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Abstract

While the last five years have seen considerable progress in understanding the internal
representations of deep learning models, many questions remain. This is especially true
when trying to understand the impact of model design choices, such as model architecture
or training algorithm, on hidden representation geometry and dynamics. In this work we
present a new approach to studying such representations inspired by the idea of a frame
on the tangent bundle of a manifold. Our construction, which we call a neural frame,
is formed by assembling a set of vectors representing specific types of perturbations of a
data point, for example infinitesimal augmentations, noise perturbations, or perturbations
produced by a generative model, and studying how these change as they pass through a
network. Using neural frames, we make observations about the way that models process,
layer-by-layer, specific modes of variation within a small neighborhood of a datapoint. Our
results provide new perspectives on a number of phenomena, such as the manner in which
training with augmentation produces model invariance or the proposed trade-off between
adversarial training and model generalization.

Keywords: Data manifolds, hidden representations in deep learning, vision model aug-
mentations, tangent vectors

1. Introduction

The community has made considerable progress prying open the black-box of deep learning.
This has led to partial illumination of the mechanics by which a model can distill input into
semantically meaningful high-level features that lead to robust predictions. Understanding
this process is important since it is one way of explaining how these models perform at
levels that rival human experts. Because both the input data (e.g., images) and the hidden
representations within a model tend to be high-dimensional, progress has largely been built
on the back of tools that leverage the geometric structure characterizing these spaces even
when the spaces themselves cannot be visualized by a human.

Yet, because of the richness of deep learning representations and the high-dimensional
spaces they inhabit, existing techniques by necessity provide an incomplete picture of the
full relationship between model, training, data, and representation. In particular, we note
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that while many tools study the large-scale structure of representations (e.g., representation
topology (Naitzat et al., 2020; Rieck et al., 2018), mutual information (Shwartz-Ziv and
Tishby, 2017), model identifiability (Roeder et al., 2021)), there are fewer tools that focus on
model behavior in small neighborhoods around a datapoint. Motivated by this, we describe
a new tool to illuminate deep learning representations at the local level (exceptions include
work focusing on adversarial examples and robustness and (Wang and Ponce, 2021) and
(Zavatone-Veth et al., 2023)). To do this we leverage the notion of a frame from differential
geometry. A k-frame is a choice of k linearly independent vectors from the tangent space
that smoothly vary from point to point on an m-dimensional manifold M. The span of
these vectors defines a subbundle of the tangent bundle of M. By applying the first ¢-layers
of a deep learning model to a k-frame, we can see how a model deforms, compresses, or
expands specific directions in the immediate neighborhood around a datapoint, providing
useful information about how representations of that datapoint change at the local level.
We call the resulting structure a neural k-frame (since it will generally not be a true frame).

Neural frames have several properties that make them a valuable tool which is comple-
mentary to other methods of studying neural representations. The first is that through the
choice of the input k-frame, one can study the ways in which the representation of an input
example changes with respect to specific modes of variation. In this work for example, we
explore frames that capture the directions of infinitesimal image augmentations, frames that
point in the direction of noise, and frames generated by a diffusion model. As we show in
Section 3, these different frames are processed in radically different ways by a model even
when they all sit at the same datapoint. Secondly, neural frames are data efficient, only
requiring a single datapoint. This is in contrast to other methods that focus on large-scale
structure and hence require a whole dataset for calculation. Finally, neural frames are an
intuitive and flexible construction that can often be integrated into existing tools. For ex-
ample, in Section B.1 in the Appendix we show how neural frames can be combined with
centered kernel alignment (CKA) to create a method of comparing the local properties of
two different representations of a single datapoint.

As a proof of concept, we construct several different flavors of frames for image datasets
and then apply them to a range of models with varying architectures and training meth-
ods. From these preliminary studies we are able to make a number of observations about
small-scale neural representation geometry. (i) Training a model with augmentation causes
it to preserve neural frames generated by small augmentations, contradicting intuition that
such models would learn to collapse such modes of variation as invariance is learned. (ii)
Increasing the e value used in adversarial training causes a model to increasingly preserve
noise directions around a datapoint at the expense more semantically meaningful augmen-
tation directions. (iii) A model’s preservation of augmentation directions correlates with its
accuracy.

In summary, our contributions in this work include the following;:
e We describe neural frames, a flexible tool which can be used to study the small-scale
geometry of neural representations.

e We ground the intuitive notion of a neural frame within the theory of frames on a
manifold, allowing us to connect our measurements of real models with geometry.
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Figure 1: A cartoon visualizing an augmentation frame with three tangent vectors (derived
from hue shift, brightness shift, and a small rotation and crop) and a noise frame
with three noise vectors. We think of the augmentation vectors as approzimately
living in the tangent space of point z on the data manifold while the noise vectors
do not. Our cartoon illustrates that models process different frames differently
with the noise vectors in this cartoon being collapsed by the first ¢ layers of the
network.

e We apply neural frames to a range of models with varying architectures and training
histories and show that these are reflected in the local geometry of feature space.

