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ABSTRACT

Continual Test-Time Adaptation (CTA) is a challenging task that aims to adapt
a source pre-trained model to continually changing target domains. In the CTA
setting, the model does not know when the target domain changes, thus facing a
drastic change in the distribution of streaming inputs during the test-time. The key
challenge is to keep adapting the model to the continually changing target domains
in an online manner. To keep track of the changing target domain distributions, we
propose to maintain an exponential moving average (EMA) target prototype for
each class with reliable target samples. We exploit those prototypes to cluster the
target features class-wisely. Moreover, we aim to align the target distributions to
the source distribution by minimizing the distance between the target feature and
its corresponding pre-computed source prototype. We empirically observe that
our simple proposed method achieves reasonable performance gain when applied
on existing CTA methods. Furthermore, we assess the adaptation time between
existing methodologies and our novel approach, demonstrating that our method
can gain noteworthy performance without substantial adaptation time overhead.

1 INTRODUCTION

Despite the huge success of deep neural networks (DNNs) in the field of computer vision and nat-
ural language processing, they still suffer from the distribution shifts problem which points out the
distribution of data given at test time is different from that of the training data. This is because the
DNNs heavily rely on the assumption that the data given at test time have the same distribution as
the training data. However, it is unlikely in real-world scenarios where the data distribution may
change over time due to external factors such as weather change and sensor degradation (Hendrycks
& Dietterich, 2019; Koh et al., 2021) at test-time. When the model faces such out-of-distribution
(OOD) data during the testing phase, it often fails to generalize and its performance deteriorates.
For the sake of clarity, we denote the in-distribution (ID) training data as the source domain data and
the OOD test data as the target domain data.

Test-time adaptation (TTA) (Sun et al., 2020a; Wang et al., 2020; Zhang et al., 2022) resolves the
distribution shifts problem by adapting the model to the target data given at test-time. Since the
target data are unlabeled, the adaptation should be done in an unsupervised and online manner. In an
online adaptation scenario, test samples arrive sequentially and the model has to predict and adapt
immediately upon the arrival of the test samples. It does not have an access to the full test data
but only to the current batch of data, thus prediction of test samples must not be affected by the
samples arriving later. Also, TTA must not alter the training procedure of the source domain as done
in TTT (test-time training) methods (Sun et al., 2020b; Liu et al., 2021c) since re-training on the
source domain is costly. TTA generally assumes that the access to the source data during test-time
is infeasible due to privacy/storage concerns and legal constraints, hence the only available during
the test time is the access to the target data and the off-the-self source pre-trained model. Recently,
another line of research in TTA called continual test-time adaptation (CTA) (Wang et al., 2022; Niu
et al., 2022) is introduced. Different from the conventional TTA setting which assumes adapting
a model to a single fixed stationary target domain, CTA adapts a model to continually changing
target data distributions. The model is not aware of when the input distribution changes since the
information about domain change is not given. Therefore, unlike conventional TTA, resetting the
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model to the initial source pre-trained weights when the target domain changes is not possible. It is an
extremely difficult task resembling the real-world scenarios where the input distribution may change
continually and abruptly without prior notice (e.g. entering a tunnel during autonomous driving).
Due to its intricate nature, CTA faces two major hurdles. Firstly, it is susceptible to confirmation
bias Arazo et al. (2020) issue, wherein the model is overfitted to make incorrect predictions and
tends to preferentially predict certain classes more frequently than others. It makes its prediction
highly biased and mis-calibrated. The second is the catastrophic forgetting (Kirkpatrick et al., 2017;
Parisi et al., 2019; Ebrahimi et al., 2020) of source domain knowledge due to the inaccessibility of the
source data at test-time which could impair the performance on source domain as well as the target
domains. To alleviate these issues, Wang et al. (2022) proposed augmentation-averaged prediction
distillation from the weight-averaged teacher model with stochastic restoration and Niu et al. (2022)
proposed sample-efficient optimization strategy with anti-forgetting weight regularization. Please
refer to Appendix A for more description about relevant works.

On top of these existing methods, and to further address the two challenges, we present a pair of
straightforward yet highly effective techniques: the exponential moving average (EMA) target do-
main prototypical loss and source distribution alignment via prototype matching. The EMA proto-
typical loss maintains a prototype for each class by continuously updating the prototypes via EMA
using the features of reliable target samples provided during test time. These EMA target proto-
types are then utilized to organize the target features into distinct classes. More precisely, we use the
pseudo-labels of the reliable target samples to draw their features closer to their corresponding EMA
prototypes while simultaneously pushing them away from other irrelevant prototypes through cross-
entropy loss. The EMA prototypical loss serves the purpose of effectively capturing the changing
target distribution and leveraging it for class-specific target feature clustering. The goal is to pre-
vent an undue bias towards previous target distributions and, instead, adeptly capture and adapt to
upcoming target distributions, thereby mitigating the confirmation bias issue.

On the other hand, to tackle the catastrophic forgetting of source domain knowledge as well as to
align the target domain distribution to the source, we minimize the distance between the target fea-
ture and the pre-computed source prototype. Aligning the distribution between source and target is a
very common strategy in domain adaptation (Sun & Saenko, 2016b; Tzeng et al., 2017; Long et al.,
2018) which has also been employed in TTA methods (Su et al., 2022). Nonetheless, it relies on the
Gaussian distribution assumption of the source and the target domains and utilize complex distance
metric such as KL-Divergence. In contrast, our method takes a simpler approach: we directly match
each target feature to its corresponding source prototype by minimizing the mean squared error.
Similar to the EMA target prototypical loss, we calculate loss only with the reliable target samples.
Since CTA requires adaptation in an online manner, adaptation processing time is important as well
as the performance. Our investigation illustrates that TTAC (Su et al., 2022) experiences notable
fluctuations in adaptation time depending on the domain, whereas our suggested method maintains
consistent time for each target domain with insignificant adaptation time.

Our proposed method is both straightforward and efficient, seamlessly applicable to existing ap-
proaches without introducing additional parameters or requiring access to the source domain data
at test-time (post-deployment). This feature transforms it into a plug-and-play component that can
substantially improve the CTA performance without significant adaptation time overhead. Through
comprehensive experimentation on ImageNet-C and CIFAR100-C, we establish the compatibility of
our method with other CTA methods, showcasing performance improvements in both accuracy and
adaptation time. Moreover, we conduct an in-depth analysis of our proposed method, highlighting
its capability to mitigate the bias of model to predict certain classes more frequently and enhance
ability to make more diverse predictions across a wider range of classes

2 PROBLEM DEFINITION

Given a model, gθ0 , pre-trained on a source domain Ds = {(xs
n, y

s
n)}N

s

n=1, CTA is a task of adapting
gθ0 to the unlabeled target data which its domain continually changes, Dk = {xk

m}N
k

m=1 (k refers
to the target domain index) with an unsupervised objective, Lunsup. The target domain data arrive
sequentially and their domain changes over time (k = 1, . . . ,K). The model only has access to the
data of the current time step and has to predict and adapt instantly upon the arrival of the inputs
for future steps, i.e., θt → θt+1. As mentioned earlier, the model is not aware of when the target
domain changes, so it has to deal with suddenly changing input distribution. Lunsup can take the
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Figure 1: Overall schematic of our proposed test-time adaptation scheme. Left side of vertical dot-
ted line portrays the pre-computation of the source prototypes before deployment. The right side
describes the training with the proposed loss terms at test-time. The black dotted arrow indicates
providing required information such as entropy and pseudo-label of input.

form of entropy minimization loss which is used to optimize only the affine parameters of batch
normalization layer (Wang et al., 2020; Niu et al., 2022) or distillation loss to optimize the whole
parameters (Wang et al., 2022; Döbler et al., 2023). The evaluation of the model is determined by
test-time predictions in an online manner.

3 PROPOSED METHOD

3.1 EMA TARGET DOMAIN PROTOTYPICAL LOSS

EMA target prototypical loss comprises two distinct steps, one is categorizing the features of target
inputs by classes utilizing the EMA target prototypes and the other is updating the prototypes with
features of reliable target samples given at test time in an exponential moving average manner. A
classification model, gθ, consists of a feature extractor fϕ and a classification head hω . Each weight
vector ωc ∈ Rd in ω ∈ RC×d can be considered as the template for class c where C is the number
of classes and d is the dimension of the extracted feature, fϕ(x) ∈ Rd. Therefore, we initialize the
EMA target prototypes as the weights of h, hence P t

c = ωc

∣∣ωc∣∣2 . P t
c and ωc refer to the EMA target

prototype and the head weight of class c, respectively. We normalize ωc to eliminate the difference
in magnitudes between ωc and the extracted target feature fϕ(xt) for updating the target prototypes
at the later phase via Eq. (2). There are C EMA target prototypes, which we utilize to categorize the
streaming target inputs into classes. This is achieved by minimizing the cross-entropy loss using the
pseudo-labels.

