
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BNPO: BETA NORMALIZATION POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies, including DeepSeek-R1 and Kimi-k1.5, have demonstrated that
reinforcement learning with rule-based, binary-valued reward functions can sig-
nificantly enhance the reasoning capabilities of large language models. These
models primarily utilize REINFORCE-based policy optimization techniques, such
as REINFORCE with baseline and group relative policy optimization (GRPO).
However, a key limitation remains: current policy optimization methods either
neglect reward normalization or employ static normalization strategies, which
fail to adapt to the dynamic nature of policy updates during training. This may
result in unstable gradient estimates and hinder training stability. To address this
issue, we propose Beta Normalization Policy Optimization (BNPO), a novel policy
optimization method that adaptively normalizes rewards using a Beta distribution
with dynamically updated parameters. BNPO aligns the normalization with the
changing policy distribution, enabling more precise and lower-variance gradient
estimation, which in turn promotes stable training dynamics. We provide theoret-
ical analysis demonstrating BNPO’s variance-reducing properties and show that
it generalizes both REINFORCE and GRPO under binary-valued reward settings.
Furthermore, we introduce an advantage decomposition mechanism to extend
BNPO’s applicability to more complex reward systems. Experimental results con-
firm that BNPO achieves state-of-the-art performance among policy optimization
methods on reasoning tasks.

1 INTRODUCTION

Kimi-K1.5 (Team et al., 2025) and DeepSeek-R1 (Guo et al., 2025) have demonstrated that rein-
forcement learning can substantially enhance the reasoning capabilities of large language models.
These models leverage reinforcement learning techniques built on rule-based, binary-valued outcome
reward functions, and utilize policy optimization techniques such as REINFORCE with baseline
(Kool et al., 2019) and group relative policy optimization (GRPO) (Shao et al., 2024).

In contrast to proximal policy optimization (PPO) (Schulman et al., 2017), which employs a critic
network to estimate the baseline for policy gradients, REINFORCE with baseline and GRPO utilize
Monte Carlo sampling for baseline estimation, reducing memory and computational overhead.
Specifically, REINFORCE with baseline incorporates a state-dependent baseline compared to vanilla
REINFORCE to reduce gradient variance, while GRPO further stabilizes training by normalizing
rewards, thereby reducing gradient variance in high-variance reward scenarios.

Despite these advances, a fundamental limitation remains: current methods either lack reward
normalization entirely or use fixed normalization terms throughout training. This is suboptimal, as the
policy model evolves during training, fixed normalization cannot adapt to such dynamics, potentially
resulting in inaccurate gradient estimates and unstable learning.

To overcome this limitation, we propose a novel policy optimization method, called Beta Normaliza-
tion Policy Optimization (BNPO), which dynamically normalizes the reward function using a Beta
distribution with its adaptive parameters. By evolving alongside the policy model, this normalization
mechanism provides more accurate and lower-variance gradient estimates. Besides, we introduce an
advantage decomposition mechanism to enhance BNPO’s ability to handle complex reward systems.

Our approach is motivated by the observation that, under binary-valued reward functions, the reward
can be seen as a random variable with Bernoulli distribution, and its expectation naturally can be
modeled as a random variable with Beta distribution. As training progresses and the policy evolves,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ob

ab
ilit

y
De

ns
ity

(= 0.5, = 0.5)
(= 1.5, = 1.5)

(= 1.0, = 3.0)
(= 3.0, = 1.0)

(= 2.0, = 5.0)
(= 5.0, = 2.0)

Figure 1: Probability density function of Beta distribution.

the distribution of expected rewards also shifts. BNPO explicitly accounts for these shifts by adjusting
the normalization term accordingly.

We further present a theoretical analysis demonstrating that BNPO can effectively reduce the variance
of policy gradient estimates when the Beta distribution parameters are appropriately set. Moreover,
we show that BNPO generalizes both REINFORCE and GRPO in the binary-valued reward setting,
highlighting its broad applicability and theoretical consistency. Finally, experimental results show
that BNPO achieves state-of-the-art performance in policy optimization for reasoning tasks.

2 BACKGROUND

2.1 BETA DISTRIBUTION

The Beta distribution is a continuous probability distribution defined on the interval [0, 1], making it
particularly well-suited for modeling probabilities. In this paper, we use it to represent the distribution
of the expectation of a binary-valued reward. Its probability density function is given by

f(p;α, β) =
1

B(α, β)
pα−1(1− p)β−1, p ∈ [0, 1] or p ∈ (0, 1), α > 0, β > 0, (1)

where B(·, ·) denotes the Beta function, which serves as a normalization constant to ensure the
probability density function integrates to one. Figure 1 illustrates the probability density function of
the Beta distribution under various parameter settings.

The shape of the Beta distribution is primarily determined by the values of α and β, which control
the concentration of probability mass and the skewness of the distribution. When α > 1 and β > 1,
the distribution is unimodal and bell-shaped, with the mode α−1

α+β−2 lying between 0 and 1. If α < 1

and β < 1, the distribution becomes U-shaped, with higher densities near 0 and 1. When one of the
parameters is less than 1 while the other is greater than 1, the distribution becomes highly skewed,
concentrating mass near one endpoint. A special case occurs when α = β, resulting in a symmetric
distribution centered around p = 1

2 . This adaptability makes the Beta distribution a popular choice in
probabilistic modeling contexts.

In terms of summary statistics, the mean of the Beta distribution is given by E[p] = α
α+β , reflecting

the balance between the two parameters. The variance is given by Var[p] = αβ
(α+β)2(α+β+1) , which

decreases as the sum α+ β increases, indicating greater certainty or concentration around the mean.