2. Neural frames

In this section we introduce neural frames. Where possible, we center our constructions
around established notions within manifold geometry since this allows us to prove a number
of useful statements. A review of relevant geometric ideas such as the concept of a vector
bundle, as well as some of the lemmas that support statements in this section can be found
in Section H of the supplementary material.

A Ek-frame of a finite vector space V of dimension m > k is a set of k linearly independent
vectors. A k-frame on m-dimensional manifold M is a choice of k-frame for each tangent
space T, M which varies smoothly with respect to the structure of M. Given k linearly
indepedent vector fields, there is always an open set where they form a k-frame, whose span
is a subbundle of the tangent bundle. Suppose that we have a data manifold M embedded in
ambient space R™ along with smooth functions F = {f1,..., fp} with f; : (=1,1)x M — M,
filt,z). If fi,..., fr satisfy some general conditions (see Corollary 6 in the Appendix),
then we obtain a sub-vector bundle of the tangent bundle of M, Vr, along with a frame
vi(z),...,vk(x) obtained by differentiation of each f; with respect to t. For the purposes
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of this paper, the reader can think of each f; as corresponding to an augmentation with ¢
the parameter that controls the augmentation (e.g., degrees for a rotation) and x the input
image.

Suppose that F = Fyo---0 F; : R® — RF is a neural network that decomposes into ¢
layers Fj : R™ — R™+! with ng = n and ny, = k. We write F<; := Fjo---0Fy : R" — R"+!
to denote the function that consists of the first i layers of F'. While there is in general no
way to use F<; to push forward a vector bundle Vr and hence a k-frame, if F<; is smooth,
then its differential is a linear map dF<; : TuM — Tp_,;)R"*1. This setup allows us to
define neural frames.

Definition 1 Let vq,...,vg be a k-frame on m-dimensional manifold M. Let F' be a neural
network as above. Then dF<;(vj(z)) is a tangent vector in Tp_,;)R™"*+1 and the neural k-

frame at layer ¢ of F' and point x is the set of vectors dF<;(vi(x)),...,dF<;i(vi(x)).

Informally, a neural k-frame is simply the object we get when we push a true
k-frame through the first i-layers of a model.

Even when we have F<; and v;(z), how do we actually compute dF<;(v;(x))? This is
fortunately simpler than it perhaps looks. Assuming that v;(x) is derived from a function
fj:(=1,1) x M — M as above, fixing x € M and letting ¢ € (—1,1) vary, the composition
F<;(f(t,z)) is a smooth path in R™+! such that F<;(f(0,z)) = F<;(z), and

_ OFi(f(t,))

dF<i(vi(x)) ot t=0

(1)
In practice, we compute v;(z) = % fi(t,z)|t=0 by numerically approximating the partial
derivative and we compute dF<;(v;(x)) by approximating the derivative on the right hand
side of equation 1.

Once we have a neural frame, dF<;(vi(z)),...,dF<;(vi(x)), we can extract a range of
statistics that help diagnose what F<; is doing to the data manifold at point x. Since we
assume that v1(x), ..., vg(z) belong to a sufficiently small neighborhood U of data manifold
M such that U is approximately linear, an initial idea may be to look for changes in rank
of the matrices A, ; with columns dF<;(vi(z)),...,dF<;(vi(x)), as i varies. Unfortunately,
rank is sensitive to noise and is hence unsuitable for this application. An appealing alter-
native is stable rank (Rudelson and Vershynin, 2007), which is the ratio between squared
Frobenius norm and the squared spectral norm of a matrix. For A, ; this is

2
r(A) o= Azl
| |A$J| |s ec
P
It can easily be calculated by computing the singular values o1, ...,0; of A;; and then

A = L N2
(A) maxi(ai)zi: v

This definition shows that stable rank captures the extent to which data variation is cap-
tured in a small number of dimensions. Since k is small in practice (< 50), computing
stable rank via a singular value decomposition of A, ; is quick. We note that stable rank
has found a number of useful applications to deep learning (Sanyal et al., 2019).
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Stable rank is a lower bound on rank, and we can interpret a decrease (respectively,
increase) in stable rank when moving from v (), ..., vk(x) to dF<;(vi(x)),...,dF<;(vi(x))
to mean that F<; compresses (resp. expands) the data manifold M in the directions cap-
tured by vi(x),...,vx(x). This of course does not mean that F<; compresses all of M at
x since in general vq(x),...,vi(z) will only span a small subspace of the tangent space of
M at x. Nevertheless we will see that some of results we obtain using stable rank reflect
patterns seen in past intrinsic dimension experiments.

