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Abstract

Random feature (RF) mapping is an attractive
and powerful technique for solving large-scale
nonparametric regression. Yet, the existing the-
oretical analysis crucially relies on the i.i.d. as-
sumption that individuals in the data are indepen-
dent and identically distributed. It is still unclear
whether learning accuracy would be compromised
when the i.i.d. assumption is violated. This paper
aims to provide theoretical understanding of the
kernel ridge regression (KRR) with RFs for large-
scale dependent data. Specifically, we consider
two types of data dependence structure, namely,
the T-mixing process with exponential decay coef-
ficient, and that with polynomial decay coefficient.
Theoretically, we prove that the kernel ridge esti-
mator with RFs achieves the minimax optimality
under the exponential decay scenario, but yields
a sub-optimal result under the polynomial decay
case. Our analysis further reveals how the decay
rate of the 7-mixing coefficient impacts the learn-
ing accuracy of the kernel ridge estimator with
RFs. Extensive numerical experiments on both
synthetic and real examples further validate our
theoretical findings and support the effectiveness
of the KRR with RFs in dealing with dependent
data.

1. Introduction

Kernel-based methods (Kimeldorf & Wahba, 1971; Wahba,
1990; Vapnik, 1999; Scholkopf & Smola, 2002) stand as
a cornerstone in machine learning community due to their
computational convenience, flexible framework, and rich ca-
pacity of offering efficient and powerful tools for statistical
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analysis. Theoretical guarantees for the kernel-based meth-
ods have been widely studied in literature (Smale & Zhou,
2007; Caponnetto & De Vito, 2007), just to name a few.
Despite their attractive theoretical properties, these methods
could suffer severe computational burden in dealing with
large-scale data, mainly due to the problem of solving and
storing the inverse of the kernel matrix. To alleviate such
issue, a variety of methods have been proposed, and one
major class is known as kernel approximation, including
Nystrom subsampling (Rudi et al., 2015), random sketching
(Yang et al., 2017) and random features (Rahimi & Recht,
2007). Interested readers are referred to Section 3.3 of Rudi
& Rosasco (2017) for detailed comparison and discussion
on these methods.

Among them, random feature technique involves construct-
ing an explicit feature mapping with a dimension much
lower than the number of observations. It is proven to be
state-of-the-art from both computational and theoretical as-
pects (Rudi & Rosasco, 2017; Bach, 2017; Avron et al.,
2017; Sun et al., 2018; Liu & Lian, 2023). Specifically,
Rudi & Rosasco (2017) shows the kernel ridge regression
estimator with random features (KRR-RF) not only enjoys
computational efficiency due to the reduced dimension of
RFs, but also preserves the minimax optimal learning rate,
compared to the standard KRR, provided that the number of
RFs is not chosen too small. However, it is worth pointing
out that the results in Rudi & Rosasco (2017) are estab-
lished under the i.i.d. assumption which could be restric-
tive in many real applications, including clinical medicine,
speech recognition, and traffic data (Ralanamahatana et al.,
2005; Fu, 2011). It is unclear whether the aforementioned
properties of KRR-RF still hold when the i.i.d. assump-
tion is violated. This leaves an open question in theoretical
understanding of KRR-RF in dealing with the dependent
data.

This paper attempts to fulfill this gap and provide an answer
to the question: whether, and if so, to what extent does the
dependency structure within the data affect the performance
of learning with random features? In the existing literature,
data dependence is often characterized by the mixing struc-
ture of stochastic processes, such as a-mixing (Modha &
Masry, 1996), S-mixing (Yu, 1994) and ¢-mixing (Birman
& Solomyak, 1967). It is worthy pointing out that although
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«-mixing is considered much weaker than the 5-mixing and
¢-mixing conditions, it still excludes some popular types
of real applications, including causal linear processes and
certain Markov chains. In this paper we focus on a less
stringent mixing condition known as 7-mixing (Dedecker
& Prieur, 2004; 2005). Indeed Dedecker & Prieur (2004)
shows that a a-mixing process must also be 7-mixing, but
the reverse may not hold. This paper aims to provide a
comprehensive theoretical understanding of KRR-RF for
large-scale 7-mixing data. The theoretical investigation
faces two major challenges: (1) the resulting estimator can
no longer be analyzed by either the classical empirical pro-
cess theory or the concentration of measures tailored to the
ii.d. case; (2) the approximated kernel function arising
from random features is random, thus needs to be quanti-
fied carefully. By borrowing a recently developed Bernstein
inequality tailored for the 7-mixing process (Blanchard &
Zadorozhnyi, 2019) together with advanced operator theory,
we are able to establish theoretical guarantees of KRR-RF
for T-mixing dependent data.

1.1. Contributions

Our primary contribution is to provide a comprehensive
theoretical understanding of both computational and the-
oretical aspects of the KRR estimator with RFs for large-
scale dependent data. In particular, we begin by introducing
two standard capacity and regularity conditions in learning
theory. To maintain the mixing property in our technical
analysis, we need an additional mild condition that assumes
the tail behavior of the derivative of the random feature
mapping to be sub-exponential. By utilizing the integral
operator (Smale & Zhou, 2007) and a Bernstein-type con-
centration inequality tailored for the 7-mixing process (Blan-
chard & Zadorozhnyi, 2019), we derive two key results for
the 7-mixing processes with exponential decay coefficient
(Theorem 4.2) and polynomial decay coefficient (Theorem
4.3), respectively. Our results further characterize how the
degree of dependency structure among the data affects the
convergence rate of KRR-RF. Specifically, for the exponen-
tial decay 7-mixing process, KRR-RF can achieve the same
minimax optimal rate as established under the i.i.d. setting,
provided that the number of RFs is not chosen too small.
However, for the polynomial decay 7-mixing process, the
convergence rate of KRR-RF becomes slower. We also ver-
ify the tighter lower bounds on the required number of RFs
in Section 4.2 for both decay rates as first considered in Rudi
& Rosasco (2017) under i.i.d. case. Extensive simulation
studies and a real data analysis corroborate our theoretical
findings and demonstrate the effectiveness of KRR-RF for
dealing with large-scale dependent data.

1.2. Related Works

We summarize below some of the most related works on
random features and learning with dependent data.

Random Features. Random feature (RF) approximation is
a popular and powerful tool to approximate kernel matrix
using some explicit feature mapping (Rahimi & Recht, 2007;
2008; Li et al., 2019). The theoretical properties of learning
with random features have been extensively studied under
the regression and classification settings (Rudi & Rosasco,
2017; Avron et al., 2017; Bach, 2017; Sun et al., 2018;
Liet al., 2019). The most related work is Rudi & Rosasco
(2017) in which the authors establish the capacity-dependent
optimal rate that Op(n~ %) for the KRR estimator with
RFs. Yet, theoretical investigation in the aforementioned
works require i.i.d. assumption, hence are not applicable to
dependent data.

Learning with Dependent Data. Many existing works
focus on the theoretical behaviors of kernel-based methods
for dealing with the dependent data under several mixing
conditions, including a-mixing (Modha & Masry, 1996),
(B-mixing (Yu, 1994), and 7-mixing (Blanchard & Zadorozh-
nyi, 2019). Yet, most established theoretical results of the es-
timators based on these mixing data are sub-optimal, largely
due to the loss of efficient samples in dealing with depen-
dent data. For example, Modha & Masry (1996); Yu (1994)
obtain slower convergence rates of their estimators for the
a-mixing data compared to the i.i.d. case under minimum
complexity regression estimation framework. A recent study
(Blanchard & Zadorozhnyi, 2019) introduces a Bernstein-
type inequality for sums of Banach-valued random variables
satisfying 7-mixing condition. Based on this technical tool,
Blanchard & Zadorozhnyi (2019) and Sun et al. (2022) es-
tablish upper bounds for the standard KRR estimator and
the KRR estimator with Nystrom subsampling under the
dependent case. Moreover, Sun & Lin (2022) studies the
distributed KRR focusing on the c-mixing dependent data
(Modha & Masry, 1996). To the best of our knowledge, the-
oretical investigation of KRR-RF for large-scale dependent
data is still lacking.

2. Preliminaries

In this paper, we consider a stochastic process of random
pairs { Z, };>1 that is defined over some probability measure
space (B, F,P). Suppose Z; = (X;,Y;) is supported on
X x Y, where X is a compact and convex subset of R
and Y C R. We assume that {Z;};> is stationary with
marginal distribution px on X and conditional distribution
p(y|x) on Y given X = x. Moreover, Y; is assumed to
follow

Y = fo(X,) + e, (D
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with ¢; being the additive noise and f,(x) = E[Y;| X, = x|
denoting the target function of interest. Note that the sta-
tionary assumption is rather mild and it generalizes the i.i.d.
assumption. In Section 3, we state the detailed dependence
structure of {Z;};>1. For technical reason, we assume that
Y is contained in a finite set [~ U, U], which further implies
I folloc < U with || - || denoting the sup-norm. The same
assumption is commonly used in the literature of kernel-
based method (Smale & Zhou, 2005; 2007; Blanchard &
Zadorozhnyi, 2019) for analytical simplicity. It can be re-
laxed to assume some moment conditions on €;. We defer
detailed discussion to Appendix D.