2.2 POLICY OPTIMIZATION

Reinforcement learning provides an effective framework for training large language models by
enabling them to learn policies through interaction with the environment and feedback signals. Among

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

various reinforcement learning methods, policy gradient techniques are particularly prominent due to
their ability to scale to high-dimensional action spaces typical in language generation tasks. Given a
outcome reward function R(q, o), the objective function in policy gradient methods is defined as:

L(θ) = Eq∼ρ, o∼πθ(·|q)

[
R(q, o)

]
, (2)

where ρ represents the distribution of questions q, and πθ(·|q) denotes the parameterized policy model
that defines the distribution over outputs o. According to the policy gradient theorem (Sutton et al.,
1999), the policy gradient for the objective in Eq.(2) is given by:

∇θL(θ) = Eq∼ρ, o∼πθ(·|q)

[
∇θ log πθ(o|q)R(q, o)

]
. (3)

In practice, directly using Eq. (3) can lead to high variance in gradient estimates (Barto, 2021), which
negatively impacts training stability. To mitigate this, policy gradient methods typically introduce an
advantage function A(q, o):

∇θJ (θ) = Eq∼ρ, o∼πθ(·|q)

[
∇θ log πθ(o|q)A(q, o)

]
, (4)

where A(q, o) represents the relative advantage of a question-output pair (q, o) compared to other
pairs. The use of A(q, o) primarily serves to reduce the variance in policy gradient estimation:

Varq∼ρ, o∼πθ(·|q)

[
∇θ log πθ(o|q)A(q, o)

]
. (5)

The advantage function is commonly formulated as A(q, o) = R(q,o)−µ
σ , where µ serves as a baseline

for R(q, o) to compare and σ acts as a normalization term. With appropriate choices of µ andσ, the
estimation of policy gradient remains unbiased while its variance is reduced.

REINFORCE with baseline (Team et al., 2025; Kool et al., 2019) defines A(q, o) as

A(q, o) =R(q, o)− Eo′∼πθ(·|q)

[
R(q, o′)

]
≈R(q, o)−Mean({R(q, o′j)}mj=1), (6)

where the baseline is the mean reward over a sampled group of outputs {(q, o′j)}mj=1. This Monte

Carlo estimate approximates the expected reward Eo′∼πθ(·|q)

[
R(q, o′)

]
and has been shown to

effectively reduce the variance of policy gradient estimates (Wu et al., 2018).

GRPO (Guo et al., 2025; Shao et al., 2024) defines A(q, o) as:

A(q, o) =
R(q, o)− Eo′∼πθ(·|q)

[
R(q, o′)

]
√

Varo′∼πθ(·|q)[R(q, o
′)]

≈
R(q, o)−Mean({R(q, o′j)}mj=1)√

Var({R(q, o′j)}mj=1)
, (7)

Compared to REINFORCE with baseline, GRPO further uses the standard deviation of the rewards
over the sampled set {(q, o′j)}mj=1 to normalize the reward function. This normalization term can
further reduce the variance in estimating policy gradient for high-variance reward functions.

PPO (Schulman et al., 2017) further enhances stability by incorporating importance sampling and a
clipping mechanism for off-policy updates:

L(θ) = Eq∼ρ,o∼πθold (o|q)

[
min(

πθ(o|q)
πθold(o|q)

A(q, o), clip(
πθ(o|q)
πθold(o|q)

, 1− ε, 1 + ε)A(q, o))
]
, (8)

where πθold is the old policy and ε is a hyperparameter that controls the range of clipping.

3 BETA NORMALIZATION POLICY OPTIMIZATION

In this section, we introduce our policy optimization method, BNPO, which employs a Beta dis-
tribution to normalize binary-valued reward functions. BNPO adapts to the evolving policy model

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

during training by dynamically adjusting the parameters of the Beta distribution. We then provide
a theoretical proof demonstrating that BNPO effectively reduces the variance of policy gradient
estimates. Furthermore, we show that BNPO generalizes both REINFORCE with baseline and GRPO
in the context of binary-valued rewards. Finally, we present an advantage decomposition mechanism
to extend BNPO’s applicability to more complex reward systems.

Beta normalization We use the accuracy of an output o with respect to a question q as the reward
function R(q, o) as in DeepSeek-R1 (Guo et al., 2025), i.e.,

R(q, o) =

{
1, if o contains the answer a of the question q,
0, otherwise.

(9)

Since the value of R(q, o) is either 0 or 1, R(q, o) can be treated as a random variable with Bernoulli
distribution, i.e.

R(q, o) ∼ Bernoulli (p(q)), 0 ≤ p(q) ≤ 1,

p(q) = Eo∼πθ(·|q)[R(q, o)|q], (10)

where p(q) denotes the probability that output o is correct for question q, and it is also the expected
reward under the distribution πθ(·|q). As mentioned in Section 2.1, the Beta distribution is very
suitable for modeling probability. Thus, we model p(q) as a random variable with Beta distribution
fD(p(q); a, b), where the parameters a and b control the shape of the distribution. These parameters
can be estimated using Monte Carlo sampling.

As the policy model πθ(·|q) evolves during training, the distribution of p(q) also changes dynamically.
To account for these changes, we propose using an additional Beta distribution fN (p(q);α, β) to
normalize the reward function. The advantage function in our BNPO method is defined as:

Aα,β(q, o) =
R(q, o)− p(q)
fN (p(q);α, β)

, (11)

where p(q) serves as the baseline, as in REINFORCE with baseline and GRPO, and fN (p(q);α, β)
is used to normalize the reward function R(q, o).

