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Abstract001

Multimodal sarcasm detection aims to identify002
sarcasm from given text-image pairs, where003
subtle contradictions between modalities are004
key to identifying irony. This task is essential005
for understanding nuanced human communi-006
cations, especially in social media contexts.007
However, existing methods often overfit su-008
perficial textual patterns or fail to adequately009
model cross-modal incongruities, resulting in010
suboptimal performance. To address this, we011
propose the Generative Sarcasm Discrepancy012
Network (GSDNet), which more effectively013
exploits cross-modal conflicts. GSDNet fea-014
tures a specialized Generative Discrepancy015
Representation Module (GDRM), which syn-016
thesizes image-aligned text using a large lan-017
guage model and quantifies both semantic and018
sentiment discrepancies by comparing the gen-019
erated text with the original input. These dis-020
crepancies are then integrated with text and021
image representations via a gated fusion mech-022
anism, enabling adaptive balancing of modal-023
ity contributions and mitigating modality dom-024
inance and spurious correlations. Extensive025
experiments on two benchmarks demonstrate026
that GSDNet outperforms state-of-the-art mod-027
els, achieving superior accuracy and robust-028
ness. These results highlight the effectiveness029
of discrepancy-based features and gated multi-030
modal fusion in enhancing sarcasm detection.031

1 Introduction032

Sarcasm is a linguistic phenomenon in which the lit-033

eral meaning of an utterance diverges significantly034

from its intended message. It is often employed to035

convey humor, criticism, or subtle social commen-036

tary and serves as a potent tool in human communi-037

cation. Accurately detecting sarcasm is crucial for038

NLP tasks, such as sentiment analysis and opinion039

mining (Pang and Lee, 2008; Riloff et al., 2013),040

as it enables systems better to interpret the true041

sentiment behind seemingly contradictory expres-042

sions. In multimodal scenarios, sarcasm becomes043

even more complex. Given a text-image pair, the 044

image may convey subtle visual cues that, when 045

combined with the text, produce a sarcastic effect 046

that goes beyond the literal meaning. Multimodal 047

Sarcasm Detection (MSD) aims to classify whether 048

a text-image pair indicates sarcasm. 049

With the rapid expansion of multimodal content 050

on social media, MSD has emerged as a critical 051

research area (Cai et al., 2019; Xu et al., 2020; 052

Pan et al., 2020; Liang et al., 2021; Pramanick 053

et al., 2022), which requires analyzing the inter- 054

actions and contradictions between textual and vi- 055

sual cues. Recent approaches explore the relations 056

among sarcasm cues from various perspectives, in- 057

cluding attention mechanisms(Wang et al., 2020), 058

graph-based modeling(Liang et al., 2022), exter- 059

nal knowledge integration(Liu et al., 2022), and 060

dynamic routing(Tian et al., 2023). These methods 061

typically leveraged powerful language models like 062

BERT (Devlin et al., 2019a) and RoBERTa (Liu 063

et al., 2019) as backbones, constructing complex 064

structured networks to model interactions across 065

modalities. However, they often overfit domain- 066

specific cues or rely heavily on superficial textual 067

signals, limiting their ability to effectively capture 068

the nuanced semantic and emotional incongruities 069

characteristic of sarcasm. 070

The emergence of Large Language Mod- 071

els (LLMs) (Ouyang et al., 2022) and their mul- 072

timodal LLMs (Zhu et al., 2023; Chen et al., 2023; 073

Liu et al., 2023) have revolutionized natural lan- 074

guage processing by providing unprecedented gen- 075

erative capabilities. Recent studies (Chen et al., 076

2024) have utilized these models to generate sup- 077

plemented information to improve the general- 078

ization and interpretability of multimodal inputs. 079

However, directly using LLMs to generate expla- 080

nations for entire multimodal samples often leads 081

to inconsistencies between the generated sarcastic 082

interpretations and the actual sentiment or intent 083

of the sample. These inconsistencies stem from 084
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the inherent complexity and variability of sarcasm,085

