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ABSTRACT

Large language models (LLMs) are increasingly employed in information-seeking
and decision-making tasks. Despite their broad utility, LLMs tend to generate
information that conflict with real-world facts, and their persuasive style can make
these inaccuracies appear confident and convincing. As a result, end-users struggle
to consistently align the confidence expressed by LLMs with the accuracy of their
predictions, often leading to either blind trust in all outputs or a complete disregard
for their reliability. In this work, we explore supervised fine-tuning on uncertainty-
augmented predictions as a method to develop models that produce linguistic
expressions of uncertainty. Specifically, we measure the calibration of pre-trained
models and fine-tune language models to generate calibrated linguistic expressions
of uncertainty. Through experiments on various question-answering datasets,
we demonstrate that LLMs are well-calibrated in assessing their predictions, and
supervised fine-tuning based on the model’s own confidence leads to well-calibrated
expressions of uncertainty, particularly for single-claim answers.

1 INTRODUCTION

Large Language Models (LLMs) are emerging as powerful tools that can absorb internet-scale data
in the parametric knowledge of a neural network (Brown, 2020; Rae et al., 2021; Hoffmann et al.,
2022). These models are the foundational blocks of several conversational agents (Achiam et al.,
2023; Team et al., 2023; Anthropic, 2024; Dubey et al., 2024) that people are increasingly relying on
for information seeking and decision making tasks. Owing to their natural language interface, these
models are more easily accessible to and interacted by the general public than any other machine
learning models that existed before1. This widespread utility naturally raises questions around the
truthfulness and factuality of the predictions made by these models.

Despite being state-of-the-art on several natural language processing (NLP) tasks (Brown, 2020;
Team et al., 2023), LLMs occasionally produce incorrect predictions – especially on queries that are
outside the training distribution of the model. These inaccuracies are tricky to deal with as models do
not express uncertainty in their generations, making their statements sound highly confident (Huang
et al., 2023; Ji et al., 2023). As such, the end-users have no way of associating the confidence the
model is expressing in its predictions to its correctness. This limits the utility of these models in
many safety-critical applications, such as medicine (Thirunavukarasu et al., 2023; Saab et al., 2024)
and law (Dahl et al., 2024), and precludes the users from reliably using the predictions made by these
models in many information seeking tasks (Passi and Vorvoreanu, 2022; Vasconcelos et al., 2023).
We illustrate this with a mock scenario, as shown in Figure 1.

In this work, we study how to augment an LLM’s prediction with a linguistic expression of uncertainty,
where an uncertainty expression reflects the likelihood that the model’s predictions are accurate,
aggregated across all samples with similar uncertainty levels. For instance, if a model indicates an
uncertainty expression such as ‘it is unlikely’ and this corresponds to approximately 30% confidence,
we expect around 30% of those predictions to be correct. In other words, we aim for the uncertainty-
augmented answers to be well-calibrated (Guo et al., 2017). Previous approaches have used similar

∗The first two authors contributed equally.
1As evidenced by the surge of ChatGPT users into millions in the first few weeks of its launch.
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Figure 1: Motivation: The agent provides an incorrect response to a given query. In the response at the
bottom, however, the agent includes an uncertainty expression. Without this uncertainty expression, as seen
in the response at the top, the human user might form an incorrect belief about the world. In contrast, with
the uncertainty-augmented response at the bottom, the human user is prompted to consult additional resources,
leading to a more accurate understanding of the world.

measures to avoid answering uncertain questions (Cole et al., 2023). In contrast, our focus is on
always providing an answer while appropriately conveying the associated uncertainty. This enables
the end-user to decide whether to act on the model’s information, request further clarification from
the model, or consult additional sources (see Figure 1). Additionally, we believe that for many
user-facing applications, conveying model uncertainty linguistically is often more effective than
presenting it numerically. This is because a) linguistic expressions, such as ‘I am certain’ or ‘It is
highly unlikely,’ are more intuitive for humans to interpret than raw numbers like 90% or 10%; b)
linguistic expressions integrate more naturally with predictions; c) language can indicate the source
of uncertainty, whether it arises from the model’s limitations or inherent uncertainty (Hüllermeier
and Waegeman, 2021); and d) linguistic expressions are more adaptable for downstream processing,
such as text-to-speech conversion.