However, before proceeding with this process, we first identify reliable target samples as proposed
in (Niu et al., 2022), which excludes samples with high entropy, thus low confidence. Given a batch
of target data, xt ∈ RB×C×H×W , for each sample xt in xt, we calculate its entropy estimated by
the model gθ, i.e., H(xt) = −∑C

c (σ(gθ(xt))c ⋅ log(σ(gθ(xt))c)) where σ is the softmax operation
and gθ(xt)c refers to the c-th element of the produced logit zt = gθ(xt) ∈ RC . Then, we filter out
samples with entropy higher than the pre-defined entropy threshold, E0. The remaining samples
are the reliable samples with low-entropy denoted as x̃t. For each sample x̃t in x̃t, we obtain its
pseudo-label ỹt = argmaxc gθ(x̃t)c and compute the following loss:

Lema(fϕ, x̃t, ỹt, P t) = − log(
exp(fϕ(x̃t) ⋅ P t

ỹt

∣∣P t
ỹt ∣∣2 )

∑C
c exp(fϕ(x̃t) ⋅ P t

c

∣∣P t
c ∣∣2 )
). (1)

We dot-product fϕ(x̃t) with every EMA target prototype P t
c and apply softmax operation, then

maximize its similarity with the target prototype of the pseudo-label, P t
ỹt , by minimizing Lema.

Lema assures fϕ(x̃t) to have high similarity with P t
ỹt and low similarity with other remaining P ts.

Lema is designed to back-propagate only to the fϕ and not to the P ts. Upon computing Lema, we
proceed to update P ts in an EMA manner using the features of reliable samples and their pseudo-
labels as outlined below:

P t
ỹt = α ⋅ P t

ỹt + (1 − α) ⋅
fϕ(x̃t)
∣∣fϕ(x̃t)∣∣2

. (2)
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Algorithm 1 The pseudo code of our proposed adaptation process for K number of target domains.

Require: K number of target domains {Dk = {xk
m}N

k

m=1}Kk=1, the source pre-trained model gθ0(⋅),
Source domain sub-samples Ds={xs

n}N
s

n=1, batch size B.
1: Pre-compute the source prototype for each class, P s

c = 1
Ns

c
∑Ns

c

i=1 fϕ0(xs
i ).

2: Initialize each EMA target prototype, P t
c as ωc

∣∣ωc∣∣2
3: for a domain k in K do
4: for a batch x={xk

b}Bb=1 in Dk do
5: Forward the batch and make predictions, z = gθ(x)
6: Compute Lunsup

7: Compute Lema and Lsrc only with the features of reliable target inputs.
8: Update P ts via Eq. (2)
9: Optimize model by minimizing Eq. (4).

10: end for
11: end for
Ensure: The predictions {{ŷkm}N

k

m=1}Kk=1 for {{xk
m}N

k

m=1}Kk=1

Here, α is the blending factor. When the new target features are blended, they are detached to stop
gradient signal to fϕ. We also normalize the target feature ( fϕ(x̃t)

∣∣fϕ(x̃t)∣∣2 ) as we normalized ωc when
initializing P t

c . If there exists Nc number of samples with the same pseudo-label in a batch, we use
the average of their features ( 1

Nc
∑Nc

i=1 fϕ(x̃t
i)) instead when updating the target prototype, P t

c . As
new batches of target data steam in, P ts are updated with features of new incoming target data in an
EMA fashion. The individual magnitudes of each P t can vary, potentially leading to inaccuracies in
the results. To address this issue and ensure consistency in magnitudes, we normalize each P t

c before
performing the dot product with fϕ(x̃t) as described in Eq. (1). Please note that Lema is computed
first, followed by the update of P t using Eq. (2) with fϕ(x̃t), not the other way around. Also, it is
important to mention that P ts are not employed to classify the target input for model evaluation but
solely for calculating the loss Lema. The model evaluation is measured by z = gθ(xt), with the head
of the model, h. It is different from T3A (Iwasawa & Matsuo, 2021) which builds an actual classifier
for evaluation with features of target samples given at test-time.

In short, Eq. (1) organizes the target feature into separate classes by enhancing its similarity with
the corresponding EMA prototype guided by the pseudo-label while Eq. (2) updates class-specific
prototypes gradually and consistently in an EAM manner with the features of target data to reflect
the current distribution of test data. The aim of the proposed approach is to quickly adapt to the
evolving target distribution by capturing the target distribution well via the EMA target prototypes
and utilizing them to cluster the target inputs by classes.

3.2 SOURCE DISTRIBUTION ALIGNMENT VIA PROTOTYPE MATCHING

Prior to deploying the model to the target domain for testing, we pre-compute the source prototype
for each class in advance using the subset of the source domain data and the feature extractor fϕ0

of the source domain pre-trained model gθ0 . More precisely, we sample a maximum of 100,000
data from the source domain train set. A source prototype for class c is computed as an average of
features extracted by fϕ0 , hence P s

c = 1
Ns

c
∑Ns

c

i=1 fϕ0(xs
i ), where Ns

c is the number of samples with
class label c in the subset. Therefore, there exists C prototypes generated with source features before
test-time and they are saved in memory to be used later at the adaptation phase. During the test-time
adaptation phase, we minimize the mean squared error (MSE) distance between the target feature
and the source prototype corresponding to the pseudo-label of the target sample.

Lsrc(fϕ, x̃t, ỹt, P s) = ∣∣P s
ỹt − fϕ(x̃t)∣∣22. (3)

Similar to EMA target prototypical loss, we calculate the above source distribution alignment loss
only with the reliable samples, x̃t. The purpose of Lsrc is two-fold: firstly, to mitigate the problem of
catastrophic forgetting of knowledge from the source domain, and secondly, to align the distribution
of target features with that of the source domain in order to reduce the impact of domain shift.
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3.3 OVERALL OBJECTIVE

The overall objective of our proposed test-time adaptation is as follows :
Loverall = Lunsup + λemaLema + λsrcLsrc (4)

Lunsup represents the unsupervised loss employed in the particular method to which our proposed
approach is being applied. Our suggested loss components,Lema andLsrc, can be integrated into ex-
isting methods with respective trade-off terms, λema and λsrc. Alternatively, they can be employed
independently as well, without the inclusion of Lunsup. Fig. 1 illustrates our proposed method con-
sists of two strategies each leveraging the prototypes of the source and the target domains. The
pseudo code of our test-time adaptation scheme is summarized in Alg. 1.

4 EXPERIMENTS

Datasets and models. We evaluate our proposed method on two widely used test-time adapta-
tion benchmarks, CIFAR100-C (Krizhevsky et al., 2009) and ImageNet-C (Deng et al., 2009). Both
datasets process (corrupt) the test/validation set of each original dataset with 15 different kinds of
corruptions with 5 different levels of severity from four different categories (noise, blur, weather,
digital) (Hendrycks & Dietterich, 2019). We conduct experiments with the highest severity of level
5. Other than these 15 corrupted target domains, we also perform test-time adaptation on the orig-
inal clean test/validation set by setting it as the very last domain to validate how the model has
preserved performance on the source domain. We employ ResNeXt29-32×4d pre-trained by Aug-
Mix (Hendrycks et al., 2019) and ResNet50 pre-trained by (Hendrycks et al., 2021) as the source
pre-trained models for CIFAR100-C and ImageNet-C, respectively. Both models are trained on the
original training set of CIFAR-100 and ImageNet.

Evaluation. At the very beginning of the test-time adaptation, the model is initialized with the
source domain pre-trained weights. As the test-time adaptation initiates, batches of target data stream
into the model sequentially for prediction and adaptation. The target domain changes when the
model encounters all samples of the current target domain, but the model remains unaware of the
domain change. We report the average classification accuracy of 3 runs for each domain.