which involves subtle contradictions, contextual086

nuances, and implicit meanings that are challeng-087

ing for LLMs to fully grasp. For instance, when088

prompted to explain why an image is sarcastic,089

LLMs may produce a wide range of interpretations090

due to the ambiguous nature of sarcasm. Under091

such circumstances, we hold that focusing solely092

on the image’s core content leads to more consis-093

tent and accurate outputs by avoiding speculative094

reasoning about sarcasm.095

Building on these insights, we propose a096

novel approach, Generative Sarcasm Discrepancy097

Network (GSDNet), which leverages the generative098

capabilities of LLMs to facilitate the analysis of099

textual and visual cues. Specifically, a Generative100

Discrepancy Representation Module (GDRM) is101

introduced to generate factual descriptions and con-102

textual explanations by feeding only the image into103

the LLM. In this manner, we ensure that the gen-104

erated text faithfully represents the visual content,105

while remaining unaffected by the original sarcas-106

tic text. We then quantify semantic and sentiment107

discrepancies by comparing the generated image108

descriptions with the original text, applying a text-109

image fidelity constraint to capture cross-modal110

incongruities. These discrepancies provide valu-111

able features for sarcasm detection. Experimental112

results demonstrate that our approach avoids in-113

consistencies between LLMs-generated sarcastic114

interpretations and the actual intent of the sample115

by focusing on trustworthy image-aligned text. Our116

contributions are summarized as follows:117

• We propose a novel GSDNet, the first118

framework for multimodal sarcasm detection119

that leverages trustworthy data generated by120

LLMs, effectively avoiding the biases and in-121

consistencies often introduced by complex122

samples and ensuring the reliability of the gen-123

erated data.124

• We introduce the GDRM to quantify125

semantic-sentiment gaps between generated126

visual descriptions and the original text, fa-127

cilitating effective multimodal fusion for im-128

proved classification.129

• Extensive experiments on two benchmark130

datasets show that GSDNet achieves state-of-131

the-art performance, significantly improving132

detection accuracy and generalization across133

various domains.134

2 Related Work 135

2.1 Multimodal Sarcasm Detection 136

Sarcasm detection has traditionally focused on ana- 137

lyzing text to identify the contrast between literal 138

and intended meanings (Tay et al., 2018; Babane- 139

jad et al., 2020). With the rise of social media, 140

researchers began incorporating visual information 141

to capture richer contextual cues. For example, 142

Schifanella et al. (2016) first explored multimodal 143

sarcasm detection by simply concatenating textual 144

and visual embeddings, and Cai et al. (2019) later 145

advanced the field by proposing a hierarchical fu- 146

sion network and releasing the MMSD dataset. 147

Building on these early efforts, subsequent stud- 148

ies have improved multimodal sarcasm detection 149

by better modeling the interplay between text and 150

image. Approaches such as decomposition and re- 151

lation networks (Xu et al., 2020), enhanced BERT- 152

based methods with refined attention mechanisms 153

(Pan et al., 2020; Wang et al., 2020), as well as 154

graph neural networks (Liang et al., 2022) and op- 155

timal transport techniques (Pramanick et al., 2022) 156

have been proposed to capture cross-modal features 157

more effectively. Further enhancements include 158

frameworks that incorporate external knowledge 159

(Liu et al., 2022) and dynamic routing (Tian et al., 160

2023), while Qin et al. (2023) revealed that many 161

existing models overly depend on superficial tex- 162

tual cues, prompting the development of refined 163

benchmarks like MMSD2.0 and models based on 164

vision-language pre-training such as CLIP (Rad- 165

ford et al., 2021). In summary, recent advances 166

in multimodal sarcasm detection have focused on 167

more effective integration of text and image fea- 168

tures, addressing challenges like cross-modal align- 169

ment and external knowledge incorporation. Our 170

approach further improves multimodal fusion by 171

leveraging novel representation learning techniques 172

to better capture the interplay between textual and 173

visual cues, offering a more robust solution for 174

sarcasm detection. 175

2.2 Multimodal Large Language Models 176

Multimodal large language models(MLLMs) have 177

revolutionized natural language processing with un- 178

precedented abilities in understanding and generat- 179

ing complex text (Brown et al., 2020; Ouyang et al., 180

2022). Their extension to multimodal data has 181

further expanded application possibilities. Early 182

works such as Frozen (Tsimpoukelli et al., 2021) 183

and BLIP (Li et al., 2022) laid the groundwork by 184
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integrating visual encoders with language models,185

