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Abstract: Ensuring safe interactions in human-centric environments requires
robots to understand and adhere to constraints recognized by humans as “com-
mon sense” (e.g., “moving a cup of water above a laptop is unsafe as the water
may spill” or “rotating a cup of water is unsafe as it can lead to pouring its con-
tent”). Recent advances in computer vision and machine learning have enabled
robots to acquire a semantic understanding of and reason about their operating
environments. While extensive literature on safe robot decision-making exists,
semantic understanding is rarely integrated into these formulations. In this work,
we propose a semantic safety filter framework to certify robot inputs with respect
to semantically defined constraints (e.g., unsafe spatial relationships, behaviours,
and poses) and geometrically defined constraints (e.g., environment-collision and
self-collision constraints). In our proposed approach, given perception inputs, we
build a semantic map of the 3D environment and leverage the contextual reason-
ing capabilities of large language models to infer semantically unsafe conditions.
These semantically unsafe conditions are then mapped to safe actions through a
control barrier certification formulation. We evaluated our semantic safety filter
approach in teleoperated tabletop manipulation tasks and pick-and-place tasks,
demonstrating its effectiveness in incorporating semantic constraints to ensure
safe robot operation beyond collision avoidance.

Keywords: Robot Safety, Safe Control, Robot Manipulation, Semantic Constraint
Satisfaction

1 Introduction

Safety is a key issue in robotics and has been addressed from different perspectives. In safety-
critical control, the goal is usually to guarantee set invariance (i.e., to prevent a system from leaving
a certain safe set) [1]. Based on this definition of safety, various safety filters have been developed
in recent years, which can be applied to detect unsafe control inputs and modify them into safe ones
in a minimally invasive manner [2, 3]. Existing safety filters such as control barrier function (CBF)
safety filters [4] or predictive safety filters [3] can provide theoretical safety guarantees in terms of
set invariance. Still, they assume that the safety constraints are given and explicitly defined in the
robot’s state space. As a result, safety filters in robotics are often restricted to geometrically defined
constraints (e.g., environment-collision constraints).

For robots to operate safely in human-centric environments, they must not only adhere to such
geometrically defined constraints but also to constraints that reflect “common sense” (see Figure 1).
In this work, we refer to such constraints as semantic constraints. For an example of such semantic
constraints, consider a manipulator carrying a filled cup of water over a table. To ensure the robot
operates safely, it must avoid going over electronic devices due to the risk of spillage. Hence,
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Figure 1: We propose a semantic safety filter framework that leverages semantic scene understanding and
contextual reasoning capabilities of large language models to certify robot motions with “common sense”
constraints. For example, if a manipulator is carrying a cup of water, our proposed semantic safety fil-
ter prevents moving the cup above a laptop in the environment to prevent potential spillage (top). On
the contrary, if the robot is tasked to transport a dry sponge, it is allowed to move over a laptop (bot-
tom). An overview of the work with experiment demonstration results can be found on our website
https://utiasdsl.github.io/semantic-manipulation/, our full paper https://tiny.cc/semantic-filter-paper, and in our
short video https://tiny.cc/semantic-manipulation.

the semantic constraint should keep the end effector away from the overhead of entities whose
semantic labels identify them as electronic devices. Additionally, the robot should avoid rotating
the cup too much to prevent pouring its content and move slowly close to objects sensitive to water.
Such semantic constraints are not necessarily “visible,” but are critical for real-world applications.
Constructing such semantic constraints requires an accurate representation of the 3D environment
and a comprehensive understanding of unsafe environment interactions.

The development of large language models (LLMs) [5] and vision-language models (VLMs) [6] has
led to significant advances in reasoning about 3D environments [7, 8]. Many recent works leverage
these capabilities for language-based decision-making (e.g., to modify robot behavior [9] or to infer
affordability [10]). However, systematically mapping semantic understanding to constraints remains
underexplored.

