batch size 32, number of outputs to 16, number of
PPO iterations to 1, number of epochs to 5, and learning rate to 10−6. The temperature is set to 1.0
during training and 0.6 during evaluation. We use the chat template of Qwen2.5-Math-7B and set the
maximum question length to 1024 and the maximum output length to 3072, corresponding to the
maximum context length of 4096 for Qwen-Math-1.5B and Qwen-Math-7B.

5.2 RESULTS

As shown in Table 1, BNPO achieves the highest average performance among all policy optimization
methods for both the Qwen2.5-Math-1.5B and Qwen2.5-Math-7B base models, demonstrating its
effectiveness and versatility. Notably, BNPO trained on Qwen2.5-Math-7B delivers significant
improvements on the AMC23 dataset. In contrast, REINFORCE, GRPO, and REINFORCE++,
which either lack normalization or rely on static normalization, exhibit suboptimal performance.
Although ReMax achieves performance comparable to BNPO on the Qwen2.5-Math-7B model, it
requires additional sampling to dynamically estimate the baseline, resulting in approximately 25%
longer training times in our experiments.

5.3 TRAINING STABILITY

We have demonstrated in Theorem 1 that BNPO effectively reduces gradient variance, thereby
enhancing training stability. Given the substantial computational cost of training large language
models, maintaining stable training dynamics is crucial. To evaluate this, we use the gradient norm,
an indicator of policy variance, as a proxy for training stability.

As shown in Figure 2, BNPO exhibits the highest stability among the methods, with consistently stable
gradient norms throughout training. In contrast, GRPO, REINFORCE, Remax and REINFORCE++
show more significant fluctuations, indicating less stable training. These results highlight the benefit
of BNPO’s dynamic normalization mechanism over the static normalization used in GRPO and
REINFORCE++.

5.4 EVOLUTION OF NORMALIZATION

Our BNPO method dynamically adjusts the parameters (α, β) in the normalization fN (p(q);α, β)
to ensure that the advantage function Aα,β(q, o) remains aligned with the evolving expected reward
distribution fD(p(q); a, b) throughout training. We have further provided an interpretation of α and
β in terms of the mean and variance of fD(p(q); a, b), demonstrating how they can be related to
E[p(q)] and Var[p(q)].

8
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Figure 2: The norm of gradient during training.

To illustrate this relationship, Figure 3 presents the evolution of (E[p(q)],Var[p(q)], α, β) over the
course of training. For clarity, we recommend focusing on α (depicted in green), which exhibits
clear variations throughout the training process. These fluctuations in α demonstrate that BNPO
actively modifies its distributional parameters in response to changes in the expectation and variance
of p(q). This adaptive behavior helps reduce gradient variance, thereby contributing to the stability
and effectiveness of the training process.
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Figure 3: The values of (E[p(q)],Var[p(q)], α, β) during training.

6 CONCLUSION

In this paper, we propose a new policy optimization methods, BNPO, which use Beta distribution to
normalize the reward function. We find that the expectation of a binary-valued reward function can
be treated as a random variable with Beta distribution, thus, we use another Beta distribution as the
normalize term. BNPO can adaptively adjust its parameters in normalization term to match with the
evolution of distribution of the expected reward. We theoretically prove that BNPO can effectively
reduce the variance in estimating policy gradient. We also that BNPO can reduces to REINFORCE
with baseline and GRPO under binary-valued reward circumstance. In order to account for more
complex reward systems, we further propose a advantage decomposition mechanism to make BNPO
more applicable. Finally, we conduct extensive experiments to verify the effectiveness of our BNPO.

9
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A FURTHER ELABORATION

Reasons for Using the Beta Distribution We model p(q) using a Beta distribution, as this choice
is particularly suitable and widely adopted for modeling probabilities, as discussed in Section 2.1.
Moreover, p(q) can be interpreted as the probability that question q is correctly answered.