while subsequent approaches like BLIP2 (Li et al.,186

2023), MiniGPT4 (Zhu et al., 2023; Chen et al.,187

2023), LLaVA (Liu et al., 2023), and Qwen-VL188

(Bai et al., 2023) refined the alignment between189

visual and textual representations using adapter190

modules and efficient transformers.191

Recently, an increasing number of studies have192

explored the use of MLLMs to enhance sarcasm193

detection. By leveraging the powerful generative194

capabilities of MLLMs in combination with visual195

inputs, these approaches offer more comprehen-196

sive representations that better capture the subtlety197

of sarcasm. CofiPara (Chen et al., 2024) lever-198

aged MLLMs in a coarse-to-fine framework by199

generating rationales to guide sarcasm classifica-200

tion, thereby reducing noise and enhancing inter-201

pretability. Similarly, Jang and Frassinelli (2024)202

utilized MLLM-supported training on third-party203

labeled data to enhance model generalization in sar-204

casm detection. Tang et al. (2024) integrated visual205

instruction tuning with demonstration retrieval to206

construct instruction templates that boost out-of-207

domain performance.208

Our approach exploits the generative and data209

augmentation capabilities of MLLMs to enrich mul-210

timodal representations and provide robust cues for211

sarcasm detection while mitigating the uncertainty212

often associated with LLM-generated outputs by213

leveraging trustworthy data.214

3 Methodology215

3.1 Problem Formulation216

The task of multimodal sarcasm detection involves217

determining whether a given image-text pair (I, T )218

conveys sarcasm. This task can be formally defined219

as learning a classification function f that maps220

the image-text pair to a binary output y ∈ {0, 1},221

where y = 1 indicates sarcasm. The primary chal-222

lenge lies in capturing cross-modal incongruities,223

which refer to the subtle mismatches between the224

literal meaning of text and the contextual cues pro-225

vided by the visual modality.226

3.2 Model Framework227

Traditional multimodal sarcasm detection meth-228

ods often fuse image-text features directly, which229

risks overfitting to superficial textual patterns and230

overlooking nuanced cross-modal mismatches (Qin231

et al., 2023). To address this, we propose GSDNet,232

which introduces a generative discrepancy mech-233

anism to enhance robustness. Instead of solely 234

depending on direct feature fusion, GSDNet lever- 235

ages LLMs to generate synthetic text t̂i, condi- 236

tioned solely on the image vi. By comparing this 237

generated text with the original text ti, the model 238

can capture both semantic and emotional discrep- 239

ancies, which serve as additional robust features 240

for sarcasm classification. 241

The architecture of GSDNet is composed of 242

three main components: 1) Cross-modal Feature 243

Alignment , which involves extracting representa- 244

tions from both the image and text; 2) Generative 245

Discrepancy Representation Module, which gen- 246

erates synthetic image description based solely on 247

the image and computes the discrepancy between 248

the generated text and the original text. 3) Multi- 249

modal Fusion & Classification fuses the extracted 250

features, including those from the generative dis- 251

crepancies, using gated networks, and classifies 252

sarcasm based on these multimodal inputs. 253

By explicitly contrasting LLM-generated ratio- 254

nales with the original text, GSDNet reduces re- 255

liance on spurious textual correlations and strength- 256

ens contextual sarcasm reasoning. Subsequent sec- 257

tions detail each component. 258

3.3 Cross-modal Feature Alignment 259

Given a sample pair (Ii, Ti) from the dataset, where 260

vi represents the input image and ti denotes the 261

corresponding text, we utilize modality-specific 262

encoders to extract high-dimensional embeddings. 263

Specifically, the image encoder Ev(·) and the text 264

encoder Et(·) produce the following embeddings: 265

hvi = Ev(vi), hti = Et(ti), (1) 266

where hvi ∈ Rdv and hti ∈ Rdt are the visual and 267

textual feature representations, capturing the se- 268

mantic and contextual information of the corre- 269

sponding modalities. 270

To facilitate effective cross-modal alignment, we 271

project the embeddings into a common latent space 272

using learnable projection layers: 273

zvi = Wvh
v
i + bv, zti = Wth

t
i + bt, (2) 274

where Wv and Wt are the projection matrices, and 275

bv and bt are the bias terms for the image and text 276

modalities, respectively. The projected embeddings 277

zvi and zti share the same dimensionality dz , pro- 278

moting compatibility in the joint embedding space. 279

We adopt contrastive learning to align the pro- 280

jected features across modalities. Specifically, the 281
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Figure 1: The Architecture of GSDNet. In the Gated Multimodel Fusion&Classifiction module, the four circles in
different colors represent discrepancy features, text features, image features, and fused features, respectively.