We focus on supervised fine-tuning (SFT) with curated datasets as the primary method for equipping
models with linguistic expressions of uncertainty in their predictions. To achieve this, we first assess
the model’s confidence in its predictions by querying whether each prediction is true or false. The
confidence corresponds to the normalized2 probability assigned to the ‘true’ token. Building on the
work of Kadavath et al. (2022), we observe that this self-evaluation score is fairly well-calibrated for
single-claim answers across the pre-trained models we tested (Figures 4 and 7). Moreover, applying
mild post-processing, such as isotonic regression on a small calibration set, achieves near-perfect
calibration of both base and instruction-tuned models across various sizes (Figure 4). Next, we
map the confidence scores to linguistic expressions using the framework from Fagen-Ulmschneider
(2019), which was developed based on a survey where human subjects associated probability ranges
with different uncertainty expressions. These linguistic expressions are then combined with the
corresponding predictions to create a fine-tuning dataset. Figure 2 illustrates the overall process
of curating the finetuning dataset. When fine-tuned on this dataset, the resulting models generate
predictions with well-calibrated linguistic expressions of uncertainty (Figure 5).

Overall, our contributions include,

1. We provide a finetuning receipe for equipping models with linguistic expressions of uncer-
tainty.

2. We present the calibration plots of Gemini 1.0 small and medium sized models after
pre-training and alignment phases on three Q/A datasets – TriviaQA (Joshi et al., 2017),
AmbigQA (Min et al., 2020) and Truthful QA (Lin et al., 2021).

3. We find that pre-trained models are better calibrated than models fine-tuned for alignment,
and that calibration improves with larger model sizes, consistent with existing literature
(Kadavath et al., 2022; Achiam et al., 2023).

4. We explore various methods for incorporating linguistic expressions of uncertainty into
predictions. Our findings indicate that finetuning with predictions augmented by adding
uncertainty expressions after the actual answer results in the most well-calibrated finetuned
models.

2The normalization constant is the sum of the probablities assigned to the ‘true’ and ‘false’ tokens.
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2 RELATED WORK

There is a long body of work which studies the ability of machine learning models to express
uncertainty in their predictions (Gawlikowski et al., 2023; Guo et al., 2017). The two broad sources
of uncertainty typically in focus are epistemic uncertainty; i.e uncertainty stemming from the model’s
lack of knowledge, and aleatoric uncertainty, uncertainty as a result of inherent ambiguity in the
task (Hüllermeier and Waegeman, 2021). We focus on only the former in this work. For epistemic
uncertainty, in the case of language models, there have been studies (Kadavath et al., 2022; Jiang
et al., 2021; Desai and Durrett, 2020; Tian et al., 2023) which look at the ability of language models
to assess the confidence in the factuality of their predictions, looking at both in-domain and out-of-
domain datasets. Kadavath et al. (2022) show that pre-trained models are reasonably well calibrated
at predicting whether their own output is factual or not in a few-shot setting. We leverage their
few-shot prompting strategy to elicit numerical confidence of the model in their own predictions.
Tian et al. (2023) find that for instruction tuned models, verbalized probabilities are better-calibrated
than conditional probabilities in a setting when models are prompted to output the uncertainty in
their predictions. We refer the reader to (Geng et al., 2024) for a more comprehensive overview of
methods to elicit epistemic uncertainty.

Lin et al. (2022) introduce the notion of linguistic uncertainty in language models, teaching a pre-
trained GPT-3 model to express its uncertainty linguistically along with its prediction on mathematics
tasks. A key difference of our work from theirs is that our uncertainty targets are obtained in a
pointwise manner, whereas they assign the targets based on average task performance on questions in
the same sub-task. We also study the effect of the placement of the uncertainty estimate (prefix/suffix)
on the quality of the estimates. Zhou et al. (2023) study the effect of prefixed expression of uncertainty
on a pre-existing language model’s generation, finding that expression of high certainty hurt the
accuracy compared to weaker expressions. Mielke et al. (2022) also work on making models
emit linguistic expression of uncertainty, but their process is a two-stage pipeline where a separate
calibrator predicts the numerical probability of correctness, and the language model then adds a
linguistic marker based on this. Most similar to our work is (Band et al., 2024), who work on obtaining
calibrated long form predictions from LLMs. Their method of obtaining uncertainty targets relies
on a form of self-consistency extended to long form answers, and they also perform an additional
reinforcement learning step after their supervised finetuning stage. They do not study the quality
effect of position of the uncertainty estimates relative to the answer (prefix/postfixed).