Implementation Details. As our proposed method is compatible with existing approaches, we ad-
here to the implementation specifics of each method to which our method is applied, including the
choice of optimizer and hyper-parameters. To ensure a fair comparison, we conducted all experi-
ments using a consistent batch size of 64 across all methods. The entropy threshold, E0 is set to
0.4 × lnC following (Niu et al., 2022). α, λema and λsrc are empirically set to 0.996, 2.0 and 50
when applied on existing method. However, for RMT (Döbler et al., 2023), we use different λema

and λsrc since it employs source-replay loss which requires source domain data at test-time. More
implementation details are in Appendix B. When our proposed method is employed independently
without integration into existing methods, λsrc is set to 20 and we use SGD with a learning rate
of 0.00025, momentum of 0.9 and update only the batch normalization layers as done in previous
works (Wang et al., 2020; Niu et al., 2022).

4.1 PERFORMANCE COMPARISON

Comparison of performance on CTA benchmarks. To demonstrate the effectiveness of our pro-
posed method, we conducted a comparative analysis with existing methods on two continual test-
time adaptation benchmarks. We highlight the versatility of our approach through two distinct strate-
gies: firstly, by integrating it into existing methods, and secondly, by employing the proposed loss
terms independently without Lunsup (referred to as Ours-Only). Specifically, we applied our pro-
posed terms to three CTA methods, namely EATA, CoTTA, and RMT, which have demonstrated
promising performance on the two benchmarks. Ours in Tab. 1 and 2 refers to using our proposed
terms Lema and Lsrc together. As illustrated in the tables, our proposed method shows noteworthy
performance when used solely without Lunsup and also significantly enhances performance when
incorporated into existing methods. In addition to the aforementioned comparisons, we also assess
the performance of our method in comparison to TTAC (Su et al., 2022) and TSD (Wang et al.,
2023). They are not originally designed for CTA but have been included as baseline algorithms be-
cause their proposed ideas align closely with the philosophy underlying our approach. TTAC places
a strong emphasis on domain alignment between the source and target domains by minimizing the
Kullback-Leibler (KL) divergence between the distributions of the two domains, under the assump-
tion that each domain follows a Gaussian distribution. While TTAC shares a similar motivation with
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Table 1: Classification accuracy (%) for the comparison of continual test-time adaptation perfor-
mance on ImageNet-C using the highest corruption severity level 5.

Time tÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→
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Source 2.21 2.93 1.85 17.92 9.82 14.79 22.50 16.88 23.31 24.42 58.94 5.44 16.96 20.61 31.65 76.13 21.65
T3A 15.03 15.61 16.09 16.05 16.16 17.79 20.66 22.32 23.48 25.81 29.12 28.16 29.32 30.62 31.23 33.71 23.20
TENT 24.69 32.81 32.72 24.28 26.03 30.29 37.89 30.40 28.46 36.51 49.58 18.16 32.99 35.68 30.60 49.94 32.56
TTAC 23.47 32.33 32.88 24.52 29.82 40.00 47.73 42.58 40.00 50.16 61.72 26.64 47.73 51.43 45.27 66.49 41.42
TSD 15.23 15.78 15.78 15.06 15.29 26.29 38.81 34.35 33.14 47.89 65.16 16.83 44.03 48.82 39.82 75.15 34.21
Ours-Only 32.88 40.98 39.78 29.84 32.18 39.04 45.79 42.35 41.54 52.42 63.15 43.74 52.51 56.88 52.86 69.39 45.96
EATA 34.66 40.40 39.39 34.08 34.99 46.51 52.82 50.33 45.83 59.12 67.27 45.17 57.13 59.99 55.46 73.80 49.81
EATA + TTAC 35.64 41.44 40.57 35.59 37.14 48.67 54.56 51.69 46.73 60.34 67.98 46.58 58.04 61.22 56.18 74.40 51.05
EATA + Ours 36.17 41.77 40.83 35.98 37.24 48.89 54.28 52.15 47.46 60.23 67.94 48.01 58.26 61.26 56.37 74.20 51.32
CoTTA 16.15 18.53 19.91 18.52 19.58 31.13 43.07 36.92 36.15 51.18 65.35 23.50 47.71 52.17 44.82 73.99 37.42
CoTTA + Ours 30.06 37.51 36.72 26.86 30.65 42.34 49.64 47.53 44.15 56.65 67.13 37.73 55.98 59.81 54.68 73.17 46.91
RMT 28.45 36.07 36.39 29.83 29.00 35.22 39.58 40.04 36.08 49.35 54.02 36.67 48.62 52.28 48.65 66.63 41.68
RMT + Ours 29.60 37.85 38.26 31.60 30.98 36.46 40.56 42.06 38.24 46.31 54.19 38.02 50.73 53.24 51.24 65.14 42.78

Table 2: Classification accuracy (%) for the comparison of continual test-time adaptation perfor-
mance on CIFAR100-C using the highest corruption severity level 5.

Time tÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→
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Source 27.02 32.00 60.64 70.64 45.91 69.19 71.21 60.53 54.18 49.70 70.48 44.91 62.79 25.29 58.77 78.90 55.14
T3A 28.10 36.47 59.70 67.25 43.91 67.07 69.93 57.42 50.83 45.34 69.55 44.13 58.64 23.52 55.77 76.82 53.40
TENT 58.13 62.58 61.43 73.82 61.24 71.67 73.73 67.09 68.39 61.85 74.80 71.27 66.98 70.13 61.51 77.13 67.61
TTAC 58.86 63.63 61.46 72.89 59.45 70.86 72.74 65.13 66.56 59.76 73.24 68.46 63.48 67.28 60.36 75.83 66.25
TSD 56.87 58.64 56.23 71.62 57.45 69.56 71.31 64.22 64.44 57.38 72.88 68.83 63.41 66.06 58.07 75.32 64.52
Ours-Only 60.62 66.08 64.45 73.79 62.52 71.79 74.23 67.98 69.29 65.34 73.91 72.15 67.04 70.55 62.09 75.66 68.59
EATA 59.91 63.92 62.45 73.15 61.17 71.30 73.71 67.59 68.17 63.40 75.20 72.06 66.55 70.53 62.13 77.65 68.06
EATA + TTAC 62.28 65.54 65.59 71.90 59.06 69.63 72.13 66.00 66.47 63.38 72.97 69.55 63.85 69.06 60.82 75.21 67.09
EATA + Ours 61.29 65.66 65.32 74.31 62.79 72.41 74.77 69.16 69.95 65.99 76.22 73.76 67.75 71.78 63.42 77.99 69.53
CoTTA 59.53 62.34 60.73 72.02 62.37 70.48 72.09 65.86 66.73 59.08 72.97 69.69 65.16 69.20 63.89 74.28 66.65
CoTTA + Ours 60.22 63.06 62.35 73.23 62.37 71.40 73.85 68.84 68.51 61.79 75.03 71.93 66.07 70.68 63.43 76.62 68.09
RMT 62.70 65.69 64.74 74.54 67.16 73.98 76.05 72.87 73.40 69.66 77.42 76.11 74.24 76.23 71.79 78.25 72.18
RMT + Ours 63.21 67.33 66.86 74.81 68.47 74.30 76.11 73.56 74.07 70.87 76.94 76.42 74.79 76.47 72.93 77.58 72.79

our Lsrc, our approach is designed to be much simpler and more efficient. In the case of TSD, it
introduces a concept akin to our Lema, but there is a fundamental difference in that TSD utilizes a
memory bank, whereas our method maintains the target prototypes via EMA. As demonstrated in the
table, although these methods share some common ideas with our approach, our proposed method
consistently outperforms them in the two benchmarks. We have also evaluated performance of TTAC
applied to EATA, EATA+TTAC. Its performance on ImageNet-C is comparable to EATA+Ours, but
it falls slightly short. Moreover, TTAC exhibits significant fluctuation in adaptation time depending
on the domain which will be further studied in the next section.

Figure 2: Comparison of average batch
adaptation time for each target domain
on ImageNet-C.