cosine similarity between the paired embeddings is282

calculated as:283

sij =
zvi · ztj

∥zvi ∥∥ztj∥
, (3)284

where sij denotes the similarity score between285

the i-th image and the j-th text. Positive pairs286

(i.e., matched image-text pairs) are encouraged to287

have higher similarity scores, while negative pairs288

(i.e., mismatched pairs) are pushed apart. The con-289

trastive loss is defined as:290

Lcont =
B∑
i=1

max (0, sij ̸=i − sii +m) . (4)291

This objective enforces alignment between semanti-292

cally correlated visual and textual features, thereby293

enhancing cross-modal consistency and facilitating294

effective multimodal fusion in subsequent layers.295

3.4 Generative Discrepancy Representation296

Module297

The Generative Discrepancy Representation Mod-298

ule (GDRM) is designed to capture the implicit299

conflicts between the original text T and the im-300

age I by generating an unbiased textual descrip-301

tion T̂ using a LLM such as LLaVA-1.5(Liu et al.,302

2023). To maintain neutrality and avoid introduc-303

ing sarcasm-related biases, the input to the LLM is304

strictly limited to the image content, excluding any305

multimodal sarcasm-labeled data. This ensures that306

T̂ accurately reflects the visual semantics without307

being influenced by contextual sarcasm cues.308

3.4.1 LLM-Based Text Generation 309

Given an input image I , the LLM generates a cor- 310

responding textual description T̂ as follows: 311

T̂ = LLM(I), (5) 312

where T̂ is the generated text that aims to faith- 313

fully describe the visual content of the image. By 314

avoiding the use of multimodal sarcasm-labeled 315

data, this design ensures that T̂ provides an unbi- 316

ased and contextually neutral representation of the 317

image content. 318

3.4.2 Discrepancy Computation 319

To quantify the inconsistency between the gener- 320

ated description T̂ and the original text T , we com- 321

pute three types of discrepancies: semantic discrep- 322

ancy, emotional discrepancy, and visual-textual fi- 323

delity. These discrepancies collectively capture the 324

underlying conflicts that may indicate sarcasm. 325

Semantic Discrepancy measures the divergence 326

in meaning between the original text and the gen- 327

erated description. We use CLIP’s text encoder to 328

obtain the embeddings of both texts and calculate 329

the cosine dissimilarity: 330

dsem = 1− cos
(
zT , zT̂

)
, (6) 331

where zT = CLIPtext(T ) and zT̂ = CLIPtext(T̂ ) 332

are the text embeddings of T and T̂ , respectively. 333

A higher value of dsem indicates a greater semantic 334

divergence. 335
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Sentiment Discrepancy captures shifts in sen-336