3 SETUP AND METHOD

We investigate the question-answering (Q/A) task where an LLM, specifically Gemini 1.0, incorpo-
rates expressions of uncertainty while generating answers. In a Q/A task, we work with a dataset
D = {xi, yi}ni=1, consisting of n examples where x represents questions and y represents ground-
truth answers. The sets of all questions and answers are denoted by X = {xi}ni=1 and Y = {yi}ni=1,
respectively. Given a question x, the LLM M(·) produces a prediction ŷ = M(x) through autore-
gressive decoding. The dataset D is divided into three non-overlapping subsets: few-shot (Dfs),
calibration (Dcal), and training (Dtr). These subsets are used in different phases of finetuning dataset
curation – Dfs is used for computing model confidence in the predictions, Dcal is used for fitting
the isotonic regressor that is then used for post-processing the confidence scores, and Dtr is used for
finetuning (see Algorithm 1 for more details). For each dataset D, we reserve a separate held-out
subset Dte for evaluation purposes.

3.1 METHOD

How can we train models to produce accurate expressions of uncertainty? One approach is few-shot
prompting with uncertainty-augmented examples. However, recent literature suggests that LLMs
struggle to generate well-calibrated linguistic expressions of uncertainty through in-context learning
(Zhou et al., 2023). Additionally, in-context learning through few-shot prompting incurs extra infer-
ence costs for processing prompts with each query, making it less optimal from a latency perspective.
To address these issues, we investigate supervised fine-tuning (SFT) on datasets augmented with
uncertainty expressions as an alternative approach. A critical aspect of curating such datasets is ensur-
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Figure 2: Finetuning dataset curation process: Here LLM refers to the language model that we are interested
in finetuning. LLM∗ referes to an operation that mixes the uncertainty expression with the model prediction –
it can be a prompted language model (interleaved case) or simply an operation which prefixes/post-fixes the
answer with the expression of uncertainty. Given a question on the left, the LLM produces a raw prediction and
then computes its own confidence on that prediction. The confidence score is converted to a linguistic expression
and augmented with the raw prediction. Prompt 1 and Prompt 2 are given in the appendix.

“It is highly unlikely that the 
name is Joseph Warwick” LLM*

Disentangling 
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“Joseph Merrick”
(Reference answer)

“Highly unlikely” 0.09

False
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Map
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Figure 3: Evaluation process: Finetuned LLM produces an answer with the expression of uncertianty on the left
that is split by a prompted LLM∗ into the raw answer (‘Joseph Warwick’) and expression of uncertainty (‘Highly
unlikely’) using Prompt 3. LLM∗ then judges the correctness of the raw answer using the LME Prompt 4
and uncertainty expression is converted to a float equal to the average of the probability range the uncertainty
expression belongs to. Based on the correctness and uncertainty score, the final metric is computed.

ing that the uncertainty markers align with the model’s knowledge about the questions. Inconsistent
uncertainty expressions during fine-tuning can lead to hallucinated expressions during testing.

To ensure linguistic expressions of uncertainty are consistent with the model’s knowledge, we first
obtain confidence scores for model-generated samples through self-evaluation, as described by Kada-
vath et al. (2022). Specifically, we use a True/False self-evaluation task, where the model assesses
the correctness of its own predictions (see Prompt 1). With the confidence scores in hand, we
apply isotonic regression (Barlow and Brunk, 1972) using a small calibration set, Dcal, to achieve
nearly perfect calibration of uncertainty estimates. We then map these calibrated confidence scores
to linguistic expressions of uncertainty based on human perception of uncertainty and probabilities
(Fagen-Ulmschneider, 2019), as detailed in Table 1. The final step involves integrating uncertainty ex-
pressions with model predictions in the dataset. We explore three methods for this integration: (1) Pre-
fixed: placing the uncertainty expression before the prediction (expression, prediction), (2)
Postfixed: placing the uncertainty expression after the prediction (prediction, expression),
and (3) Interleaved: incorporating the uncertainty expression within the prediction (expression
prediction) using a prompted language model (see Prompt 2). The overall process of dataset
curation is illustrated in Figure 2 and Algorithm 1. After curating the dataset DM , we fine-tune the
model (M ) to generate linguistic expressions of uncertainty.

