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ABSTRACT

Current preference learning methods achieve high accuracy on standard bench-
marks but exhibit significant performance degradation when objective quality sig-
nals are removed. We introduce WritingPreferenceBench, a dataset of 1,800
human-annotated preference pairs (1,200 English, 600 Chinese) across 8 creative
writing genres, where responses are matched for objective correctness, factual ac-
curacy, and length. On this benchmark, sequence-based reward models—the stan-
dard architecture for RLHF—achieve only 52.7% mean accuracy, while zero-shot
language model judges perform at 53.9%. In contrast, generative reward mod-
els that produce explicit reasoning chains achieve 81.8% accuracy. We observe
high within-model variance across genres: individual models range from 18.2% to
81.8% accuracy across different writing categories, with standard deviations aver-
aging 10.1%. This variance persists regardless of model scale, with 27B parameter
models showing no consistent improvement over 8B variants. Our results suggest
that current RLHF methods primarily learn to detect objective errors rather than
capture subjective quality preferences, and that successful preference modeling
may require intermediate reasoning representations rather than direct classifica-
tion. We release WritingPreferenceBench and human judge reuslts at https:
//anonymous.4open.science/r/Writing-Preference-Bench.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) has become the dominant paradigm for align-
ing language models with human values (Christiano et al., 2017; Ouyang et al., 2022; Bai et al.,
2022). Yet a troubling pattern emerges: models achieving 95% accuracy on RewardBench’s objec-
tive tasks (Lambert et al., 2024) collapse to 51.2% on subjective writing preference when grammat-
ical errors and factual mistakes are removed. This catastrophic degradation exposes a fundamental
misalignment—current preference learning optimizes for error detection, not quality recognition.

However, writing tasks constitute over 40% of language model interactions (OpenAI, 2025; An-
thropic, 2025b), spanning creative fiction, persuasive essays, and personal expression where sub-
jective quality matters more than objective correctness. Yet our evaluation infrastructure remains
anchored in verifiable metrics. RewardBench (Lambert et al., 2024) conflates safety with prefer-
ence; WritingBench mixes creative with functional tasks (Wu et al., 2025); LitBench uses Reddit
upvotes as quality proxies (Fein et al., 2025). Recent theoretical work warns of ”reward hacking”
where models exploit spurious correlations rather than learning genuine preferences (Pan et al.,
2022)—but empirical evidence of this phenomenon in creative domains remains scarce.

We introduce WRITINGPREFERENCEBENCH, a benchmark that isolates subjective preference
through systematic signal neutralization. Our dataset comprises 1,800 preference pairs (1,200 En-
glish, 600 Chinese) across 8 writing genres where both responses are grammatically correct, factu-
ally accurate, and length-matched. As Figure 1 shows, this controlled evaluation reveals catastrophic
failures: sequence classifiers achieve near-random 53.6% accuracy, while all models exhibit genre
instability ranging from 18% to 92%.

Our evaluation of 21 models uncovers systematic architectural failures. Sequence classifiers—the
backbone of production RLHF systems (Rafailov et al., 2023)—average 52.7% accuracy, statisti-
cally indistinguishable from random. Language models as judges (Zheng et al., 2023) fare no better
at 53.9%. Only generative reward models that produce explicit reasoning chains (Chen et al., 2025)
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• Grammer Error
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• Length Gaps
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Resonance
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Flair

1200 PairsEN 600 PairsZH

Best Reward Model acc: 73.3(zh),81.8(en)
Generative Reward Model

Best LLM Judge acc: 62.7(zh),68.7(en)
Gemini-2.5-pro,Doubao-1.5-pro SC-RM < GenRM

Cross-Cultural Subjective Writing preference benchmark

Isolation → Focus

Model Instability Across Genres

Figure 1: WritingPreferenceBench isolates subjective writing quality by neutralizing objective
confounds (grammar, factuality, length). Across 1,800 human-validated preference pairs, standard
sequence classifiers (SC-RM) perform near-randomly while generative reward models (GenRM)
achieve 30% higher accuracy—but both architectures exhibit catastrophic instability across genres,
exposing the brittleness of current preference learning.

show promise, with RM-R1-Qwen2.5-7B reaching 81.8%. This 30-point gap suggests that subjec-
tive preference requires intermediate representations—reasoning about quality rather than pattern
matching against it.

The implications extend beyond evaluation. High within-model variance (standard deviation av-
eraging 10.9% for sequence classifiers) reveals genre-specific overfitting: Skywork-Gemma-27B
achieves 81.8% on Poetry but 40.4% on Humor. Scale provides no consistent benefit—the 27B
model performs worse than 8B variants. Even reasoning-enhanced language models (Claude-4-
Opus-thinking, OpenAI-o3) show no advantage over standard architectures, suggesting the limita-
tion is representational rather than computational.

Contributions. We make three contributions to understanding preference learning:

• Benchmark: WritingPreferenceBench provides 1,800 validated preference pairs with sys-
tematic signal isolation, enabling reproducible evaluation of subjective preference across
languages and genres.

• Empirical findings: Comprehensive evaluation establishes that (i) sequence classifiers fail
systematically on subjective tasks, (ii) generative reward models with reasoning achieve
30% higher accuracy, and (iii) zero-shot LLM judges cannot reliably assess creative quality
despite instruction tuning.

• Architectural insights: Evidence that successful preference learning requires intermediate
reasoning representations, not just pattern matching, with implications for next-generation
RLHF systems.

2 WRITINGPREFERENCEBENCH

The fundamental challenge in evaluating subjective writing is not merely collecting human judg-
ments, but ensuring those judgments isolate genuine aesthetic and stylistic preference from objec-
tive quality signals. We present WritingPreferenceBench, a meticulously constructed benchmark
that addresses this challenge through 1,800 preference pairs spanning English and Chinese creative
writing. The construction process, illustrated in Figure 2, was guided by rigorous design princi-
ples and implemented through a human-in-the-loop pipeline designed to systematically eliminate
confounding variables.
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Figure 2: The data curation pipeline of WritingPreferenceBench. Our multi-stage process begins
with expert-crafted queries across 51 genres, generates diverse responses using 20 state-of-the-art
models, and culminates in rigorous human evaluation by trained annotators. Quality control mech-
anisms operate throughout to ensure preference pairs reflect genuine subjective quality distinctions
rather than objective differences.