We end this section by discussing two different types of frames which seem particularly
interesting.

Augmentation frames: This neural frame is generated by image augmentations f; :
(a,¢) x M — M with the following properties: (1) as implied by the domain and range
of f; above, f; transforms one natural image (on M) to another natural image (on M).
While this latter image was not actually captured by a camera (instead being produced in
software) it should be plausible that it could have been. (2) Aside from the input image,
fi is also controlled by a parameter ¢ € (a,c) for a < ¢ € R such that for some b € (a,c),
fi(b,z) = x for all x € M. For example, if fyo : (—180,180) x M — M is image rotation,
with the first parameter measuring the number of degrees that an image will be rotated,
then it is always the case that fi01(0,2) = .

The frame vy, ..., v, derived from fi,..., fr describes a number of pseudo-naturalistic
directions in which an image can vary without leaving the image manifold. The neural
frame associated with this frame tells us how a model handles change in these directions
locally. In Table 1 in the Appendix, we list the image augmentations that we used, the
library we used to implement them, and the augmentation parameters that were used in
our experiments.

Some image augmentations come with more than a single real parameter that a user
can choose from. For example, when rotating an image, one can often pick the pixel
coordinates of the point which will be the folcrum of the rotation (for example, in (Marcel
and Rodriguez, 2010)). How many versions of the augmentation should one add to the
augmentation frame in such cases? In a 224 x 224 image there are 50176 pixels that we
could rotate around. How many can be added before the corresponding tangent vectors
become linearly dependent? In cases where the underlying augmentation corresponds to
the action of a Lie group (including this case, where the Lie group is the special Euclidean
group SFE(2) which is generated by all translations and rotations of the plane), Lie theory
can provide an answer. We begin by recalling that the action of a Lie group G on a manifold
M induces a linear map from the Lie algebra g to T, M for any x € M.

Proposition 2 (Theorem 20.15 (Lee, 2013)) Let g = ToG be the Lie algebra of G and
p:Gx M — M a Lie group action of G on M. Suppose x € M, and define ev, : G — M
as evy(g) = p(g,z). Then ev, is a smooth map and the differential of ev, at the identity
element e € G is a linear map devy : g — T, M.

Given Proposition 2, our problem is equivalent to identifying the dimension of the image
of dev, This will tell us the maximum number of linearly independent tangent vectors that
can be generated by the action of G. To state the solution, we require a piece of terminology:
the stabilizer of a point x € M is the subgroup G, = {g € G| gx = x}.
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Proposition 3 The natural map g — T, M is injective if and only if the stabilizer G, is
discrete.

In our rotation example the stabilizer SFE(2), of a natural image = almost always consists
of the identity alone, hence is discrete. Since the dimension of Lie group SFE(2) is 3 and
a Lie algebra’s dimension (as a vector space) is equal to the manifold dimension of its
corresponding Lie group, the subspace of T, M spanned by tangent vectors generated by
all possible rotations at different points in a image is 3. Thus we conclude that for most
images we only need to include tangent vector approximations for rotations at 3 points in
an image. In our experiments we choose to rotate at pixels (0, 0), (50,50), and (—50, 50).

Diffusion frames: The recent work (Luzi et al., 2022), describes how diffusion models can
be used to sample locally around an image. In essence, the method they describe, called
Boomerang, adds a user chosen amount of noise to an image (driving it away from the image
manifold) and then uses the diffusion model to bring it back to the image manifold (but not
to the original point). In this process the image will be subtly altered in a naturalistic way.
This method fits nicely within our scheme of neural frames: we use Boomerang to produce
k distinct perturbations of an image (to match our augmentation frame, in our experiments
k =19), then we define a k-frame with these. We assume that the perturbations generated
by the diffusion model are small enough so that the linear path from a perturbed image to
the real image lies on the image manifold.

3. Experiments

Having developed neural frames, we show their utility by using them to probe the local
behavior of deep learning models. We give full experimental details in Section J in the
supplementary materials. Unless noted otherwise, we use publicly available weights from
Torchvision (Marcel and Rodriguez, 2010) or Timm (Wightman, 2019). To simplify dia-
grams, we omit layer names providing their numerical correspondence in Tables 2-10 in the
supplementary material. Unless otherwise noted, we performed our evaluation on 40 ran-
dom ImageNet training images. We did not see substantial changes in results when either
using a larger sample size or using the test set!.