In this work, we focus on robot manipulation and present a semantic safety filter that enables robots
to reason about and adhere to semantically defined constraints by tightly coupling safe control, 3D
perception, and LLMs (see Figure 1). Our contributions are as follows: (i) We formulate a semantic
CBF safety filter framework that exploits the metric-semantic information from a 3D environment
map and reasoning capabilities of LLMs for safe robot manipulation. (ii) Based on environment
perception and reasoning, we define three types of semantic constraints: (i) spatial relationship con-
straints (e.g., do not move the candle below the balloon), (ii) behavioral constraints (e.g., be slower
or more cautious when holding a knife), and (iii) pose-based constraints (e.g., a cup of water may
not be tilted to avoid spillage). (iii) We demonstrate our framework through hardware experiments
using teleoperated and pick-and-place manipulation tasks. Our results verify the efficacy of our
framework in satisfying semantic constraints and highlight the potential of integrating a high-level
semantic understanding into safe decision-making.

2 Related Work

2.1 Safe Robot Manipulation

In robot control, safety is often defined as ensuring the system does not violate state constraints.
This can be achieved by guaranteeing set invariance, which means that once the system’s state is
initialized in a predefined safe set, it remains within that set for all future times under the given con-
trol inputs [1]. Traditional approaches achieve safety or collision avoidance through collision-free
trajectory generation and high-accuracy tracking control [11]. More recently, model predictive con-
trol (MPC), learning-based MPC, and geometric control methods have also been applied to enable
collision-free manipulation [12, 1, 13]. Over the past two decades, safety filters, including control
barrier functions (CBFs) [4, 14], Hamilton-Jacobi-reachability analysis [15] and predictive control
techniques [3], have evolved, providing a modular approach to address safe control problems [1].
Safety filters can be combined with any controllers and certify potentially unsafe control inputs in a
minimally invasive manner [2]. Existing approaches in safe robot control are often used for geomet-
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rically defined constraints [14, 13] and often assume the constraints are given ahead of time. How to
translate semantically defined constraints to compatible analytical forms has rarely been addressed
in the safe control literature.

2.2 Semantic 3D Representation and Spatial Reasoning

There has been extensive work on efficient semantic representation of robots’ operating environ-
ments. Facilitated by the advances in machine learning techniques, semantic information can be
efficiently distilled from perception inputs (e.g., through object detection and segmentation) [16].
This semantic information has been integrated into 3D mapping and simultaneous localization and
mapping (SLAM) algorithms [17] to create consistent instance-level or object-level maps [18, 19].
To further facilitate their usage in downstream tasks, sparse representations such as 3D scene graphs
have been proposed as an abstraction of dense metric-semantic maps to capture essential relation-
ships of entities in the environment [20]. Recently, developments in LLMs and VLMs have further
enabled open-vocabulary object detection, which has been applied to instance segmentation [8] and
scene graph generation [7], extending 3D environment representations beyond closed sets of pre-
defined objects. While semantic information is becoming an integral part of the state-of-the-art 3D
environment representations, the semantic environment understanding has not been fully exploited
in downstream safe control tasks.

2.3 Language-Conditioned Robot Decision-Making

Recently, due to the emergence of foundation models such as CLIP [21] and the GPT series [5], there
has been a significant advancement in the field of language-conditioned decision-making, including
language-aided object grounding [7, 22], manipulation [23, 24] and navigation [25]. LLMs and
VLMs are deployed to perform the following functions in this regard such as code writing [25,
26], task planning [27, 28], and verifying robot behavior [29], where the ability to understand or
output textual information in natural language is crucial for these applications. Notably, the open-
vocabulary capabilities of foundation models are utilized in this field. Similarly, we leverage these
capabilities in LLMs to identify semantically unsafe conditions without pre-defining object classes.