2.1. Kernel Ridge Regression

Under the nonparametric setting, the true target function
fpin (1) is often assumed to belong to some function class.
In this paper, we assume that f, belongs to a separable
reproducing kernel Hilbert space (RKHS) H i induced by
some positive symmetric kernel function K (-,-) : X x X —
R, and we further denote the inner product equipped with
Hr as (-, )k and the endowed norm as || - [|% = (-, ") k-
Note that the RKHS H  is a particular type of Hilbert space
of real-value functions f with domain X. It enjoys several
nice properties that make it particularly attractive and useful
in nonparametric modeling. In particular, it is known that
the RKHS H x induced by the universal kernels, such as
Gaussian and Laplace kernel, is dense in the continuous
function space under the infinity norm, and thus leads to
small approximation error in estimating any continuous
target function. In this paper, we assume the commonly
used boundedness condition on the kernel function, that
is, Supy e v K (x,x') < k2 with & being some positive
constant.

Suppose that the data {z;}_; = {(x;, y;)}I, are sequen-
tially collected observations of the first n random pairs of
{Z;};>1. Then, the kernel ridge regression (KRR) estimator
is defined as

o~

F = argmin { - 3"(76x) — 9 + A ), @
i=1

fEHK

where A > 0 is some tuning parameter. By the representer
theorem (Kimeldorf & Wahba, 1971), the minimizer of the
optimization task (2) must have a closed form that

Fx) = % SN aK(x,x) VxeX, ()
=1

where & = (Q1,...,0,)" = (K+ AL,) 'y € R" with
I, being the n x n identity matrix, K = {1 K (x;, X)) e
denotes the  x n kernel matrix and ¥ = —=(y1,...,yx) .

It is worth pointing out that although it has the explicit so-
lution, computing (3) may suffer severe computational and

storage burdens when 7 is large. Precisely, it requires O(n?)
time complexity to invert (K +A1I,,) and O(n?) memory to
store K.

2.2. Random Feature Mapping

Recently, the random feature technique has attracted tremen-
dous attentions in the literature (Rahimi & Recht, 2007,
Rudi & Rosasco, 2017; Li et al., 2019) because it is power-
ful and computationally efficient for kernel approximation.
Specifically, let (€2, 7) be a probability space. In the rest
of this paper, we focus on the RKHS that is induced by the
kernel with an integral representation,

K(x,x) = /Q P @) wdr(w), @)

where 1 : X x 0 — R is a continuous function. It is
worth pointing out that various widely used kernels admit
this integral representation. For instance, the Bochner’s
theorem (Rahimi & Recht, 2007) ensures that for any con-
tinuous, positive definite and scaled shift-invariant kernel
K(x,x') = v(x —x') with some function v : R? — R+
satisfying v(0) = 1, the Fourier transform v of v can be re-
garded as a probability density such that for any x, x’ € X,

K(x,x) :/ i)\(w)eij(x_xl)dw
Rd
= EWN@[QD(X7 W)@(le W)*]v

where p(x,w) = e 7%  * with w € R and * denotes
the complex conjugate transpose. Note that since ¥ and K
are both real-valued, e’ w ' (x=x) can be replaced with its
real-valued part. Indeed, simple algebra demonstrates that
the random feature mapping ¢(x,w) = v/2 cos(w | x +b)
with w = (w,b), w ~ ¥(w) and b ~ Uniform(0, 27)
satisfies (4).! Note that many popular kernels, including the
Gaussian kernel, are shift-invariant.

Based on the integral representation (4), we adopt the Monte
Carlo sampling strategy to approximate K (x,x’) as

M
Karfx) = 37 o wlrw)iliw) o
= o (%) T (x'),

where w, ..., wys are independently drawn from 7 with
M < nand ¢M(X) = ﬁ(’l/]()g(dl), ) ’(/}(X7wM))T €

"Note that Ew [1h(x, w)(x’, w)] equals to

Ewlcos(w' (x —x')) + cos(w " (x+x') + 2b)]

= Buwleos(w" (x )] = Ew[e™ =],
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RM denotes the pre-specified M-dimensional random fea-
ture mapping. By writing
~ 1 Y
Sm = W(QSM(Xl)) sy ¢A{(Xn))T €ER XZ\J?
replacing the kernel K in (3) by K, in (5) and using the

Woodbury matrix identity, we obtain the following KRR
estimator with random features (KRR-RF):

Farn(®) = dp(x) T (81,81 + M) 184,y (6)

. . T g .
Computationally, the matrix multiplication S;,S s requires
. . 2 . . . /\T -
time complexity O(nM*=). Since inverting S,,;Sas + ALy
requires time complexity O(M?3), the overall time complex-
ity of computing (6) is O(nM? + M?). Compared to the
standard KRR, the computational complexity is largely re-
duced as long as M < n. Moreover, we only need to store
the nM entries in S, as opposed to the original n? entries.

Let L(X, px ) denote the square integrable function space
with respect to px. We denote the inner product endowed
with £(X,px) as (-,-), and use || - ||, to represent the
corresponding norm. For any estimator f, its estimation
accuracy is evaluated in terms of the squared norm

1F = Fol2 = Exepx [(F(X) = £,(X))?].

In literature, some regularity conditions on the capacity of
"H x and the smoothness of the target function f, are needed
to derive theoretical guarantees. We start with the definition
of the integral operator that is widely used in literature
(Smale & Zhou, 2007; Caponnetto & De Vito, 2007).

Definition 2.1. The integral operator Ly : L(X, px) —
L(X, px) is defined as

LKf:/XK(x,-)f(x)de(x).

It is known that L i is positive, trace-class and self-adjoint,
hence compact. By the Mercer’s theorem, Lx admits a
spectral decomposition of the form

Lic =Y il i) i, )

i=1

where {y; };>1 are the non-negative eigenvalues in descend-
ing order, and {t); };>1 are the corresponding eigenfunctions
in L(X, px).

Definition 2.2. The effective dimension of the RKHS H g
is defined as

N =Ti((Lx + M)~ L),

where Tr(-) denotes the trace of a trace-class operator.

Note that N'(\) measures the capacity of H i with respect
to px and it is closely related to the covering number (Stein-
wart & Christmann, 2008) and the kernel complexity func-
tion (Guo et al., 2017; Ma et al., 2023). The following
assumption further characterizes the richness of H .

Assumption 2.3 (Capacity condition). There exist two con-
stants « € [0, 1] and ¢y > 0 such that N'(A) < coA™“.

Note that we assume A € (0, 1] and the theoretical choice
of \ typically depends on n and tends to zero as n — 0.
Assumption 2.3 is commonly imposed in the literature of
learning theory (Guo et al., 2017; Rudi & Rosasco, 2017).
Precisely, « controls the richness of H x in the sense that a
larger o implies a larger capacity of H . It can be easily
verified that Assumption 2.3 always holds when a = 1
by taking ¢ = Tr(Lx) < k2. Assumption 2.3 is more
general than the polynomial decay condition in Caponnetto
& De Vito (2007): p; < Cj~—Y* for a € (0,1) with
t;’s being the eigenvalues of Lx given by (7). Moreover,
Assumption 2.3 holds with a = 0 if the kernel function has

finite rank, such as the linear kernel K (x,x’) = x " x/.

Assumption 2.4 (Regularity condition). There exist some
r€[1/2,1]and g € L(X, px ) satisfying f, = Li.g with
Ly = Z?il 15 i) p i

Assumption 2.4 is also commonly assumed in literature
(Smale & Zhou, 2007; Caponnetto & De Vito, 2007; Guo
etal., 2017). It requires that f, belongs to the range of L,
and when r = 1/2, it only requires that f,, belongs to H .
Note that r controls the smoothness of f, and a larger r
corresponds to a smoother f,.

To be self-contained, we restate Theorem 2 in Rudi &
Rosasco (2017) that provides theoretical guarantees for the
KRR-RF estimator under the i.i.d data case.

Theorem 2.5. Under Assumptions 2.3 and 2.4, assume
that {Z;};>1 are i.i.d. For any § € (0,1), if the number

1ta(2r—1) 108x2n
o

of random features satisfies M > Cn~ 2r+a log

and \ < n_ﬁ, then with probability at least 1 — 6, the
following holds for sufficiently large n,

—~ e
1Fazx = foll3 < Cn™ 755 log?(1/9),
where C' > 0 is some constant independent of n, o, r.

Theorem 2.5 shows that under the i.i.d. case, the KRR-
RF estimator can achieve the minimax rate O p(n*%)
(Caponnetto & De Vito, 2007) with the number of random
features chosen properly. However, it is unclear yet impor-
tant whether the above optimal learning rate can be achieved
in the presence of data dependence. In the sequel, we an-
swer this question by analyzing the theoretical behavior of
the KRR-RF estimator for dependent data.



Towards Theoretical Understanding of Learning Large-scale Dependent Data via Random Features

3. Learning with Dependent Data

For measuring dependency among individual data points,
we consider the 7-mixing condition (Dedecker & Prieur,
2004; 2005). Recall that the pairs {Z;};>1 are defined
over some probability measure space (B, F,P). We start by
defining an increasing sequence of o-fields {F } x>0 as

Fe=0(Z;,1<i<k)CF,

which is induced by the first k random pairs. We also define
a real-valued, bounded Lipschitz function class Cpjp on X' x
Y with a finite Lipschitz semi-norm

lg(z) — g(z')|

Iz =22

ll9llLip(x) :SUP{ :z7z'€X><y,z7éz/}.