The setting of α and β We dynamically adjust the parameters (α, β) in fN (p(q);α, β) to ensure
that Aα,β(q, o) adapts to the evolving distribution fD(p(q); a, b) during training. The primary goal
in setting α and β is to minimize the variance in policy gradient estimation. We present the following
theorem to achieve it.
Theorem 1. Let q ∼ ρ be a question and o ∼ πθ(·|q) be an output with reward R(q, o) ∈ {0, 1},
where R(q, o) follows a Bernoulli distribution with success probability p(q) = Eo∼πθ(·|q)[R(q, o)|q],
and that p(q) follows a Beta distribution fD(p(q); a, b). Define the BNPO gradient estimator as

gα,β = ∇θ log π(o|q)
R(q, o)− p(q)
fN (p(q);α, β)

.

where fN (p(q);α, β) is a Beta distribution. Under the assumption ∇θ log π(o|q) is uncorrelated
with R(q,o)−p(q)

fN (p(q);α,β) , the variance of the policy gradient estimator Varq∼ρ, o∼πθ(·|q)(gα,β) is finite if

and only if: α < a+3
2 and β < b+3

2 . Within this domain, Varq∼ρ, o∼πθ(·|q)(gα,β) attains a unique
minimum at:

α = 1 +
a

3
, β = 1 +

b

3
.

See Appendix C for the proof. The above theorem demonstrates that the optimal parameter settings
for minimizing the variance of the policy gradient are α = 1+ a

3 and β = 1+ b
3 . Thus, the choice of

(α, β) depends on the values of (a, b). We estimate (a, b) using the method-of-moments approach
and Monte Carlo sampling.

Given the following relationships:

E[p(q)] =
a

a+ b
,

Var[p(q)] =
ab

(a+ b)2(a+ b+ 1)
, (12)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

we can solve for a and b as:

a =
(E[p(q)](1− E[p(q)])

Var[p(q)]
− 1

)
E[p(q)],

b =
(E[p(q)](1− E[p(q)])

Var[p(q)]
− 1

)
(1− E[p(q)]). (13)

We then estimate E[p(q)] and Var[p(q)] using Monte Carlo methods to get a and b:

E[p(q)] ≈ Mean({p(qi)}ni=1),

Var[p(q)] ≈ Var({p(qi)}ni=1). (14)

The interpretation of α and β The parameters α and β can be understood in terms of the mean
and variance of fD(p(q); a, b). The mean of fD(p(q); a, b) is given by a

a+b , representing the average
reward of all (q, o) pairs. The mode of fN (p(q);α, β) is α−1

α+β−2 = a
a+b , which corresponds to the

value at which fN (p(q);α, β) attains its maximum. This shows that the mean of fD(p(q); a, b) is
equal to the mode of fN (p(q);α, β). As a result, the reward function R(q, o) is most normalized at
the average reward a

a+b .

The variance of fD(p(q); a, b) decreases/increases as the sum a + b increases/decreases. Since
α+ β = 2 + a+b

3 , the variance of fN (p(q);α, β) behaves similarly: it decreases/increases as a+ b
increases/decreases. Hence, fN (p(q);α, β) adapts its parameters to align with the variance changes
of fD(p(q); a, b).

REINFORCE and GRPO We now demonstrate that BNPO generalizes both REINFORCE with
baseline and GRPO under binary-valued reward circumstances, reducing to each of these methods
under specific settings for α and β.

REINFORCE with baseline defines the advantage function A(q, o) as

A(q, o) = R(q, o)− Eo′∼πθ(·|q)

[
R(q, o′)

]
= R(q, o)− p(q)

=
R(q, o)− p(q)
fN (p(q); 1, 1)

= A1,1(q, o). (15)

Therefore, BNPO reduces to REINFORCE if fN (p(q);α, β) = fN (p(q); 1, 1). Since RLOO (Kool
et al., 2019; Ahmadian et al., 2024) is equivalent to REINFROCE with baseline up to a scaling
constant (Liu et al., 2025), BNPO can also reduce to RLOO.

GRPO defines the advantage function A(q, o) as

A(q, o) =
R(q, o)− Eo′∼πθ(·|q)

[
R(q, o′)

]
√

Varo′∼πθ(·|q)[R(q, o
′)]

=
R(q, o)− p(q)√
p(q)(1− p(q))

∝ R(q, o)− p(q)
fN (p(q); 3

2 ,
3
2)

= A 3
2 ,

3
2
(q, o). (16)

In training large language models, gradient clipping is commonly employed. Consequently, scaling
the loss function by a constant does not affect the parameter update process. Consequently, BNPO
reduces to GRPO if fN (p(q);α, β) = fN (p(q); 3

2 ,
3
2).

REINFORCE with a baseline and GRPO can be viewed as special cases of BNPO with fixed values
of (α, β). In contrast, BNPO dynamically adjusts (α, β) during training to better align with the
evolving policy model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Advantage decomposition To extend our method to more complex reward systems beyond a
single binary reward function, we introduce an advantage decomposition mechanism. This approach
enables the separate normalization of each individual reward component, leading to a more accurate
estimation of the overall advantage function. Such decomposition is particularly beneficial in settings
with multiple reward signals. For example, DeepSeek-R1 employs both format and accuracy rewards
to ensure that model outputs not only follow the required structure but also produce correct answers.