Adaptation processing time comparison. Adaptation
processing time stands as another important factor to take
into account during test-time adaptation. This is particu-
larly important in a CTA scenario, where the model has
to predict and adapt immediately in an online manner.
Therefore, we present the average time it takes to adapt
a single batch for each target domain and compare be-
tween methods. The experiment is conducted on a single
NVIDIA RTX 3090 GPU with a fixed batch size of 64 for
fair comparison. Fig. 2 illustrates the comparison of the
average adaptation time of a single batch across the target
domains. What stands out is the results of TTAC. Its aver-
age adaptation time of a single batch exhibits significant
variability across the target domains. This is attributed to TTAC’s calculation of the covariance ma-
trix only using samples with high confidence. It implies that more computational effort is needed for
a particular domain which the model predicts with high confidence. On the other hand, Ours-Only
shows not only consistent adaptation time across the target domains but also the least amount of
time required. Even when applied on existing methods such as EATA, CoTTA, and RMT, it incurs
only a marginal adaptation time overhead. From the experimental results of Tab. 1 and Fig. 2, we
demonstrate that our proposed method is able to boost the test-time adaptation performance only
with a negligible amount of adaptation time overhead.
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Table 3: The results of random order of target domains on ImageNet-C
Method Tent TTAC TSD Ours-Only EATA EATA+TTAC EATA+Ours CoTTA CoTTA+Ours RMT RMT+Ours
Acc. (%) 14.50±1.43 41.22±0.72 34.21±0.01 45.98±0.24 49.56±0.28 50.68±0.22 50.91±0.23 37.73±0.09 46.78±0.17 44.72±0.58 45.11±0.61

Table 4: Ablation study on ImageNet-C
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Mean
EATA Lema Lsrc Normal. Filter.
! − − − − 34.66 40.40 39.39 34.08 34.99 46.51 52.82 50.33 45.83 59.12 67.27 45.17 57.13 59.99 55.46 73.80 49.81
! ! − ! ! 35.55 41.41 40.50 35.01 36.69 47.77 53.77 51.14 46.70 59.66 67.41 45.70 57.58 60.52 55.68 73.82 50.56
! − ! − ! 35.40 41.10 40.03 35.05 36.30 48.10 53.97 51.56 46.83 59.85 68.00 47.49 57.80 60.94 56.07 74.27 50.80
! ! ! − − 36.32 41.47 40.10 34.84 35.76 47.82 53.48 51.43 46.62 59.71 67.60 47.39 57.70 60.76 55.87 74.06 50.68
! ! ! − ! 36.47 41.79 40.72 35.39 36.25 48.07 53.73 51.68 46.92 59.84 67.74 47.79 57.86 60.85 56.02 74.05 50.95
! ! ! ! − 36.11 41.72 40.65 35.56 36.77 48.62 54.04 51.95 47.08 60.14 67.85 47.83 58.02 61.09 56.11 74.15 51.11
! ! ! ! ! 36.17 41.77 40.83 35.98 37.24 48.89 54.28 52.15 47.46 60.23 67.94 48.01 58.26 61.26 56.37 74.20 51.32

Continual test-time adaption on a random order of target domains. Since CTA involves adapting
to target inputs as they arrive sequentially, the order in which the target domains are presented can
significantly impact the model’s performance. The original domain sequence consists of consecutive
domains within the same categories (noise, blur, weather, digital), making it easier for the model to
gradually adapt. In contrast to the original domain sequence, we introduce randomness by shuffling
the order of the target domains, including the 15 corrupted target domains within ImageNet-C, with
the original source domain placed at the end. This randomization allows us to evaluate the robust-
ness of each method to variations in the order of target domains. We compute the average accuracy
across all 16 test domains based on three separate runs, each with a distinct domain order. As shown
in Table 3, the results reveal that certain methods exhibit improved performance, while others expe-
rience a decrease in performance compared to the original domain sequence. Notably, Ours-Only
and methods enhanced with our approach demonstrate increased resilience to variations in the order
of domains, consistently achieving superior performance when compared to the baseline methods.

4.2 ANALYSIS

In the following analysis, all experiments are conducted on ImageNet-C with ResNet50.

Ablation study. Tab. 4 presents the results of our ablation study, aimed at confirming the effective-
ness of our proposed loss terms and the specific implementation choices we have made. We assess
the validity of each component of our proposed method by gradually incorporating them into the
baseline algorithm, EATA. The term ‘Normal.’ in the table refers to normalizing ω and fϕ(x̃t) when
initializing and updating P t, while ‘Filter.’ indicates the filtering of unreliable samples with high
entropy. The second and third rows showcase the validation of our proposed loss terms, as perfor-
mance improves when each loss term is added. Subsequently, the fourth to sixth rows demonstrate
the significance of normalization and reliable sample selection. When both techniques are not used,
there is only a modest performance improvement compared to EATA (row 4). The importance of
normalization becomes evident as its removal leads to a significant drop in performance (row 5).
While filtering also contributes to performance gains, its removal results in a minor performance
drop (row 6). This highlights that our proposed method can robustly operate even with unreliable
samples possessing high entropy. Overall, the ablation study confirms the effectiveness of our pro-
posed loss terms and specific implementations to the performance improvements.

Batch size. While it is a well-established fact that larger batch sizes often result in improved model
performance, the TTA setting can not guarantee large batch size as it operates online and requires
immediate prediction and adaptation. Therefore, we conduct a performance comparison between
EATA and EATA+Ours across six different batch sizes (128, 64, 32, 16, 8, 4) to evaluate the robust-
ness of our proposed method to batch size variations. As presented in Fig. 3 (a), it is evident that
EATA+Ours consistently outperforms EATA from batch size 128 to 16. However, at a batch size of
8, EATA exhibits superior accuracy, and at a batch size of 4, both methods yield poor performance
due to the extremely limited number of inputs.

Blending factor α. The blending factor α governs the extent to which the target prototypes, P t,
are updated by the incoming target features. A smaller α promotes quicker update to new features,
while a larger α results in a more gradual update of P t, preserving their similarity to their initial
states. In Fig. 3 (b), we conduct an analysis of how the performance varies in EATA+Ours with
different values of α (0.9, 0.96, 0.99, 0.996, 0.999). It is evident that for all five values, EATA+Ours
outperforms the baseline algorithm EATA (49.81%). The results clearly indicate higher accuracy
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Figure 3: Analysis of batch size, α, λema and λsrc on ImageNet-C. (a) presents a comparison be-
tween EATA and EATA+Ours with varying batch sizes, while (b), (c), and (d) show performance
analysis using different α, λema and λsrc employed in our method. Accuracy (%) is the average
accuracy over the 16 domains (15 corrupted and original).

Figure 4: Feature space distance analysis. (a) plots the domain gap between the source and the target.
(b) and (c) show the intra-class and the inter-class distance, respectively while (d) presents the ratio
(intra/inter) of the two distance.

with larger values of α and the lowest accuracy when α is set to 0.9. This observation suggests that
excessive updating of P t with smaller values of α negatively impacts performance.

Trade-off terms λema and λsrc. Fig. 3 (c) and (d) provide an analysis of the trade-off parameters
λema and λsrc associated with our proposed loss terms Lema and Lsrc within the EATA+Ours
model. When we vary the values of λema, λsrc is held constant at 50. Conversely, when analyzing
λsrc, λema is set at 2. The model achieves its highest accuracy when λema is set to 2, with a de-
cline in performance as λema increases. On the other hand, accuracy shows a gradual increase with
rising λsrc values, peaking at 50. Beyond this value, accuracy does not exhibit significant changes.
Although there are differences in accuracy for various values of λema and λsrc, the gap between the
highest and lowest accuracy is relatively small. This suggests that our proposed loss terms are not
highly sensitive to the choice of trade-off values.

Source-Target domain gap. We analyze the distribution alignment between the source and the
target by measuring the mean squared error (MSE) between the source prototypes and the target
prototypes computed with the ground-truth (GT) labels. Unlike P ts which are generated with the
pseudo-labels, we calculate P t∗ with the GT labels. During test-time adaptation, we store the fea-
tures produced by fϕ and compute P t∗ for each class as follows, P t∗

c = 1
Nt

c
∑Nt

c

i=1 fϕ(xt
i) where N t

c is
the number of samples with GT label c. For each test domain, we compute the average MSE between
P s and P t∗ over the classes, 1

C ∑
C
c=1 ∣∣P s

c −P t∗

c ∣∣22. Fig. 4 (a) illustrates the domain gap of EATA and
EATA+Ours. The notably lower distance observed in EATA+Ours compared to EATA across all
test domains indicates that our proposed terms contribute significantly to narrowing the distribution
gap between the source and the target domains.