Based on the function class Cyip, the dependence structure
can be characterized by the following mixing condition.

Definition 3.1. For k > 1, we define 7(k) as

(k) = sup{HE[f(ZHk) | Fi] = E[f(Zisr)] Hoo :
f €CLip,i > 1}7

where || - ||c denotes the sup-norm in Lo (B, F,P). A
stochastic process {Z; };>1 is a 7-mixing process with rate
7(k) if limg oo 7(k) = 0.

This mixing condition commonly appears in literature
(Dedecker & Prieur, 2004; 2005; Maume-Deschamps, 2006;
Blanchard & Zadorozhnyi, 2019) with 7(k) often referred
to as the 7-mixing coefficient. Note that based on the func-
tion class Crip, 7(k) can effectively quantify the distance
between the expectation of Z;; conditioning on the in-
formation from the past k£ periods and the unconditional
expectation of Z;, for each i. Therefore, 7(k) measures
the dependence of lag k periods. Precisely, a faster conver-
gence rate of 7(k) — 0 implies weaker dependence among
individual data points, and vice versa. In particular, when
the data are i.i.d. we have 7(k) = O forall £ > 1. Itis worth
pointing out that the 7-mixing condition is weaker than the
a-mixing condition (Modha & Masry, 1996) as well as the
well-known ¢-mixing (Birman & Solomyak, 1967) and -
mixing (Yu, 1994) conditions. The following proposition
plays a crucial role in the subsequent technical analysis.

Proposition 3.2. [f{Z,};>1 is a T-mixing process with rate
7(k) and g : X x R — B is c-Lipschitz continuous, where
B is some Banach space. Then {g(Z;)};>1 is also T-mixing
process with T-mixing coefficient ¢ 7(k).

We consider two types of decay rates of 7(k).

(i) Exponential decay: 7(k) < byexp ( — (b1k)), for
some constants g, by > 0,5y > 0;

(ii) Polynomial decay: 7(k) < bok~ "1, for some constants
Al > 0, b2 2 0.

Cases (i) and (ii) cover a wide range of practical applications,
including: (i) causal Bernoulli shifts such as causal linear
processes; (ii) iterative random functions such as autoregres-
sive processes; and (iii) other Markov chains (Dedecker &
Prieur, 2004; 2005). We refer the readers to our numerical
experiments in Section 5 for concrete examples. We also
remark that the i.i.d. assumption can be regarded as an ex-
ponential 7-mixing process with 7y = co, or a polynomial
T-mixing process with y; = oo.

4. Theoretical Analysis

In the literature of KRR with dependent data, a key techni-
cal step is to establish the Lipschitz continuity of the kernel
function K (-, -) so that Proposition 3.2 can be invoked. To
this end, it is commonly assumed (Blanchard & Zadorozh-
nyi, 2019; Sun et al., 2022) that

0?K(x,x')

< B 8
O dzf, | =77 ®)

max sup ‘
1<l,k<d x,x'eX

for some constant B > 0. Here x = (21, ..., 24) " .
Differently, our theoretical framework is built upon the Lip-
schitz continuity of the M-dimensional random feature
mapping ¢,,(-), more specifically, ¢,,(-) in (5) which
is inherently non-deterministic due to its dependence on
the RFs w1, ...,wyr. Let Ox1h(x,w) € R? be the partial
derivative of v (x,w) with respect to x. Our analysis re-
lies on the following assumption on the tail probability of
T(w) = supxex [|0x (x, w)|3/d.

Assumption 4.1. There exist some positive constants ag
and a; such that for all ¢ > 0,

Pu (T(w) > t) < ag exp(—ayt).

Assumption 4.1 requires the sub-exponential tail of T'(w),
and is used to establish the Lipschitz property of ¢, (-).
Indeed, we prove Lemma C.1 of Appendix C that for any
x,x € X,

1 M
1631 (0) = Su ()5 < dll x —X|3 37 > T(ws)-
i=1

Since the rightmost term is the empirical average of T'(w),
an application of Bernstein’s inequality leads to the Lips-
chitz continuity of ¢,,(-). On the other hand, it is worth
pointing out that Assumption 4.1 is mild, and can be
verified for many standard kernels. For the linear ker-
nel K(x,x') = x" x/, we have 9(x,w) = x' w with
w ~ N(0,I4) whence T(w) = |wl||3/d and Assump-
tion 4.1 holds. For the shift-invariant kernel class, since
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P(x,w) = V2cos(wT x+b) with w = (w,b), we have
T(w) < 2||w||3/d so that Assumption 4.1 holds if the ran-
dom vector w is sub-Gaussian, such as w ~ N (0, 2I) for
the Gaussian kernel (Rahimi & Recht, 2007).

4.1. Main Results

In this section, we derive non-asymptotic upper bounds
of the KRR-RF estimator ffM_y » in (6) under two types of
the 7-mixing decay rate. Specifically, the learning rates
for the 7-mixing process with exponential and polynomial
decay coefficients are provided in Theorem 4.2 and 4.3,
respectively. Recall that we assume |Y| < U, K (x,x’) <
k? for any x,x’ € X. We also assume in the rest of this
paper that | (x,w)| < k for any x,x’ € X and w €
Q. Both U and ~ will be treated as absolute constants
throughout our analysis.

Theorem 4.2. Suppose that Assumptions 2.3, 2.4 and 4.1
are satisfied and {Z; };>1 is a T-mixing process with expo-
nential decay coefficient. For any § € (0, 1), if the number
of RFs satisfies

1+a(2r—1)

M > Cn™ 2+a (log n)fﬁ log(n/d)
and A < (n(log n)fﬁ)fﬁ, then when n is sufficiently
large, with probability at least that 1 — 0, one has

I Farx — pri < Cn~7ta (logn) 0@+ log(1/6).
The constant C' > 0 is independent of n, o, r, Yo.

Theorem 4.2 states that the learning rate of the KRR-RF

estimator is O p(rf%) (up to some logarithmic factor)
for the 7-mixing data with exponential decay coefficient.
Since this rate matches the minimax lower bound in the i.i.d.
case (Caponnetto & De Vito, 2007), Theorem 4.2 extends
the minimax optimality of the KRR-RF estimator from the
1.i.d. case to exponential decay 7-mixing data.

In another word, the dependence of a T-mixing process
does not compromise the effectiveness of learning with
KRR-RF as long as the 7-mixing coefficient decays expo-
nentially. Theorem 4.2 also states that the optimal learn-

ing rate requires to choose the number of random features
1+a(2r—1)

M > Cn™ 2r+a (log n)_ﬁ which matches that required
in Theorem 2.5 (up to some logarithmic factor). It suggests
that data dependence does not necessitate a larger number
of random features, thus with no additional computation
burden.

Theorem 4.3. Suppose that Assumptions 2.3, 2.4 and 4.1
are satisfied and {Z;};>1 is a T-mixing process with poly-
nomial decay coefficient. For any § € (0, 1), if the number
of RFs satisfies

271 (1ta(2r—1))

M > Cn™F2r#2a7m+1 log(n/4)

— 2 . .
and \ < n~ ™ T2rEaned T then when n is sufficiently large,
with probability at least 1 — 6, one has

N I o | KA
HfM,)\ _ pri <Cn 4711-+27-i271a+1 10g(1/(5)
The constant C > 0 is independent of n, o, r, 1.

The learning rate established in Theorem 4.3 aligns with that
of the full KRR for the polynomial 7-mixing process (Blan-
chard & Zadorozhnyi, 2019). On the other hand, Theorem
4.3 shows that the KRR-RF estimator can not achieve the
optimal rate established under the i.i.d. setting when dealing
with the 7-mixing data with polynomial decay coefficient.
This indicates potential loss of efficiency of the KRR-RF
estimator in the presence of strong data dependence. The
parameter «y; in Theorem 4.3 controls the degree of depen-
dency among the data in the sense that the larger value of 71,
the weaker dependence in the data. As y; — oo, the data
becomes less dependent and the learning rate in Theorem
4.3 gets closer to the optimal rate n™ 3= . We remark that

the sub-optimality comes from the fact that the effective
291 (2r+a) .
sample size is degraded to n?1Gr+e)+27+1 3 quantity that

increases as -y; gets larger. Simply increasing the number of
RFs will not lead to the improvement of the rate in Theorem
4.3. Finally, the required lower bound of RFs in Theorem

. 271 (Ata(2r—1)) A
4.3 is nAvnrt2rt2em+1 which gets smaller as y; decreases.

4.2. Tighter Bounds on the number of random features

In this section, we further improve the required lower
bounds of M in Theorems 4.2 and 4.3. This is particularly
useful as a smaller value of M reduces more computational
cost. We first introduce the random feature maximum effec-
tive dimension, as introduced in the literature (Rudi et al.,
2015; Rudi & Rosasco, 2017).

Definition 4.4. The maximum random feature effective
dimension related to H x is defined as

No(N) = sup I(Lx + A7 2(, w)| 2.