3 Problem Statement

In this work, we consider a tabletop manipulation setup where objects are placed on a flat surface,
and a robot manipulator is tasked to transport an object in the task space using teleoperation com-
mands or a high-level motion policy (see Figure 2). Generally, the teleoperation input or motion pol-
icy can be unsafe. Our goal is to design a language-aided safety filter that guarantees safe operation
with respect to both semantically defined constraints Csem (i.e., spatial relationship-based, behaviour-
based, and pose-based constraints) and geometrically defined constraints (i.e., environment-collision
constraints Cenv and self-collision constraints Cself). We assume that the system can perceive and rea-
son about its environment through a set of RGB-D images {Icam,f} of the scene and the associated
camera poses {Tcam,f}, where f denotes the frame index.

We note that the term semantic constraint has scenario-dependent definitions in the literature (e.g.,
such as grasp types and trajectory constraints for robotic hands [30]). We refer to semantic con-
straints as the task-space constraints on a robotic manipulator’s end effector that are related to high-
level semantic concepts (e.g., “not moving a filled cup of water over electronic devices” and “not
rotating a cup of water to avoid spilling its content”). In contrast to typical collision avoidance
constraints, semantically unsafe states are not necessarily “visible” (i.e., occupied by objects), and
synthesizing the semantic constraints requires a high-level understanding of the environment and the
manipulated object. In this work, we leverage the perception inputs, a model of the robot system, and
an LLM to design a safety filter that guarantees semantic safety while also avoiding self-collisions
and collisions with the environment.
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Figure 2: An overview of our proposed semantic safety filter framework. The perception module segments
the visual input and builds a semantic world representation. The LLM is queried based on the list of semantic
labels and the manipulated object. It outputs the semantic context S, which contains a list of unsafe spatial
relationship-based semantic constraints for each object in the scene, a list of behavioral-based semantic con-
straints, and a pose-based semantic constraint. The semantic context, together with the point clouds of the
objects in the scene, are then used to define safe sets for our proposed semantic safety filter. Additionally,
based on the semantic context, the safety filter’s parameters are adapted, for example, to prevent end effector
rotations or to approach certain objects more carefully. At each time step, a high-level uncertified command
from a human operator or a motion policy is mapped to the joint velocity ucmd through differential inverse
kinematics, certified by the proposed semantic safety filter, and then sent to the robot system.

4 Methodology

In this section, we present the components of our proposed semantic safety filter framework. An
overview of our proposed framework is shown in Figure 2. Given a set of RGB-D images and
the associated camera poses, we first generate a semantic map of the 3D environment (Section 4.1).
Then, a set of semantic constraints is synthesized using the semantic map and the LLM (Section 4.2).
Finally, a semantic safety filter is formulated to account for the semantic constraints (Section 4.4).

4.1 3D Environment Map Generation

The semantic constraints synthesis depends on a 3D environment representation that supports se-
mantic reasoning for downstream planning and control tasks. This motivates a language-embedded
representation approach. In this work, we construct an open-vocabulary object-level representation
of the 3D environment [7, 8] to aid our safety filter design.

The input to the 3D environment map generation module is a set of RGB-D frames {Icam,f} along
with the camera poses {Tcam,f}. The RGB-D images are segmented [16], and every resulting
segmentation mask is embedded [21] to generate segmented point clouds pf,i and their associated
class-agnostic embeddings ff,i for each object i in each frame f . The segmented object-level point
clouds pf,i together with the associated camera poses Tcam,f and feature vectors ff,i are then used
to associate objects across multiple views based on geometric and semantic similarities [7]. The
per-frame information is incrementally fused to create a consistent object-level point-cloud repre-
sentation of the 3D environment. The output of the map is a set of point clouds pi and embeddings fi
for each object in the scene. Similar to [8, 7], we map the embeddings to labels li by embedding a
list of object classes and selecting the pair of embeddings with the highest similarity as the label.