Given K binary-valued reward functions {R(1)(q, o), R(2)(q, o), · · · , R(K)(q, o)}, we decompose
the overall advantage function A(q, o) into K sub-advantage functions A(i)(q, o) as follows:

A(q, o) =
1

K

K∑
i=1

A(i)(q, o) =
1

K

K∑
i=1

R(i)(q, o)− p(q)(i)

fN (p(q)(i);α(i), β(i))
. (17)

where each sub-advantage function A(i)(q, o) is computed for the corresponding reward function
R(i)(q, o).

Unlike previous methods that first sum multiple reward functions and then compute the final advantage
function, our approach calculates the advantage function for each individual reward function first,
and then averages them to obtain the final advantage function. The key benefit of this approach is that
it allows for separate normalization of each reward function, ensuring that the normalization of one
function does not interfere with others.

Extend BNPO to multi-valued or continuous rewards. We present the detailed implementation
of our BNPO in Alg.(1). Although our theoretical analysis of BNPO is based on binary-valued
reward functions, the method remains applicable to general reward functions in practice. BNPO can
be naturally extended to handle general reward functions by directly assuming that p(q) follows a
Beta distribution, without relying on the intermediate assumption that R(q, o) is Bernoulli-distributed.
This extension broadens the applicability of BNPO to arbitrary reward types.

In this generalized setting, the solution to Theorem 1, originally derived for binary rewards, serves
as an approximate solution. While it may not be strictly optimal, it remains effective in reducing
gradient variance.

4 RELATED WORK

Reinforcement learning has been widely adopted to align large language models with human prefer-
ences, as seen in systems like ChatGPT and DeepSeek-R1. ChatGPT (Ouyang et al., 2022) employs
PPO for policy optimization, which relies on a critic network to better estimate policy gradients.
However, training a critic network is computationally intensive and memory-demanding, particularly
for large language models. To address this, models such as DeepSeek-R1 and Qwen (Yang et al.,
2024a) adopt REINFORCE-based methods, which avoid the need for a critic network.

The original REINFORCE algorithm (Williams, 1992) estimates gradients through Monte Carlo
sampling but often suffers from high variance, which can hinder learning stability and efficiency. To
mitigate this issue, RLOO (Kool et al., 2019) introduces a baseline function that uses the mean reward
of a group of samples as a reference, significantly reducing gradient variance, especially when batch
sizes are small. ReMax (Li et al., 2024) builds on this idea by employing greedy decoding to obtain a
baseline. GRPO (Shao et al., 2024) further refines this idea by normalizing each reward using the
standard deviation of the group, reducing variance even more. REINFORCE++ (Hu, 2025) goes a
step further by leveraging the rewards of all samples to estimate the policy gradient, resulting in more
stable and robust learning performance. However, these methods either lack proper normalization
or rely on static normalization strategies, which are insufficient for adapting to the evolving nature
of policy during training. In contrast, BNPO dynamically adjusts its normalization parameters in
response to changes in the policy, effectively stabilizing training.

Beyond policy optimization methods, normalization techniques are widely used in reinforcement
learning. Reward and value normalization have been extensively studied, including adaptive rescaling
approaches such as PopArt (Van Hasselt et al., 2016). Large-scale empirical analyses, such as Hender-
son et al. (2018), highlight the critical role of reward normalization in ensuring stable and reproducible
training. In addition, PPO stabilizes training by clipping rewards and policy updates, which acts as

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 BNPO: Beta Normalization Policy Optimization

Input: Initial policy model πθ0 , K binary-valued Reward model R(i)(q, o), training set D,
number of steps S, number of PPO iterations T , batch size n, number of outputs m.

1: Initialize policy model πθ ← πθ0 .
2: for step = 1 to S do
3: Update the old policy model πθold ← πθ.
4: Sample n questions q from D.
5: Sample m outputs o ∼ πθold(·|q) for each question q.
6: for each question-output pair (q, o) do
7: for i = 1 to K do
8: Compute the reward R(i)(q, o).
9: end for

10: end for
11: for each question q do
12: Estimate p(q) in Eq.(10).
13: end for
14: Estimate the parameters a and b in fD(p(q); a, b) by Eq.(13) and Eq.(14).
15: Set the the parameters α and β in fN (p(q);α, β) as α = 1 + a

3 and β = 1 + b
3 .

16: for each question-output pair (q, o) do
17: Compute the advantage A(q, o) by Eq.(11) and Eq.(17).
18: end for
19: for iteration = 1 to T do
20: Update πθ by maximizing Eq.(8).
21: end for
22: end for
Output: Optimized policy model πθ.

an implicit normalization mechanism to prevent excessively large gradient steps (Schulman et al.,
2017). Collectively, these studies demonstrate the broad effectiveness of normalization techniques in
reinforcement learning.

5 EXPERIMENTS

In this section, we first describe the experimental setup in Section 5.1, followed by the presentation of
results in Section 5.2. We then analyze training stability in Section 5.3. We finally show the evolution
of the normalization of BNPO in Section 5.4.

5.1 EXPERIMENTAL SETTINGS

Models To evaluate the effectiveness of BNPO, we conduct experiments on two publicly available
base models of different scales: Qwen2.5-Math-1.5B and Qwen2.5-Math-7B (Yang et al., 2024a;b).

Methods We compare BNPO method against several policy optimization methods, including
REINFORCE, ReMax, GRPO, and REINFORCE++. Since RLOO is equivalent to REINFORCE
with a baseline, we only report the results for REINFORCE with baseline.

Datasets For training, we utilize the full MATH dataset (Hendrycks et al., 2021), which consists of
7,500 diverse mathematical problems spanning a wide range of topics and difficulty levels.

For evaluation, we use four benchmark datasets: MATH500 (Hendrycks et al., 2021; Lightman
et al., 2023), AMC23 (Art of Problem Solving, 2025b), AIME2024 and AIME2025 (Art of Problem
Solving, 2025a).