Note that NV ()A) also measures the capacity of Hx with
respect to px in a RF-dependent manner. It is related with
N () in Definition 2.2 in that N'(\) < N (). We assume
the following compatibility condition on N (A).

Assumption 4.5 (Compatibility condition). There exist two
constants 3 € [0,1] and ¢; > 1 such that Vo (\) < 1 AP,

Since |1)(x,w)| < & for any x € X and w € €, we always
have N (A) < k2A~1. Assumption 4.5 considers a tighter
bound on N (), which is also assumed in Rudi & Rosasco
(2017), and interested readers are referred therein for de-
tailed discussions. By the fact that A'(\) < N (\), we
have 0 < o < 8 < 1. Armed with Assumption 4.5, a much



Towards Theoretical Understanding of Learning Large-scale Dependent Data via Random Features

tighter lower bound of M can be derived without sacrificing
the learning accuracy. The results are stated in the following
two corollaries for both exponential and polynomial decay
coefficients.

Corollary 4.6. Suppose that Assumptions 2.3, 2.4, 4.1 and
4.5 are satisfied and {Z;};>1 is a T-mixing process with
exponential decay coefficient. For any 6 € (0,1), if the
number of RFs satisfies

B+(1+a—B)(2r—1)

M > Cn Irta (log n)_ﬁ log(n/d)
and A < (n(log n)fﬁ)fﬁ, then when n is sufficiently
large, with probability at least 1 — 6, one has

1fara = foll; < Cn™ 5% (log n) 0@ log(1/3).
The constant C' > 0 is independent of n, «, 5,7, 0.

For the exponential 7-mixing process, the learning rate in
Corollary 4.6 is the same as that in Theorem 4.2 whereas
the required number of RFs is substantially reduced due to

the usage of maximum effective dimension. Specifically,
ft(ta—p)(2r—1) S
we only need M > Cn Trta (logn)~ %o which

could be much smaller than that in Theorem 4.2 for 5 < 1.
This also aligns with that required in Theorem 3 in Rudi &
Rosasco (2017) under the i.i.d. setting.

Corollary 4.7. Suppose that Assumptions 2.3, 2.4, 4.1 and
4.5 are satisfied and {Z;};>1 is a T-mixing process with
polynomial coefficient decay. For any 6 € (0,1), if the
number of RFs satisfies

2v1 B+271 (1+a—p)(2r—1)
Ay r2rf2ay; F1

M >Cn log(n/d)

2
and \ = n~ TR T AT , then when n is sufficiently large,
with probability at least 1 — §, one has

o~ 4 r
1Fatn = Fol2 < Cn™ Tt i log(1/9).
The constant C' > 0 is independent of n, «, 5,7, 71.

For the polynomial 7-mixing process, Corollary 4.7 presents
a similar improvement over Theorem 4.3. Furthermore, we
notice that the required number of RFs in Corollary 4.7
decreases as (3 becomes smaller. Since 3 > «, we need the
fewest number of RFs when 8 = a. It is worthy pointing
out that 5 depends on the choice of the distribution of 7
from which the random features are sampled. As discussed
in Rudi et al. (2015); Rudi & Rosasco (2017), the favorable
situation 8 = « could be achieved through a data-dependent
sampling strategy. We refer to Appendix F for details of
such sampling strategy.

It is also interesting to point out that the significant reduction
in the required number of RFs for the polynomial 7-mixing

process is largely due to the fact that the stronger depen-
dency structure among the data may diminish the useful
information contained in the kernel matrix K. As a conse-
quence, a smaller number of RFs are needed for retaining
the information in K.

5. Numerical Experiments

In this section, we validate our theoretical findings through
extensive numerical experiments on both synthetic and
real-life examples. In all the experiments, the RKHS
Hy is induced by the Gaussian kernel K(x,x’) =
exp(—|| x —x'||?). And its corresponding random feature is
P(x,w) = V2cos(x" w+b) with w ~ N(0,2I4) and
b ~ Uniform(0,27). The parameter A is chosen from
{1077,1075,107%,107%,10~3} via cross-validation, and
the performance of the estimator fis evaluated by the predic-

tion error that || — fyllm = \/ & S, (F(xi) — £,(x,))?
using a new test data of size m drawn from the speci-
fied model. The Python code for reproducing the numeri-
cal experiments is available in https://github.com/
wangchao—-afk/KRR-RF-DP.

5.1. Synthetic Data Analysis

The following two data generating schemes are considered,
involving a nonparametric time series model and a Markov
chain.

Example 5.1 (Nonparametric time series).
Xi = fp(Xi1) +eiy

where f,(x) = 0.8sin(rx) and {g;};>1 is an i.i.d. noise
sequence with £; ~ Uniform(—0.6,0.6). Note that the
above stochastic process {Z;},>1 with Z; = (X;_1, X})
is a a-mixing process hence a 7-mixing process (Dedecker
& Prieur, 2004; 2005).

Example 5.2 (Markov chain).
X; = O.5<Xi,1 + Ei),

where P(e; = —1) = P(g; = 1) = 0.5. Note that this
case is shown to be 7-mixing but not a-mixing (Dedecker
& Prieur, 2004; 2005).

For both examples, we sequentially generate (n + m) sam-
ples and use the first n samples as the training data and the
remaining m samples as the test data. Here we fix n = 2m
and the generating scheme for each example is replicated
100 times in all the settings.

We first investigate how the training sample size
n influences the numerical performance of KRR-RF
in both examples. Specifically, we vary n within
{1000, 2000, 3000, 5000, 7500, 10000} and also vary M
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Figure 1. The left panel reports the averaged runtimes vs the train-
ing sample size n; the right panel reports the averaged prediction
error vs the training sample size n.

such that the ratio of the training sample size to the number
of RFs, M /n, varies within {0.001, 0.005, 0.01, 0.05,0.1}.
The obtained numerical results are shown in Figure 1.

As shown in the right panels of Figure 1, as n increases,
the prediction errors decrease at first and then become sta-
ble, which is aligned with our theoretical findings. We also
observe that for the small ratios 0.001 and 0.005, the run-
ning time is reduced, but the performance is significantly
undermined when n is not relatively large, especially in
Example 5.1. Moreover, the error curves of the ratio 0.01
are comparable to those of the ratios 0.05 and 0.1, while its
running time is much shorter. This observation is especially
noticeable when the training sample size n is relatively large,
suggesting to choose ratio as 0.01.

We also investigate the effect of M on the numerical per-
formance of KRR-RF by varying the ratios of the training
sample size to the number of RFs and fixing the training
sample size n = 4000. The results are shown in Figure
2. It is clear that the consumed time increases with the
growth of the ratio, aligning with the theoretical prediction
that the computational complexity monotonically grows as
M increases. Conversely, the prediction performance im-
proves as the ratio increases and eventually becomes stable.
The results also suggest an optimal number of RFs could
be around exp(—5) x 4000 =~ 27 for Example 5.1, and
exp(—6.5) x 4000 =~ 6 for Example 5.2, which leads to
low-level computational cost while preserving comparable
prediction accuracy to that achieved by using more RFs.
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Figure 2. The left panel reports the averaged runtime vs the log
ratio log(M /n); the right panel reports the averaged prediction
error vs the log ratio log(M/n).
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Figure 3. The left panel reports the autocorrelation vs the lag time,
the shadow zone represents the confidence interval with level 0.05;
the right panel exhibits the real curve and the predicted curve,
respectively, where we use M = 30.

5.2. Real Data Analysis

In this part, we apply KRR-RF to a daily climate time series
data.” This dataset contains climate data from 1st January
2013 to 24th April 2017 for Delhi, India, and includes four
features: mean temperature (Meantemp), humidity value,
wind speed and mean pressure. It can be regarded as a
baseline for understanding long-term climate dynamics in
urban settings by offering a detailed and extended record
of climate variables. We apply KRR-RF to this data for
predicting mean temperature. Specifically, we chose the
first 1462 samples from 2013 to 2016 as the training data
and the remaining 114 samples in 2017 as the test data. The
obtained numerical results are shown in Figure 3.

2This dataset is available in https://
www.kaggle.com/datasets/sumanthvrao/
daily-climate-time-series—data/data.


https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data/data
https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data/data
https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data/data

Towards Theoretical Understanding of Learning Large-scale Dependent Data via Random Features

From the left panel of Figure 3, we can observe the mean
temperature is strongly correlated at nearby moments and
this dependency becomes weaker as the lag time increases.
The right panel in Figure 3 exhibits a close alignment be-
tween the predicted curve and the real curve, suggesting that
KRR-RF can effectively model the dependent data in practi-
cal scenarios and achieve accurate predictions, meanwhile
enjoying computational efficiency.

6. Discussions and Conclusion
6.1. Comparison to Rudi & Rosasco (2017)

Rudi & Rosasco (2017) establishes a theoretical foundation
for the KRR-RF method under the i.i.d. case. In contrast,
our work aims to understand the behavior of KRR-RF under
a more challenging scenario when the data are dependent.
Clearly, there exist many significant technical differences
between our work and the work by Rudi & Rosasco (2017),
and some of them are summarized as follows.