Additionally, we observe that the normalization terms in REINFORCE and GRPO correspond to Beta
distributions. This observation suggests that BNPO, which generalizes existing policy optimization
methods, benefits from modeling p(q) with a Beta distribution to achieve improved performance.

While other parameterized distributions could, in principle, be used to model p(q), the Beta distribu-
tion offers several distinct advantages:

• Natural support on [0, 1]: The Beta distribution is inherently defined on the interval [0, 1],
making it ideal for modeling probabilities. In contrast, many alternative distributions do not
possess this property.

• Ease of parameter estimation: The parameters of the Beta distribution can be efficiently
estimated using Eq.(13). For many other distributions, parameter estimation may be analyti-
cally intractable or computationally intensive.

• Analytical gradient variance minimization: When p(q) follows a Beta distribution, it
is possible to derive an analytical solution for minimizing gradient variance, as shown in
Theorem 1. For most other distributions, obtaining such a solution is unlikely.

These reasons collectively motivate our use of the Beta distribution for modeling p(q).

B FURTHER EXPERIEMTNS

Table 2: Standard deviation of 3 training runs.
Methods MATH500 AMC23 AIME2024 AIME2025 Avg

REINFORCE 0.008 0.00392 0.003125 0.00208 0.00031
ReMax 0.009 0.003125 0.004165 0.0 0.000425
GRPO 0.009 0.00625 0.00625 0.00417 0.000165
REINFORCE++ 0.002 0.002555 0.00729 0.0031265 0.00113
BNPO 0.002 0.00781 0.003125 0.00729 0.000155

Note: Avg is computed by first averaging the performance across the four datasets for each run and
then calculating the standard deviation of these averages.

Table 3: Gradient variance.
Step 100 200 300 400 500 600 700 800 900 1000 1100

REINFORCE 354 233 127 143 162 118 133 140 196 180 256
REMAX 702 475 385 269 250.743 108 130 172 200 404 423
GRPO 2652 1552 1183 505 552 673 537 610 807 606 862
REINFORCE++ 764 1455 1407 612 741 722 1402 739 1060 936 1146
BNPO 235 243 71 123 133 71 115 102 156 131 163

Standard deviation We present the standard deviations of the performance across different training
runs for various methods. Table 2 shows that the standard deviations are low, especially for the
standard deviation of average performance (Avg), and BNPO achieves the lowest standard deviations
among all methods.

Gradient variance Computing the gradient variance requires sampling multiple batches, which is
computationally expensive. Therefore, we compute it only once every 100 training steps. The results,
presented in Table 3, show that our BNPO method achieves significantly lower gradient variance
compared to the other methods.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200
Step

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

M
ax

im
um

 v
al

ue
 o

f A
(q

,o
)

Figure 4: The maximum value of
Aα,β(q, o).
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fN (p;α, β).

Table 4: The performance of policy optimization methods with and without advantage decomposition.
Methods MATH500 AMC23 AIME2024 AIME2025 Average

Qwen2.5-1.5B-Instruct

Base 14.2 7.3 1.3 0.2 5.8
GRPO 60.0 35.5 4.6 0.8 25.2
REINFORCE++ 58.2 32.2 6.0 1.9 24.6

AD-GRPO 61.6 34.1 3.8 2.9 25.6
AD-REINFORCE++ 58.0 35.6 4.2 1.9 24.9
AD-BNPO 61.4 36.3 3.8 1.9 25.8

Advantage decomposition To evaluate the effectiveness of the advantage decomposition method,
we incorporate an additional format reward following DeepSeek-R1. Since Qwen2.5-Math-1.5B
and Qwen2.5-Math-7B exhibit limited instruction-following capabilities, making it difficult for them
to learn from the format reward, we use Qwen2.5-1.5B-Instruct as the base model. We denote
GRPO and REINFORCE++ with advantage decomposition as AD-GRPO and AD-REINFORCE++,
respectively. Note that REINFORCE and ReMax do not include normalization and are therefore
excluded from this comparison.