2.1 BENCHMARK CONSTRUCTION PIPELINE

We implemented a multi-stage pipeline that translates our design principles into a concrete, repro-
ducible workflow. This process, depicted in Figure 2, first generates a diverse and culturally-rich set
of candidate responses and then applies a rigorous, human-led filtering protocol to isolate pairs that
represent genuine subjective preference.

Phase 1: Architecting Diverse and Culturally-Rich Queries. The benchmark’s foundation is
a taxonomy of 51 creative writing categories, developed by merging taxonomies from established
writing communities. To ensure both representational diversity and practical relevance, these cate-
gories range from classical literary traditions to contemporary forms like advertising copy. Query
development followed a dual-expertise workflow where two veteran creative writing instructors
drafted and aligned on creative blueprints for each category. A leading instruction-tuned LLM then
expanded these blueprints into full queries, which were validated by the experts for creative intent,
cultural neutrality, and evaluative granularity through 3–5 rounds of refinement.

Phase 2: Generating a Spectrum of Responses. To create a rich and varied corpus for curation, we
utilized a diverse suite of 20 state-of-the-art language models, including GPT-4.1, Claude-4, Gemini-
2.5-Pro, and Doubao-1.5-Pro. For each query, every model produced 5 outputs with temperature
sampling set to T = 0.8. This strategy ensured the generation of a wide spectrum of quality—from
formulaic to highly original—providing the necessary variance to identify the controlled preference
gaps central to our benchmark’s design.

Phase 3: Human-in-the-Loop Annotation and Quality Control. This phase is the cornerstone
of our methodology, operationalizing a focus on subjective quality through a rigorous, integrated
annotation and filtering protocol.

• Initial Triage: Filtering for Objective Correctness. Before subjective assessment, an au-
tomated screening process removed responses with objective deficiencies. This filter elim-
inated approximately 15% of the raw responses, discarding outputs with comprehension-
impeding grammatical errors, factual inconsistencies, or clear prompt violations. This cru-
cial step ensures our benchmark tests for subjective quality, not basic error detection.

3
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• Expert Evaluation with a Calibrated Rubric. We recruited 7 expert annotators with
demonstrated writing proficiency. After a calibration phase on 50 consensus-scored exam-
ples, annotators independently scored responses on a 4-point scale designed to distinguish
levels of creative quality:

– 3 (Creative): Demonstrates genuine creativity, stylistic flair, and deep engagement;
suitable for publication.

– 2 (Competent): Well-structured and complete, but predictable and lacking in origi-
nality.

– 1 (Formulaic): Technically correct but lacks creative engagement; follows a rigid
template.

– 0 (Elementary): Fundamentally flawed or off-topic.

The framework includes universal quality criteria and detailed genre-specific standards (see
Appendix C for complete guidelines).

• Statistical Validation and Final Pair Curation. A final preference pair was curated only
if it met three strict criteria for reliability and validity. A pair was accepted only if:

1. It had directional agreement from at least 2 of the 3 annotators.
2. It showed a minimum score gap of ∆ ≥ 1.
3. It passed a check for absence of confounding factors, such as significant length dis-

parities.

Finally, a separate team of bilingual experts performed a cross-cultural validation on a
sample of pairs to confirm that scoring standards were applied equivalently across both
languages.

Fiction Functional
Documents

Funny Promotional &
Communication

Non-Fiction Role-Playing Poetry Scriptwriting
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Figure 3: Distribution of preference pairs across a sample of the 8 writing macro-categories for
both English and Chinese in WritingPreferenceBench. The dataset maintains balanced coverage
across diverse writing genres, with deliberate oversampling of underrepresented categories to ensure
comprehensive evaluation of preference modeling capabilities.

2.2 DATASET STATISTICS

WritingPreferenceBench comprises 1,800 human-validated preference pairs (1,200 English, 600
Chinese) that establish a new standard for evaluating subjective writing preferences. Unlike existing
benchmarks that conflate objective correctness with aesthetic quality, our dataset isolates genuine
stylistic preference through careful statistical design.

Compositional Structure and Coverage.

Figure 3 reveals the deliberate architectural choices underlying our 51-category taxonomy. The
dataset’s statistical properties reflect three critical design decisions:

4
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(a) English dataset
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(b) Chinese dataset

Figure 4: Length distributions of chosen and rejected responses reveal the statistical signature of cre-
ative quality in WritingPreferenceBench. Distributions truncated at 6K for visualization; dashed
lines indicate means.

• Cross-lingual parity: While maintaining a 2:1 English-Chinese ratio due to annotator
availability, we ensure equivalent statistical power across languages with a minimum of 20
pairs per category in each language.

• Genre equilibrium: Each category contains 20-40 preference pairs (mean=35.3, std=7.2),
a distribution engineered to prevent the genre collapse observed in web-scraped datasets.

• Compositional diversity: The taxonomy spans 8 macro-categories with deliberate over-
sampling of traditionally underrepresented genres (e.g., poetry, scriptwriting) to stress-test
models’ preference modeling capabilities beyond dominant web text distributions.

Statistical Validation of Subjective Quality Gaps. Figure 4 and Table 3 reveal the empirical signa-
ture of subjective preference in our dataset. The length distributions expose a critical phenomenon:
chosen responses exhibit significantly higher variance (English: SD=1801.9 vs. 593.4; Chinese:
SD=1967.5 vs. 1311.0) and right-skewness compared to rejected responses. This asymmetry re-
flects a fundamental property of creative excellence—while mediocrity converges toward formulaic
patterns, creativity manifests across diverse scales. The score distributions validate our annotation
protocol’s effectiveness. The median scores (English: 3 vs. 2; Chinese: 3 vs. 1) align precisely with
our rubric’s creative-competent and creative-formulaic boundaries, demonstrating that our bench-
mark captures the most informative preference contrasts.