(1) Due to the dependent structure of the 7-mixing process,
the theoretical tools used in Rudi & Rosasco (2017), such as
the classical empirical process theory or the concentration
of measures, can not be used in our technical treatment.
Instead, we use different treatment by leveraging recently
developed concentration inequality tailored to the 7-mixing
(Blanchard & Zadorozhnyi, 2019). We want to empha-
size that this difference necessitates a more fine-grained
and different theoretical treatment, rather than simply sub-
stituting theoretical tools. For instance, in the proof of
Lemmas C.2 and D.1, to apply the concentration inequal-
ity for the 7-mixing process, the key step is to verify the
T-mixing condition for the random processes {{(X;)}i>1
and {§(X,Yi)}i>1-

(i1) As discussed earlier, maintaining the mixing property in
our technical analysis requires ¢, (-) to be Lipschitz con-
tinuous. However, a theoretical challenge arises from the
fact that the RFs are randomly generated. To overcome this
challenge, we derive a sufficient condition in Assumption
4.1, which requires the tail behavior of the partial derivative
of the random feature mapping to be sub-exponential. In
Lemma C.1, we proved that the random mapping ¥ (X, w)
has uniformly bounded partial derivative with probability at
least 1 — 9 as long as the number of RFs is large enough that
M > C'log(2/0). Note that Assumption 4.1 is satisfied by
many widely used kernels, including the linear kernel and
the Gaussian kernel. Moreover, this assumption may be fur-
ther relaxed by directly assuming the Lipschitz continuity of
the M-dimensional random feature mapping ¢,,(-). More
detailed discussions are presented below in Assumption
4.1. Despite such complication of dealing with dependent
data, the required number of RFs for achieving the minimax
optimality is the same as that in Rudi & Rosasco (2017).

6.2. Conclusion and future work

This paper focuses on the theoretical understanding of non-
parametric learning with random features under the large-
scale dependent data setting. Our analysis shed light on
the understanding of how the learning rates with random
features depend on the degree of dependency among data.
Extensive experiments on both synthetic and real-world
data further support the applicability of the nonparametric
method with random features in complex practical scenar-
i0s. The main contribution of this work is to bridge the gap
between theoretical understanding and empirical advantages
of learning large-scale dependent data via random features.

Our studies also raise an intriguing question: is the slower
rate of KRR-RF under the polynomial T-mixing process case
due to the technical limitation or an inherent limitation aris-
ing from the stronger dependency within data? To answer
this question, some advanced tools are required to establish
the minimax lower bound under this case and we leave this
for future research.
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Appendix

This appendix is organized as follows. In Section A, we provide more numerical studies. In Section B, we introduce the
definitions for the operators, along with an error decomposition. Moving to Section C, we prove some technical lemmas
needed for the proofs of the main theorems. In Section D, we derive upper bounds separately for three components of
error and then present the proof of the main theorems. Section E is devoted to listing auxiliary lemmas that involve two
concentration inequalities utilized in our proofs. Section F provides more details of the data-dependent sampling strategy.

A. Additional numerical experiments

We consider a nonparametric time series model as follows. The setup of the numerical experiments is the same as those in
Section 5 of the main text, including kernel selection, random feature mapping, evaluation standard, and tuning procedure
for A.

Example A.1.
Xi =0.8 sin(w(O.?Xi_l + O.2Xi_2 + 01X1_3)) + &4,
where {¢;},>1 is an i.i.d. noise sequence with ¢; ~ Uniform(—0.6, 0.6).

We first investigate the numerical performance of KRR-RF by varying n within {1000, 2000, 3000, 5000, 7500, 10000}
and varying the ratio of the training sample size to the number of RFs, M /n, within {0.001, 0.005, 0.01, 0.05,0.1}. The
averaged numerical performance is illustrated in Figure 4.
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Figure 4. The left panel reports the averaged runtimes vs the training sample size n; the right panel reports the averaged prediction error
vs the training sample size n.
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Figure 5. The left panel reports the averaged runtimes vs the log ratio log(M /n); the right panel reports the averaged prediction error vs
the log ratio log(M /n).

It is clear from Figure 4 that the obtained results are comparable to those reported in the main text. It can be seen that the
prediction error curves exhibit roughly the same decline trends as n grows for the ratios in {0.05, 0.1} and has significant
improvement over that for other ratios. Whereas, the consumed time for the ratio 0.1 is significantly higher than for the ratio
0.05. This observation suggests the best choice of ratio is 0.05. The second experiment is designed to investigate the effect
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of M on the numerical performance of KRR-RF by varying the ratios and fixing the training sample size n = 4000. The
experiment result is reported in Figure 5, which shows that the choice of M = 4000 exp(—4.5) ~ 44 leads to a low-level
computational cost while preserving an almost optimal learning efficiency.

B. Operators and Error Decomposition

Notation. For an operator A, we use A to represent its adjoint operator, use I to denote the identity operator, and use
v'" to represent the transport of a vector v. We denote the inner product endowed with Euclidean space as (-, -)» and the
¢y-vector norm as || - ||2. Note that the operators involved in the technical proof may be defined on different domains and
ranges. Specifically, we use || - ||z ¢, || - |£5,¢, and || - ||¢,.2 to denote the operator norm for the operator from £(X, px) to
L(X, px), from RM to RM, from RM to L(X, px), respectively. Moreover, we use || - || to denote the operator norm
when not specifying any particular domain and range. Throughout the rest of this paper, we use E,[-] (and Py, []) to denote
expectation (and probability) taken over the random feature w or its i.i.d. copies wq, ..., wys. Otherwise, we use E[] to
denote expectation taken over all random quantities while conditioning on w1, ..., ws.

Operator representations. Given the random features w, ..., w s sampled from the distribution 7, recall that

¢]W(X) = (w(wil)"'ww(x?wM))T € RJW7

1
VM
~ 1 n
Sm = W(QSM(Xl)) ) d)JvI(XH))T €ER XM'
Then, the KRR-RF estimator has a closed form in (6) that
~ T,aT o _1aT
Tua(X) = @dp(x) ' (SprSar + M) 'Sy Y, VxeX,

withy = ﬁ(yl, ..,Yn) " € R™. Moreover, we define the M-dimensional function space induced by ¢,,(x) as
Har = {f + Jx) = @y (x), @ € RM}.

Note that if we equip the inner product in H ;s as (f, g)x,, = o' B for f(-) = a ¢p(-),9(-) = B Py (), then Hyy
is a RKHS associated with kernel Ky (x,x’) = (¢,;(X), @5, (x'))2. Denote Kpr(-,x) = ¢, (x) " b5, (-) € Har which
can also be considered as an operator from X’ to H s, and the above statement can be verified by the fact that for any
fe)= OéTd’M(')’ we have

<f7 KM('7X)>KM = aTd)M(X) = f(X),

and then, the reproducing property holds. Note that for the kernel function K, we have sup, ., |K(x,x’)| < x?, and
this property also holds for Ky, since supy . [ K (%, x')| < £? due to the assumption that [¢(x,w)| < . It is worthy
pointing out that H 5, can be viewed as the finite-dimensional approximation of H .

We introduce some useful operators that are commonly used in literature (Smale & Zhou, 2007; Rudi et al., 2015; Rudi &
Rosasco, 2017). Forany g € L(X,px ), o € R™ and 3 € R", we define the data-free operators as

© Su:RM = L(X,px),  (SuB)() = du ()T B
S]—\l;[ : ‘C(X7PX) - RJ\47 (S]—erg)l = \/% f)( ¢(X,wi)9(x)dﬂx(x), fori=1,...,M;
* Ly L(X, px) = L(X,px), Luf = [y Kn( %) f(x)dpx (x);

¢ Cy:RM - RM, Oy = [ dy(X) (%) Tdpx (x).

We also define the data-dependent operator as
« Sy RM SR Sya=Sya;
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« ST, :R" > RM, S§1B=8,8;

. 6’M (RM 5 RM aM =1 Zl;l dar(Xi) P (xi) 7.

T n

Note that for any x € X, the matrix ¢,;(x)¢,(x) " can be viewed as an operator ¢, (x)¢,,;(x) " : RM — RM that
maps & € RM to ¢, (%), (x) "ax € RM . Tt can be verified that

Cv =SS, Cua =818y, La=SuSy,

and all these operators are all self-adjoint and positive operators (Rudi & Rosasco, 2017). For ease of presentation and
henceforth, the statements that condition on the random features w1, ...,w s, such as Cy; = SJES v above, should be
understood to hold almost surely.

Clearly, using the introduced operators, fM7 A can be rewritten as

Frux = Sar(Cor + A1) 'S,y
We also define two intermediate functions as

Farn = Su(Car + N 7LSY, £,

and ~
Sy = Lar(Lag +X) 7 o

For any A > 0, define N/ () as

It is worthy pointing out that in the following proofs, we primarily rely on Ny, (\) rather than A/()\). However, if
A < ||ILk|lz,z. it can be proved that these two quantities are equivalent under the requirement on the number of random

features that M > (4 + 18N (X)) log 22 (Proposition 10 in Rudi & Rosasco (2017)), i.e.,

%N(A) <Nu(A) <3N (N

with probability at least 1 — § for any § € (0, 1).