Metrics We use pass@1 as the evaluation metric. For the AMC23, AIME 2024, and AIME 2025
datasets, we run the test set 16 times and report the average results, as these test sets are relatively
small. We report the best average performance during training.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: The performance of different policy optimization methods on math datasets.
Methods MATH500 AMC23 AIME2024 AIME2025 Average

Qwen2.5-Math-1.5B

Base 28.0 27.3 6.0 3.1 16.1
REINFORCE 72.2 53.6 18.3 11.5 38.9
ReMax 73.2 53.3 17.1 9.6 38.3
GRPO 75.0 52.0 15.6 11.0 38.4
REINFORCE++ 73.8 52.0 16.7 9.8 38.1
BNPO 74.0 54.5 17.9 11.3 39.4

Qwen2.5-Math-7B

Base 41.4 32.5 11.0 5.0 22.5
REINFORCE 78.2 65.6 32.9 11.7 47.1
ReMax 77.8 63.6 33.5 15.4 47.6
GRPO 78.6 64.5 32.3 12.9 47.1
REINFORCE++ 78.6 64.4 32.1 12.3 46.8
BNPO 77.0 68.8 32.1 13.3 47.8

Hyperparameters For all methods, we set the batch size 32, number of outputs to 16, number of
PPO iterations to 1, number of epochs to 5, and learning rate to 10−6. The temperature is set to 1.0
during training and 0.6 during evaluation. We use the chat template of Qwen2.5-Math-7B and set the
maximum question length to 1024 and the maximum output length to 3072, corresponding to the
maximum context length of 4096 for Qwen-Math-1.5B and Qwen-Math-7B.

5.2 RESULTS

As shown in Table 1, BNPO achieves the highest average performance among all policy optimization
methods for both the Qwen2.5-Math-1.5B and Qwen2.5-Math-7B base models, demonstrating its
effectiveness and versatility. Notably, BNPO trained on Qwen2.5-Math-7B delivers significant
improvements on the AMC23 dataset. In contrast, REINFORCE, GRPO, and REINFORCE++,
which either lack normalization or rely on static normalization, exhibit suboptimal performance.
Although ReMax achieves performance comparable to BNPO on the Qwen2.5-Math-7B model, it
requires additional sampling to dynamically estimate the baseline, resulting in approximately 25%
longer training times in our experiments.

5.3 TRAINING STABILITY

We have demonstrated in Theorem 1 that BNPO effectively reduces gradient variance, thereby
enhancing training stability. Given the substantial computational cost of training large language
models, maintaining stable training dynamics is crucial. To evaluate this, we use the gradient norm,
an indicator of policy variance, as a proxy for training stability.

As shown in Figure 2, BNPO exhibits the highest stability among the methods, with consistently stable
gradient norms throughout training. In contrast, GRPO, REINFORCE, Remax and REINFORCE++
show more significant fluctuations, indicating less stable training. These results highlight the benefit
of BNPO’s dynamic normalization mechanism over the static normalization used in GRPO and
REINFORCE++.

5.4 EVOLUTION OF NORMALIZATION

Our BNPO method dynamically adjusts the parameters (α, β) in the normalization fN (p(q);α, β)
to ensure that the advantage function Aα,β(q, o) remains aligned with the evolving expected reward
distribution fD(p(q); a, b) throughout training. We have further provided an interpretation of α and
β in terms of the mean and variance of fD(p(q); a, b), demonstrating how they can be related to
E[p(q)] and Var[p(q)].

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Step

0

200

400

600

800

1000

G
ra

di
en

tN
or

m

REINFORCE
ReMax
GRPO
REINFORCE++
BNPO

Figure 2: The norm of gradient during training.

To illustrate this relationship, Figure 3 presents the evolution of (E[p(q)],Var[p(q)], α, β) over the
course of training. For clarity, we recommend focusing on α (depicted in green), which exhibits
clear variations throughout the training process. These fluctuations in α demonstrate that BNPO
actively modifies its distributional parameters in response to changes in the expectation and variance
of p(q). This adaptive behavior helps reduce gradient variance, thereby contributing to the stability
and effectiveness of the training process.

0 200 400 600 800 1000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Va
lu

e

E[p]
Var[p]

Figure 3: The values of (E[p(q)],Var[p(q)], α, β) during training.

6 CONCLUSION

In this paper, we propose a new policy optimization methods, BNPO, which use Beta distribution to
normalize the reward function. We find that the expectation of a binary-valued reward function can
be treated as a random variable with Beta distribution, thus, we use another Beta distribution as the
normalize term. BNPO can adaptively adjust its parameters in normalization term to match with the
evolution of distribution of the expected reward. We theoretically prove that BNPO can effectively
reduce the variance in estimating policy gradient. We also that BNPO can reduces to REINFORCE
with baseline and GRPO under binary-valued reward circumstance. In order to account for more
complex reward systems, we further propose a advantage decomposition mechanism to make BNPO
more applicable. Finally, we conduct extensive experiments to verify the effectiveness of our BNPO.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Art of Problem Solving. Aime problems and solutions, 2025a. URL https:
//artofproblemsolving.com/wiki/index.php/AIME_Problems_and_
Solutions. Accessed: 2025-04-20.

Art of Problem Solving. Amc problems and solutions, 2025b. URL https:
//artofproblemsolving.com/wiki/index.php?title=AMC_Problems_
and_Solutions. Accessed: 2025-04-20.