3.2 EVALUATION

We compute the accuracy (Acc) of a prediction by language model evaluation (LME) whereby a
prompted language model compares the prediction with the ground truth answer (see Prompt 4). To
measure calibration, we plot calibration charts between confidence scores and accuracy (Figure 4)
where the x-axis is binned according to the probability ranges in the linguistic expressions map (Fagen-
Ulmschneider, 2019). Further, to summarize the calibration error into a single scalar, we track,
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Figure 4: TriviaA Calibration Chart: The top-row shows raw calibration scores at temperature=1.0
without any post-processing. The bottom row shows post-processed calibration scores with isotonic
regression. In each plot, the x-axis is the pmodel(true) of the generated prediction (shown here as
Confidence Bin) and y-axis is probability of that prediction being actually correct (shown here
as Accuracy). Expected Calibration Error (ECE) and Brier Score are reported at the top of each
plot. The error bars show the variance of accuracy in each bin.

Expected Calibration Error (ECE): weighted average of the difference between the confidence
assigned to examples in the bin, and accuracy of the predictions in the bin.

ece =

|B|∑
m=1

|Bm|
n

∣∣Acc(Bm)− C(Bm)
∣∣,

where |B| are the total bins,

Brier Score: mean squared error between the confidence and correctness verdicts across all examples

brier =
1

n

n∑
i=1

(
C(xi, ŷi)− LME(y, ŷ)

)2
.

The lower these scores the better.

Once the models are finetuned to generate linguistic expressions of uncertainty, we test the calibration
of their predictions on held-out test sets for each dataset. For this, we first extract the uncertainty
expression from the rest of the prediction using a prompted language model (see Prompt 3). We then
convert these uncertainty expressions into probability estimates using the same mapping employed
for converting probabilities into linguistic expressions in the previous section. We measure calibration
using Expected Calibration Error (ECE) and Brier Score and plot calibration charts based on these
probability estimates. The complete evaluation procedure is outlined in Figure 3 and Algorithm 2.

4 EXPERIMENTS

4.1 DATASETS

We use standard Q/A datasets – TriviaQA (Joshi et al., 2017), AmbigQA (Min et al., 2020) and
TruthfulQA (Lin et al., 2021). For TriviaQA, we use the wikipedia version. From the train
split, we take 16 examples for the Dfs, 2000 examples for the Dcal, and remaining examples for the
Dtr. The test set (Dte) is taken from the dev set. For AmbigQA, we only take the unambiguous
set, as we are focused only on conveying epistemic uncertainty. From the train split, we take
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Figure 5: Calibration Charts of Finetuned Models: Top-row is TriviaQA. Bottom-row is Am-
bigQA. The model generates post-fixed uncertainty expressions. The x-axis is the pmodel(true)
obtained by converting the linguistic expression of uncertainty to a float using Table 1 (shown here as
Confidence Bin) and y-axis is probability of that prediction being actually correct (shown here
as Accuracy). No post-processing is done on the pmodel(true). Expected Calibration Error (ECE)
and Brier Score are reported at the top of each plot. The error bars show the variance of accuracy in
each bin.

16 examples for the Dfs, 1000 examples for the Dcal, and remaining examples for the Dtr. The
test set (Dte) is taken from the validation set. For TruthfulQA, we split the validation
set into a Dfs of size 8, Dcal of size 100, Dte of size 100 and Dtr of size ~600. The prediction is
deemed correct if the LME (Prompt 4) judges it to be similar to any of the possible ground truth
answers. We evaluate the accuracy of the interleaving (Prompt 2), disentangling (Prompt 3), and
LME (Prompt 4) prompts on a uniformly sampled subset. We manually verify the performance of
these prompts on small subsets of the data, and find that all of these independent tasks are performed
at high accuracy, exceeding 95%.

4.2 MODELS

We conduct experiments with the Gemini 1.0 family of models (Team et al., 2023). Specifically, we
use two variants, referred to as Small and Medium, which represent different architecture sizes.
Our study includes both the pre-trained models and those that have been post-trained (aligned). The
post-trained models are denoted with the ‘IT’ marker.