Error decomposition. By using triangle inequality, we can decompose the total error HfM » — foll, into three terms that

1Faex = follo <[l Farx = Farnllo+ | farn = Faasllo + [|Farx = folo -

Sample variance Empirical error Approximation error

©)

The above decomposition typically identifies three components of error: Sample variance, empirical error, and approximation
error. Sample variance is attributed to the noise in responses, while empirical error controls the discrepancy between the
empirical covariance operator C' and the population integral operator L ;. Additionally, the approximation error arises from
the penalty. All these three components depend on the regularization parameter A. To be more specific, a larger A value
may lead to reduced sample variance and empirical error but simultaneously result in an increased approximation error.
Consequently, an optimal selection of A should be chosen to balance the trade-off among these three components.

C. Technical Lemmas

In this section, we provide some technical lemmas that are used to complete the proof of the main results in Section D.
Lemma C.1 is devoted to verifying the uniform boundedness of the partial derivative of the random feature mapping ¢ (-, w)
with a high probability if the number of RFs is sufficiently large. Under some event, we can verify the Lipschitz continuity
of the M-dimensional random feature mapping ¢, (-). Lemmas C.2 and C.3 aim to bound the similarity between Cps + AT
and C v -+ A in different manners.

For notation simplicity, we write

Lyx=Ly+M, Lgx=Lx+M, Cuyx=Cuy+Al,  Cuyxr=Cu+AL

14
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Recall from Assumption 4.1 that
1
T(w) = sup = [dx(x,w)ll5, Ve e (10)
xex d

Define the event & that

1 M
Ew = {MET(M) gB},

for some positive constant B to be clarified in the proof. The following lemma shows that by choosing a sufficiently large
number of RFs, the event £, holds with high probability.

Lemma C.1. Forany § € (0,1), under Assumption 4.1, if M > C'log(2/9), we have
P(&w)>1-0.
Moreover, on the event £(w),

par(x) — dpr(X)]|2 < VdB|x —xX||2, ¥ x,x" € X. (11)

Proof. Recall that T'(w) from (10). Write T’ = ; Zf\il T (w;). We first establish the proof for the first part of Lemma C.1
in two steps.

Step 1: By Lemma E.3, Assumption 4.1 is equivalent to

Eylexp(o(T(w) — Ew[T(w)]))] < exp <022002>, forall |o| < (12)

1
Cy’
where Cy, Cy are some positive constants. Then, for |o| < C%’ the moment-generating function of MT — E¢[T(w)] can
be bounded by

M
Ewlexp(o(MT — MEw[T(w)]))]= H Ewlexp(o(T(wi) — Ew[T(w)]))]

M 2,12 212
o-C, Mo“C,
S”exp( 0 :exp( 0>7
Pl 2 ) 2

where the first equality follows from the fact that w1, ..., wys are independent and the inequality follows from (12). This
proves that MT — E,[T (w)] is sub-exponential with parameter (v M Cy, Cy).

Step 2: By the Bernstein inequality stated in Lemma E.4, we have

MC?
Ci 0

MC3
2exp(—5¢7) for t > =

if 0<t<

2
2 eXp(72JVtIiC§)

Puw[[MT — MEy[T(w)]| > t] < {

By plugging t = M C2/C into the above inequality, we have

Pu(|7 - Bulr@)] > &) < 203 (—Ajc(’%g )

1

Therefore, if we take M > C'log(2/6), with probability at least 1 — 4, there holds

Qg<@+gg_3

T < E,[T -
< By (‘”)]+01—a1 )

)

as desired. The second inequality follows from

Eu[T(w)] = /OOC P(T(w) > t)dt < /OOO ag exp(—at)dt = Z;;

15
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We proceed to prove the second part of Lemma C.1. By definition,

9a1(x) = as (X3 = MZ (x,wi) = (', wy)’

2

M Z (/ x—x) Ta"w(xm“’l)d“> by x,, = ux +(1 — u)x’

< — i Z sup Ix —x ||2 ||8x11;(xu,<.“vz)||2 by Cauchy Schwarz inequality
i=1 u€
1
<d|x—x|> 7 ZT(&),;) by (10)

implying the claim by invoking &, where x,, € X due to convexity of X. This completes the proof of Lemma C.1. [
Recall 7(k) from Definition 3.1, and we define

~1/%
0 = (max{1,1og(n*1b0b1m/d3)}) B e (k) < by exp(— (bik)™);

2
—_— (13
0= AN () (ﬁ)mil’ it 7(k) < bok~ M.
2boVdB 2

The following lemma controls the operator norm of C; 1/ 2(0 v — Cur).

Lemma C.2. Forany ¢ € (0, 1) and on the event &, wzth probability at least 1 — 0/5, there holds

2k n K2NM( )) 10

HCA1/2C _CM)HeQ,eQS (Ef log —. (14)

0

Proof. To start with, we first define the operator ((x) from R to RM as

(%) = O L (@ (x)ps (x) T = Cr).

It can be verified that E[¢(X)] = 0 by the definition of C; and

O/ (Crs — Cr) =

:\'—‘

by the definition of Chs. Now, we aim to bound its operator norm by utilizing the concentration inequality in Lemma E.1.
Specifically, we have

1) e = [[Car ¥ (Dar () D2r ()T = Can)ll,, 0, < IO, @00V D ()T = Coa |,

<AT 1/2H¢M D (%) — CMHez,ez
<A 1/Q(H‘ﬁM ¢M(X Tsz,zz + HCMHez,eg)v

where the second inequality follows from the fact that ||C1;11/\2 22,0, < A™/2. To bound ||@ s (X)@ps (%) ||e,.0,, We have

1<i<M

M
dar (X)Pas (%) Nz = Pas (X)II3 = % D W(xwi)? < sup [v(x,w)* < A7 (15)
i=1

16
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Moreover, by using Jensen’s inequality, we have

||CMH¢27¢2 = || /X¢JVI(X)¢M(X)poX(X)HgQ,gz < /X ||¢M(X)¢M(X)T||42,42dPX(X) < K2

Combining the above results, we have [|¢(x) (|70, < 262A71/2.

To verify the second bounded condition required in Lemma E.1, we have

BICCOIE, ] = [ O3 (6300830 = Canl7  dox (9

(2 /X Tr((fpr(¥)ar (%) " — Car)Crpa (Dar (X) s (%) T = Cor))dpx (%)

< [ Tr0as (0830 )T €ty (00130 ) dpx ()
= 100061060, THCot s (08300 o

(iv)
< [ (om0, ) ()
X

(v)
< KQNM(A),

where (i) follows from || A||2 < Tr(AT A) for any trace class operator A, (i7) follows from the fact that
/X Tr((¢M (X)ppr (%) — CM)C]QI,,\(¢M (X)ppr(x) " — CM))dPX (%)
= /X Tr(ppr(%)Par (%) T Crpadns (X)dar (%) ") dpx (x) — Tr(CarCry\ Cr),

(#it) follows from Von-Neumann’s trace inequality that Tr(AB) < || A||Tr(B) valid for the trace class operators A and B,
(iv) follows from (15), and (v) follows from

[ T O 0) 00TV (0 = TH(Ci | s (X1 (09T dpx (29
= Tr(CyaCum) =: I (M) (16)

and the fact that
Ju(A) = Tr(SJ—\;LJT/[l,)\SM) = TY(LJT;,ALM) = Nu(N).
See Rudi & Rosasco (2017).

To apply Lemma E.1, we additionally need to verify that the stochastic process {{(X;)};>1 remains a 7-mixing process.
Note that {Z; = (X;,Y;)};>1 is assumed to be T-mixing process with coefficient 7(k), it immediately follows from
Proposition 3.2 that { X ; };>1 is also 7-mixing process with coefficient 7 (k).

To verify the 7-mixing condition for {¢(X;)};>1, first note that

||¢M(X)¢M(X)T - ¢M(X/)¢M(X/)TH@2,@2 < (lpar(X)ll2 + [[@ar (X ) l2) [|Par(x) — ¢M(X/)H2

< 26 P (%) — P (X) 2 by (15)
< 26VdB| x —X/||. by (11)

Together with the fact HC’A_/;/(Q lleg.0, < A™1/2, we thus have

16%) = e = [|Co 82 (D ()b (%) = s () bar () D, o,
<O s 20 (VD ()T = s (Vs ()T,

< 26VdBA|| x —x||2.

17
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This verifies the Lipschitz continuity of {¢(X;)};>1, thus proving that the process {{(X;)};>1 is 7-mixing with coefficient
2kvVdBAT(k) by using Proposition 3.2.