4.2 Semantic Constraint Synthesis

We distinguish among three types of semantic safety: (i) unsafe spatial relationships between the
object manipulated by the robot and the objects in the scene (e.g., “do not move the candle below the
balloon”), (ii) behavioral constraints, such as constraints on the end effector velocity based on the
manipulated object and the scene objects (e.g., “be slower or more cautious when holding a knife”),
and (iii) pose constraints on the end effector dependent on the manipulated object (e.g., “keep the cup
of water upright to avoid spillage”). Such semantic constraints are object- and scene-dependent, and
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manually specifying them would be tedious. Therefore, we employ an LLM to synthesize semantic
constraints in an automated manner.

We design a language prompt for the LLM, which consists of multiple request-answer pairs as
examples and a final request as the true query. Each request contains the following components: (i)
a high-level description of the scene, (ii) the object the robot is manipulating, and (iii) a particular
object that appears in the scene. The requests are repeated for every object in the scene. Using these
requests, we determine three sets of semantic constraints. First, the set of unsafe spatial relationships
is Sr(o) = {(li, ri)}Nr

i=1, where o is the manipulated object (e.g., cup of water), li is an object
in the scene (e.g., laptop, book, etc.), ri is an unsafe spatial relationship (e.g., above, under, or
around), and Nr is the number of unsafe spatial relationships. Second, the set of unsafe behaviours
is Sb(o) = {(li, bi)}Nb

i=1, where bi indicates caution or no caution and Nb is the number of
unsafe behaviours. Finally, the pose-based constraint set is ST(o) = {T}, where T specifies the
end effector orientation constraint (rotation locked or free rotation). The set of semantic
constraints is the union of all the semantic constraints listed above: S(o) = Sr(o) ∪ Sb(o) ∪ ST(o).
For the o = cup of water transportation example in the scene with only l0 = laptop, we have
Sr(o) = {(laptop, above)}, Sb(o) = {(laptop, caution)}, and ST(o) = {rotation locked}.

Our proposed semantic safety filter is designed based on the control barrier certification framework.
In the following, we describe how we design the CBF safety filter using S(o). To facilitate our
discussion, we first introduce the necessary notation for the robot kinematics. We denote the joint
positions by q ∈ Rn (with n = 7 in our case) and, similar to [14], assume direct control over
the joint velocity q̇, (i.e., q̇ = u), which can be achieved via standard lower-level motion control
techniques [31]. The robot’s end effector position and velocity can be related to its joint position
and velocity as xee = fFK(q) and ẋee = J(q) q̇, where fFK : Rn 7→ R3 and J(q) ∈ R3×n are the
translational component of the forward kinematics and the associated Jacobian matrix, respectively.

4.2.1 Spatial Relationship Constraints

The semantic constraint sets are parameterized as the super-level sets of continuously differentiable
functions hsem. Intuitively, the CBF certification framework ensures the positive invariance of the
semantically safe set. This means that if the robot does not violate the semantic constraint initially, it
will not violate it for all future times. For each pair (li, ri) in Sr(o), based on the point cloud pi of the
object li and the undesirable spatial relationship ri, we define a differentiable function gi : R3 7→ R
to capture the set of points which the robot end effector should not move into to preserve semantic
safety. The semantically safe set can be expressed as

Csem =
{
xee ∈ R3 | gi(xee;θi) ≥ 1, i = 1, . . . , Nr

}
,

where xee = [x, y, z]T ∈ R3 denotes the end effector position and θi are parameters dependent on
the object point cloud pi and the relationship ri.