Andrew G Barto. Reinforcement learning: An introduction. by richard’s sutton. SIAM Rev, 6(2):423,
2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline for
free!, 2019.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: a
simple, effective, and efficient reinforcement learning method for aligning large language models.
In Proceedings of the 41st International Conference on Machine Learning, pp. 29128–29163,
2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

10

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Hado P Van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver. Learning
values across many orders of magnitude. Advances in neural information processing systems, 29,
2016.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,
Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
factorized baselines. arXiv preprint arXiv:1803.07246, 2018.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A FURTHER ELABORATION

Reasons for Using the Beta Distribution We model p(q) using a Beta distribution, as this choice
is particularly suitable and widely adopted for modeling probabilities, as discussed in Section 2.1.
Moreover, p(q) can be interpreted as the probability that question q is correctly answered.

Additionally, we observe that the normalization terms in REINFORCE and GRPO correspond to Beta
distributions. This observation suggests that BNPO, which generalizes existing policy optimization
methods, benefits from modeling p(q) with a Beta distribution to achieve improved performance.

While other parameterized distributions could, in principle, be used to model p(q), the Beta distribu-
tion offers several distinct advantages:

• Natural support on [0, 1]: The Beta distribution is inherently defined on the interval [0, 1],
making it ideal for modeling probabilities. In contrast, many alternative distributions do not
possess this property.

• Ease of parameter estimation: The parameters of the Beta distribution can be efficiently
estimated using Eq.(13). For many other distributions, parameter estimation may be analyti-
cally intractable or computationally intensive.

• Analytical gradient variance minimization: When p(q) follows a Beta distribution, it
is possible to derive an analytical solution for minimizing gradient variance, as shown in
Theorem 1. For most other distributions, obtaining such a solution is unlikely.

These reasons collectively motivate our use of the Beta distribution for modeling p(q).

B FURTHER EXPERIEMTNS

Table 2: Standard deviation of 3 training runs.
Methods MATH500 AMC23 AIME2024 AIME2025 Avg

REINFORCE 0.008 0.00392 0.003125 0.00208 0.00031
ReMax 0.009 0.003125 0.004165 0.0 0.000425
GRPO 0.009 0.00625 0.00625 0.00417 0.000165
REINFORCE++ 0.002 0.002555 0.00729 0.0031265 0.00113
BNPO 0.002 0.00781 0.003125 0.00729 0.000155

Note: Avg is computed by first averaging the performance across the four datasets for each run and
then calculating the standard deviation of these averages.

Table 3: Gradient variance.
Step 100 200 300 400 500 600 700 800 900 1000 1100

REINFORCE 354 233 127 143 162 118 133 140 196 180 256
REMAX 702 475 385 269 250.743 108 130 172 200 404 423
GRPO 2652 1552 1183 505 552 673 537 610 807 606 862
REINFORCE++ 764 1455 1407 612 741 722 1402 739 1060 936 1146
BNPO 235 243 71 123 133 71 115 102 156 131 163

Standard deviation We present the standard deviations of the performance across different training
runs for various methods. Table 2 shows that the standard deviations are low, especially for the
standard deviation of average performance (Avg), and BNPO achieves the lowest standard deviations
among all methods.

Gradient variance Computing the gradient variance requires sampling multiple batches, which is
computationally expensive. Therefore, we compute it only once every 100 training steps. The results,
presented in Table 3, show that our BNPO method achieves significantly lower gradient variance
compared to the other methods.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200
Step

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

M
ax

im
um

 v
al

ue
 o

f A
(q

,o
)

Figure 4: The maximum value of
Aα,β(q, o).

0 200 400 600 800 1000 1200
Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
in

im
um

 v
al

ue
 o

f f
N
(p

(q
);

,
)

Figure 5: The minimum value of
fN (p;α, β).

Table 4: The performance of policy optimization methods with and without advantage decomposition.
Methods MATH500 AMC23 AIME2024 AIME2025 Average

Qwen2.5-1.5B-Instruct

Base 14.2 7.3 1.3 0.2 5.8
GRPO 60.0 35.5 4.6 0.8 25.2
REINFORCE++ 58.2 32.2 6.0 1.9 24.6

AD-GRPO 61.6 34.1 3.8 2.9 25.6
AD-REINFORCE++ 58.0 35.6 4.2 1.9 24.9
AD-BNPO 61.4 36.3 3.8 1.9 25.8

Advantage decomposition To evaluate the effectiveness of the advantage decomposition method,
we incorporate an additional format reward following DeepSeek-R1. Since Qwen2.5-Math-1.5B
and Qwen2.5-Math-7B exhibit limited instruction-following capabilities, making it difficult for them
to learn from the format reward, we use Qwen2.5-1.5B-Instruct as the base model. We denote
GRPO and REINFORCE++ with advantage decomposition as AD-GRPO and AD-REINFORCE++,
respectively. Note that REINFORCE and ReMax do not include normalization and are therefore
excluded from this comparison.

As shown in Table 4, both AD-GRPO and AD-REINFORCE++ achieve slight improvements over
their original counterparts. BNPO continues to deliver the best average performance. However, since
the format reward surpasses 90% after only 100 training iterations, the overall performance gains
from advantage decomposition are relatively modest.

Advantage function Due to the boundness of the reward (R(q, o) ∈ {0, 1}), normalizing the reward
would not lead to instability. To demonstrate it, we show the maximum value of the absolute value of
the advantage (or the normalized reward) at each step. As shown in Figure 4, the normalized reward
always remains at a relatively small value. We also show the minimum value of the normalization
term fN (p;α, β) at each step. As shown in Figure 5, the minimum value of fN (p;α, β) always
remained consistently around 1.