We utilize four different types of frames in our experiments which we describe here.
(1) Gaussian noise: We perturb an image with random Gaussian noise with mean and
variance which we normalize to match the statistics of vectors in our augmentation frame.
Note this is not a frame on the image manifold itself. (2) Augmentation frame: We use
the augmentations listed in Table 1 to generate an augmentation frame (example images of
augmentations are found in Figure 13 in the supplementary material). (3) Random rotation
of augmentation frame: We randomly rotate the augmentation frame above so it retains its
geometric structure but loses its semantic meaning. (4) Perturbations via stable diffusion:
We use the Boomerang method (Luzi et al., 2022) to generate samples from around an
ImageNet image and take these samples as perturbations to build a frame (example images
of this frame are found in Figure 14).

1. The latter phenomenon suggests that model generalization may be detected by statistics even at the
very local level.
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Figure 2: (Left)The stable rank of different types of frames measured at various layers
of a ResNet50 model. (Right) The stable rank (by layer) of ResNet50 models
evaluated with respect to augmentation frames on ImageNet images where each
model was trained with a different augmentation method. Layer zero corresponds
to model input and the last layer corresponds to model output (see Table 11 for
the names of layers 1-5). Shaded regions indicate 95% confidence intervals over
40 randomly selected ImageNet images.

Models generally preserve on-manifold tangent vectors and collapse vectors that
point off manifold: It is reasonable to ask whether a CNN or transformer actually “sees”
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different frames differently. One might worry that on the small scales that we work, the dif-
ferent frames we construct do not capture meaningful differences in model representations.
For example, can a model actually tell the difference between an augmentation frame and
a noise frame?

To test this, we plot the stable rank for a number of different frames at different layers of
a ResNet50 pretrained on ImageNet (Marcel and Rodriguez, 2010). The results are shown in
Figure 2 (left) (Figure 8 in the supplementary material has results for the same experiment
with a ViT). We can see that even with the coarse statistic of stable rank, different neural
frames exhibit distinct behavior when processed by the model. The neural frame generated
from Gaussian noise predictably has the highest stable rank in the ambient space (layer 0),
but this drops quickly in both models as the frame is processed. This suggests that models
preserve those directions more representative of natural variation at the expense of random
directions. In contrast, augmentation frames, which simulate directions of natural variation
of imagery are generally more preserved from layer to layer, only being collapsed in the final
classification layer.

As a sanity check, one might wonder if this phenomenon is a consequence not of the
directions that augmentation frames point relative to noise frame, but of other structural
features of the frame itself. For example, inspection of the stable rank of the input frames
in Layer 0 of Figure 2 (left) (prior to processing by the model) show that the noise frame
is close to being an orthogonal set of vectors while the augmentation frame has significant
linear redundancies. To explore this, we randomly rotate the augmentation frame so it no
longer points in the direction of natural changes to the image but keeps other structural
features. When we do this we see that this rotated frame, like the noise frame, is collapsed
by the model. This provides strong evidence that, even at the very smallest scales, models
recognize and preserve directions that simulate natural variation found in imagery.
Training with augmentation causes models to better preserve on-manifold aug-
mentation frames: In order to better understand the impact of training with augmen-
tation at the local level, we explored the stable rank of augmentation frames for a range
of models trained with (and without) different types of heavy augmentation. We consider
ResNet50 models trained with the augmentation methods PRIME (Modas et al., 2021),
Deep Augmentation (Hendrycks et al., 2021), and Stylized ImageNet (Geirhos et al., 2018).
Our results are shown in Figure 2 (right) where we see that generally, models trained with
extra augmentation have neural frames with higher stable rank, indicating that these mod-
els more faithfully preserve (and to some extent even expand) frames represented by small
augmentations. Note that this may seem unexpected given that training with augmentation
is generally done to build invariance to natural variation in images. This might lead one to
conclude that training with augmentation should cause augmentation frames to collapse as
a model consolidates different augmented versions of the same data point. Figure 2 (right)
suggests that this must happen only in the final layers of a model and that instead, in ear-
lier layers training with augmentation causes a model to learn more distinct and structured
representations of different augmentations of a single input. This speculation agrees with
observations found in (Kvinge et al., 2022).

On the other hand, adversarial training degrades the preservation of augmenta-
tion frames but improves the preservation of noise frames: It has been empirically
confirmed via a range of different methods that adversarial training has effects on the way
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that computer vision models process data at the local level (Engstrom et al., 2019). To
investigate whether this can be seen at the level of neural frames, we calculated the stable
rank for 5 layers of several different ResNet50 models, each trained with a different lo-robust
€ bound of adversarial training with weights from (Salman et al., 2020).