Intra- and inter-class distance of target features. We also measure the intra-class and inter-class
distance to analyze how our proposed method affects class-wise feature distributions. Intra-class
distance is the average of the distances between the feature for every input to their corresponding
P t∗s, dintrac = 1

Nt
c
∑Nt

c

i=1 ∣∣P t∗

c − fϕ(xt
i)∣∣22, which can be used to check how well the features are

clustered. Inter-class distance is the average of distances between P t∗s of different classes, which is
to see how well the clusters are separated, dinterc = 1

C−1 ∑
C
i=1 1{i≠c}∣∣P t∗

c − P t∗

i ∣∣22. We measure both
distances for each class and report the average over classes for each target domain. In Fig. 4 (b) and
(c), we present a comparison between EATA and EATA+Ours for both intra-class and inter-class
distances. The intra-class distance for EATA+Ours remains consistently lower, whereas for EATA, it
gradually increases, leading to a widened gap between the two methods as the adaptation progresses.
It validates that our proposed terms contribute in minimizing intra-class variance. On the other hand,
concerning inter-class distance, EATA exhibits larger distances than EATA+Ours, suggesting that
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Figure 5: (a) shows the similarity analysis of P t with P s and P t∗ . (b), (c) and (d) illustrate the aver-
age entropy per domain, the number of reliable samples and predicted samples per class compared
between EATA and EATA+Ours, respectively.

the prototypes are more widely dispersed. Nonetheless, it is noteworthy that the gap between the two
methods remains relatively constant throughout the target domains when compared to the intra-class
distances. It may be tempting to conclude that EATA achieves a more class-discriminative feature
distribution due to its higher inter-class distance. However, when we examine the ratio between the
two distances (dintrac /dinterc ) in Fig. 4 (d), EATA+Ours consistently yields lower values, especially
for later target domains. A lower ratio implies a relatively larger inter-class distance compared to the
intra-class distance, indicating higher separability.

Similarity analysis of P t with P s and P t∗ . P ts play a crucial role in computing Lema. Their
significance lies in their enhanced ability to accurately represent the centroids of the class clusters.
To assess their representations of the centroids of the class clusters, we analyze their cosine similarity
with the prototypes of the source and the target domains (P ss and P t∗s) which are constructed
with the ground-truth labels, hence the actual centroids of the clusters. As shown in Fig. 5 (a), it is
observed that as the test-time adaptation proceeds, P ts gradually show high similarity with both P ss
and P t∗s. The high similarity suggests that the EMA target prototypes, P ts, accurately represent the
actual centroids of the class clusters. Further discussion about it continues in the appendix H.

Comparison of the number of samples predicted per class. We find an intriguing observation
which the entropy of EATA+Ours is higher than EATA in Fig. 5 (b) despite its superior accuracy
over EATA. This may appear counterintuitive, as entropy minimization loss is often employed to
enhance performance. Also, in Fig. 5 (c) which shows the remaining reliable samples after exclud-
ing the unreliable samples, it is observed that EATA+Ours retains fewer samples than EATA after
filtering, primarily due to its higher entropy. To investigate the reason behind the high entropy in
EATA+Ours, we plot the number of predicted samples for each class and compare them between
the two methods in Fig. 5 (d). These results are obtained using all the samples from the 16 test
domains. The classes are sorted in descending order of the number of predicted samples for clarity,
with the horizontal dotted line indicating the actual number of samples assigned to each class. In-
terestingly, EATA predicts certain classes much more frequently than others, resulting in a highly
skewed distribution of predicted samples. This implies there is a strong bias in the model that forces
it to predict specific classes more often. In contrast, EATA+Ours distributes predictions more evenly
across the classes compared to EATA. This explains why EATA+Ours exhibits higher entropy, as
it tries to predict more diversely across the classes. This result validates that our proposed terms
alleviate the confirmation bias issue by leading the model to make a more balanced and diverse class
predictions which results in improved accuracy. Result of each domain is in appendix I.

5 CONCLUSION

This paper proposes simple and efficient method of leveraging the prototypes of the source and
the target domains for continual test-time adaptation. Its compatibility with existing CTA methods
makes it a simple plug-and-play component that can be easily applied. The source prototypes are
employed to minimize the distribution shifts between the source and the target domains while the
target prototypes are used to organize the target features into class clusters. The target prototypes
are updated in an EMA manner using the target samples given at test-time. Our findings reveal that
our proposed terms significantly improve the performance of the model with minimal adaptation
time overhead. Furthermore, we observe that our proposed terms alleviate the bias in the model
by encouraging it to make a more balanced predictions across classes rather than favoring specific
classes. We anticipate that our research can serve as a stepping stone for further investigation and
the advancement of more robust continual test-time adaptation methods.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsu-
pervised visual representation learning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9729–9738, 2020.

10



Under review as a conference paper at ICLR 2024

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. Proceedings of the International Conference on Learning Represen-
tations, 2019.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340–8349, 2021.

Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael Spranger. Mecta: Memory-economic con-
tinual test-time model adaptation. In The Eleventh International Conference on Learning Repre-
sentations, 2022.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for modelagnostic
domain generalization. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Minguk Jang, Sae-Young Chung, and Hye Won Chung. Test-time adaptation via self-training with
nearest neighbor information. In International Conference on Learning Representations (ICLR),
2023.

Sanghun Jung, Jungsoo Lee, Nanhee Kim, Amirreza Shaban, Byron Boots, and Jaegul Choo. Cafa:
Class-aware feature alignment for test-time adaptation. arXiv preprint arXiv:2206.00205, 2022.

Seunghyeon Kim, Jaehoon Choi, Taekyung Kim, and Changick Kim. Self-training and adversarial
background regularization for unsupervised domain adaptive one-stage object detection, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
pp. 5637–5664. PMLR, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine
Learning (ICML), 2020.

Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. Ttn: A domain-shift aware batch
normalization in test-time adaptation, 2023.

Hong Liu, Jianmin Wang, and Mingsheng Long. Cycle self-training for domain adaptation. In
Advances in neural information processing systems, 2021a.

Yen-Cheng Liu, Chih-Yao Ma, Zijian He, Chia-Wen Kuo, Kan Chen, Peizhao Zhang, Bichen Wu,
Zsolt Kira, and Peter Vajda. Unbiased teacher for semi-supervised object detection. arXiv preprint
arXiv:2102.09480, 2021b.

Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
dre Alahi. Ttt++: When does self-supervised test-time training fail or thrive?, 2021c.

11



Under review as a conference paper at ICLR 2024

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. Advances in neural information processing systems, 31, 2018.

Yawei Luo, Ping Liu, Tao Guan, Junqing Yu, and Yi Yang. Adversarial style mining for one-shot
unsupervised domain adaptation, 2020.
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A RELATED WORKS

A.1 UNSUPERVISED DOMAIN ADAPTATION

When there is a domain shift, where the distribution of test data differs from that of the training
data, model performance tends to degrade (Ganin & Lempitsky, 2015). Many unsupervised domain
adaptation (UDA) methods have been extensively researched, adapting models to various domain
shifts without additional annotation costs by using labeled source domain data and unlabeled target
domain data during training. Following a seminal work Ganin & Lempitsky (2015), several ap-
proaches (Zhu et al., 2020; Tang & Jia, 2020; Xu et al., 2020; Chen et al., 2019; Shen et al., 2018)
align the feature distribution of both the source and the target domain through adversarial learning
or transforming source domain images into the target style to effectively transfer the task knowl-
edge to the target domain (Zhu et al., 2020; Luo et al., 2020). As another research avenue, several
methods (Kim et al., 2019; Liu et al., 2021a; Zou et al., 2018) have been proposed where models
trained in the source domain are utilized to generate pseudo-labels for the target domain, facilitating
self-training to adapt the model to the target domain. Recently, there has been research in source-
free domain adaptation (SFDA) (Liang et al., 2020), aiming to address the inefficient aspects of
data transferring and privacy leakage issues by adapting models to the target domain using only the
unlabeled target domain data, without relying on the source domain data. It is a challenging task
since it cannot access the labeled source data while adapting the model to the target domain.

A.2 TEST-TIME ADAPTATION

Recently, test-time adaptation (TTA) has garnered substantial attention, adapting models to specific
test domains during inference-time after being deployed to the target data. TTA shares similarities
with SFDA in the aspect of adapting off-the-shelf models pre-trained on source domain to the target
domain without accessing source domain data. However, TTA differs from SFDA that it is an online
learning approach relying solely on the incoming target samples given at inference-time without
repetitively accessing a large amount of unlabeled target domain data, which makes TTA more chal-
lenging in that overall information such as knowing the target domain distribution (Sun & Saenko,
2016a) or clustering the target features (Liang et al., 2020) are not available. Many studies (Wang
et al., 2020; Niu et al., 2022; Lim et al., 2023) efficiently adapt models to the test domain by updating
only the batch normalization layer, following the research (Schneider et al., 2020) that only replacing
the statistics for batch normalization without learning can effectively address domain shifts. These
methods (Wang et al., 2020; Niu et al., 2022) adapt the model to the target domain via entropy
minimization loss so that the predictions inferred by the current model become more confident. Al-
ternatively, there are approaches Su et al. (2022); Jung et al. (2022) that update the entire backbone
so that the distribution of the target domain feature has similar statistics to that of the source on the
premise that the statistics of the source domain features are known. Some other methods Iwasawa
& Matsuo (2021); Jang et al. (2023) entirely freeze the backbone and solely modify the classifier
by leveraging prototypes derived from target domain features based on pseudo-labels. Additionally,
some methods (Sun et al., 2020a; Bartler et al., 2022) modify the model architecture during source
domain training to incorporate self-supervised losses, which are then used as self-supervised losses
for the target data during test time.