4.3 FINETUNING DETAILS

For each question, we independently generate four model samples with a temperature setting of 1.0.
We ensure balance in the curated dataset by setting a maximum number of examples per probability
bin (see Table 1). Although the curated datasets contain model-generated samples with probability
expressions, filtering predictions based on their correctness relative to the ground truth did not yield a
significant performance difference. As a result, we do not apply correctness-based filtering to the
datasets in the experiments discussed in this paper. The statistics for the final curated datasets are
provided in Table 2.
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Figure 6: TriviaQA uncertainty augmentation method: Top-row is Gemini Small, middle-
row is Gemini Small-IT and the bottom row is Gemini Medium. The models generate post-
fixed uncertainty expressions. The x-axis is the pmodel(true) obtained by converting the linguistic
expression of uncertainty to a float using Table 1 (shown here as Confidence Bin) and y-axis is
probability of that prediction being actually correct (shown here as Accuracy). No post-processing
is done on the pmodel(true). Expected Calibration Error (ECE) and Brier Score are reported at the
top of each plot. The error bars show the variance of accuracy in each bin.

We use a batch size of 32 and train on each dataset for 3 epochs. The Adam optimizer (Kingma, 2014)
with a cosine learning rate schedule is employed, where the learning rate is first linearly warmed up
to 5e− 7 and then decayed to 5e− 8.

4.4 RESULTS

Calibration of Gemini models on the self-evaluation tasks: Figure 4 presents the calibration charts
for Gemini 1.0 models on the TriviaQA dataset. Several key observations can be made:

1. The Gemini base models exhibit good calibration on the self-evaluation task (Prompt 1).
2. Calibration improves with larger model sizes, and pre-trained models demonstrate better

calibration than instruction-tuned models, aligning with findings reported in the literature
for other LLMs (Kadavath et al., 2022; Achiam et al., 2023).

3. Post-processing confidence scores using isotonic regression leads to significantly improved
calibration.
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Results for AmbigQA and TruthfulQA are shown in Figures 7 and 8, respectively. Notably, Gemini
models do not achieve good calibration on TruthfulQA using the self-evaluation task. Although
post-processing improves calibration somewhat, it is insufficient for effective uncertainty-augmented
dataset curation. Consequently, we exclude the TruthfulQA dataset from our fine-tuning process.

Calibration of finetuned models: We now examine the calibration of linguistic expressions of
uncertainty in finetuned models on held-out test sets. Figure 5 displays the calibration charts for fine-
tuned models that produce post-fixed uncertainty expressions. The figure shows that these fine-tuned
models generate well-calibrated linguistic expressions of uncertainty. This result is consistent across
different model sizes and applies equally to both pre-trained and instruction-tuned models.

Comparing different methods of uncertainty augmentation: Finally, we compare different
methods for augmenting model predictions with uncertainty expressions – prefixed, postfixed, and
interleaved – as previously described. Figure 6 illustrates the performance of these augmentation
methods on the TriviaQA dataset, with similar results for AmbigQA shown in Figure 9. The figure
reveals that post-fixed uncertainty expressions, where the uncertainty is added after the main answer,
result in the lowest calibration error. We hypothesize that this approach simplifies fine-tuning because
the uncertainty expression does not influence the sampling of the main answer during autoregressive
decoding. In contrast, prefixed or interleaved uncertainty expressions, where the uncertainty is added
before or within the answer, can impact the answer’s sampling distribution, as discussed by Zhou
et al. (2023), leading to poorer calibration.

5 DISCUSSION AND CONCLUSION

In this work, we investigated supervised fine-tuning on the model’s own uncertainty as a post-training
step to enable models to generate linguistic expressions of uncertainty. We assessed the calibration of
various Gemini 1.0 models and found them to be well-calibrated on the self-evaluation task. We then
used these uncertainty scores to augment model predictions with linguistic expressions of uncertainty.
Our findings show that fine-tuning with these augmented predictions results in models that produce
well-calibrated linguistic expressions of uncertainty on held-out test sets. This fine-tuning approach
can be employed as an independent post-training step between supervised fine-tuning (SFT) and
reinforcement learning from human feedback (RLHF). Alternatively, uncertainty-augmented datasets
can be integrated into the SFT process with appropriate system instructions that can guide models to
express uncertainty.