Performance Since the best performance for different datasets may be achieved at different training
steps. The reported best average performance does not mean that it is the best performance of each
dataset. Thus, we further report the best performance of each individual dataset during training. As
shown in the Table 5, BNPO can achieves consistent improvement on different datasets and achieve
good performance on complex datasets.

Beta distribution Since we model p(q) as a random variable with Beta distribution fD(p(q); a, b),
we evaluate how well this distribution fits the empirical data. To evaluate estimation error, we use
the average of log-likelihood to measure the goodness of fit. As shown in Figure 6, the statistic
remains within a relatively small range in most steps, indicating that the fitted distribution matches
the empirical distribution and introduces a small amount of bias.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: The performance of different policy optimization methods on math datasets.
Methods MATH500 AMC23 AIME2024 AIME2025

Qwen2.5-Math-1.5B

Base 28.0 27.3 6.0 3.1
REINFORCE 74.8 54.9 18.3 11.9
ReMax 74.4 54.7 19.0 11.0
GRPO 74.6 54.8 19.0 11.0
REINFORCE++ 75.4 53.8 19.2 10.4
BNPO 75.0 55.0 19.8 13.1

Qwen2.5-Math-7B

Base 41.4 32.5 11.0 5.0
REINFORCE 79.6 66.1 33.1 15.0
ReMax 79.6 66.6 33.5 15.4
GRPO 81.6 65.7 32.5 13.3
REINFORCE++ 79.8 65.0 32.3 13.1
BNPO 79.8 68.8 33.5 15.6

0 200 400 600 800 1000 1200
Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

of
 lo

g-
lik

el
ih

oo
d

Figure 6: The average of log-likelihood.

The values of (E[p(q)],Var[p(q)]) We show the curves of E[p] and Var[p] in Figure 7 and Figure
8 separately, which clearly show that both quantities vary throughout training. Beta Normalization is
introduced precisely to adapt to this dynamic behavior and to mitigate the resulting instability in the
distribution of p.

C PROOF

Theorem 1. Let q ∼ ρ be a question and o ∼ πθ(·|q) be an output with reward R(q, o) ∈ {0, 1},
where R(q, o) follows a Bernoulli distribution with success probability p(q) = Eo∼πθ(·|q)[R(q, o)|q],
and that p(q) follows a Beta distribution fD(p(q); a, b). Define the BNPO gradient estimator as

gα,β = ∇θ log π(o|q)
R(q, o)− p(q)
fN (p(q);α, β)

.

where fN (p(q);α, β) is a Beta distribution. Under the assumption ∇θ log π(o|q) is uncorrelated
with R(q,o)−p(q)

fN (p(q);α,β) , the variance of the policy gradient estimator Varq∼ρ, o∼πθ(·|q)(gα,β) is finite if

and only if: α < a+3
2 and β < b+3

2 . Within this domain, Varq∼ρ, o∼πθ(·|q)(gα,β) attains a unique
minimum at:

α = 1 +
a

3
, β = 1 +

b

3
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Step

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Figure 7: The values of E[p(q)] during training.

0 200 400 600 800 1000
Step

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Va
lu

e

Figure 8: The values of Var[p(q)] during training.

Proof. 1. VARIANCE EXPRESSION

Expand the variance using its definition:

Var(gα,β) = E

[(
∇θ log π(o | q) ·

R(q, o)− p(q)
fN (p(q);α, β)

)2
]

−
(
E
[
∇θ log π(o | q) ·

R(q, o)− p(q)
fN (p(q);α, β)

])2

.

Simplify the mean term using the assumption and E[R(q,o)−p(q)
fN (p(q);α,β) |q] = 0:

E
[
∇θ log π(o | q) ·

R(q, o)− p(q)
fN (p(q);α, β)

]
= 0.

Therefore:

Var(gα,β) = E
[
(∇θ log π(o | q))2 ·

(R(q, o)− p(q))2

fN (p(q);α, β)2

]
.

Under the assumption, the variance of the gradient estimator gα,β is proportional to:

Var(gα,β) ∝ Eq∼ρEo

[
(R(q, o)− p(q))2

fN (p(q);α, β)2

]
.

For R(q, o) ∈ {0, 1}, we have that

Eo

[
(R− p(q))2|q

]
= p(q)(1− p(q)).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Substituting the weight function:

p(q)(1− p(q))
fN (p(q);α, β)2

=
p(q)(1− p(q))(

1
B(α,β)p(q)

α−1(1− p(q))β−1
)2

= B(α, β)2 · p(q)3−2α(1− p(q))3−2β .

Unper p ∼ fD(p(q); a, b), the expectation integrates the above expression over the Beta-distributed p
becomes

Ep

[
p3−2α(1− p)3−2β

]
=
B(a+ 3− 2α, b+ 3− 2β)

B(a, b)
,

Thus, we have that

Var(gα,β) ∝ B(α, β)2 · B(a+ 3− 2α, b+ 3− 2β)

B(a, b)
.

2. DOMAIN OF FINITENESS

The Beta function B(x, y) converges iff x > 0 and y > 0. For convergence of B(a + 3 − 2α, b +
3− 2β):

a+ 3− 2α > 0 =⇒ α <
a+ 3

2
,

b+ 3− 2β > 0 =⇒ β <
b+ 3

2
.

3. BOUNDARY BEHAVIOR

As α→ a+3
2

− or β → b+3
2

−
:

B(a+ 3− 2α, b+ 3− 2β)→∞ =⇒ Var(gα,β)→ +∞.

4. OPTIMAL PARAMETERS

Define L(α, β) = lnVar(gα,β):

L = 2 lnB(α, β) + lnB(a+ 3− 2α, b+ 3− 2β)− lnB(a, b).