For the {laptop, above} example (as also illustrated in Figure 3), we can define the semantically
unsafe sets as a differentiable approximation using a superquadric [32]:

gi(xee;θi) =

((
τ1(xee)

ax,i

) 2
ϵ2,i

+

(
τ2(xee)

ay,i

) 2
ϵ2,i

) ϵ2,i
ϵ1,i

+

(
τ3(xee)

az,i

) 2
ϵ1,i

,

where ϵ1,i and ϵ2,i define the shape of the superquadric and ax,i, ay,i, and az,i are scaling param-
eters, and τ1, τ2, and τ3 transform the end effector coordinates into the superquadric’s coordinate
frame. To improve nonconvex objects’ representations, we create unions of superquadrics to accu-
rately fit spatial constraints. For example, we fit separate superquadrics for the part of the laptop’s
point cloud that resembles the keyboard and the screen. This segmentation by parts can be achieved
by leveraging plane detection algorithms or learned segmentation models [33]. To account for the
spatial relationship above, we extend the point cloud in its positive z-direction. For the exten-
sion, we duplicate the point cloud and set the duplicate’s z coordinates to be outside of the robot’s
workspace and fit the superquadric based on the union of the original and the expanded point cloud.
For other spatial relationships such as under and around, we define similar superquadrics.
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Figure 3: Examples of the environment collision and semantic constraints enforced by our proposed semantic
safety filter. For each scene, environment collision constraints are generated based on the point clouds of indi-
vidual objects while the semantic constraints are synthesized based on the point clouds and labels of individual
objects as well as the semantic safety conditions from the LLM. The semantic safety conditions are further cat-
egorized into spatial relationship constraints (blue text), behavioural constraints (orange text), and end effector
pose constraints (green text).

To achieve spatial semantic safety with respect to the semantic constraint set Csem, we define a vector
of CBFs hsem(xee) where the i-th element ishsem,i(xee) = gi(xee;θ1) − 1. By using the forward
kinematics model, we can express the semantic constraint set based on the CBFs above in the robot’s
configuration space as Csem = {q ∈ Rn | hsem(fFK(q)) ≥ 0} , which yields our desired safe set.

4.2.2 Behavioral Constraints

The behavioral constraints are implemented using constraints on the time derivative of the CBF,
which is the control invariance condition in [4]. The constraint is

ḣsem(q,u) = Hsem(q)J(q) u ≥ −αsem(hsem(q);Sb(o)),

where Hsem(q) = ∂hsem
∂xee

∣∣∣
xee=fFK(q)

and αsem is a vector of class K∞ functions (i.e., real-valued

functions that pass through the origin and are strictly increasing). Intuitively, the condition bounds
how fast the robot system is allowed to approach the semantic safety boundary through the design of
αsem and ensures that the constraints defined by hsem are always satisfied (i.e., the set Csem is forward
invariant) [4]. In particular, we design the class K∞ to adhere to behavioral semantic constraints bj
from Sb(o) such that the system approaches the safe set boundary of the object with label lj more
slowly and exhibits the desired level of caution. For example, for the case bj = caution, we
reduce the steepness of αsem,j . In that case, we also write αsem,j(·; caution) = αsem,cautious,j(·).
This reduction can be achieved by using a class K∞ that is strictly smaller than αsem,j for positive
hsem,j . A straightforward way to generate such a function is by multiplying the function αsem,j with
a positive scalar less than 1.

4.2.3 Pose Constraints

The pose constraint is active if ST(o) = {rotation locked}. In that case, we add the following
constraint:

∆ψmin ≤ log(RdesR
T
cur)

∨ −ψ ≤ ∆ψmax ,

whereRdes is the desired rotation of the end effector (the end effector’s initial orientation during the
object’s pick-up),Rcur is the current rotation of the end effector, ψ = Jo(q)u∆t is the predicted ro-
tation of the end effector at the next timestep (t+∆t) with Jo(q) being the Jacobian relating the joint
velocity to the angular velocity of the end effector, (·)∨ denotes the inverse of the skew-symmetric
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operator (·)∧ [34], and ∆ψmin and ∆ψmax are the tolerated orientation errors. In our implemen-
tation, we leverage a softened formulation for this constraint to make the approach less prone to
infeasibility. We express the softened pose constraint using the objective wrot(ST(o))

TLrot(q,u).
The weight wrot ∈ R2 is determined based on the semantic context T in ST. The end effector is
free to rotate if T = free rotation (e.g., no object is being held) with wrot = 0, but wrot > 0
if T = minimize rotation (e.g., a cup of water is being manipulated to prevent spilling). The
vector Lrot is

Lrot(q,u) =
[
∥ log(RdesR

T
cur)

∨ −ψ∥22 ∥ψ∥22
]T

,

where the first element represents the cost for the difference between the predicted orientation at the
next timestep and the desired orientation of the manipulator’s end effector and the purpose of the
second element is to prevent the end effector from rotating too fast and to keep perturbations small.