3 EXPERIMENTS

We evaluate 21 models on WritingPreferenceBench: 7 reward models and 14 language models
serving as zero-shot judges. This section describes our evaluation protocols and experimental setup.

3.1 EVALUATION PROTOCOLS

Protocol 1: Reward Model Scoring. For each preference pair (Rchosen, Rrejected), reward models
assign scalar scores. A prediction is correct if RM(Rchosen) > RM(Rrejected). We compute accuracy
as:

Accuracy =
1

N

N∑
i=1

I[RM(R
(i)
chosen) > RM(R

(i)
rejected)]

where N denotes total preference pairs and I[·] is the indicator function.

Protocol 2: Pairwise Preference Judgment. Language models receive both responses with in-
structions to select the preferred text based on creativity, style, and emotional resonance. We use
deterministic decoding (T = 0) and extract preferences from model outputs. This protocol tests
whether general-purpose models can perform zero-shot preference evaluation without specialized
training.

5
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3.2 MODELS

Reward Models. We evaluate 7 models spanning different architectures and scales:

• Sequence Classifiers: Nvidia/AceMath-7B-RM (Liu et al., 2024b), RM-Mistral-7B (Dong
et al., 2023), Skywork-Reward-Llama-3.1-8B (Liu et al., 2024a), Skywork-Reward-
Gemma-2-27B Liu et al. (2024a)

• Generative RMs: RM-R1-DeepSeek-Qwen-7B, RM-R1-DeepSeek-Qwen-14B, RM-R1-
Qwen2.5-7B (Chen et al., 2025; Team, 2024b; Guo et al., 2025)

Language Model Judges. We evaluate 14 models including reasoning-enhanced variants (Claude-
4-{Opus, Sonnet}-thinking (Anthropic, 2025a), Doubao-1.6-thinking (Seed et al., 2025), OpenAI-
o3-high (OpenAI, 2025)) and standard models (Gemini-2.5-{Flash, Pro} (Team, 2024a), DeepSeek-
R1 (Guo et al., 2025), ByteDance-Seed-1.6 (Team, 2025), Doubao-{1.5-Lite, 1.5-Pro, 1.6-
flash} (ByteDance Seed, 2025), Qwen-3-235B (Team, 2024b), OpenAI-o4-mini).

3.3 IMPLEMENTATION DETAILS

All experiments use the same prompt templates across models to ensure fair comparison. For re-
ward models, we use the default inference configuration from their respective repositories. For LLM
judges, we employ a standardized prompt format that presents both responses and requests a pref-
erence judgment with justification. We evaluate on the full WritingPreferenceBench dataset (1,200
English, 600 Chinese pairs) without subsampling.

4 RESULTS

4.1 REWARD MODEL PERFORMANCE

We evaluate seven reward models across WritingPreferenceBench. Following RewardBench (Lam-
bert et al., 2024), models divide into sequence classifiers (discriminative heads on language models)
and generative reward models. However, our results reveal that the RM-R1 series (Chen et al., 2025)
represents a distinct category—generative models that produce reasoning chains before preference
judgments, diverging from both traditional classifiers and DPO-based approaches evaluated in Re-
wardBench. Table 1 presents accuracy across eight writing genres in English and Chinese.

Generative architecture enables strong performance. Generative reward models achieve sub-
stantially higher accuracy than sequence classifiers. RM-R1-Qwen2.5-7B reaches 81.8% (EN)—the
highest performance across all models and 30 percentage points above the sequence classifier mean.
All three generative models exceed 50% accuracy, while three of four sequence classifiers fall below
random chance. This architectural advantage persists across languages: best generative performance
reaches 64.5% (ZH) versus 53.5% for sequence classifiers.

Scale improves stability, not just accuracy. Scaling from 7B to 14B in RM-R1-DeepSeek
yields distinct benefits: accuracy improves (50.3%→62.6% ZH), but more critically, variance drops
(9.8→5.5). This stability gain does not transfer to sequence classifiers—Skywork-Gemma-27B
shows no improvement over 8B variants despite 3.4× parameters. The 14B model’s low variance
(5.5) represents the most consistent performance across genres, suggesting scale enables robust pref-
erence representations in generative architectures.

Sequence classifiers exhibit catastrophic genre failure. All sequence classifiers demonstrate
extreme performance swings: Nvidia/AceMath-7B ranges from 18.2% to 61.5% (43.3 percentage
point gap), while Skywork-Gemma-27B varies from 21.7% to 81.8%. Mean within-model standard
deviation reaches 10.1% for discriminative models versus 9.2% for generative. These genre-specific
failures—often below 40% accuracy—indicate fundamental instability rather than minor variations.

Cross-lingual consistency reveals architectural robustness. Generative models maintain
more consistent cross-lingual performance than sequence classifiers. RM-R1-DeepSeek-Qwen-
14B achieves 62.6% (ZH) and 62.5% (EN), while sequence classifiers show larger gaps:

6
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Table 1: Reward model accuracy (%) on WritingPreferenceBench by architecture. Colors:
>70% , <50% . Best overall in bold.

Model Lang Func. Promo. Non-Fic. Fiction Funny Poetry Script Role Avg Std
Sequence Classifiers (Discriminative with scalar output)

Nvidia/AceMath-7B ZH 56.7 50.5 55.3 54.9 52.3 18.2 54.6 61.5 53.5 11.2
EN 48.0 53.9 59.6 33.9 55.1 36.0 21.7 51.7 46.8 12.4

RM-Mistral-7B ZH 60.8 46.7 63.8 55.9 54.1 54.5 72.7 46.1 55.6 9.1
EN 65.2 60.0 54.8 62.9 64.9 72.0 78.3 44.8 62.6 10.1

Skywork-Llama-3.1-8B ZH 56.7 43.8 61.7 52.2 50.5 63.6 54.6 38.5 52.0 8.2
EN 53.6 56.3 60.6 49.0 52.2 56.0 65.2 41.4 53.1 7.3