timent between the original text and the generated337

description. Using a RoBERTa-based sentiment338

classifier(Ott et al., 2019), we obtain the sentiment339

probability distributions pT and pT̂ . The sentiment340

discrepancy is then calculated as:341

dsen =
∥∥pT − pT̂

∥∥
1
, (7)342

where pT and pT̂ are the sentiment distributions,343

representing the emotional intensities quantified by344

the sentiment analysis model. This metric effec-345

tively captures sentiment discrepancies, which are346

indicative of potential sarcasm.347

Visual-Textual Fidelity evaluates the alignment348

between the LLM generated text and the corre-349

sponding image. We compute the cosine similarity350

between the image embedding and the generated351

text embedding:352

dv = cos
(
zI , zT̂

)
, (8)353

where zI = CLIPimage(I) is the image embedding.354

A lower value of dv suggests that the generated355

text deviates from the visual content, indicating356

potential contextual conflicts.357

3.4.3 Discrepancy Feature Representation358

The computed discrepancies are concatenated to359

form the discrepancy feature vector:360

D = [ds, de, dv]. (9)361

This vector is then projected through a multilayer362

perceptron (MLP) to obtain the final discrepancy363

representation:364

FD = MLP(D) ∈ Rdf , (10)365

where df is the dimensionality of the final fea-366

ture vector. These discrepancy features are sub-367

sequently integrated into the sarcasm classification368

module, enriching the model’s ability to detect nu-369

anced incongruities.370

3.5 Gated Multimodal Fusion & Classification371

To optimally utilize textual, visual, and372

discrepancy-based features, we adapt the373

gated fusion mechanism. The mechanism assigns374

learnable importance weights to each modality,375

allowing the model to adaptively focus on the most376

informative features. Given feature vectors from377

the text FT , image FI , and discrepancy features378

FD, we compute modality-specific weights using379

the following gating functions:380

gT = σ(WTFT ),

gI = σ(WIFI),

gD = σ(WDFD),

(11) 381

where WT , WI , and WD are trainable parameters 382

and σ denotes the sigmoid activation function. The 383

final fused representation is then computed as: 384

Ffused = gT ⊙ FT + gI ⊙ FI + gD ⊙ FD. (12) 385

⊙ denotes element-wise multiplication, which ap- 386

plies the weight to each corresponding element of 387

the feature vector. 388

To classify sarcasm, we utilize four independent 389

classifiers for each modality-specific feature vector, 390

including the fused representation. These logits 391

are then concatenated to form a combined repre- 392

sentation Logitsall. Subsequently, the concatenated 393

logits are passed through an MLP to produce the 394

final prediction: 395

Pfinal = MLP(Logitsall). (13) 396

This hierarchical classification structure allows 397

the model to effectively integrate information from 398

all modalities while maintaining the interpretability 399

of each individual feature vector’s contribution. 400

3.6 Optimization Objective 401

The training process for GSDNet is designed to 402

optimize sarcasm classification while ensuring ef- 403

fective multimodal representation learning. The 404

overall objective consists of two main components: 405

classification loss and contrastive loss. These loss 406

functions work synergistically to direct the model’s 407

ability to effectively leverage both multimodal fea- 408

tures and generative discrepancies, thereby enhanc- 409

ing the accuracy of sarcasm detection. 410

Sarcasm Classification Loss. Sarcasm detection 411

is formulated as a binary classification problem, 412

and we use cross-entropy loss to measure the dif- 413

ference between the predicted probability Pfinal and 414

the ground truth label y. Given a batch of N train- 415

ing samples, the classification loss is computed as: 416

LCE = − 1

N

N∑
i=1

yi logPfinal,i. (14) 417

The loss encourages the model to learn optimal 418

feature representations for sarcasm detection by 419

assigning high confidence to correct predictions 420

and penalizing incorrect classifications. 421
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Contrastive Loss for Multimodal Alignment.422