4.3 Geometric Constraints

In addition to semantic constraints, we require the robot to adhere to geometric constraints, which
include environment-collision and self-collision constraints. We incorporate these additional con-
straints into two more vectors of CBFs henv(q) and hself(q). The environment-collision constraints
are defined based on CBFs using superquadrics fitted to the point clouds pi (see previous section);
the self-collision constraints are formulated by placing multiple spherical CBFs along the body of
the robot, similarly as in [14].

4.4 Semantic Safety Filter Formulation

Given the semantic constraints Csem and the set S, our goal is to modify potentially unsafe commands
sent by a human operator or coming from a motion policy. As depicted in Figure 2, in our setup, we
send the desired end effector velocity commands ẋee, cmd, which are converted to desired joint veloc-
ity commands ucmd using differential inverse kinematics. The semantic safety filter then computes
a certified input ucert that best matches the desired joint velocity ucmd while ensuring semantic and
geometric constraint satisfaction. The semantic safety filter is formulated as

ucert = argmin
u∈U

∥u− ucmd∥22 +wrot(ST(o))
TLrot(q,u)

s. t. ḣsem(q,u;Sr(o)) ≥ −αsem(hsem(q);Sb(o))

ḣenv(q,u) ≥ −αenv(henv(q);Sb(o))

ḣself(q,u) ≥ −αself(hself(q))

ḣlim(q,u) ≥ −αlim(hlim(q)) ,

(1)

where we made the dependency on the semantic context S(o) explicit, added joint angle and veloc-
ity constraints through additional CBFs hlim(q), and αenv, αself, αlim ∈ K∞. The first term in the
cost function minimizes the difference between the certified input and the desired input command,
while the second term penalizes rotations away from the desired rotation. The four sets of inequal-
ity constraints in (1) correspond to the semantic spatial relationship-based, environment-collision,
self-collision, and joint angle and velocity constraints. The class K∞ functions define behavioral
semantics for each constraint, and the objective provides softened posed-based safety constraints.
The semantic safety filter optimization problem (1) is a QP that can be efficiently solved online.
Overall, the semantic safety filter in (1) finds a control input that best matches the desired input
while ensuring all constraints are satisfied.

5 Conclusion

This work proposes a semantic safety filter framework combining semantic scene understanding
and contextual reasoning capabilities of LLMs with CBF-based safe control. Our framework allows
satisfying constraints that are “invisible” in a 3D map but considered “common sense” while also
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guaranteeing collision-free motion and adherence to robot-specific constraints. We demonstrate
the effectiveness of our framework in several real-world manipulation tasks. Our work highlights
that integrating semantic understanding into safe decision-making is crucial to going beyond pure
collision avoidance and achieving a more general notion of safety closer to that expected by humans.
To the best of our knowledge, our work is the first to integrate semantics and robot control with
formal safety guarantees.
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Figure 4: The multi-prompt strategy demonstrates improved precision and recall over the single-prompt method
on our benchmarking dataset of ground-truth constraints.

A Experiments

In this section, we present the experimental evaluation of our proposed semantic safety filter. In
the real-world experiment, a Franka Emika FR3 robotic manipulator is deployed with our proposed
semantic safety filter in closed-loop to prevent potentially unsafe commands from a non-expert user
or a motion policy.