Skywork-Gemma-2-27B ZH 50.8 54.3 55.3 53.3 40.4 81.8 45.5 53.9 51.2 11.3
EN 49.0 53.9 59.6 33.9 55.1 36.0 21.7 51.7 46.8 12.4

Generative Reward Models (Reasoning before scoring)

RM-R1-DeepSeek-Qwen-7B ZH 50.8 45.7 57.5 56.5 45.0 27.3 36.4 46.2 50.3 9.8
EN 64.8 50.9 58.7 57.4 54.4 52.0 52.2 37.9 56.8 7.2

RM-R1-DeepSeek-Qwen-14B ZH 59.2 45.7 57.5 71.7 66.7 90.0 54.6 69.2 62.6 13.2
EN 71.3 61.5 63.5 58.6 59.0 64.0 52.2 65.5 62.5 5.5

RM-R1-Qwen2.5-7B ZH 69.1 56.1 78.7 86.4 67.9 81.8 72.7 84.6 73.3 10.9
EN 79.3 76.0 91.4 89.6 72.9 92.0 85.9 65.5 81.8 9.5

Nvidia/AceMath-7B scores 53.5% (ZH) versus 46.8% (EN). This consistency in generative mod-
els, particularly at larger scales, suggests that reasoning-based architectures learn more language-
agnostic preference representations.

4.2 LANGUAGE MODEL JUDGE PERFORMANCE

Table 2 presents the performance of 14 state-of-the-art language models serving as zero-shot prefer-
ence judges on WritingPreferenceBench, revealing systematic underperformance compared to spe-
cialized reward models.

LLM judges systematically underperform reward models. General-purpose language models
achieve mean accuracy of 53.9%, compared to 58.2% for reward models—a 4.3% degradation de-
spite orders of magnitude more parameters. The best LLM judge (Doubao-1.5-Pro: 68.7% EN)
remains 13.1% below the top generative reward model (RM-R1-Qwen2.5-7B: 81.8% EN). This gap
persists across all model families and scales, indicating that zero-shot preference evaluation cannot
match task-specific training.

Reasoning capabilities provide no systematic advantage. Models with explicit reasoning mech-
anisms show no consistent improvement over standard architectures. Claude-4-Opus-thinking
achieves 61.0% (EN) while non-reasoning Doubao-1.5-Pro reaches 68.7%. Similarly, OpenAI-
o3-high with advanced reasoning scores only 48.1%, performing worse than simpler models like
Gemini-2.5-Flash (57.5%). The correlation between reasoning capability and preference accuracy
is negligible (r=0.08, p¿0.5), suggesting that chain-of-thought processing does not inherently im-
prove subjective quality assessment.

Genre instability exceeds that of reward models. LLM judges exhibit extreme performance vari-
ance across genres, surpassing even sequence classifiers. Gemini-2.5-Pro ranges from 80.0% on
English Poetry to 34.8% on Scriptwriting—a 45.2% gap. OpenAI-o3-high shows similar instability:
72.0% on Poetry versus 21.7% on Scriptwriting. Mean within-model standard deviation reaches
11.4%, with 9 of 14 models showing standard deviations exceeding 10%. This variance pattern
suggests that LLMs rely on superficial genre markers rather than genuine quality assessment.

Cross-lingual performance reveals model-specific biases. LLM judges demonstrate inconsistent
cross-lingual patterns. Doubao models maintain relative consistency (1.5-Pro: 62.5% ZH, 68.7%
EN), while others show severe degradation: OpenAI-o3-high drops from 48.1% (EN) to 42.0%
(ZH). These disparities do not correlate with known multilingual capabilities, suggesting that pref-
erence evaluation activates different model behaviors across languages.

Implications for LLM-as-judge paradigm. The systematic underperformance of LLM judges
relative to specialized reward models challenges the widespread adoption of LLM-as-judge evalua-
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Table 2: Language model judge accuracy (%) on WritingPreferenceBench using pairwise prefer-
ence evaluation. Colors: >70% , <50% . Best overall in bold.

Model Lang Func. Promo. Non-Fic. Fiction Funny Poetry Script Role Avg Std

ByteDance-Seed-1.6 ZH 42.1 32.2 52.5 59.9 38.5 45.5 36.4 38.5 45.5 9.4
EN 54.6 54.2 49.2 41.1 47.3 68.0 17.4 41.4 48.3 13.4

Claude-4-Opus-thinking ZH 55.1 36.4 57.6 73.3 49.5 54.6 72.7 46.2 56.0 12.1
EN 65.7 64.3 64.1 60.1 54.2 64.0 43.5 51.7 61.0 7.3

Claude-4-Sonnet-thinking ZH 46.7 38.1 62.7 65.7 48.6 54.6 63.6 46.2 52.8 9.9
EN 62.4 58.6 58.7 53.9 50.3 50.0 31.8 48.2 55.7 9.3

DeepSeek-R1 ZH 46.7 41.5 61.0 61.6 48.6 45.5 63.6 46.2 52.0 8.8
EN 57.4 61.7 43.8 40.8 42.9 72.0 17.4 51.7 49.3 15.4

Doubao-1.5-Lite ZH 44.9 42.4 64.4 62.8 44.0 36.4 72.7 38.5 51.5 13.0
EN 62.8 63.9 42.2 50.5 45.4 52.0 47.8 48.3 53.7 8.1

Doubao-1.5-Pro ZH 54.2 47.5 72.9 79.7 54.1 54.6 63.6 69.2 62.5 10.8
EN 74.4 74.5 64.8 71.0 57.1 68.0 56.5 58.6 68.7 7.2

Doubao-1.6-flash ZH 39.3 30.5 55.9 60.5 38.5 54.6 63.6 38.5 45.8 11.9
EN 57.0 53.7 49.2 43.6 46.3 52.0 30.4 44.8 49.3 7.7

Doubao-1.6-thinking ZH 46.7 35.6 66.1 73.8 43.1 72.7 54.6 46.2 54.2 13.9
EN 64.1 66.5 60.9 57.9 48.8 72.0 30.4 41.4 58.9 12.8