On the left in Figure 3 we show the stable rank over 40 random ImageNet images
with respect to the augmentation frame and models with various strengths of adversarial
training (here e gives the ¢ bound on adversarial examples shown to the model during
training). We observe that the stable rank of our augmentation frames generally decreases
slightly as the strength of adversarial training increases. Furthermore, these differences are
most pronounced at earlier layers of the model. On the other hand, we can see that when
we substitute the augmentation neural frame for the off-manifold noise neural frame (right,
Figure 3) that the opposite pattern holds and stable rank generally increases as the strength
of adversarial training increases.
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Figure 3: (Left) The stable rank (by layer) of adversarially trained ls-robust ResNet50
models with varying e values evaluated with respect to augmentation frames on
ImageNet images. Layer zero corresponds to model input and the last layer corre-
sponds to model output (see Table 11 for the names of layers 1-5). (Right) The
same models evaluated on noise frames. Shaded regions indicate 95% confidence
intervals over 40 randomly selected ImageNet images.

The average stable rank of augmentation frames is correlated with model ac-
curacy: It is natural to ask whether statistics associated with neural frames have any
relationship with other characteristics of a model. In Figure 4, we show that higher average
stable rank of augmentation frames is correlated with model accuracy. This observation fits
well with our speculation above that preservation of augmentation frames (as measured by
stable rank) may be tied to a model’s fit to the underlying image manifold.

We end with a couple final observations that we explore more thoroughly in the supple-
mentary material: (i) Neural frames reveal that over the course of training, models initially
locally compress the image manifold and then gradually expand it as training progresses
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Figure 4: The stable rank versus accuracy for a range of ResNet50 models trained on Ima-
geNet. Each point represents the stable rank of a frame on a single image/model
pair.

(see Figure 9 in the supplementary material). It would be interesting to tie this to previ-
ously observed phenomena e.g., the information bottleneck (Tishby and Zaslavsky, 2015).
(ii) The stable rank of augmentation neural frames tend to vary less across CNN models
when compared to transformers, suggesting that transformers compress and stretch data
manifolds more during processing (see Figures 11-12). (iii) We describe frame CKA, which
can reveal inter-layer differences in ViTs that traditional CKA struggles to capture.

4. Conclusion

While data manifolds play a central role in our understanding of how and why deep learn-
ing works, extracting any tangible information about them is challenging. In this paper
we provide a new tool, neural frames, to help probe the ways that deep learning models
interact with data manifolds. We show that neural frames vary substantially for models
that were trained in different ways, providing some insight into how choices in architecture
and training method impact the way that a model processes data.
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Appendix A. Limitations

While neural frames provide unique and valuable information about how a network processes
a data manifold locally, this information is never the full story. For example, in most cases
the frames we use span proper subspaces of the tangent space. Thus, there may be changes
to the tangent space that we miss because they are orthogonal or nearly orthogonal to all
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vectors in the frame that we use. Further, augmentation frames may be challenging to use
in specialized scenarios where augmentations that preserve the particular image manifold
under consideration are not a priori known.

Appendix B. Related work

Mathematical tools to study the internal representations of deep learning mod-
els: Given deep learning’s remarkable performance on a broad range of tasks, substantial
research effort has gone into better understanding how and why it works. While these stud-
ies have taken a range of forms, understanding the way that models represent input data
throughout their layers has been a prominent theme. Because of the high-dimensionality
of such representations, mathematical tools are generally needed in order for a human to
analyze or visualize them. While the standard suite of dimensionality reduction methods
are used for visualization (Olah, 2015), these often fail to be sufficiently quantitative for
analysis. Instead, tools from geometry, topology, and probability theory have found appli-
cation as these fields routinely study spaces that are challenging for humans to understand
using visual intuition. Along these lines, several works have explored neural representations
in terms of a range of mathematical descriptors, from properties derived from algebraic
topology (Naitzat et al., 2020; Barannikov et al., 2021), to intrinsic dimension (Ansuini
et al., 2019; Pope et al., 2021; Ma et al., 2018), to mutual information (Shwartz-Ziv and
Tishby, 2017). Our work complements these by focusing on the small-scale structure of
representations unlike most of the works above which focus on large-scale structure (that
is, at the level of multiple points in the dataset), as well as structure that targets particular
modes of variation (e.g., how a model represents noise directions vs directions corresponding
to augmentations).

Comparing representations: Beyond understanding them in isolation, in many cases
it is useful to be able to compare the representations of the same data by different models or
different layers of the same model. Notable methods include: canonical correlation analysis
(CCA) (Hardoon et al., 2004), along with its variants SVCCA (Raghu et al., 2017) and
PWCCA (Morcos et al., 2018) (see (Klabunde et al., 2023) for a recent survey outlining
the relationship between these and other methods). Another method of comparing repre-
sentations is neural stitching (Lenc and Vedaldi, 2015) which (roughly) measures whether
one model can learn from another’s representation. In this work we use centered kernel
alignment (CKA) (Kornblith et al., 2019), one of the most popular tools for comparing
internal representations of deep learning models. In contrast to all the methods mentioned
here, the frame CKA approach that we propose in this paper focuses on similarity between
local representations around a data point. This makes it complementary to other methods
which often focus on large-scale structure between many distinct datapoints (in most cases
an entire validation set).