Models capable of generating well-calibrated uncertainty expressions enable users to make informed
inferences about the model’s predictions. With linguistic expressions of uncertainty, users can reliably
decide when to trust the model’s predictions and when to seek additional information. This allows
users greater control over how to utilize the model’s outputs, unlike methods that rely on uncertainty
estimates to determine when to abstain from giving a response. By abstaining, these methods may
deprive users of potentially valuable information, even when the model’s responses are uncertain.
Therefore, the ability to produce well-calibrated expressions of uncertainty should be considered a
key objective in the development of user facing foundational models.
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A APPENDIX

Algorithm 1 Dataset curation with linguistic expressions of uncertainty
1: Input: Main Model (M ), Augmentation Model (F ), Confidence Routine (Confidence), Confidence

Score to Linguistic Expression Map (LinguisticMap), Isotonic Regression Routine (IsoReg), Dataset
(D = {Dtr,Dcal,Dfs})

2: Output: A curated dataset (DM
tr )

3: Ŷ = M(X) // Compute model predictions.

4: Ccal = Confidence(Xcal, Ŷcal,Dfs) // Compute confidence scores on calibration set.

5: Ctr = Confidence(Xtr, Ŷtr,Dfs) // Compute confidence scores on train set.

6: R = IsoReg(Ycal, Ŷcal, Ccal) // Fit an isotonic regressor on the calibration set.

7: C∗
tr = R(Ctr) // Post-process confidence scores using the regressor.

8: Etr = LinguisticMap(C∗
tr) // Convert confidence scores to linguistic expressions of uncertainty.

9: DM
tr = F (Xtr, Ŷtr, Etr) // Augment model predictions with linguistic expressions of uncertainty.

10: Return DM
tr

Algorithm 2 Evaluation of uncertainty augmented predictions

1: Input: Dataset containing uncertainty augmented predictions Dte = (X, Ỹ ), Deaugmentation Model
(DeAug), a map to convert uncertainty statements to floats (InvMap), Routine to compute ECE (ECE),
Routine to compute Brier Score (Brier Score)

2: Output: ece, brier
3: Ŷ , E = F (Ỹ ) // Strip the uncertainty statements and main answers.

4: C = InvMap(E) // Map uncertainty statements to floats.

5: ece = ECE(Y, Ŷ , C)

6: brier = Brier Score(Y, Ŷ , C)
7: Return ece, brier

Probability Range Linguistic Expressions
[1.0-1.0] (‘certain’)
[0.87-0.99] (‘almost certain’, ‘highly likely’)
[0.75-0.86] (‘very good chance’, ‘likely’)
[0.63-0.74] (‘i believe’, ‘probably’, ‘probable’)
[0.40-0.62] (‘chances are about even’)
[0.18-0.39] (‘i doubt’, ‘unlikely’)
[0.02-0.17] (‘little chance’,‘chances are slight’,‘improbable’,‘highly unlikely’)
[0.00-0.01] (‘impossible’)

Table 1: Probability to Linguistic Expression Map

1 You are a highly knowledgeable assistant who is always factual and careful. For a {QUESTION} check if the
{PROPOSED_ANSWER} is True

2 or False.
3
4 {QUESTION}: Who was the first president of the US?
5 {PROPOSED_ANSWER}: George Washington
6 Is the Proposed Answer:
7 a) True
8 b) False
9 The proposed Answer is: True

10
11 ...
12
13 {QUESTION}: <query>
14 {PROPOSED_ANSWER}: <model prediction>
15 Is the Proposed Answer:
16 a) True
17 b) False
18 The proposed Answer is:

Prompt 1: Few-shot prompt for self-evaluation.

1 You are a powerful agent that understands probabilities and language. Given a {QUESTION}, {ANSWER} and
{PROBABILITY_EXPRESSION}, you

11



1st workshop of "Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier
in Reliable AI" at ICLR’25

2 modify the {ANSWER} using the appropriate probability expression. Do not modify the core content of the
{ANSWER}, and the only

3 change made is to include the {PROBABILITY_EXPRESSION} to the {ANSWER} to produce the {MODIFIED_ANSWER}.
4
5 Here are a few examples:
6
7 Example 1:
8 {QUESTION}: Which English author, who died in 1998, published Katie Hannigan in 1950 and The Bill Bailey

Trilogy between 1986 and
9 1997?