Doubao-1.6-thinking-agent ZH 48.6 40.7 66.1 71.5 49.5 63.6 63.6 53.9 56.2 10.3
EN 64.9 61.7 61.7 55.5 47.3 68.0 39.1 48.3 57.6 9.6

Gemini-2.5-Flash ZH 47.7 34.8 61.0 68.0 45.0 63.6 63.6 38.5 52.2 12.1
EN 59.1 57.7 62.5 59.8 52.2 56.0 34.8 51.7 57.5 8.1

Gemini-2.5-Pro ZH 53.3 44.9 71.2 80.2 56.9 72.7 72.7 61.5 62.7 11.3
EN 70.3 66.5 68.0 65.7 58.5 80.0 34.8 72.4 65.7 12.6

OpenAI-o4-mini ZH 43.0 33.9 54.2 50.6 35.8 45.5 63.6 38.5 43.5 9.9
EN 58.3 58.6 60.9 55.5 53.2 68.0 30.4 55.2 56.6 10.0

OpenAI-o3-high ZH 36.5 28.0 52.5 50.6 40.4 63.6 54.6 38.5 42.0 11.1
EN 55.4 45.8 54.7 46.7 41.0 72.0 21.7 41.4 48.1 14.0

Qwen-3-235B ZH 45.8 39.0 59.3 62.2 42.2 54.6 63.6 53.9 50.5 9.2
EN 57.9 46.7 45.3 43.0 40.5 64.0 17.4 41.4 46.4 13.3

tion (Zheng et al., 2023). Mean accuracy of 53.9%—barely above random—indicates that zero-shot
prompting cannot elicit reliable preference judgments for subjective tasks. The failure of reasoning-
enhanced models further suggests that the limitation is not computational but representational: with-
out explicit preference training, even advanced LLMs default to surface-level heuristics rather than
genuine quality assessment.

5 DISCUSSION

Our findings reveal fundamental limitations in current preference learning paradigms when applied
to subjective domains and expose a critical gap between model capabilities and genuine human
aesthetic judgment.

A Performance Ceiling on Subjectivity. Even the best-performing models struggle to surpass a
modest accuracy threshold on purely subjective tasks. The top bilingual reward model achieves
only 62.5% accuracy, suggesting that current methods are more adept at identifying objective flaws
(which we filtered out) than they are at capturing nuanced stylistic and creative preferences. This
indicates a potential ceiling for architectures trained primarily on objective-centric data.

Explicit Reasoning is No Panacea. The systematic underperformance of advanced LLM judges
compared to simpler, specialized reward models is a striking result. It challenges the prevailing
assumption that enhanced reasoning capabilities, such as chain-of-thought, naturally lead to better
alignment with complex human values. Our results suggest the problem is not one of logic but of
representation; models lack the underlying framework to encode and weigh aesthetic qualities like
originality, emotional resonance, or stylistic flair.

Preference Functions are Brittle and Unstable. The most concerning discovery is the extreme
performance variance of individual models across genres. Swings of over 50 percentage points
between categories like Poetry and Scriptwriting reveal that models are not learning generalizable

8
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principles of ”good writing.” Instead, they appear to be memorizing brittle, genre-specific heuristics.
This instability has profound implications for RLHF, as optimizing against such a volatile reward
signal could introduce unpredictable and undesirable biases into model behavior, rewarding stylistic
mimicry over genuine quality.

No Evidence of Principled Cultural Understanding. Our cross-lingual analysis found no consis-
tent cultural or linguistic bias across all models. Instead, performance differences between English
and Chinese appear to be model-specific artifacts, likely stemming from imbalances in training
corpora. This suggests that current models do not possess a principled understanding of cultural
nuance but rather reflect the idiosyncratic cultural footprint of their training data. Achieving true
cross-cultural alignment will require more than simply adding multilingual data; it necessitates fun-
damentally new approaches that can model cultural context explicitly.

6 RELATED WORK

Preference Learning and Evaluation Benchmarks. Modern preference learning originated with
Christiano et al. (Christiano et al., 2017), scaled through InstructGPT (Ouyang et al., 2022) and
RLHF (Christiano et al., 2017). Subsequent benchmarks (Gao et al., 2023; Bai et al., 2022; Rafailov
et al., 2023; Chiang et al., 2024) and comprehensive evaluations like RewardBench (Lambert et al.,
2024), AlpacaEval (Li et al., 2023), and MT-Bench (Zheng et al., 2023) measure conversation,
reasoning, and instruction-following. However, these benchmarks conflate objective correctness
with subjective preference. RewardBench achieves 95% on safety but cannot evaluate aesthetic
judgment; MT-Bench measures factual accuracy, not creative quality. Our work reveals that models
excelling on these benchmarks fail catastrophically (52.7% accuracy) when objective signals are
neutralized.

Evaluating Creative and Subjective Writing. Creative writing evaluation faces inherent subjec-
tivity challenges (Chodorow et al., 2007; Burstein et al., 2003; Miltsakaki & Kukich, 2000; Li et al.,
2018; Tay et al., 2018). Early reference-based metrics (BLEU, ROUGE) fail for open-ended gen-
eration. Recent benchmarks make progress but retain critical limitations. LitBench (Fein et al.,
2025) uses Reddit upvotes—confounding preference with popularity and timing—and covers only
English. WritingBench (Wu et al., 2025) spans six domains but mixes subjective creative tasks with
objective functional ones (Academic & Engineering, Finance & Business). AlignBench (Liu et al.,
2023) evaluates Chinese LLM alignment but focuses on general capabilities rather than creative
preference. WritingPreferenceBench advances beyond these by: (1) systematically neutralizing ob-
jective confounds through human validation, (2) providing cross-lingual coverage with consistent
methodology, and (3) isolating purely subjective quality discrimination where prior benchmarks
conflate multiple signals.