A.3 CONTINUAL TEST-TIME ADAPTATION

In practice, the distribution of the test domain can exhibit continuous changes or have correlations
among continuously incoming samples, whereas TTA relies on a strong assumption that test-time
data follows i.i.d, meaning that the distribution of the test-time data does not change and stays
stationary. CoTTA (Wang et al., 2022) first suggests the problem of continual test-time adaptation
(CTA) and proposes corresponding problem setting. It identifies the problem of error accumulation
in existing TTA methods when the distribution of test-time data changes and addresses it by introduc-
ing a teacher-student framework and ensuring that various augmented test samples have consistent
predictions along with stochastic restoration of the weights to the source-trained weights. Following
this, Brahma & Rai (2023) and Döbler et al. (2023) also utilize a teacher-student structure, em-
ploying regularization based on the importance of weights and using symmetric cross-entropy loss,
respectively to robustly update the model and prevent catastrophic forgetting. Additionally, Niu et al.
(2022), which considers the confidence and diversity of samples for model updates, has proven to
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be effective in the context of CTA. Building upon existing TTA methods, Song et al. (2023); Hong
et al. (2022) have proposed techniques to diminish memory consumption, thereby promoting effi-
cient adaptation in CTA.

B IMPLEMENTATION DETAILS

Here, we describe the implementation details of each method in our experiments. We use the code
implemented in MECTA Hong et al. (2022)1 for TENT (Wang et al., 2020), EATA Niu et al. (2022),
and CoTTA (Wang et al., 2022). For other methods, we referenced official implementation of each
method. We use PyTorchh Paszke et al. (2019) framework and a single NVIDIA RTX 3090 GPU for
conducting experiments.

Tent. (Wang et al., 2020) We use the SGD optimizer with a learning rate of 0.0001 and a momentum
of 0.9 for both ImageNet-C and CIFAR100-C datasets.

T3A. (Iwasawa & Matsuo, 2021) We referenced the official code of T3A 2 for its implementation.
Since it is an optimization free method, there is no need for an optimizer as well as a learning rate.
We use 100 for the hyper-parameter M which indicates the M -th largest entropy of the support set.

TSD. (Wang et al., 2023) We referenced the official code of TSD 3 for its implementation. We use
the ADAM (Kingma & Ba, 2014) optimizer with a learning rate of 0.00005 for both ImageNet-C
and CIFAR100-C datasets as mentioned in its paper. We use 3 for the number of nearest neighbors
K, 100 for the entropy filter hyper-parameter M and 0.1 for the trade-off parameter λ following its
implementation details described it its paper.

TTAC. (Su et al., 2022) We referenced the official code of TTAC 4 for its implementation. We
used the implementation version that does not use the queue since saving target data in queue at
test-time costs memory and computation overhead which are not suitable for continual test-time
adaptation. We use the SGD optimizer with a learning rate of 0.0002/0.00001 and momentum of 0.9
for ImageNet-C and CIFAR100-C datasets, respectively. However, when we apply TTAC on EATA,
we follow the implementation details of EATA and use a learning rate of 0.00025 and update only
the batch normalization layers. We use 0.9, 0.9, 1280, 64 for τPP , ξ, Nclip, Nclip k and 0.05/0.5 for
the trade-off parameter of global feature alignment, λ, in ImageNet-C and CIFAR100-C datasets,
respectively, following its official implementation.

EATA. (Niu et al., 2022) We use the SGD optimizer with a learning rate of 0.00025 and a momentum
of 0.9 for both ImageNet-C and CIFAR100-C datasets. The entropy threshold E0 is set as 0.4× lnC
as mentioned earlier in the main paper and the threshold for redundant sample identification, ϵ, is set
to 0.05. The number of samples for calculating Fisher information is set to 2000 and the trade-off
parameter for anti-forgetting loss, β, is set to 2000 as well for both datasets. The moving average
factor to track the average model prediction of a mini-batch for redundant sample identification is
set to 0.1 as mentioned in its implementation details.

CoTTA. (Wang et al., 2022) We use the SGD optimizer with a learning rate of 0.0001 and a momen-
tum of 0.9 for the ImageNet-C dataset, whereas we employ the ADAM optimizer with a learning
rate of 0.001 for CIFAR100-C. The confidence threshold for deciding whether to augment the pro-
vided inputs, denoted as pth, is configured at 0.1/0.72, while the restore probability for generating
masks for stochastic restoration, represented as p, is established at 0.001/0.01 for the ImageNet-C
and CIFAR100-C datasets, respectively. The exponential moving average momentum for the up-
date of the teacher model is set to 0.999 in both datasets. Originally, CoTTA uses the output of the
teacher model for the evaluation, but when we apply our proposed method on CoTTA we use the
output of the student for the evaluation. Also, we use the same learning rate of 0.0001 regardless of
the datasets when applying our method on CoTTA.

RMT. (Döbler et al., 2023) 5 We use the SGD optimizer with a learning rate of 0.01 and a momentum
of 0.9 for the ImageNet-C dataset, whereas we employ the ADAM optimizer with a learning rate

1https://github.com/SonyResearch/MECTA
2https://github.com/matsuolab/T3A
3https://github.com/SakurajimaMaiii/TSD
4https://github.com/Gorilla-Lab-SCUT/TTAC
5https://github.com/mariodoebler/test-time-adaptation
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Table 5: Classification accuracy (%) for the comparison of continual test-time adaptation perfor-
mance on ImageNet-C using the corruption severity level 3.
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Source 27.60 25.04 25.16 37.94 16.86 37.73 35.23 35.19 32.11 46.65 69.62 46.01 55.61 46.20 59.29 76.13 42.02
T3A 44.09 42.59 43.94 36.38 32.79 47.76 48.82 45.46 40.35 58.08 67.29 60.09 62.30 60.01 59.00 70.18 51.20
TENT 52.3 55.46 54.33 45.49 46.14 54.54 53.90 48.43 45.08 58.64 66.58 61.92 65.11 63.46 63.10 70.28 56.55
TTAC 52.77 56.55 54.08 41.24 43.85 54.00 51.60 47.97 43.28 56.66 63.33 50.69 58.61 56.13 56.37 64.96 53.26
TSD 44.51 42.22 43.5 36.14 31.49 49.34 50.05 46.62 40.65 61.26 71.33 63.26 65.64 63.49 62.05 75.15 52.92
Ours-Only 56.07 59.42 58.29 49.94 49.95 57.70 57.49 54.17 49.42 62.41 69.50 67.03 67.90 66.79 65.49 72.30 60.24
EATA 57.2 58.86 58.06 52.50 51.45 60.84 60.29 58.14 51.64 66.52 71.65 68.20 69.65 68.08 66.81 74.53 62.15
EATA + TTAC 57.78 59.86 58.97 53.57 52.38 61.67 61.10 58.87 52.24 67.02 72.20 68.55 69.97 68.45 67.01 74.80 62.78
EATA + Ours 58.23 59.97 59.16 54.10 52.73 61.87 61.09 59.52 52.96 67.11 72.14 68.86 70.05 68.68 67.26 74.93 63.04
CoTTA 45.76 45.94 48.19 40.87 37.90 54.18 54.80 49.82 44.72 62.98 71.26 65.41 67.60 65.36 64.75 74.81 55.90
CoTTA + Ours 56.49 59.28 58.63 51.18 51.19 61.19 60.20 58.74 51.54 65.76 71.68 68.66 69.74 68.62 66.86 74.13 62.12
RMT 51.44 54.38 53.83 48.65 46.64 52.47 51.71 52.63 47.97 58.27 62.51 59.77 63.45 63.16 62.92 67.47 56.08
RMT + Ours 51.33 54.35 54.17 48.77 47.63 53.31 52.97 53.74 49.32 59.11 62.81 60.48 62.74 62.78 62.75 66.35 56.41

Table 6: Classification accuracy (%) for the comparison of continual test-time adaptation perfor-
mance on CIFAR100-C using the corruption severity level 3.