B.1. Frame CKA

Let D = {x1,...,24} be a dataset in R® and F', F?2 : R® — RF two neural networks.
Let F%il(D) be the matrix whose rows are F%il (1), .-, F%il (zq) with analogous notation
for FéiQ (D). Using the notation from Section 2, the centered kernel alignment (CKA)
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(Kornblith et al., 2019) score for models F', F? at layers i; and i respectively in (terms of
D) is defined as

|Cov (F;, (D), FZ,, (D)) |7

1 2 _
CKA(FSH(D)aFSiz(D)) - HCOV(F%Q (D)7F%“(D))HFHCOV(Fém(D),F%Q(D))HF

where Cov denotes covariance and || - || is the Frobenious norm. Very roughly, CKA
measures the structural similarity of representations of datapoints D in F! at layer i; vs the
representation of D in F? at layer iy with higher scores (closer 1) indicating representations
are that structrally similar. Notably, CKA is invariant to orthogonal transformation, which
fits with the intuition that rotating a model’s representation does not meaningfully change
its structure (see (Klabunde et al., 2023) for further discussion on this and other invariances
in similarity metrics).

The same reasons that CKA is a useful tool for comparing high-dimensional model repre-
sentations make it appropriate to comparing neural frames. In particular, if vi(x), ..., vg(x)
is a k-frame at x € R", then we can apply CKA to the matrices whose rows are

dF%il (v1(2)), ... ,dF%il(vk(x)) and dFéil(vl (x)),..., dFéil(vk(x))

respectively. We call the resulting statistic the frame CKA score of F' and F? at layers i,
and i for frame vi(x),...,vx(z). Following the standard interpretation of CKA scores,
a frame CKA score close to 1 indicate that F' and F? represent frame vy (z),..., v ()
similarly at layers of 41 and 75 respectively. Note that unlike standard CKA which compares
the representation of a collection of points, frame CKA compares the arrangement of the
vectors of a neural frame at a single point.

Appendix C. How does the stable rank of a frame relate to intrinsic
dimension?

Given that the dimension of a manifold can be defined as the vector space dimension of its
tangent space, one might ask how the stable rank of a neural frame (which in some cases
is also related to the tangent space of a data manifold) relates to the intrinsic dimension of
a neural representation. This is especially pertinent given the large number of works that
investigate neural representations through the lens of intrinsic dimension (Ansuini et al.,
2019; Pope et al., 2021; Amsaleg et al., 2017; Ma et al., 2018). In this short section we
compare the stable rank of neural frames to intrinsic dimension to get a better sense of
what both are capable of telling us.

e Manifold dimension: Intrinsic dimension is designed to estimate the dimension of
the manifold underlying a dataset. Unless we are using a frame whose vectors span
the entire tangent space of the manifold, the stable rank will not tell us the intrinsic
dimension (though it is a lower bound).

e Number of points required: Intrinsic dimension generally requires many real data
points to calculate, and this number increases as the actual intrinsic dimension in-
creases. A broad range of works have tried to provide detailed estimates of the number
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of points necessary to get a reliable estimate (e.g., (Fefferman et al., 2016)). On the
other hand, the stable rank of a frame can be calculated with a single datapoint
provided one knows how to perturb that datapoint in order to generate the frame.
Because there is variation between the stable rank of frames on different datapoints,
we advocate using at least several datapoints and taking an average.

e Analyzing different sources of variation: A variety of works that have investi-
gated the intrinsic dimension of the hidden activations of deep learning models have
noted that these models tend to decrease the original dimension of the data manifold
as data passes through the model (Ansuini et al., 2019). One can ask what specific
sources of variation are collapsed in this process. Does a drop in intrinsic dimension
from one layer to the next represent the fact that the model ignores some structured
degree of freedom (e.g., color)? It is not straightforward to measure this with intrinsic
dimension alone. On the other hand, since frames can capture specific directions of
variation, these kinds of questions become accessible.

e Local vs very local: Intrinsic dimension estimators come in a variety of flavors.
Some use the entire dataset to estimate dimensionality, while other more recent ap-
proaches average over many local neighborhoods. In all these cases, the size of the
neighborhood used is constrained by the dataset. If the dataset is sparsely sampled
(and hence points are further apart), the neighborhoods used are by necessity larger.
On the other hand, since neural frames utilize various tools to perturb a datapoint,
the neighborhoods they study can often be made much smaller.

e Use of real vs synthetic data: In most cases intrinsic dimension estimators only
use real datapoints from the dataset. On the other hand, the approaches to neural
frames that we describe here use augmentations or generative models to create close
neighboring points that estimate tangent vectors.