By applying Lemma E.1 with L = 2A~'/2k2 and ¢ = k+/Nj;()), and the corresponding Hilbert space consists of the
bounded linear operators on R, with probability at least 1 — §/5, the following result holds

2 2
—1/2 2K K NM( ) E
||C CM 01\4 ||£27€2 <21 0 \f log 3
This completes the proof of Lemma C.2. O
Lemma C.3. Foranyé € (0,1) and if
10

0\ > Ok%max{Ny(\), 1} log? 5
and on the event &y, with probability at least 1 — § /5, there holds
A—1
HCM,/\OM7)\||£2,€2 <2

Proof. Note that

—1/2

||CJTITA(6M - CM)HzQ,eQ < ||CM,/\ ||627€2||C];[1£2 01741;2 CM Cum) ||52,42'

||52 éz f H
Then, by (14), with probability at least 1 — §/5, there holds

2k2 KZN]V[()\)) o 10

IC3A (@ = O, ,, < 21(517 ™) g

Moreover, if /1A > Ck? max{Na (), 1} log”? 2, we have

1A 1
HCMT/\(CM - CM)H£2,£2 < 9"

Then, we have
~ (1) ~
1C3xCorally, o, = 1+ [[(Corx = Carn)Crrally, 4,
( i)
= 1+ HCM)\ CM CM Hz2 05
=1+ HCM,ACM»/\CM,A(CM - CM)Hez,zz
<1+ Héz;fl,/\CMAHez,ezHOJ\}}/\(CM - 6M)||52,52
1,4

<1+ gHCM%,\CM«\HeMQ’

where (i) follows from the triangle inequality and (47) follows from the fact that that A=! — B=' = A=Y(B — A)B~! for
any invertible bounded operators A and B. Thus, we have

ICACarally, ., <2

This completes the proof of Lemma C.3. O

D. Proofs of the Main Results

Based on the error decomposition (9), we separately derive the upper bounds for the sample variance in Section D.1, the
approximation error in D.2, and the empirical error D.3. Then we provide the proof for the main results in Section D.4.
Recall that |[Y| < U and || f,||cc < U.

18
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D.1. To bound the sample variance

Lemma D.1. Fixany ¢ € (0,1). With {1 defined in Lemma C.2, suppose that

, 10

) > Crk? max{Ny()\), 1} log 5

Then, under Assumption 4.1 and on the event &, the following inequality holds

1 2 2/@U U ./\/'M( ) 10
IFstn = Fasally < 1 CaisCorale, o N STy =8Tio)l, < 42( =+ Jlog =, (17)
with probability at least 1 — 22, where
bin . .
’ 2(max{1,10g(2_1r€_U‘ll(R+U¢d§)bob1n)})1/Wo’ if T(k) <bg exp(—(b1k)70), (18)
2= Urn/Nat X o2y 5220 . _
((K+U\Z*B)b2)2““(§)2““a if 7(k) < bk~
Proof. Note that
I farx — fM,/\Hp :HSMCEASATJY _SMCJ\}})\S]—\;J[PHI)
:HSMCA_/fl,\(SI\T/Iy*SJEfp H
—HSMCM,\C}V;QAC 1/2(SMy SMfﬂ)H
SuCi Ot C2(8Yy -5
—H MO HZQLH M,,\( MY ]Wfﬂ)”g‘
We first derive the upper bound for ||.Sy, 61\_/[1 /\C'leﬁ\ lle,,c. Note that
A1 ~1/2 1/2 1/21/2
HSMCM,,\CM,AHeQ, HSMC HﬁzﬁHC M/\Hﬁ2 0o
O] 1/2 1/2111/2 1/2 1/2
HCJV SMSMCJV HMQHC Hz2 £s
-1/2 ~N—1/21/2 —1/2 1/2
- HC CMCMA ||zz,zz||CM>\ ||e2 2
1/21/2
< J164 Cai Ll e
where (i) follows from that || A|| = || AT A||*/2 for any bounded operator A and the fact that C7, M A is self-adjoint, and (7)

follows from the fact that || AB|| = || BA|| for two self-adjoint operators A and B (Caponnetto & De Vito, 2007) and

HC I/QC]MCMUQHZQ 2 HC 1/201/20 1/20 Cy 1/2011”%0 I/QHEQ £

< 1GOOI CVAC
< 1GRONAIE,

By applying Lemmas C.3 and the Cordes inequality presented in Lemma E.2, with probability at least 1 — §/5, we have

IS CA Al o < NG CHAIL L, < IEACualL, , <2 19

le, c

We proceed to bound from above Hijl/z(ST —S31f0)||,- Recall ¢ (x) = ﬁW(X’ w1), .., (X, war)) T, We define
§0x,9) = Cl L (Sar (X)y = S ).
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Then, we have

BlE(X,Y)] = /X | (2000 = S,1,)dpx ()
- / Cr L (%) / ydp(y| X)dpx (x) — O3 {2501 1,
X y

—1/2

:/XOM)\ @ (%) fo(X)dpx (x) — O, 1/2Spr

=Cy S0 fo — Cot 280 = 0.

It is also clear by the definition of §JT/[ that
1
1/2
CJVI< (Shry —Sarf,) = - = &(xii)-

Then, there holds

e, y)ll2 =[O/ 4 (Dar(X)y — Sirfo)ll,
<||CCbar Ol + | L3S T £,
U _
<i+ 1Ca 2 ST ol
(?ZUJ
<

where () follows from (15) and |\C’A_/ﬁ/<2||42,42 <AV2 Jy| < U, || folloe < U, (44) follows from Jensen’s inequality that

lestisiinlla =] [, | cultentamioxtal, < [ llcuentauldoxx) <

§\§

Now, we turn to verify the second-moment condition. Note that

E[l&(X, V)13 = B[|Cy{* (6 (X)Y = ST £,)|I3]
< L B[ ea (XY
<0 [ 65 (o) 3dox () by [Y] < U
D210
= U Nu(N) by Jur(A) = Nar(N),

where (i) follows from E[|| Z —E Z ||3] < E|| Z ||3 for any random vector Z and (ii) follows from

/ |G s ()| () = / TH(Crty s (9961 () )dpx ()
X X

and (16) .

Now we turn to verify the function £(x, y) is Lipschitz continuous. Specifically, for z = (x,y),2’ = (x/,y’) € X x Y, we
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have

16, 9) = &), < NC L, e D00 )y = bar ()Y |
<A™ 1/2(||¢M y ¢M y||2+H¢M ZJ *¢M ’)y'H2)

<A 1/2(|y—y | lpar (X2 + U||pas (%) — s (% Hg)

(%)
<A V2 (kly — y/| + UVAB|[x — X||2)

< A1/2 (Iﬁ: + U\/dB) |z — /||,

where (4) follows from (11).

Then, the process {£(X;,Y;)}i>1 is 7-mixing with coefficient A=/?(x + U+/dB)7 (k). Clearly, by applying Lemma E.1
with L = 2kA~/2U and 62 = U?Nj;()), and the corresponding Hilbert space is R, we have

—1/2

2cU U2Na (M) 10
C NS Y-S f <21( n )107,
|| M WPum o) H2 I/ &7
with probability at least 1 — /5, where ¢ is defined in (18). Together with (19), we complete the proof. O
Remark D.2. In this proof, we use the assumption |Y| < U, which further implies |f,(x)| = |E[Y|X = x]| <

E[|Y|| X = x] < U. We remark that this assumption essentially requires the random noise to be uniformly bounded,
which can be extended to sub-exponential noise condition with a slight order sacrifice of an additional log n term in the
upper bound on || fM x— fi 1,2/ p- To be clear, suppose that {¢;}7-; are i.i.d. sub-exponential variables: that is, there exist
positive constants K1, K5 such that P(|51| > t) < Kj exp(—K. Qt) for all t > 0. Then, by the union bound, we have

i=1,.

P( max |£Z| >t) < P( U {lei| > t}) < ZKl exp(—Kot) = nK; exp(—Kat).
i=1 i=1

Consequently, for any 6 € (0, 1), by taking t = 1% log (”? 1 ), it holds with probability at least 1 — ¢ that

K 1
max |g;| < —l (7151) < log = + logn.

i=1,...,n K5 )
D.2. To bound the approximation error

Note that the approximation error does not involve dependent data specifically considered in this paper. Therefore, we can
directly apply the existing upper bound for the approximation error established in Rudi & Rosasco (2017). We summarize
some important results in Rudi & Rosasco (2017, Theorems 4 & 6) in the following lemma which will be used in our proof.

Lemma D.3. Suppose A < 3||Li ||,z and the number of RFs satisfies that

T— 2 —27r 2
M > max{4m2(N (A))z 1(J\/OO(A) log 221 )2 718 (g0 + Noo (V) log 28 } (20)

A A A
with o = 2(2+ /|| Lk || z,c + k*). Then, for any § € (0,1), the following inequality holds with probability at least 1 — /5

1L LA e < 2 21

Moreover, we have the following upper bound on the approximation error

[ farxn = follp < BRA,

where R = g,
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D.3. To bound the empirical error

To establish the upper bound on the empirical error, we first borrow a lemma from Rudi & Rosasco (2017).

Lemma D.4 (Lemma 3 in Rudi & Rosasco (2017)). Under Assumption 2.4, the following inequality holds for any
A>0,M,n

< Rmax{l, ’Q}HLMI{\Q }{/QHc,[;HSMaJ\}{AC I/QHZQLHC 36 (Cm — CM He2,22’

I fars — F

where R = ||g,||p-

Lemma D.5. Suppose A < 3||Lg||zc and (1) > Ck? max{Ny(\), 1} log? L. where {y is defined in Lemma 13.
Furthermore, we assume that the number of RFs satisfies (20). Then, on the event Ey, for any § € (0, 1), the following
inequality holds

2K2 n HQNN[(/\)) 10

S 10
IFatn = Fasally < 4R max{1, i} (== log —.

with probability at least 1 — >

127 1/2

Proof. By applying Lemmas C.2 and D.4, and together with the upper bound (21) on HL and the upper bound

le.c
(19) on ||Sy Cy, 2 Chs M /\ ®|l6y.» we immediately obtain the desired result. O

D.4. The proof for the main theorems

In this section, we complete the proof for Theorems 4.2 and 4.3 and the corresponding corollaries. Note that the results in
Theorems 4.2 and 4.3 hold without requiring Assumption 4.5. Since Corollaries 4.6 and 4.7 are general versions of the
two theorem above, we can specialize the results in Theorems 4.2 and 4.3 with § = 1, we only provide the proof for the
Corollaries 4.6 and 4.7.