10 {ANSWER}: richard adamson
11 {PROBABILITY_EXPRESSION}: little chance
12 {MODIFIED_ANSWER}: There is little chance that the author is Richard Adamson.
13
14 Example 2:
15 {QUESTION}: What chemical element has the symbol S?
16 {ANSWER}: sulphur
17 {PROBABILITY_EXPRESSION}: very good chance
18 {MODIFIED_ANSWER}: There is a very good chance that it is sulphur.
19
20 Example 3:
21 {QUESTION}: What is secreted by the lachrymal glands?
22 {ANSWER}: tears
23 {PROBABILITY_EXPRESSION}: certain
24 {MODIFIED_ANSWER}: It is certainly tears.
25
26 Example 4:
27 {QUESTION}: How many days is the gestation period of a domestic dog (5 days either way)?
28 {ANSWER}: 58-63
29 {PROBABILITY_EXPRESSION}: chances are about even
30 {MODIFIED_ANSWER}: Chances are about even that it is 58-63 days.
31
32 Example 5:
33 {QUESTION}: Which record label signed the Rolling Stones in 1991?
34 {ANSWER}: umg
35 {PROBABILITY_EXPRESSION}: i doubt
36 {MODIFIED_ANSWER}: I doubt that it is umg.
37
38 Example 6:
39 {QUESTION}: What is the capital of India?
40 {ANSWER}: Delhi.
41 {PROBABILITY_EXPRESSION}: impossible
42 {MODIFIED_ANSWER}: It is impossible that it is Delhi.
43
44 Example 7:
45
46 {QUESTION}: {{THE_QUESTION}}
47 {ANSWER}: {{THE_ANSWER}}
48 {PROBABILITY_EXPRESSION}: {{THE_PROBABILITY_EXPRESSION}}
49 {MODIFIED_ANSWER}:

Prompt 2: Prompt to interleave uncertainty expressions with answers.

1 You are presented with a statement, which may contain a notion of uncertainty expressed linguistically within
it. Your task is to

2 extract the {UNCERTAINTY_PHRASE} separately, and remove the uncertainty component from the answer.
3
4 Here is the list of valid uncertainty expressions.
5
6 [certain, almost certain, highly likely, very good chance, likely, i believe, probably, probable, chances are

about even,
7 i doubt, unlikely, little chance, chances are slight, improbable, highly unlikely, impossible].
8
9 List the Answer removed of uncertainty in the {ANSWER_WITHOUT_UNCERTAINTY} field. List the uncertainty

expression used in the
10 Uncertainty field.
11
12 {ANSWER}: X was certainly not born in 1985.
13 {ANSWER_WITHOUT_UNCERTAINTY}: X was not born in 1985.
14 {UNCERTAINTY_PHRASE}: certainly
15
16 {ANSWER}: The capital of France almost certainly might be paris.
17 {ANSWER_WITHOUT_UNCERTAINTY}: The capital of France is Paris.
18 {UNCERTAINTY_PHRASE}: almost certainly
19
20 {ANSWER}: There is little chance but the fact is correct.
21 {ANSWER_WITHOUT_UNCERTAINTY}: The fact is correct.
22 {UNCERTAINTY_PHRASE}: little chance
23
24 {ANSWER}: It is about even that the coin will be heads.
25 {ANSWER_WITHOUT_UNCERTAINTY}: The coin will be heads.
26 {UNCERTAINTY_PHRASE}: about even
27
28 {ANSWER}: It is impossible that the Sun rises in the West.
29 {ANSWER_WITHOUT_UNCERTAINTY}: The Sun rises in the West.
30 {UNCERTAINTY_PHRASE}: impossible
31
32 {ANSWER}: It is highly unlikely that the coin will be heads.
33 {ANSWER_WITHOUT_UNCERTAINTY}: The coin will be heads.
34 {UNCERTAINTY_PHRASE}: highly unlikely
35
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36 {ANSWER}: There is a very good chance that tomato might not be a vegetable.
37 {ANSWER_WITHOUT_UNCERTAINTY}: Tomato is not a vegetable.
38 {UNCERTAINTY_PHRASE}: very good chance
39
40 Here is the {ANSWER} which needs to be separated into {ANSWER_WITHOUT_UNCERTAINTY}, and {UNCERTAINTY_PHRASE}.
41
42 {ANSWER}:

Prompt 3: Prompt to disentangle uncertainty statements from answers.

1 Your task is to determine if two answers to a question are semantically equivalent. Two answers are
semantically equivalent if their

2 answer to the question is the same, even if they are rephrases of each other.
3
4 Even if one contains more information than the other, as long as their answer to the question is the same,

the answers are considered
5 semantically equivalent.
6
7 For example, for the question ‘Tell me a number‘, the answers ‘five‘ and ‘6‘ are not semantically equivalent

as they are different
8 numbers. However, the answers ‘5‘ and ‘A number is five‘ or ‘five‘ are semantically equivalent, since they

convey the same thing.
9

10 For a question ‘Tell me the capital of France‘, ‘Its Venice‘ and ‘Venice‘ are semantically equivalent, as
they give the same answer.