7 CONCLUSION

We introduced WritingPreferenceBench, a benchmark isolating subjective writing preference
through systematic neutralization of objective quality signals. Our empirical evaluation demon-
strates that sequence-based reward models—the dominant RLHF architecture—achieve 52.7% ac-
curacy on subjective preference tasks. In contrast, generative reward models incorporating explicit
reasoning achieve 81.8% accuracy, suggesting that intermediate representations are necessary for
subjective quality assessment. All evaluated models exhibit high variance across genres (σ=10.1-
14.0%), with individual models ranging from 18.2% to 92% accuracy across categories, indicating
reliance on genre-specific heuristics rather than generalizable preference functions.

These results have theoretical and practical implications for preference learning. The 30 percent-
age point performance gap between architectures challenges the direct preference optimization
paradigm (Rafailov et al., 2023) and suggests that subjective domains require fundamentally dif-
ferent inductive biases than objective tasks. The failure of scale to improve performance (27B
models underperform 7B variants) and the inability of reasoning-enhanced LLMs to surpass task-
specific training indicate that current scaling laws may not apply to subjective preference modeling.
Future work should investigate hybrid architectures combining the computational efficiency of dis-
criminative models with the representational capacity of generative reasoning, and develop training
objectives that explicitly encourage genre-invariant preference learning.

9
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ETHICS STATEMENT

The authors of this work have read and commit to adhering to the ICLR Code of Ethics. This
research involves the collection of subjective data from human participants and the creation of a
public dataset, raising several ethical considerations that we have worked to address responsibly.

• Human Subjects: Our benchmark, WritingPreferenceBench, was constructed using judg-
ments from 7 expert human annotators. All participants were recruited based on demon-
strated professional expertise in creative writing. They were informed of the research goals,
provided informed consent prior to participation, and were compensated for their skilled
labor at a rate significantly exceeding the local minimum wage. All data collected was fully
anonymized to protect participant privacy.

• Data and Bias: The dataset captures subjective human preferences, which are inherently
influenced by cultural and individual backgrounds. To mitigate sampling bias, we recruited
annotators with expertise in both English and Chinese literary contexts and used a detailed,
calibrated scoring rubric to standardize evaluations (see Appendix C). However, we ac-
knowledge that the preferences captured by our small group of experts may not generalize
to all cultural or demographic groups. We encourage users of the benchmark to be mindful
of its scope and limitations.

• Potential Misuse: We intend for this benchmark to be used to diagnose weaknesses in
current preference learning models and spur research into more robust, nuanced architec-
tures. We caution against interpreting its results as a universal standard for ”good” writing
or using it to train models that enforce a single, homogenous creative style, which could
stifle creative diversity.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility and extensibility of our work, we have made all relevant artifacts
publicly available.

• Dataset: The complete WritingPreferenceBench dataset, containing all 1,800 human-
validated preference pairs with associated metadata, is available.

• Code: Our evaluation scripts used to generate the results for all reward models and LLM
judges (Tables 1 and 2) are included.

• Documentation: Detailed descriptions of our data curation pipeline, expert annotator
guidelines, and scoring rubrics are provided in Section 2 and Appendix C. The exact models
and prompts used in our experiments are detailed in Section 4.

All materials are accessible for review at the following anonymized URL: https://
anonymous.4open.science/r/Writing-Preference-Bench.
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A USE OF LARGE LANGUAGE MODELS

In accordance with ICLR 2026 policies, we disclose that a large language model was used during
the manuscript preparation process to polish and refine the text. The LLM assisted in improving
sentence fluency, enhancing clarity of expression, and standardizing language to align with aca-
demic writing conventions. All original academic arguments, experimental design, data analysis,
and logical structure were developed solely by the authors. The authors independently verified all
factual claims and technical content, and take full responsibility for the accuracy and validity of all
statements in this paper.

B FULL TAXONOMY OF WRITING CATEGORIES

The benchmark spans 51 distinct writing categories, which are grouped into the 8 high-level domains
shown below. This comprehensive taxonomy ensures a diverse and representative evaluation of
model capabilities across a wide spectrum of writing tasks.

Functional Documents
• Abstract for Academic Paper
• Experiment Report
• Meeting Minutes
• Resume / Cover Letter
• Thank You / Apology Letter
• Product Manual
• Proposal / Plan
• Interview Questions
• Open Letter
• Argumentative Essay
• Eulogy / Memorial Text

Promotional & Communication Documents
• Speech Transcript
• Advertisement Copy / Marketing Email
• Slogan / Tagline
• Social Media Content
• Blog Post
• Product Review
• Popular Science Article
• Tutorial / Guide
• Debate Script

Non-Fiction Writing
• Prose / Essay
• Biography
• Travelogue
• Book / Film / Music Review

Fiction
• Fantasy / Magic
• Science Fiction
• Suspense / Mystery
• Historical Story
• Fairy Tale / Fable
• Slice of Life Story
• Emotional / Romance Story

13
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• Wuxia
• Military Fiction
• Historical Fiction (Costume)
• Xuanhuan
• Xianxia
• Gaming Fiction
• Sports Fiction
• General Fiction / Story

Funny
• ACGN Funny Literature / Doujin (Fan Fiction)
• Fandom Funny Literature
• Esports / Gaming Funny Literature
• Hip-hop / Rap Culture Funny Literature
• Internet Slang Systems
• Anti-Mainstream Consumer Culture
• Cross-national / Cross-lingual Funny Literature
• Subculture Identity Expression
• Role-Playing (as a sub-genre)
• Funny Literature / Subculture

Poetry
• Poetry

Scriptwriting
• Play / Script

Role-Playing
• Role-Playing

C GENRE-SPECIFIC SCORING GUIDELINES

This appendix details the comprehensive framework provided to our expert annotators for evaluating
model responses. The process is designed to be rigorous and consistent, combining a general quality
rubric with a detailed hierarchy of universal and genre-specific standards.

C.1 GENERAL SCORING RUBRIC (4-POINT SCALE)

Each response was assigned a holistic quality score from 0 to 3. The rubric was anchored with
descriptive levels and analogies to everyday standards to ensure annotator calibration.

• Score 3: Creative / Professional The response is creative, stylistically fluent, and feels
natural. It is a complete, well-crafted article on par with professionally published work
(e.g., in a literary magazine). It is original, engaging, and often exceeds the prompt’s
expectations in a surprising way.