As shown in Table 4, both AD-GRPO and AD-REINFORCE++ achieve slight improvements over
their original counterparts. BNPO continues to deliver the best average performance. However, since
the format reward surpasses 90% after only 100 training iterations, the overall performance gains
from advantage decomposition are relatively modest.

Advantage function Due to the boundness of the reward (R(q, o) ∈ {0, 1}), normalizing the reward
would not lead to instability. To demonstrate it, we show the maximum value of the absolute value of
the advantage (or the normalized reward) at each step. As shown in Figure 4, the normalized reward
always remains at a relatively small value. We also show the minimum value of the normalization
term fN (p;α, β) at each step. As shown in Figure 5, the minimum value of fN (p;α, β) always
remained consistently around 1.

Performance Since the best performance for different datasets may be achieved at different training
steps. The reported best average performance does not mean that it is the best performance of each
dataset. Thus, we further report the best performance of each individual dataset during training. As
shown in the Table 5, BNPO can achieves consistent improvement on different datasets and achieve
good performance on complex datasets.

Beta distribution Since we model p(q) as a random variable with Beta distribution fD(p(q); a, b),
we evaluate how well this distribution fits the empirical data. To evaluate estimation error, we use
the average of log-likelihood to measure the goodness of fit. As shown in Figure 6, the statistic
remains within a relatively small range in most steps, indicating that the fitted distribution matches
the empirical distribution and introduces a small amount of bias.
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Table 5: The performance of different policy optimization methods on math datasets.
Methods MATH500 AMC23 AIME2024 AIME2025

Qwen2.5-Math-1.5B

Base 28.0 27.3 6.0 3.1
REINFORCE 74.8 54.9 18.3 11.9
ReMax 74.4 54.7 19.0 11.0
GRPO 74.6 54.8 19.0 11.0
REINFORCE++ 75.4 53.8 19.2 10.4
BNPO 75.0 55.0 19.8 13.1

Qwen2.5-Math-7B

Base 41.4 32.5 11.0 5.0
REINFORCE 79.6 66.1 33.1 15.0
ReMax 79.6 66.6 33.5 15.4
GRPO 81.6 65.7 32.5 13.3
REINFORCE++ 79.8 65.0 32.3 13.1
BNPO 79.8 68.8 33.5 15.6
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Figure 6: The average of log-likelihood.

The values of (E[p(q)],Var[p(q)]) We show the curves of E[p] and Var[p] in Figure 7 and Figure
8 separately, which clearly show that both quantities vary throughout training. Beta Normalization is
introduced precisely to adapt to this dynamic behavior and to mitigate the resulting instability in the
distribution of p.

C PROOF

Theorem 1. Let q ∼ ρ be a question and o ∼ πθ(·|q) be an output with reward R(q, o) ∈ {0, 1},
where R(q, o) follows a Bernoulli distribution with success probability p(q) = Eo∼πθ(·|q)[R(q, o)|q],
and that p(q) follows a Beta distribution fD(p(q); a, b). Define the BNPO gradient estimator as

gα,β = ∇θ log π(o|q)
R(q, o)− p(q)
fN (p(q);α, β)

.

where fN (p(q);α, β) is a Beta distribution. Under the assumption ∇θ log π(o|q) is uncorrelated
with R(q,o)−p(q)

fN (p(q);α,β) , the variance of the policy gradient estimator Varq∼ρ, o∼πθ(·|q)(gα,β) is finite if

and only if: α < a+3
2 and β < b+3

2 . Within this domain, Varq∼ρ, o∼πθ(·|q)(gα,β) attains a unique
minimum at:

α = 1 +
a

3
, β = 1 +

b

3
.
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Figure 7: The values of E[p(q)] during training.
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Figure 8: The values of Var[p(q)] during training.