Before providing the formal proof, we recall that the involved random events consist of:

« If M > Clog 1%, we have P(£w) > 1 —6/5 (Lemma C.1);

* On the event &, it holds with probability at least 1 — §/5 that (Lemma C.2)

22 HWM( )) 10

e (G — Can),, ,, <2 (gf log —.

]

L]

If A < || Lillz,c and M > (4 + 18N (N)) log 8¢, with probability at least 1 — 6/5, one has N (A) < N (A) <

3N (X) ( Proposition 10 Rudi & Rosasco (2017));

* On the event &y, it holds with probability at least 1 — §/5 that (Lemma D.1)

2cU U2N1\4<)\) 10
Ok’ Sy y -8 log —.
1Cars (S5 Y =Sirfo)ll, < 2 (52\5\"' s )Og5
« If A < 2||Lk| 2, and M satisfies the lower bound (20), with probability at least 1—4/5, one has HL_1/2 1/2 e, £2

and || farx — foll, < 3RA" (Lemma D.3).

Proof. Note that if £;\ > Ck? max{Ns(\), 1} log2 10 by applying Lemma D.1 , it holds with probability 1 — % that

(22)

-~ ~ 26U U2 N (A 10
||fM,>\_fM,>\||p§42<£\/X+ E;W( ))bgF,
2
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and if the number of RFs satisfies (20), by applying Lemma D.3, it holds with probability 1 — §/5 that
1 Far.x = foll, < BRAT. (23)

In addition, by applying Lemma D.5 , it holds with probability 1 — £ that

2 2
2K n K ./\[]u(A)) ] 10

1farn = Fauallo < 84Rmax{1,/<;}(£ o ) 1og 2 4)
1

]

Recall the error decomposition in (9), by combining (22), (23) and (24), with probability at least 1 — §, we have

2K3d3 + d%NM()\) ) ] E
63\& Z3

1Fatx = folly < BRA" + 168d1da ( 0g —,
where d; = max{1, R}, do = max{1, x}, d3 = max{x,U} and {3 = min{¢y, ¢>}.

Note that the requirement in Lemma C.1 that M > C'log % is also satisfied since the requirement in (20) is a more strict

constraint on the number of RFs.

Then, it remains to verify these three conditions:

i) 61 > Crk?max{Ny(\), 1} log® 19

ii) M > (4 + 18N () log 8%

iii)

540k
Y

N(A 55k

M 4&2(7)%_1(]\/00@) log

)2_% V 18 (g0 + Nao(N)) log

Indeed, by applying Proposition 10 in Rudi & Rosasco (2017) and Assumption 2.3, we have
Ny (A) <3N () < 3cpA™@

with probability at least 1 — §/5. Note that whether the 7-mixing coefficient is exponential decay or polynomial decay, we
always have {1 < {5 < /3. We always use /3 in the remaining proof.

1
Then, with the choice of A =< ¢, "%, by using Assumption 2.3 that N'(\) < ¢oA™* and Assumption 4.5 that Vo (A) <
AP, the required number of RFs turns to

(@+D@r=1) (=208 9, BtQta-pr=1) 94,
2rta Zrta _ 2rta
M > Cl, Ly log 5 = Cl, log 5

where C' hides several constants, including co, ¢1, &, || Li || z— .-
In addition, £\ > C'k? max{Ny()\), 1} log” 22 reduces to

1 - 10

U305 7 > Ok? max {3 1} log? 5

which holds as long as n is sufficiently large.

Next, we separately consider two cases: (1) 7(k) < bg exp(—(b1k)7°), and (2) 7(k) < bok™ .

Case 1: For (k) < bgexp(—(b1k)7°), we have
0 <0y < ly < n(logn)_ﬁ.

1 1 .
Then, A turns to n~ 2+« (log n) #0@+=) and the number of RFs must satisfy

B+(1+a—p)(2r—1) _ B+(ta—g)(2r—1) 2n

M >Cn Zrta (logm) 20Crte)  log 5
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(o B4(4a—p)(2r—1) 1 .
Due to W >1 M>Cn Trta (logn) o log 2 will be enough.

+a

Therefore, by applying the union bound, it holds with probability at least 1 — ¢ that

N]\{ ()\) ) lo 150

~ 1
~Jollp SN+ (= +
”fJVI,)\ f/J”P 53\5 £3
_r _4rd2a-—1 _r 10
5 63 2rfo + (63 irf2a + 63 2r+a) log 5

< ™ 5% (log ) T log

where (i) holds if 7 > 1.
Case 2: For 7(k) < bk, we have

l1—«

1-a 2 27 27
U <y = ly < (N2 )T pTadt = \TatpZil,

S | W .
Then, A turns to n= #ir+2r+2e7+1 and the number of RFs must satisfy

27184271 (1+a—B)(2r—1) 2n
M > Cn~ Part2rizensl — Jog —.

)
Similarly, by applying the union bound, it holds with probability at least 1 — § that

-~ 1 Nu(N) 10
—ollp SN+ (= + )log =
[ faexn = follp sV I g 5
—ata | () Tasar e e 10
S_, €3 o + ((3 r+2a + 63 r+a) log7
<~ T 1og%'
This completes the proof. O

E. Auxiliary Lemmas

The following lemma provides Bernstein’s inequality for the sum of zero-mean random elements (Blanchard & Zadorozhnyi,
2019).

Lemma E.1. [f the zero-mean stochastic process {(&;)i>1} C H is T-mixing process with rate (k) in exponentially or
polynominally decay, where H be a real separable Hilbert space equipped with norm || - ||3. Assume that there exist some
constants L, o > 0 such that

Il < L as. and E|€|3, < o>

Then, let 6 € (0, 1), it holds with probability at least 1 — § that

1 — L o 2
Ity =21 ( + 7 s
where

= (manc {1, log(bobrn/L)}) "/ P, if (k) < by exp(~(buk)):

2 2+
o\ TN 7 . _
* = _— —_ < ’Yl‘
14 (b2> (2) , if 7(k) <bk
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The following lemma is known as the Cordes inequality (Bhatia, 2013).
Lemma E.2. Let A and B be positive operators on a Hilbert space. Then, for any 0 < r < 1, we have |A"B"|| < ||AB|".

Lemma E.3. For a random variable X, the following statements are equivalent:
(1) There exist constants Ky, Ko such that P(‘X’ > t) < Ky exp(—Kst) forallt > 0.
(2) There exist constants K3, K, such that E[exp(o(X — EX))] < exp(K20?/2) for all o satisfying |o| < 1/Kj,.

The above lemma characterizes the sub-exponential variable in two different manners: tail probability and moment generating
function, one can refer to Wainwright (2019); Papaspiliopoulos (2020) for detailed proof and discussion. Formally, a random
variable X is called sub-exponential if there are non-negative parameters (v, ) such that

Elexp(o(X — EX))] < exp (UQVz

—_

) forall o] < —.

=

The following concentration inequality is known as Bernstein inequality, whose detailed proof can be found in Section 2 of
Wainwright (2019).

Lemma E.4 (Bernstein inequality for sub-exponential variable). Suppose a random variable is sub-exponential with
parameters (v, c), then we have

1 2 ¢ 2exp(— s O<t<”—
PHX _EX| > t] < exp<_ *Hliﬂ{ﬁ,*}) = eXp( 2;,2)7 lf «
2 vea QGXP(_%L ift>=% E

F. Data-dependent sampling strategy

In this section, we introduce a data-dependent sampling strategy proposed in Rudi & Rosasco (2017).

Example F.1 (Data dependent RF, Example 2 of Rudi & Rosasco (2017)). Suppose that kernel K has the integral
representation (4). Let

s(w) = \|(LK+)\I)_1/21/)(~,w)H;27 and L, ::/ﬁdﬂ(‘”)

We consider random features
Ps(X,w) = P(x,w)\/Lss(w)
with distribution 74 (w) := 7(w)/(s(w ) ) One can prove that these random features ensure the integral representation of

K and satisfy Assumption 4.5 with 5 = «. The proof of Example F.1 is given in Rudi & Rosasco (2017). We state it below
for completeness.

Proof. We first prove random features 1) (-, w) ensure the integral representation of K, note that
/w (x, w)hs (¥, w)dms (w /1/)xw (%', w)Lss(w )L ( dw(w /d;xw (X', w)dr(w) = K(x,X).
s(w

Then we prove random features 1)5(x, w) satisfy Assumption 4.5 with 5 = «,

Nl = sup [(Lic + A1) /20,
€N

= sup H (Lx + AI) —1/2y w)y/ Lss(w H

weN

sup (L + A1)~ Xw}H [CRESYRE Xw}H /|| (Lic + AI)"V2 (-, w) 2dm(w)
wenN

/Q |(Lc + A1), )| 2drr(e)
= N()\) S Co>\_a.

This completes the proof. O
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