Time tÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→
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Source 36.52 47.18 73.13 76.76 60.61 72.29 75.43 69.59 62.14 72.27 76.63 71.91 73.69 69.10 64.12 78.89 67.52
T3A 38.26 51.24 70.53 74.49 57.82 69.54 73.20 66.64 59.35 69.39 75.21 69.38 70.81 67.23 60.69 76.85 65.66
TENT 62.72 67.77 72.15 77.06 68.72 73.77 76.08 71.64 70.80 73.98 77.45 76.10 74.36 75.24 65.60 77.71 72.57
TTAC 63.24 68.79 71.38 76.04 66.02 71.86 73.88 68.69 67.89 70.76 74.10 71.59 70.27 70.70 61.91 74.38 70.10
TSD 61.64 64.83 68.43 74.72 65.49 71.37 73.46 68.22 67.17 70.54 74.95 72.87 71.65 72.11 62.22 75.32 69.69
Ours-Only 65 70.51 73.50 77.64 69.56 74.09 76.53 72.26 71.46 74.46 76.93 76.10 74.33 75.08 66.01 76.95 73.15
EATA 63.8 68.72 71.77 76.54 68.06 73.21 75.74 71.31 70.70 73.80 77.44 75.49 74.17 74.87 65.72 77.68 72.44
EATA + TTAC 62.74 65.01 64.84 67.67 61.47 64.95 67.37 64.86 64.58 65.61 67.92 65.81 66.60 67.35 62.09 68.28 65.45
EATA + Ours 65.59 70.29 73.54 77.69 69.92 74.21 76.75 72.54 72.46 75.05 78.15 77.22 75.26 76.10 67.19 78.21 73.76
CoTTA 63.32 67.13 69.73 75.64 69.14 73.31 75.06 71.43 70.37 73.19 76.06 74.94 74.08 74.99 68.93 76.39 72.11
CoTTA + Ours 64.25 68.07 71.87 76.38 69.09 73.45 75.76 72.51 71.31 74.24 77.45 75.95 74.57 75.31 67.56 77.40 72.82
RMT 66.39 70.57 73.36 77.80 73.32 76.20 77.74 75.98 76.02 77.33 78.61 78.38 78.39 78.50 75.15 78.87 75.79
RMT + Ours 66.74 71.44 74.11 77.44 74.02 76.37 77.67 76.35 76.47 77.42 78.21 78.10 77.97 78.08 75.84 78.18 75.90

of 0.0001 for CIFAR100-C. The number of samples for warm up is set to 50,000 and the trade-off
parameters for contrastive loss and the source replay loss are set as 1. The temperature for contrastive
loss and the exponential moving average momentum for teacher model update are set to 0.1 and
0.999, respectively. Note that RMT is not a source-free method since is employs source-replay loss
during test-time adaptation which requires source domain data even at the test-time. Other than
the source replay loss, it also employs contrastive loss which makes the overall loss term of RMT
intricate. Therefore, when we apply our proposed terms on RMT, we use different values of λema

and λsrc. For ImageNet-C, we use λema = 0.5 and λsrc = 0.01 while we use λema = 1.0 and λsrc =
0.01 in CIFAR100-C.

We adhere to the hyper-parameters as detailed in the paper or the official implementation of each
method. Nevertheless, for some methods, we fine-tuned the learning rate to align with our continual
test-time adaptation setting, maintaining a fixed batch size of 64.

C RESULTS ON DIFFERENT SEVERITY LEVEL

Table 5 and 6 show the performance comparison between methods with the corruption severity level
3 on the two benchmarks, ImageNet-C and CIFRA100-C under the continual test -time adaptation
setting. Even with a lower severity level of corruption, Our proposed terms consistently contribute to
the improvement of performance when applied to baseline methods. It is also worth highlighting that
Ours-only demonstrates significant performance independently as well, without relying on existing
methods.

D CONSISTENCY LOSS WITH STRONG AUGMENTATION

Employing consistency loss between original input and its augmented version is a widely used tech-
nique in semi/self-supervised learning to improve the generalization capacity of the model (Chen
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Table 7: Ablation study of consistency loss on ImageNet-C using the corruption severity level 5.
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EATA 34.66 40.40 39.39 34.08 34.99 46.51 52.82 50.33 45.83 59.12 67.27 45.17 57.13 59.99 55.46 73.80 49.81
EATA + Ours 36.17 41.77 40.83 35.98 37.24 48.89 54.28 52.15 47.46 60.23 67.94 48.01 58.26 61.26 56.37 74.20 51.32
EATA + Ours + Lcons 36.66 42.33 41.41 36.25 37.57 48.91 54.04 52.58 47.65 60.34 67.94 48.39 58.22 61.36 56.56 74.27 51.53
EATA + Ours + Lcons(CoTTA-Aug) 35.15 40.30 39.50 33.92 35.83 47.38 53.06 51.20 46.62 59.54 67.26 47.12 57.48 60.49 55.77 73.72 50.27
CoTTA 16.15 18.53 19.91 18.52 19.58 31.13 43.07 36.92 36.15 51.18 65.35 23.50 47.71 52.17 44.82 73.99 37.42
CoTTA + Ours 30.06 37.51 36.72 26.86 30.65 42.34 49.64 47.53 44.15 56.65 67.13 37.73 55.98 59.81 54.68 73.17 46.91
CoTTA + Ours + Lcons 31.38 39.62 38.97 28.78 32.16 43.25 50.39 48.93 44.34 57.10 67.07 39.35 55.69 59.74 54.75 72.49 47.75
CoTTA + Ours + Lcons(CoTTA-Aug) 27.57 34.75 35.07 27.60 30.50 42.37 49.56 46.66 43.31 55.85 66.73 39.35 54.70 58.77 53.22 73.19 46.20

et al., 2020; He et al., 2020; Grill et al., 2020; Liu et al., 2021b; Sohn et al., 2020). Since TTA is
also a kind of unsupervised learning, it adopts such strategy as well. CoTTA (Wang et al., 2022) is
the first TTA work to propose the use of EMA teacher network and employing the consistency loss
between the outputs of the teacher and the outputs of the student with various augmentations on the
inputs to the teacher network. However, we find that consistency loss can achieve better performance
with stronger augmentation strategy and even without the use of the teacher network.

We do not employ the teacher network and give two versions of input (original and strong aug-
mented version) to the network. Instead of using the augmentations used in CoTTA, we adopts aug-
mentations proposed in Liu et al. (2021b) which employs randomly adding color jittering, grayscale,
Gaussian blur, and cutout patches.

Lcons(gθ, xt,A) = −
C

∑
c

(σ(gθ(xt)) ⋅ log(σ(gθ(A(xt)))))c (5)

The consistency loss is defined as the cross-entropy loss between the outputs of the two inputs
(original and its augmented version) predicted by the same network gθ where A and σ refer to the
augmentation and the softmax operation. Lcons can be additionally incorporated with a balancing
trade-off parameter, λcons which makes the overall objective as follows:

Loverall = Lunsup + λemaLema + λsrcLsrc + λconsLcons. (6)

We apply the consistency loss to both EATA+Ours and CoTTA+Ours to demonstrate its effective-
ness. Table 7 presents the respective results, clearly indicating that Lcons contributes to performance
improvement. Particularly, its impact is more pronounced when applied to CoTTA. However, when
we use the augmentation strategies proposed in CoTTA forA, denoted as Lcons(CoTTA-Aug) in the
table, the performance rather deteriorates. This result emphasizes the importance of using a proper
augmentation strategy for the consistency loss. Our experiment suggests that using strong augmen-
tation such as random cutout patches is indeed effective.