To further enhance multimodal alignment, con-423

trastive learning is employed to align the projected424

image and text embeddings in a shared latent space.425

The contrastive loss encourages this alignment with426

a margin m = 0.2. For each training batch, the con-427

trastive loss Lcont is computed as shown in equation428

(4), which encourages the model to push the neg-429

ative pairs further apart and pull the positive pairs430

closer in the shared latent space.431

Final Objective Function. The final optimiza-432

tion objective combines the classification and con-433

trastive losses, with the contrastive loss weighted434

by a hyperparameter α:435

L = LCE + αLcont. (15)436

Here, α = 0.1 controls the trade-off between clas-437

sification accuracy and multimodal alignment. By438

adjusting α, the model can prioritize one aspect439

over the other, ensuring that the final model incor-440

porates both discrepancy-based features and multi-441

modal fusion for optimal sarcasm detection.442

4 Experiments443

4.1 Experimental Setup444

4.1.1 Datasets445

We evaluate our approach on two widely-used446

datasets. MMSD (Cai et al., 2019) consists of447

image-text pairs collected from Twitter, which are448

randomly divided into training, validation, and test449

sets in the ratio of 80%, 10%, and 10%, respec-450

tively, serving as the primary benchmark for mul-451

timodal sarcasm detection. MMSD2.0 (Qin et al.,452

2023) is built upon MMSD and involves the re-453

moval of spurious cues and re-annotation of un-454

reasonable samples, providing a more refined and455

reliable version for evaluation.456

The details of two benchmarks, implementation457

details of the experiments, and evaluation metrics458

are reported in Appendix A.1, A.2, and A.3.459

4.1.2 Baselines460

To validate the effectiveness of our approach, we461

compare it with state-of-the-art baselines across462

three categories.463

Text-modality methods include: 1) TextCNN464

(Kim, 2014), a convolutional neural network-based465

text classification model; 2) BiLSTM (Zhou et al.,466

2016), a bidirectional long short-term memory net-467

work for text classification; 3) SMSD (Xiong et al.,468

2019), a self-matching network utilizing low-rank 469

bilinear pooling for sarcasm detection; 4) BERT 470

(Devlin et al., 2019b) is a bidirectional transformer 471

model pre-trained for language understanding. 472

Image-modality methods include: 1) ResNet 473

(He et al., 2016), which utilizes image embeddings 474

from the pooling layer for sarcasm classification; 475

2) ViT (Dosovitskiy et al., 2020), a vision trans- 476

former model pre-trained for visual representation 477

learning. 478

Multi-modality methods include: 1) HFM (Cai 479

et al., 2019), a hierarchical network that fuses mul- 480

timodal features; 2) Att-BERT (Pan et al., 2020), 481

which employs self-attention and co-attention 482

mechanisms to capture intra- and inter-modality 483

incongruity; 3) InCrossMGs (Liang et al., 2021), 484

which captures sarcastic relations through in-modal 485

and cross-modal graphs; 4) HKE (Liu et al., 2022), 486

which incorporates external knowledge, such as 487

image captions, using a hierarchical graph-based 488

framework; 5) Multi-view CLIP (Qin et al., 2023) 489

leverages CLIP’s image-text interaction capabili- 490

ties to fuse modality features; 6) LLaVA-1.5-7B 491

(Liu et al., 2023) leverages a vision-language model 492

with enhanced reasoning abilities for multimodal 493

sarcasm detection; 7) DGLF (Zhu et al., 2024), a 494

dual graph-based learning framework, uses a hy- 495

pergraph for high-order relation modeling and a 496

vanilla graph for high-frequency message propa- 497

gation; 8) MOBA (Xie et al., 2024), a mixture 498

of bi-directional adapters, dynamically integrates 499

text and image features for sarcasm detection; 9) 500

CofiPara-MSD (Chen et al., 2024) adopts a coarse- 501

to-fine paradigm, leveraging LMMs for sarcasm 502

reasoning and fine-tuning on target identification. 503

4.2 Main Results 504

As detailed in Table 1, our experiments reveal three 505

critical insights about sarcasm detection through 506

comprehensive benchmark comparisons. 507

The MMSD shows a significant modality dis- 508

crepancy, as evidenced by comparative bench- 509

marks: text-only method BERT achieves an ac- 510

curacy of 83.60%, while image-only approaches 511

such as ViT lag behind at 67.83%, confirming the 512

inherent textual bias identified by Qin et al. (2023). 513

The disparities across these four metrics highlight 514

MMSD’s inherent limitation in supporting cross- 515

modal learning. In contrast, on the MMSD2.0 516

benchmark, the performance gap closes, with text- 517

based and image-based methods achieving bal- 518

anced results across all metrics. 519
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Model MMSD MMSD2.0
Acc.(%) P(%) R(%) F1(%) Acc.(%) P(%) R(%) F1(%)

Text-Only Methods
TextCNN (Kim, 2014) 80.03 74.29 76.39 75.32 71.61 64.62 75.22 69.52
BiLSTM (Zhou et al., 2016) 81.90 76.66 78.42 77.53 72.48 68.02 68.08 68.05
SMSD (Xiong et al., 2019) 80.90 76.46 75.18 75.82 73.56 68.45 71.55 69.97
BERT (Devlin et al., 2019b) 83.60 78.50 82.51 80.45 76.52 74.48 73.09 73.78

Image-Only Methods
ResNet (He et al., 2016) 64.76 54.41 70.80 61.53 65.50 61.17 54.39 57.58
ViT (Dosovitskiy et al., 2020) 67.83 57.93 70.07 63.40 72.02 65.26 74.83 69.72

Multi-Modal Methods
HFM (Cai et al., 2019) 83.44 76.57 84.15 80.18 70.57 64.84 69.05 66.88
Att-BERT (Pan et al., 2020) 86.05 80.87 85.08 82.92 80.03 76.28 77.82 77.04
InCrossMGs (Liang et al., 2021) 86.10 81.38 84.36 82.84 79.83 75.82 78.01 76.90
HKE (Liu et al., 2022) 87.36 81.84 86.48 84.09 76.50 73.48 71.07 72.25
Multi-view CLIP (Qin et al., 2023) 88.22 82.03 88.13 84.97 85.14 80.33 88.24 84.09
LLaVA-1.5-7B (Liu et al., 2023) - - - - 85.18 85.89 85.20 85.11
DGLF (Zhu et al., 2024) 89.01 84.96 89.10 86.98 81.52 77.98 79.23 78.60
MoBA (Xie et al., 2024) 88.07 82.13 87.85 84.55 85.01 80.46 87.67 83.64
CofiPara-MSD (Chen et al., 2024) 88.46 83.46 88.26 85.79 85.66 85.79 85.43 85.61

GSDNet (Ours) 89.17 84.28 89.67 86.89 87.38 83.39 89.51 86.34

Table 1: Performance Comparison of Multimodal Sarcasm Detection Models. Baselines are divided into three
categories, and the best value for each metric is highlighted in bold.