Proof. 1. VARIANCE EXPRESSION

Expand the variance using its definition:

Var(gα,β) = E

[(
∇θ log π(o | q) ·

R(q, o)− p(q)
fN (p(q);α, β)

)2
]

−
(
E
[
∇θ log π(o | q) ·

R(q, o)− p(q)
fN (p(q);α, β)

])2

.

Simplify the mean term using the assumption and E[ R(q,o)−p(q)
fN (p(q);α,β) |q] = 0:

E
[
∇θ log π(o | q) ·

R(q, o)− p(q)
fN (p(q);α, β)

]
= 0.

Therefore:

Var(gα,β) = E
[
(∇θ log π(o | q))2 ·

(R(q, o)− p(q))2

fN (p(q);α, β)2

]
.

Under the assumption, the variance of the gradient estimator gα,β is proportional to:

Var(gα,β) ∝ Eq∼ρEo

[
(R(q, o)− p(q))2

fN (p(q);α, β)2

]
.

For R(q, o) ∈ {0, 1}, we have that

Eo

[
(R− p(q))2|q

]
= p(q)(1− p(q)).
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Substituting the weight function:

p(q)(1− p(q))
fN (p(q);α, β)2

=
p(q)(1− p(q))(

1
B(α,β)p(q)

α−1(1− p(q))β−1
)2

= B(α, β)2 · p(q)3−2α(1− p(q))3−2β .

Unper p ∼ fD(p(q); a, b), the expectation integrates the above expression over the Beta-distributed p
becomes

Ep

[
p3−2α(1− p)3−2β

]
=
B(a+ 3− 2α, b+ 3− 2β)

B(a, b)
,

Thus, we have that

Var(gα,β) ∝ B(α, β)2 · B(a+ 3− 2α, b+ 3− 2β)

B(a, b)
.

2. DOMAIN OF FINITENESS

The Beta function B(x, y) converges iff x > 0 and y > 0. For convergence of B(a + 3 − 2α, b +
3− 2β):

a+ 3− 2α > 0 =⇒ α <
a+ 3

2
,

b+ 3− 2β > 0 =⇒ β <
b+ 3

2
.

3. BOUNDARY BEHAVIOR

As α→ a+3
2

− or β → b+3
2

−
:

B(a+ 3− 2α, b+ 3− 2β)→∞ =⇒ Var(gα,β)→ +∞.

4. OPTIMAL PARAMETERS

Define L(α, β) = lnVar(gα,β):

L = 2 lnB(α, β) + lnB(a+ 3− 2α, b+ 3− 2β)− lnB(a, b).

The partial derivatives are:

∂L

∂α
= 2 [ψ(α)− ψ(α+ β)]− 2 [ψ(a+ 3− 2α)− ψ(a+ b+ 6− 2α− 2β)] ,

∂L

∂β
= 2 [ψ(β)− ψ(α+ β)]− 2 [ψ(b+ 3− 2β)− ψ(a+ b+ 6− 2α− 2β)] ,

where ψ(x) = d
dx ln Γ(x) and Γ(x) is the gamma function. Setting ∂L/∂α = 0 and ∂L/∂β = 0:

ψ(α)− ψ(α+ β) = ψ(a+ 3− 2α)− ψ(a+ b+ 6− 2α− 2β).

ψ(β)− ψ(α+ β) = ψ(b+ 3− 2β)− ψ(a+ b+ 6− 2α− 2β).

Substituting α = 1 + a
3 and β = 1 + b

3 satisfies this identity through digamma function properties.

5. STRICT CONVEXITY

We compute the Hessian matrix H for L(α, β) at (α0, β0).

Let ψ1(x) =
d
dxψ(x) be the trigamma function. Let Xα = α0 = 1 + a/3 and Xβ = β0 = 1 + b/3.

Let Ssum = α0 + β0 = 2 + (a+ b)/3.