Table 8: Ablation study of λema on Ours-Only using the ImageNet-C
λema 1 2 3 4 5
Acc. (%) 45.20 45.96 44.69 34.29 26.55

Table 9: Ablation study of λsrc on Ours-Only using the ImageNet-C
λsrc 10 20 30 40 50 60 70
Acc. (%) 45.58 45.96 45.86 45.65 45.29 43.44 41.01

E ABLATION STUDY ON TRADE-OFF TERMS λema AND λsrc OF OURS-ONLY

As mentioned in the implementation details described in Section 4, when our proposed loss terms
are used independently without integration into existing methods, we use λema=2 and λsrc=20.
Table 8 and 9 show the ablation study of λema and λsrc with different values when our proposed
terms are solely used without Lunsup. When examining the effect of λema, λsrc is set at 20, whereas
when investigating the impact of λsrc, λema is configured to 2. The accuracy in the tables are an
average accuracy over the 16 test domains. Table 8 illustrates that the performance reaches its peak
at λema = 2, and it experiences a sharp decline when values exceed 3. Similarly, Table 9 reveals
that similar performance is maintained from 10 to 50, achieving over 45% accuracy, but it sharply
declines when values surpass 50.
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Table 10: Performance comparison between soft label and hard label for Lema on ImageNet-C
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EATA 34.66 40.40 39.39 34.08 34.99 46.51 52.82 50.33 45.83 59.12 67.27 45.17 57.13 59.99 55.46 73.80 49.81
EATA + Ours Hard Label 36.17 41.77 40.83 35.98 37.24 48.89 54.28 52.15 47.46 60.23 67.94 48.01 58.26 61.26 56.37 74.20 51.32
EATA + Ours Soft Label 35.89 41.60 40.80 35.72 37.30 48.82 54.33 52.07 47.42 60.28 68.04 48.05 58.35 61.29 56.34 74.31 51.29

Table 11: Performance comparison between student output and teacher output of CoTTA + Ours on
ImageNet-C

Time tÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→
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CoTTA 16.15 18.53 19.91 18.52 19.58 31.13 43.07 36.92 36.15 51.18 65.35 23.50 47.71 52.17 44.82 73.99 37.42
CoTTA + Ours Teacher Output 21.75 33.04 36.38 25.07 30.68 39.15 47.03 41.41 41.80 52.41 65.50 35.47 51.56 56.23 51.52 72.38 43.84
CoTTA + Ours Student Output 30.06 37.51 36.72 26.86 30.65 42.34 49.64 47.53 44.15 56.65 67.13 37.73 55.98 59.81 54.68 73.17 46.91

F COMPARISON OF HARD LABEL AND SOFT LABEL FOR Lema

We use the pseudo-label ỹt when calculating loss Lema. The pseudo-label can take the form of a
one-hot vector, serving as a hard label, or it can be used as the raw logit output of the model, acting
as a soft label. When using the soft-label, we minimize the cross-entropy loss between the output
of the EMA target prototypes and the soft pseudo-label. The output of the EMA target prototypes
refers to a logit, ztema ∈ RC , produced by dot-producting fϕ(xt) with every P t

c for each class. In
the main paper, we present results using the hard label representation. However, to delve deeper into
the mechanism of Lema, we perform a performance comparison using both versions of the pseudo-
label, as summarized in Table 10. As demonstrated in the table, there is no significant distinction
between the two versions of the pseudo-label, although the hard-label version exhibits slightly better
performance.

G COMPARISON OF STUDENT OUTPUT AND TEACHER OUTPUT OF
COTTA+OURS

As specified in the implementation details, CoTTA originally uses the output of the teacher network
for evaluation, but we employ the output of the student network when applying our proposed loss
terms on CoTTA. Table 11 presents a performance comparison between CoTTA+Ours using the
output of the teacher and the output and the student. As demonstrated in the table, using the teacher
network’s output yields inferior performance compared to the student network’s output, yet it still
significantly outperforms CoTTA without our proposed terms. We hypothesize that the reason for
the student output’s superior accuracy is that our proposed loss terms directly impact the student
network, whereas the teacher network undergoes slow updates through exponential moving average.

H SIMILARITY ANALYSIS OF P t WITH P s AND P t∗ .

Fig. 6 shows the results of our similarity analysis of P t with P s and P t∗ . After the model sees all
the samples of a target domain, we measure the cosine similarity between the P ts and the P ss and
the P ts and P t∗s for the target domain. We report the cosine similarity averaged over the classes,
1
C ∑

C
c=1 cos(P t

c , P
s
c orP

t∗

c ) where cos denotes cosine similarity. The blue plot shows the similarity
with the source prototypes, P s, while the red plot shows the similarity with the target prototypes
P t∗ . Note that P t∗s are computed using the ground truth labels, so they represent the actual cen-
troids of the class clusters of the target domains. As shown in the figure, as the adaptation proceeds,
the similarity with both the source and the target prototypes increase. It implies that as P ts are
slowly updated in an EMA manner with the features of the reliable samples, they better represent
the true centroids of the class clusters. We also observe that the similarity with the source proto-
types smoothly increases as the adaptation goes on. We conjecture this is due to our proposed source
prototype alignment loss Lsrc which regulates the feature extractor fϕ to align the target feature dis-
tribution to that of the source. Also, the tendency of increasing similarity with the target prototypes,
P t∗ indicates that even though P ts are updated using the pseudo-label information, since only reli-
able samples are employed, they succeed in maximizing similarity with the ground-truth prototypes,
P t∗ . In summary, this analysis justifies the employment of our suggested EMA target prototypes.
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Figure 6: Cosine similarity analysis of P t with P s and P t∗ for each target domain as the adaptation
proceeds.

I PREDICTION BIAS ANALYSIS OF EACH TARGET DOMAIN

In Fig. 5 (d), we compared the number of predicted samples per class between EATA and
EATA+Ours, demonstrating that our proposed terms contribute to a more unbiased prediction of
the model, encouraging the model to predict more diverse classes. Since Fig. 5 (d) shows the results
summed over the all 16 domains, in Fig. 7, we break down the results by each domain and show
the individual result of each domain. It is observed that the domains which the model shows high
accuracy (brightness, original), also achieves a more balanced number of predicted samples per class
across the classes. Conversely, in domains where the accuracy is low, we observe a significant bias in
predictions, indicating that the model tends to favor certain classes excessively over others, making
more frequent predictions on those classes. Overall, the bias is mitigated across all domains when
our proposed terms are incorporated. EATA+Ours decreases predictions on the classes that EATA
predicts frequently, instead, it increases predictions on the classes with a low number of predictions
by EATA. Indeed, these findings confirm that our suggested terms effectively encourage the model
to generate predictions that exhibit increased diversity among different classes. This mitigates the
bias of the model towards favoring certain classes and, consequently, contributes to addressing the
confirmation bias problem.

J LIMITATION AND FUTURE WORK

Even though our proposed EMA target prototypical loss and source distribution alignment loss in-
deed contribute to significant performance improvement, there are some limitations to our work that
can be further developed. The trade-off terms, λema and λsrc for out proposed loss terms need to be
fine-tuned depending on the specific method to which our proposed approach is applied. However,
we have observed that it requires minimal effort to identify suitable values for these parameters, typ-
ically falling within the range of 1 to 2 for Lema and 20 to 50 for Lsrc. Since both Lema and Lsrc

rely on pseudo-labels for their computation, they can potentially result in the incorrect computation
because pseudo-labels are not always accurate. To address this issue, we take measures to use only
reliable samples for the computation of the loss terms. However, there is room for improvement in
how we leverage pseudo-labels, such as refining them to be more precise or exploring alternative
information sources for computing the loss terms.

Filtering out unreliable samples with high-entropy, is indeed an effective and efficient method to
boost performance and enable efficient adaptation since it reduces the number of samples for adap-
tation by excluding unreliable samples. However, looking at it from a different perspective, if we
can find ways to effectively harness these unreliable samples during test-time adaptation, they have
the potential to make a substantial contribution to performance gains, as they represent challenging
data that can introduce new insights. Disregarding high-entropy samples may inadvertently result in
the loss of valuable information. Future research could focus on strategies to leverage the potential
of these high-entropy samples and extract meaningful knowledge from them. We look forward to fu-
ture research endeavors that aim to tackle the aforementioned limitations and explore the suggested
avenues for future work.

19



Under review as a conference paper at ICLR 2024

Figure 7: The comparison between EATA and EATA+Ours on the number of predicted samples per
class.

20


	Introduction
	Problem Definition
	Proposed Method
	EMA Target Domain Prototypical Loss
	Source Distribution Alignment via Prototype Matching
	Overall Objective

	Experiments
	Performance Comparison
	Analysis

	Conclusion
	Related works
	Unsupervised Domain Adaptation
	Test-Time Adaptation
	Continual Test-Time Adaptation

	Implementation details
	Results on different severity level
	Consistency loss with strong augmentation
	Ablation study on trade-off terms ema and src of Ours-Only
	Comparison of hard label and soft label for Lema
	Comparison of student output and teacher output of CoTTA+Ours
	Similarity analysis of Pt with Ps and Pt*.
	Prediction bias analysis of each target domain
	Limitation and Future Work