Our GSDNet achieves an accuracy of 87.38%,520

a recall of 89.51%, and an F1 of 86.34% on521

MMSD2.0, surpassing previous state-of-the-art522

methods including CofiPara-MSD and caption-523

enhanced LLaVA. Such superiority of GSDNet524

can stem from its fundamentally different model-525

ing philosophy. Unlike CofiPara-MSD which feeds526

both text and image to LLMs for rationale gener-527

ation, our method isolates image description gen-528

eration to prevent textual bias propagation. This529

approach produces neutral visual observations that530

starkly contrast with sarcastic texts, enabling pre-531

cise measurement of semantic contradictions and532

emotional mismatches. For instance, when pro-533

cessing an image of rusted pipes paired with text534

praising water quality, our model generates factual535

descriptions like "corroded plumbing components"536

to highlight incongruities, attaining higher preci-537

sion than Multi-view CLIP in ambiguous cases.538

The cross-modal analysis uncovers dataset539

limitations that hinder effective feature learning.540

Our method achieves state-of-the-art accuracy on541

both MMSD and MMSD2.0 datasets, demonstrat-542

ing its capability to handle real-world scenarios543

with inherent modality imbalances. GSDNet ad-544

dresses this through adaptive gated fusion and the 545

robustness confirms that explicit cross-modal di- 546

vergence modeling effectively mitigates modality 547

dominance issues. 548

4.3 Ablation Study 549

We conduct systematic ablation experiments to 550

evaluate the contribution of the Generative Dis- 551

crepancy Representation Module (GDRM) through 552

three configurations: the full model, removal of 553

the entire GDRM module (w/o GDRM), and in- 554

dividual ablation of semantic/sentiment discrep- 555

ancy pathways (w/o SemD and w/o SenD). Table 2 556

demonstrates that the complete GDRM architec- 557

ture achieves optimal performance with 87.38% 558

accuracy and 86.34% F1 score on MMSD2.0. 559

The removal of GDRM causes the most se- 560

vere performance degradation, decreasing accuracy 561

from 87.38% to 84.42% and F1 score from 86.34% 562

to 82.19%. This substantial drop demonstrates the 563

fundamental importance of cross-modal discrep- 564

ancy modeling for sarcasm recognition. The preci- 565

sion suffers the largest reduction from 83.39% to 566

78.56%, indicating that GDRM effectively filters 567

false positive predictions by detecting contradic- 568
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Configuration Acc (%) P (%) R (%) F1 (%)

Full Model 87.38 83.39 89.51 86.34
w/o GDRM 84.42 78.56 86.17 82.19
w/o SemD 86.23 80.27 87.09 83.54
w/o SenD 85.98 81.74 87.63 84.58

Table 2: Ablation study comparing different model vari-
ants on the MMSD2.0 dataset.

i love the care & attention the bin men 
show whilst emptying our refuse!

The image shows a brown container lying 
on its side with trash scattered around, 
suggesting carelessness or neglect.

TextImage

Image-Description

Figure 2: A case identified as sarcastic by our model.