A.1 Semantic Perception

In our evaluation, we consider four static (unless manipulated by the robot) tabletop scenes, which
are visualized in Figure 3 and in Figure 7 and four manipulated objects a dry sponge, a cup of

water, a lit candle, and a knife. The geometries of the table, the manipulated objects, and
the robot are assumed to be known. However, the robot’s relative position to the objects in the
environment is unknown. The map for each tabletop environment is generated using RGB-D images
and associated camera frames as described in Section 4.1. The RGB-D images were recorded using
a Femto Bolt and the camera poses were obtained by running visual-inertial SLAM [35]. In total,
each scene was reconstructed with approximately 50 to 200 posed RGB-D images, and the semantics
are determined as described in Section 4.1. All computations were performed on a workstation with
an Nvidia GPU RTX 3080. Examples of the reconstructed scenes are shown in Figure 3.

A.2 LLM Prompting

We created a benchmarking dataset of objects, scenes, and ground-truth constraints to evaluate the
semantic constraint generation. The dataset includes over 50 semantic constraints containing all
semantic constraint types, as well as objects and scenes not encountered in our experiments. We
evaluated two different prompting strategies on this dataset on an LLM (here, we use GPT-4o). The
first strategy requested the full set S(o) at once, while the second strategy would only request one
pair or a singleton (for the semantic pose constraint) for each request. In the following, we refer to
these strategies as single- or multi-prompt strategies, respectively. The multi-prompt method proved
to be more accurate than the single-prompt approach, as indicated by the higher precision and recall
in Figure 4. The final prompt was adjusted until the desired level of accuracy was achieved on the
validation dataset split.

For our robot experiments, we follow the methodologies in Section 4.2 to identify semantically un-
safe object-relationship pairs, behaviors, and poses. Examples are shown in the last column of Fig-
ure 3. We query the LLM for each object-relationship pair for each scene to determine if the spatial
relationship between the manipulated object and the particular object in the scene is semantically
safe. We run additional queries to determine if the object held by the manipulator may be rotated
and if increased caution should be exhibited close to each of the objects in the scene. These re-
sponses are then used in combination with each object’s point cloud to determine the constraint
envelopes (see Figure 3), the class K∞ function, and the weight wrot.
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Table 1: A summary table of the mean percentages and their associated standard deviations of time steps that
violate any of the constraints Csem, Cenv, Cself, Clim. Our evaluation includes a baseline without a safety filter, a
safety filter accounting for geometric constraints, and our proposed semantic safety filter. We use three scenes
and five different manipulation cases (four objects and empty-handed) with five teleoperated trajectories each,
resulting in a total of 40 trajectories for each method. Each combination of objects and scenes yielded different
geometric and semantic constraints. †The objects in red result in semantic constraints.

Scene Held Obj.† No Safety Filter Nom. Safety Filter Ours

books
dry sponge 11.06% ± 13.60% 0.00% ± 0.00% 0.00% ± 0.00%

cup of water 70.37% ± 23.51% 64.98% ± 33.42% 0.00% ± 0.00%

laptop,books

none 36.29% ± 18.29% 0.00% ± 0.00% 0.00% ± 0.00%
lit candle 65.21% ± 14.20% 51.33% ± 27.85% 0.00% ± 0.00%

cup of water 59.40% ± 12.02% 41.90% ± 25.46% 0.00% ± 0.00%

balloon,tissue

cup of water 28.07% ± 14.77% 0.00% ± 0.00% 0.00% ± 0.00%
lit candle 50.33% ± 9.44% 49.89% ± 9.04% 0.00% ± 0.00%

knife 49.07% ± 16.16% 30.85% ± 10.53% 0.00% ± 0.00%
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Figure 5: The level of caution determines how quickly
the end effector approaches a safety constraint bound-
ary. In the books scene, we increase caution by ad-
justing the class K∞ function when holding a cup of
water under the same semantic constraint .
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Figure 6: Demonstration of the active (inactive) ro-
tation minimization when the robot is holding a cup
of water (dry sponge) in the scene books. The
distribution for the cup of water is skewed towards
smaller angular velocities; an active rotation mini-
mization (red) generally yields reduced end effector
rotations as compared to the inactive case (blue).