• Score 2: Competent / Predictable The response is good overall but lacks originality. The
structure is sound and the content addresses the prompt, but the narrative or arguments are
predictable. This level is analogous to a well-written but standard university-level essay or
a competent product manual.

• Score 1: Formulaic / Flawed The response exhibits significant issues. It may be written in
a language different from the one requested, or it follows a rigid, unnatural template (e.g.,
every paragraph starting with a subheading). The word choice can be awkward or inappro-
priately technical (e.g., using ”quantum” in a non-scientific context). This is comparable to
a middle-school-level essay.

• Score 0: Incoherent / Irrelevant The response is fundamentally unusable. It is nonsensi-
cal, completely fails to address the prompt’s genre or topic, or consists mostly of a direct
repetition of the query. This is analogous to an elementary-school or illiterate level of
writing.
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C.2 UNIVERSAL EVALUATION CRITERIA

Beyond the holistic score, annotators assessed responses against a set of universal criteria applicable
to all forms of writing.

• Prompt Adherence and Intent:
– Does the response satisfy all explicit constraints in the query (e.g., themes, content,

word count)?
– Does it avoid vague, grandiose statements and focus on the core task?
– Is the overall reading experience fluent, not sacrificed for overly ornate or complex

sentences?
• Structure and Coherence:

– Is the overall structure complete and are paragraphs divided logically?
– Is the line of reasoning clear and are the ideas logically self-consistent?
– For narratives, is the pacing effective (i.e., a clear beginning, development, climax,

and conclusion)?
• Content and Substance:

– Is the content rich and specific, avoiding empty, generic statements?
– Does the chosen material effectively support the overall theme or argument?
– Where applicable, are environmental descriptions vivid and effective at creating the

desired atmosphere?
• Language and Expression:

– Is the language accurate, precise, and grammatically correct?
– Is the expression clear and unambiguous?
– Does the writing style match the requirements of the prompt, genre, and intended

audience?

C.3 GENRE-SPECIFIC EVALUATION CRITERIA

To account for the diverse nature of writing, annotators also applied specific standards for each
category. The following are representative examples.

C.3.1 FICTION (E.G., SCI-FI, FANTASY, MYSTERY)

• Characters: Are characters consistent throughout the narrative? Are their relationships
(e.g., friendship, rivalry) authentic and do they drive the plot?

• Narrative Technique: Does the author ”show” the story through action, dialogue, and
detail, rather than simply ”telling” the reader what is happening?

• Creativity: Does the story demonstrate originality in its premise, characters, or plot? Does
it effectively use narrative devices like foreshadowing and callbacks?

C.3.2 SCRIPTWRITING

• Dialogue: Is the dialogue believable for the characters, reflecting their personality, back-
ground, and emotional state?

• Action & Staging: Does the script include stage directions (e.g., tone, emotion, action) for
dialogue? Does it incorporate elements like set design, sound effects, and props?

• Motivation: Do the main characters have clear, understandable motivations that drive the
plot forward?

C.3.3 NON-FICTION (E.G., ESSAYS, BIOGRAPHIES, REVIEWS)

• Accuracy: Are all factual claims, data, quotes, and historical details accurate?
• Authenticity: Is the author’s emotion and experience conveyed in a genuine and credible

manner?
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• Depth: Does the writing go beyond surface-level description to offer deeper analysis of
causes, meanings, or connections?

C.3.4 FUNCTIONAL DOCUMENTS (E.G., RESUMES, PROPOSALS, MEMOS)

• Purpose: Is the core purpose of the document (e.g., to inform, persuade, request) immedi-
ately clear?

• Completeness: Does the document include all information necessary to achieve its goal?

• Format & Logic: Does it follow the conventional format for its type? For persuasive
documents, are the arguments clear, well-supported, and logical?

C.3.5 FUNNY (E.G., INTERNET MEMES, COPYPASTA)

This category evaluates a model’s grasp of niche, often non-literal communication styles.

• Form: Does the response deliberately break conventional logic for humorous or absurd
effect?

• Technique: Does it correctly use techniques specific to the subculture, such as puns, ho-
mophones, context-dependent slang, or ”serious nonsense”?

• Tone: Does it successfully capture a specific ironic or satirical tone, potentially with mul-
tiple layers of meaning?

D DATASET STATISTICS

Table 3: Distributional properties of preference pairs in WritingPreferenceBench.

Dataset Metric Type Mean (STD) Median

English
Length (words) Chosen 1450.3 (1801.9) 961.5

Rejected 839.9 (593.4) 792.0

Quality Score Chosen 2.913 (0.296) 3.000
Rejected 1.602 (0.553) 2.000

Chinese
Length (words) Chosen 1873.5 (1967.5) 1340.5

Rejected 1458.3 (1311.0) 1218.5

Quality Score Chosen 2.560 (0.589) 3.000
Rejected 1.115 (0.567) 1.000

E EXAMPLES OF BENCHMARK QUERIES

To illustrate the nature of the tasks in WritingPreferenceBench, this section provides several exam-
ples of the expert-crafted queries given to the models. These queries are designed to be specific,
evocative, and challenging, pushing models beyond generic text generation.

E.1 EXAMPLE 1: POETRY

Query:

Please help me write a modern poem on the theme of the old refrigerator in my
grandmother’s kitchen. It no longer cools and is now used as a storage cabinet;
there are faded stickers and an old shopping list still on its door. The poem needs
to start with sensory details like its sound, its smell, and its appearance. It should
be depicted as a guardian of family memories. Please use rhetorical devices like
personification or metaphor to express a sense of nostalgia and affection for the
old days.
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E.2 EXAMPLE 2: PRODUCT REVIEW

Query:

Write a professional product review for a high-end outdoor shell jacket. The ar-
ticle must be well-structured and centered on its core performance metrics. The
review should include at least: 1. Design & Workmanship: Analyze the jacket’s fit
and cut, fabric technology, seam sealing process, zipper configuration, and over-
all weight. 2. Core Functionality Test: Objectively evaluate its waterproofing,
breathability, and windproofing performance in simulated or real-world condi-
tions. 3. Details & Usability: Review the hood’s range of adjustment, the logic of
the pocket layout, and the adjustment systems for the cuffs and hem. The article’s
conclusion must clearly summarize the product’s pros and cons and, in conjunc-
tion with its price, provide clear purchasing advice and an analysis of suitable user
groups.