Despite these differences, we find that in certain cases at least, intrinsic dimension and
the stable rank of neural frames appear to capture similar patterns in neural representations.
Figure 5 shows the intrinsic dimension of 5,000 ImageNet images at different layers of a vision
transformer (left vertical axis) as captured by intrinsic dimension estimators MLE (Levina
and Bickel, 2004) and TwoNN (Facco et al., 2017), vs the stable rank of an augmentation
frame (right vertical axis). We see that while these statistics differ numerically, their curves
have similar shapes.

Appendix D. How does the choice of k impact the stable rank of a frame?

In our experiments above, we mostly restricted ourselves to 19-frames as this was the total
number of augmentations that we found that were suitable for use in an augmentation frame.
It is worth asking what happens when we vary k in a k-neural frame. Do our conclusions
remain stable? In Figure 6 we show the result of decreasing k for the augmentation frames
(described in Section J.1) for a ResNet50 trained on ImageNet. We find that increasing the



KVINGE JORGENSON BROWN GODFREY EMERSON

—— MLE
TwoNN 4.6
140 —— Stable rank

120 4 4.4

=
o
o
L
=y
N

Intrinsic dimension
[e1]
o
S
o
Stable Rank

60 1

w
©

40 A
Fr3.6

201
r3.4

0 1 2 3 4 5 6
Layer number

Figure 5: An estimation of the intrinsic dimension of the hidden activations of 5,000 Ima-
geNet images using MLE and TwoNN within a ViT model. We include the stable
rank for comparison. Input and output layers are omitted, so 0 corresponds to
the first hidden representation. Shaded regions indicate 95% confidence intervals
over 40 randomly selected ImageNet images for stable rank and three random
samplings of 5,000 ImageNet images for MLE and TwoNN.

value of k£ in augmentation k-frames increases the stable rank of the corresponding neural
frames. Nevertheless, the shape of the curves (e.g., layers where stable rank increases)
seems to mostly remain the same after sufficiently large k. On the other hand, increasing k
when using noise frames does not appreciably change the stable rank of the corresponding
neural frames (though the stable rank of the input increases predictably with the number
of frames).

The fact that increasing k increases the stable rank of neural augmentation frames but
does not increase the stable rank of neural noise frames reinforces the idea that for most
models, directions of change associated with augmentation are individually preserved (hence
adding them to the input frame causes changes to the corresponding neural frame), whereas
noise directions mostly are not. In future work it would be interesting to understand how
the addition of specific augmentation directions impact stable rank. Overall, it appears
that qualitative patterns in stable rank per layer are mostly preserved when k is changed
provided that k is sufficiently large.
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Figure 6: The stable rank (by layer) of an ImageNet trained ResNet50 (Marcel and Ro-
driguez, 2010) evaluated with respect to augmentation frames with varying k.
The order in which specific augmentations were added was chosen randomly.

Appendix E. Are different types of frames processed differently in a
transformer architecture?

In Section 3 we showed that different types of frames are processed very differently by
a ResNet50. One might ask if a similar statement holds for vision transformers, which
have substantially different architecture. In Figure 8 we show a similar plot to that found
in Figure 2. We see a similar phenomenon holds with minor differences. For example,
the vision transformer tends to preserve a noise frame somewhat longer than the ResNet50
does. Given the results in Section 3, we speculate that this may relate to vision transformer’s
purported adversarial robustness (Paul and Chen, 2022).

Appendix F. Stable rank over the course of training

To better understand how the stable rank of a frame changes over the course of training, we
saved the weights of a ResNet18 (He et al., 2016) trained from scratch on ImageNet every
10 iterations (for 1000 iterations) and then every 100 iterations for the approximately 16
remaining epochs. The training hyperparameters that we used can be found in Table 13.
In Figure 9 we show the stable rank (by layer) for this ResNet18 with respect to an
augmentation frame at different stages of training. We see that at a large scale the general
trend is for stable rank to increase as training increases, but that these changes are most
significant in the later layers of the model. For example, the latent space layer (layer 5),
increases from an initial stable rank around 1.5 to a stable rank of 3.5, an increase of 2,
while the stable rank of layer 1 (in one of the first blocks of the model), only increases from
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Figure 7: The stable rank (by layer) of an ImageNet trained ResNet50 (Marcel and Ro-
driguez, 2010) evaluated with respect to noise frames for varying k.

3.5 to 4, an increase of only .5. We conjecture that one effect of the later stages of training
is that a model gains the tendency to preserve those frames related to natural changes of
an image. This guess is supported by Figure 10 (right) which shows that while stable rank
increases throughout training for frames of naturalistic directions, it decreases for noise
frames whose directions lack any connection to the content of the image.

Interestingly, we find stable rank also peaks (though not as high as later) once in the early
iterations of training. In Figure 10 (left) we see that stable rank increases for approximately
the first 50 iterations of training and then decreases again until around iteration 200. It
then slowly increases for the rest of training. It would be interesting to understand what
drives these dynamics.