A.3 Safe Robot Manipulation

Using our semantic safety filter, we execute various teleoperation and pick-and-place tasks on the
robot. We run our semantic safety filter at 30Hz. Our teleoperation experiments are summarized
in Table 1. The teleoperation commands are provided through a keyboard interface as end effector
velocities in the Cartesian space and smoothed using a low-pass filter. We calculate the associated
joint velocities with differential inverse kinematics. Each scene is tested with multiple held objects,
which require different sets of semantic constraints (see Figure 3). The results in the table confirm
that our safety filters can effectively account for collision avoidance constraints and any seman-
tic constraints generated by our synthesis module, as no constraint violations occur in any of our
experiments when the safety filter is active.

We highlight how the different levels of caution determine how quickly the end effector holding a
specific object may approach the boundary of a safety constraint boundary. For the scene books,
we show increased caution by modifying the class K∞ function when holding a cup of water for
the same semantic constraint during teleoperation. For the cautious case, the negative time deriva-
tives (−ḣ) (red) stay below the red dashed line, confirming the CBF condition’s satisfaction. As
αsem,cautious(h) =

1
4h

2 is strictly smaller than αsem(h) = h2 on h > 0, the end effector approaches
the boundary of this semantic constraint slower. Note that we manually overwrote the level of cau-
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Figure 7: The cluttered environment and its superquadric representation (left) used in the pick-and-place tasks
and associated manipulation sequences (right). The scene has 17 objects of various types, some of which are
stacked (left, top). The scene is represented using fitted superquadrics shown in red (left, bottom). Examples of
tabletop manipulation sequences without semantic constraints (right, top) and with semantic constraints (right,
bottom) in a cluttered scene. In the top row, the robot is tasked to transport a dry sponge across the table from
left to right. There is no unsafe semantic constraint between the manipulated object and the objects in the scene.
The robot’s end effector is allowed to rotate freely and move above the laptop while avoiding collisions. On
the other hand, in the bottom row, the robot is tasked to transport a cup of water across the table from right
to left. One semantically unsafe condition is {laptop, above}. Moreover, the robot is also required to move
cautiously and without rotating the end effector. With these semantic constraints, the robot end effector slowly
moves around the laptop to avoid the potential spillage of water over the laptop.

tion for this particular demonstration to compare the closed-loop behavior on the same semantic CBF
constraint. Generally, the level of caution is determined through the method outlined in Section 4.2.

Finally, we demonstrate the effectiveness of minimizing rotations for different objects based on
their semantics in Figure 6. Our semantic safety filter successfully reduces the median of the norm
of the end effector’s angular velocity by 75.39% if the rotation minimization is active (see cup

of water). The box plot also highlights that the interquartile range of the end effector’s angular
velocity norm is reduced by 45.67% compared to the robot holding the dry sponge.

To further evaluate the scalability of our proposed approach to more complex environments, we
applied our semantic safety filter to pick-and-place tasks in a cluttered environment with 17 ob-
jects, including a laptop, a mouse, a power strip, a fan, a a dry sponge, a cup of water,
a bottle, a first-aid kit, books, and boxes (see Figure 7). The robot is tasked to move the
dry sponge and then the cup of water across the table. For the sequential pick-and-place tasks,
we use an underlying resolved-rate motion controller that is unaware of any safety constraints and
certify the action using our proposed safety filter. Two representative sequences of motion are de-
picted in Figure 7 to highlight the effect of applying the semantic filter to different manipulated
object cases. When the robot is holding the dry sponge, its end effector is allowed to rotate and
move the object above electronic devices with no additional caution considered. In contrast, the
robot’s motion is much more constrained when holding the cup of water; in this case, the robot
is constrained to not pass over the electronic devices nor rotate, and overall execute the task more
cautiously.
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