11 The Answers ‘Paris‘ and ‘Venice‘ are not semantically equivalent. For questions asking factual information,
if one answer responds

12 with information disagreeing with the other, they will not be semantically equivalent.
13
14 Another example of not semantically equivalent answers would be ‘Miles‘ and ‘Kilometers‘ for the question

‘Tell me an unit of
15 distance‘, as these two units are not the same.
16
17 Here is the question, and Answer A and Answer B to be compared.
18
19 Respond with ‘YES‘ if they are semantically equivalent, ‘NO‘ otherwise.
20
21 Question: {THE_QUESTION}
22 Answer A: {GOLD_ANSWER}
23 Answer B: {PRED_ANSWER}
24 Semantically equivalent:

Prompt 4: Language model evaluation.

Model Dataset Max Examples Per Bin Train Set Size Evaluation Set size

Small
TriviaQA 2000 12556 7993
AmbigQA 1000 8935 898
TruthfulQA - - -

Small - IT
TriviaQA 2000 11571 7993
AmbigQA 1000 8487 898
TruthfulQA 200 581 100

Medium
TriviaQA 2000 9283 7993
AmbigQA 1000 4800 898
TruthfulQA 200 440 100

Medium - IT
TriviaQA 2000 7590 7993
AmbigQA 1000 3969 898
TruthfulQA 200 518 100

Table 2: Statistics of the datasets used for finetuning DM
tr

13



1st workshop of "Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier
in Reliable AI" at ICLR’25

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Bin

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Small | ECE: 0.166 | Brier: 0.220

Perfect Calibration
Model Calibration

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Bin

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Small IT | ECE: 0.297 | Brier: 0.302
Perfect Calibration
Model Calibration

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Bin

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Medium | ECE: 0.113 | Brier: 0.208
Perfect Calibration
Model Calibration

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Bin

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Medium IT | ECE: 0.242 | Brier: 0.271
Perfect Calibration
Model Calibration

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Bin

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Small | ECE: 0.022 | Brier: 0.186
Perfect Calibration
Model Calibration

(a) Small

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Bin

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Small IT | ECE: 0.016 | Brier: 0.190

Perfect Calibration
Model Calibration

(b) Small-IT

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Bin

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Medium | ECE: 0.016 | Brier: 0.191
Perfect Calibration
Model Calibration

(c) Medium

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Bin

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Medium IT | ECE: 0.022 | Brier: 0.200
Perfect Calibration
Model Calibration

(d) Medium-IT

Figure 7: AmbigQA Calibration Chart: The top-row shows raw calibration scores at tempera-
ture=1.0 without any post-processing. The bottom row shows post-processed calibration scores
with isotonic regression. In each plot, the x-axis is the pmodel(true) of the generated prediction
(shown here as Confidence Bin) and y-axis is probability of that prediction being actually cor-
rect (shown here as Accuracy). Expected Calibration Error (ECE) and Brier Score are reported at
the top of each plot.
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Figure 8: TruthfulQA Calibration Chart: The top-row shows raw calibration scores at temper-
ature=1.0 without any post-processing. The bottom row shows post-processed calibration scores
with isotonic regression. In each plot, the x-axis is the pmodel(true) of the generated prediction
(shown here as Confidence Bin) and y-axis is probability of that prediction being actually cor-
rect (shown here as Accuracy). Expected Calibration Error (ECE) and Brier Score are reported at
the top of each plot.
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Figure 9: AmbigQA uncertainty augmentation method: Top-row is Gemini Small, middle-
row is Gemini Small-IT and the bottom row is Gemini Medium. The models generate post-
fixed uncertainty expressions. The x-axis is the pmodel(true) obtained by converting the linguistic
expression of uncertainty to a float using Table 1 (shown here as Confidence Bin) and y-axis is
probability of that prediction being actually correct (shown here as Accuracy). No post-processing
is done on the pmodel(true). Expected Calibration Error (ECE) and Brier Score are reported at the
top of each plot. The error bars show the variance of accuracy in each bin.
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