The arguments for the other digamma terms at the solution become: a− 2α0 + 3 = 1 + a/3 = Xα.
b− 2β0 + 3 = 1 + b/3 = Xβ . a+ b− 2α0 − 2β0 + 6 = (a+ b)/3 + 2 = Ssum.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The second partial derivatives are:

∂2L

∂α2
= 2ψ1(α)− 2ψ1(α+ β) + 4ψ1(a− 2α+ 3)− 4ψ1(a+ b− 2α− 2β + 6).

At (α0, β0): H11 = 2ψ1(Xα)− 2ψ1(Ssum) + 4ψ1(Xα)− 4ψ1(Ssum) = 6ψ1(Xα)− 6ψ1(Ssum).
By symmetry: H22 = 6ψ1(Xβ)− 6ψ1(Ssum). The mixed partial derivative:

∂2L

∂α∂β
= −2ψ1(α+ β)− (−2)ψ1(a+ b− 2α− 2β + 6)(−2)

= −2ψ1(α+ β)− 4ψ1(a+ b− 2α− 2β + 6).

At (α0, β0): H12 = −2ψ1(Ssum)− 4ψ1(Ssum) = −6ψ1(Ssum).

For a minimum, H must be positive definite.

1. H11 > 0: H11 = 6(ψ1(Xα) − ψ1(Ssum)) = 6(ψ1(1 + a/3) − ψ1(2 + (a + b)/3)). Since
a, b > 0, we have Xβ = 1 + b/3 > 0. Thus Xα = 1 + a/3 < 1 + a/3 + (1 + b/3) = Ssum. The
trigamma function ψ1(x) is strictly decreasing for x > 0. Since Xα < Ssum (and Xα, Ssum > 0),
ψ1(Xα) > ψ1(Ssum). Thus H11 > 0. Similarly H22 > 0.

2. det(H) = H11H22 −H2
12 > 0:

det(H)

=(6ψ1(Xα)− 6ψ1(Ssum))(6ψ1(Xβ)− 6ψ1(Ssum))− (−6ψ1(Ssum))2

=36[ψ1(Xα)ψ1(Xβ)− ψ1(Xα)ψ1(Ssum)− ψ1(Xβ)ψ1(Ssum) + ψ1(Ssum)2 − ψ1(Ssum)2]

=36[ψ1(Xα)ψ1(Xβ)− ψ1(Ssum)(ψ1(Xα) + ψ1(Xβ))].

For det(H) > 0, we need ψ1(Xα)ψ1(Xβ)−ψ1(Ssum)(ψ1(Xα) +ψ1(Xβ)) > 0. Since ψ1(x) > 0
for x > 0, we can divide by ψ1(Xα)ψ1(Xβ)ψ1(Ssum):

1

ψ1(Ssum)
−
(

1

ψ1(Xβ)
+

1

ψ1(Xα)

)
> 0 =⇒ 1

ψ1(Xα +Xβ)
>

1

ψ1(Xα)
+

1

ψ1(Xβ)
.

Let f(x) = 1/ψ1(x). The inequality is f(Xα + Xβ) > f(Xα) + f(Xβ). The function f(x) =
1/ψ1(x) is strictly convex on (0,∞).

As x → 0+, ψ1(x) → ∞, so f(x) = 1/ψ1(x) → 0. So we can define f(0) = 0. For a
strictly convex function f with f(0) = 0: For x, y > 0, f(x) = f( x

x+y (x + y) + y
x+y · 0) <

x
x+yf(x + y) + y

x+yf(0) = x
x+yf(x + y). Similarly, f(y) < y

x+yf(x + y). Summing these
gives f(x) + f(y) < f(x + y). The strict inequality holds because Xα = 1 + a/3 > 0 and
Xβ = 1 + b/3 > 0. Therefore, the Hessian matrix is positive definite at (α0, β0). Since the domain
for (α, β) (where variance is finite, and α, β > 0) is a convex set, this implies that (α0, β0) is a
unique minimum.
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