E.3 EXAMPLE 3: FUNNY

Category: ACGN Abstract Literature / Doujin (Fan Fiction)

Query:

Write an abstract fanfiction piece set against the backdrop of the ”Human Instru-
mentality Project” from Neon Genesis Evangelion. The ”protagonist” of this piece
is not a specific person, but the very moment in which all human consciousnesses
dissolve, merge, and collide within the Sea of LCL. The core theme is ”the bound-
ary between the Self and the Other,” aiming to explore which is more terrifying:
absolute loneliness or the loss of self through fusion. You do not need to construct
a plot. Instead, use a fragmented, multi-vocal ”stream-of-consciousness” style
to weave together the internal monologues, memory fragments, and sensory per-
ceptions of different characters—Shinji’s inferiority complex, Asuka’s arrogance,
Rei’s emptiness—and iconic sensory details (like ”the metallic taste of orange
juice” or ”the sweetness of watermelon”) to form a chaotic yet harmonious sea of
consciousness.

E.4 EXAMPLE 4: SHORT STORY

Query:

Write a short story about a conflict between neighbors in a city. The protagonist
is a young person who works from home and is constantly bothered by a strange,
rhythmic noise coming from their new upstairs neighbor late at night. At the
moment they can’t stand it anymore and decide to confront the neighbor, they
discover an unexpected and poignant truth about the source of the noise. The
core of the story is the dramatic turn caused by this revelation, aiming to explore
the alienation, misunderstanding, and eventual reconciliation between people in a
modern city.

E.5 EXAMPLE 5: ARGUMENTATIVE ESSAY

Query:

On our journey through life, we often face the choice between ”looking back”
and ”moving forward.” Some believe that dwelling on the past hinders progress,
and thus one must resolutely ”move forward.” Others are convinced that by fre-
quently ”looking back” and drawing wisdom from past experiences and lessons,
we can walk the future path more steadily. These two attitudes, seemingly con-
tradictory, are in fact dialectically unified, jointly shaping the trajectory of our
lives. Please write an argumentative essay titled ”‘Looking Back’ and ‘Moving
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Forward’”. Your viewpoint should be distinct and your essay well-structured. The
article must not only discuss why we should ”look back” and why we must ”move
forward,” but more importantly, it must delve into how a balance and unity can be
achieved between the two. You are required to cite at least one historical figure as
positive or negative evidence and analyze it in conjunction with a contemporary
social phenomenon or a personal experience. When narrating the case, you must
include rich descriptive details that reflect the character’s internal journey and
emotional changes when faced with the choice between ”looking” and ”moving.”
The essay should be no less than 800 words.

E.6 EXAMPLE 6: SPEECH

Query:

You are about to graduate after three years of high school and, as the student
representative, you need to deliver a speech at the graduation ceremony. Your
audience includes not only the classmates you’ve spent every day with, but also
the hardworking teachers and the parents who have come to attend. Please write a
speech manuscript centered on the theme of ”Gratitude and Responsibility.” The
speech should not be a collection of empty slogans or a simple farewell. You
must include two specific, detailed stories: first, recount the profound impact a
particular teacher had on you, describing a teaching moment or interaction that
you still remember vividly; second, share a story of friendship and mutual growth
with your classmates. Please create your own title. The speech must be no less
than 600 words, with a closing signed by ”Graduate Representative, Wang Chen”
and the date.

E.7 EXAMPLE 7: ADVERTISING COPY

Category: Advertisement Copy / Marketing Email

Query:

Write a marketing email for the new ”Pathfinder 30L” backpack from the outdoor
brand ”Nomad’s Gear.” The email must use a vivid user story (e.g., a summit
experience) to highlight the backpack’s benefits, such as being lightweight and
durable, in order to spark the reader’s desire for adventure. A catchy subject line,
an immersive story, and a clear call to action at the end are required.

E.8 EXAMPLE 8: BIOGRAPHY

Query:

Please help me write a biography of the Mexican painter Frida Kahlo, with a
suggested title of ”The Burning Thorn Bush: Frida’s Pain and Creation.” The core
theme of this biography should not be a simple chronological account of her life,
but an in-depth exploration of ”how pain became the core fuel for her artistic
creation.” You need to closely link and analyze key events in her life (such as
the bus accident, her marriage to Diego Rivera, and her miscarriages) with her
representative paintings. Provide a detailed interpretation of how she transformed
physical disability and emotional turmoil into the powerful symbols and visual
language of her artwork.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F USE OF LLMS

19


	Introduction
	WritingPreferenceBench
	Benchmark Construction Pipeline
	Dataset Statistics

	Experiments
	Evaluation Protocols
	Models
	Implementation Details

	Results
	Reward Model Performance
	Language Model Judge Performance

	Discussion
	Related Work
	Conclusion
	Use of Large Language Models
	Full Taxonomy of Writing Categories
	Genre-Specific Scoring Guidelines
	General Scoring Rubric (4-Point Scale)
	Universal Evaluation Criteria
	Genre-Specific Evaluation Criteria
	Fiction (e.g., Sci-Fi, Fantasy, Mystery)
	Scriptwriting
	Non-Fiction (e.g., Essays, Biographies, Reviews)
	Functional Documents (e.g., Resumes, Proposals, Memos)
	Funny (e.g., Internet Memes, Copypasta)


	Dataset Statistics
	Examples of Benchmark Queries
	Example 1: Poetry
	Example 2: Product Review
	Example 3: Funny
	Example 4: Short Story
	Example 5: Argumentative Essay
	Example 6: Speech
	Example 7: Advertising Copy
	Example 8: Biography

	Use of LLMs