tions between modalities.569

Partial ablations reveal asymmetric contributions570

of the two pathways. Disabling semantic discrep-571

ancy analysis significantly reduces F1 and recall,572

highlighting SemD’s importance in detecting lit-573

eral contradictions, such as incongruent image-text574

pairs with metaphorical expressions. In contrast,575

ablating the sentiment pathway primarily lowers576

precision, demonstrating SenD’s effectiveness in577

capturing subtle emotional polarity shifts, particu-578

larly in text-dominated sarcasm.579

The full model’s balanced precision-recall pro-580

file outperforms all ablated variants, indicating syn-581

ergistic interactions between the pathways. SemD582

establishes robust baseline detection by identify-583

ing explicit semantic contradictions, while SenD584

enhances performance by analyzing implicit emo-585

tional inconsistencies. This dual mechanism is es-586

pecially effective for ambiguous cases where literal587

meaning aligns but emotional dissonance persists.588

4.4 Case Study589

To demonstrate GSDNet’s effectiveness in detect-590

ing multimodal sarcasm, we analyze a representa-591

tive example from the MMSD2.0 test set. The text592

exaggerates appreciation for garbage collectors: “I593

love the care & attention the bin men show whilst594

emptying our refuse!”, The accompanying image in595

Figure 2 shows a tipped-over black container with596

scattered refuse, portraying disorder. While the text597

appears to praise the bin men’s care, the image con-598

tradicts this, creating a sarcastic contrast between 599

the positive language and the chaotic scene. 600

Our GSDNet uses GDRM to generate a descrip- 601

tion by processing only the image, rather than both 602

image and text. It contrasts with methods that com- 603

pare the modalities directly. As Figure 2 shows, 604

GSDNet reduces the risk of unstable or inconsistent 605

outputs that may arise from multimodal sarcasm 606

cues affecting the LLM. This ensures more reliable 607

image descriptions, forming a solid foundation for 608

cross-modal discrepancy analysis. 609

The Semantic Discrepancy pathway captures the 610

contrast between the text’s praise for “care” and the 611

disorder depicted in the image. A comparison be- 612

tween the generated description, “The image shows 613

a black container lying on its side with trash scat- 614

tered around, suggesting carelessness or neglect.” 615

and the original text reveals a fundamental contra- 616

diction, thereby exposing the underlying irony. The 617

Sentiment Discrepancy pathway further highlights 618

the emotional contrast. The text conveys a positive 619

sentiment, while the generated description implies 620

a negative or indifferent tone. This emotional clash 621

strengthens the sarcastic effect, reinforcing the dis- 622

crepancy between exaggerated praise and a scene 623

of neglect. This dual-pathway approach decodes 624

the layered irony, demonstrating the necessity of 625

generative discrepancy modeling for effective mul- 626

timodal sarcasm detection. 627

5 Conclusion 628

Multimodal sarcasm detection requires nuanced 629

modeling of cross-modal contradictions to decode 630

implicit irony.ti In this paper, we present GSD- 631

Net, a framework that leverages generave discrep- 632

ancy modeling to capture semantic and emotional 633

conflicts between synthetic image descriptions and 634

original text. Our experiments validate its superi- 635

ority and effectiveness in handling complex mul- 636

timodal sarcasm. By integrating gated fusion and 637

contrastive alignment, the framework reduces re- 638

liance on biased textual cues and improves gener- 639

alization. This work not only addresses key limita- 640

tions in current MSD methods but also opens av- 641

enues for leveraging generative models to enhance 642

multimodal understanding. While dependency on 643

LLMs for text generation introduces potential in- 644

stability, our approach provides a foundation for 645

future research on interpretable and culturally adap- 646

tive sarcasm detection systems. 647
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Limitations648

Our approach inherits intrinsic constraints from its649

foundational architecture, with the framework’s ef-650

ficacy contingent upon LLM’s ability to produce651

contextually aligned image descriptions. This de-652

pendency may compromise performance when an-653

alyzing abstract visuals (e.g., surreal artwork) or654

low-resolution imagery. Additionally, persistent655

challenges arise from cross-cultural divergences in656

sarcasm interpretation where discrepancies in sym-657

bolic visual metaphors intersect with the temporal658

evolution of linguistic irony, necessitating dynamic659

alignment between semantic parsing and pragmatic660

contexts. Collectively, these constraints underscore661

the imperative for multimodal evaluation protocols662

that integrate human expertise to strengthen con-663

textual adaptability across linguistic and cultural664

boundaries.665
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A Appendix899

A.1 Dataset Details900

Datasets Split Positive Negative Total Avg Len

MMSD
Training 8,642 11,174 19,816 15.71

Validation 959 1,451 2,410 15.72
Test 959 1,450 2,409 15.89

MMSD2.0
Training 9,576 10,240 19,816 13.42

Validation 1,042 1,368 2,410 13.64
Test 1,037 1,372 2,409 13.52

Table 3: Dataset structure and details

As shown in Table 3, two datasets, MMSD and901

MMSD2.0, are presented. For the MMSD dataset,902

the training set contains 19,816 samples, with 8,642903

positive and 11,174 negative ones. The validation904

and test sets each have 2,410 and 2,409 samples905

respectively. The average lengths of samples in906

these splits are around 15.7 - 15.9. For MMSD2.0,907

the training set also has 19,816 samples (9,576908

positive and 10,240 negative). The validation and909

test sets have 2,410 and 2,409 samples respectively,910

with average sample lengths of approximately 13.4911

- 13.6.912

A.2 Implementation Details 913

Our model is trained on four RTX 4090 GPUs using 914

the CLIP backbone, with text and image feature 915

dimensions setting to 512 and 768, respectively. 916

We employ LLaVA-Next-8B(Liu et al., 2024) as the 917

MLLM for text generation. Training is conducted 918

over 10 epochs with a batch size of 32, using the 919

Adam optimizer with learning rates of 5e-4 for all 920

modules except CLIP, which uses 1e-6. To enhance 921

generalization, weight decay is set to 0.05, and 922

gradient clipping is applied with a max grad norm 923

of 5.0, ensuring stable and efficient training. 924

A.3 Evaluation Metrics 925

We evaluate the model’s performance using four 926

key metrics: Accuracy (Acc.), Precision (P), Re- 927

call (R), and F1 Score (F1). Accuracy measures the 928

overall correctness of predictions. Precision quan- 929

tifies the proportion of correctly predicted sarcastic 930

instances among all instances predicted as sarcastic, 931

while Recall measures the proportion of correctly 932

predicted sarcastic instances among all actual sar- 933

castic instances. The F1 Score, derived as the har- 934

monic mean of Precision and Recall, provides a 935

balanced measure of the model’s performance. 936

A.4 LLM Prompt Template 937

The prompt is as follows: 938

“Please generate a text description of 939

the image I provide, focusing on the 940

main content within 77 words. Include 941

details about any people, main subjects, 942

environment, and any hidden emotions or 943

feelings that the image might convey. 944

Please notice that the generation should 945

be less than 77 tokens. Image:{T}.” 946

{T} is the corresponding image. 947
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