The partial derivatives are:

∂L

∂α
= 2 [ψ(α)− ψ(α+ β)]− 2 [ψ(a+ 3− 2α)− ψ(a+ b+ 6− 2α− 2β)] ,

∂L

∂β
= 2 [ψ(β)− ψ(α+ β)]− 2 [ψ(b+ 3− 2β)− ψ(a+ b+ 6− 2α− 2β)] ,

where ψ(x) = d
dx ln Γ(x) and Γ(x) is the gamma function. Setting ∂L/∂α = 0 and ∂L/∂β = 0:

ψ(α)− ψ(α+ β) = ψ(a+ 3− 2α)− ψ(a+ b+ 6− 2α− 2β).

ψ(β)− ψ(α+ β) = ψ(b+ 3− 2β)− ψ(a+ b+ 6− 2α− 2β).

Substituting α = 1 + a
3 and β = 1 + b

3 satisfies this identity through digamma function properties.

5. STRICT CONVEXITY

We compute the Hessian matrix H for L(α, β) at (α0, β0).

Let ψ1(x) =
d
dxψ(x) be the trigamma function. Let Xα = α0 = 1 + a/3 and Xβ = β0 = 1 + b/3.

Let Ssum = α0 + β0 = 2 + (a+ b)/3.

The arguments for the other digamma terms at the solution become: a− 2α0 + 3 = 1 + a/3 = Xα.
b− 2β0 + 3 = 1 + b/3 = Xβ . a+ b− 2α0 − 2β0 + 6 = (a+ b)/3 + 2 = Ssum.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The second partial derivatives are:

∂2L

∂α2
= 2ψ1(α)− 2ψ1(α+ β) + 4ψ1(a− 2α+ 3)− 4ψ1(a+ b− 2α− 2β + 6).

At (α0, β0): H11 = 2ψ1(Xα)− 2ψ1(Ssum) + 4ψ1(Xα)− 4ψ1(Ssum) = 6ψ1(Xα)− 6ψ1(Ssum).
By symmetry: H22 = 6ψ1(Xβ)− 6ψ1(Ssum). The mixed partial derivative:

∂2L

∂α∂β
= −2ψ1(α+ β)− (−2)ψ1(a+ b− 2α− 2β + 6)(−2)

= −2ψ1(α+ β)− 4ψ1(a+ b− 2α− 2β + 6).

At (α0, β0): H12 = −2ψ1(Ssum)− 4ψ1(Ssum) = −6ψ1(Ssum).

For a minimum, H must be positive definite.

1. H11 > 0: H11 = 6(ψ1(Xα) − ψ1(Ssum)) = 6(ψ1(1 + a/3) − ψ1(2 + (a + b)/3)). Since
a, b > 0, we have Xβ = 1 + b/3 > 0. Thus Xα = 1 + a/3 < 1 + a/3 + (1 + b/3) = Ssum. The
trigamma function ψ1(x) is strictly decreasing for x > 0. Since Xα < Ssum (and Xα, Ssum > 0),
ψ1(Xα) > ψ1(Ssum). Thus H11 > 0. Similarly H22 > 0.

2. det(H) = H11H22 −H2
12 > 0:

det(H)

=(6ψ1(Xα)− 6ψ1(Ssum))(6ψ1(Xβ)− 6ψ1(Ssum))− (−6ψ1(Ssum))2

=36[ψ1(Xα)ψ1(Xβ)− ψ1(Xα)ψ1(Ssum)− ψ1(Xβ)ψ1(Ssum) + ψ1(Ssum)2 − ψ1(Ssum)2]

=36[ψ1(Xα)ψ1(Xβ)− ψ1(Ssum)(ψ1(Xα) + ψ1(Xβ))].

For det(H) > 0, we need ψ1(Xα)ψ1(Xβ)−ψ1(Ssum)(ψ1(Xα) +ψ1(Xβ)) > 0. Since ψ1(x) > 0
for x > 0, we can divide by ψ1(Xα)ψ1(Xβ)ψ1(Ssum):

1

ψ1(Ssum)
−
(

1

ψ1(Xβ)
+

1

ψ1(Xα)

)
> 0 =⇒ 1

ψ1(Xα +Xβ)
>

1

ψ1(Xα)
+

1

ψ1(Xβ)
.

Let f(x) = 1/ψ1(x). The inequality is f(Xα + Xβ) > f(Xα) + f(Xβ). The function f(x) =
1/ψ1(x) is strictly convex on (0,∞).

As x → 0+, ψ1(x) → ∞, so f(x) = 1/ψ1(x) → 0. So we can define f(0) = 0. For a
strictly convex function f with f(0) = 0: For x, y > 0, f(x) = f(x

x+y (x + y) + y
x+y · 0) <

x
x+yf(x + y) + y

x+yf(0) = x
x+yf(x + y). Similarly, f(y) < y

x+yf(x + y). Summing these
gives f(x) + f(y) < f(x + y). The strict inequality holds because Xα = 1 + a/3 > 0 and
Xβ = 1 + b/3 > 0. Therefore, the Hessian matrix is positive definite at (α0, β0). Since the domain
for (α, β) (where variance is finite, and α, β > 0) is a convex set, this implies that (α0, β0) is a
unique minimum.

17

	Introduction
	Background
	Beta Distribution
	Policy Optimization

	Beta Normalization Policy Optimization
	Related Work
	Experiments
	Experimental Settings
	Results
	Training Stability
	Evolution of Normalization

	Conclusion
	Further elaboration
	Further Experiemtns
	Proof