Appendix G. Stable rank and architecture

In Figures 11 and 12 we plot the stable rank (as a function of layer) for an augmentation
frame and two different families of architectures: CNNs and vision transformers. Shaded
regions depict 95% confidence intervals calculated over 40 random ImageNet images. The
CNN architectures that we plot (left) are DenseNet121 (Huang et al., 2017), InceptionV3
(Szegedy et al., 2016), ResNet50 (He et al., 2016), and ResNeXT50 (Xie et al., 2017). On
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Figure 8: The stable rank of different types of frames measured at various layers of a ViT
model. The ResNet50 version of this plot is found in Figure 2. Layer zero corre-
sponds to model input and the last layer corresponds to model output. Shaded
regions indicate 95% confidence intervals over 40 randomly selected ImageNet
images.

the right we plot hidden layers from transformers: ViT (Dosovitskiy et al., 2020) and Swin
(Liu et al., 2021). All use the default ImageNet torchvision (Marcel and Rodriguez, 2010)
weights. We note two trends in these plots:

1. All curves consist of a plateau spanning most layers of the model followed by a dra-
matic dropoff in stable rank at the last layers.

2. The transfomer models exhibit significantly more fluctuation in stable rank than the
CNNs.

1 could be partially explained by the fact that all models studied in this paper, both CNNs
and transformers, include residual connections. Note that a toy residual network with n-
dimensional feature spaces and identity activations consists of a composition of layers of
the form I,, + W, where I, is an identity matrix and W a n x n weight matrix. These have
singular values of the form 1+ o;, where {o;} are the singular values of W, and thus stable
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rank

1 Z(l + ;)2 (2)

(1+o 1)2
Suppose W is a random matrix with IID entries sampled from N(0, 2) (this is true before
training with He normal initialization (He et al., 2016)). Then a calculation using (Marcenko
and Pastur, 1967) shows that for large n the expected stable rank of I,,+W is approximately

n 2v2 dy
(1+2\/§)2/0 (1 + VB =5l ~ 03 (3)

Provided this is larger than the stable rank of the neural frame in the preceding layer,
Lemma 7 might suggest that I,, + W preserves the stable rank of the neural frame.?

As for 2, while these experiments alone are insufficient to identify a reason for this appar-
ent difference, one could make a number of different conjectures. It could be, for instance,
that the priors hardcoded into CNNs dampen the extent to which the models stretch and
compress an image manifold. Alternatively, it might be that the nonlinearity of attention
layers leads to more geometric changes layer-to-layer. This nonlinearity is in contrast to the
convolutions in CNNs, which are linear in isolation (that is, not considering the nonlinear
layers that often follow them). These questions would be interesting to address in follow-up
work.

Appendix H. Geometric Background

In this paper we take the word ‘manifold’ to mean a smooth manifold in the formal sense.
A comprehensive reference on manifolds is (Lee, 2013) — here for convenience we briefly
introduce key geometric objects of interest: tangent bundles, their sub-bundles, and frames.

Let M C R™ be an m-dimensional smooth manifold, x a point on M, and suppose
v:(—=1,1) = M is a smooth path on M such that v(0) = z. The tangent vector associated
with v at x is the derivative of v at 0, 7/(0). The tangent space T, M of M at x is the vector
space of all such tangent vectors 7/(0) at x (here « varies over all possible smooth paths in
M that pass through x). The tangent bundle TM of M is the union of all tangent spaces
for each x € M, [[,cp To M — it is a manifold in its own right of dimension 2m. For more
details see Section 3 in (Lee, 2013).

The tangent bundle can be thought of as the assignment of a vector space to each point in
M; the concept of a vector bundle generalizes the tangent bundle of a manifold. Informally,
a vector bundle is a smooth map 7 : E — M such that the fibers E, := 77 1(z) C E are
finite-dimensional real vector spaces isomorphic to R and they vary smoothly with respect
to x in the sense that for any « € M there is a neighborhood U of x with a diffeomorphism
¢z : 71 (U) = U x Rl A sub-vector bundle F' C E is an embedded submanifold which is
itself a vector bundle over M (with respect to the induced smooth map F C E = M) such
that for each point x € M, F, C E, is a linear subspace. For formal definitions we refer to
Section 10 in (Lee, 2013). Our interest is in sub-vector bundles of tangent bundles T'M.

2. The expected stable rank of W itself is 7.
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A common way to obtain such sub-vector bundles in practice is from vector fields.
Recall that in the case of the tangent bundle, the map 7 : TM — M is the map such that if
z€TyM C TM, then m(z) = x. Then a smooth vector field is formally a smooth function
v : M — T'M with the property that 7(v(z)) = « for all z € M (informally this corresponds
to the usual notion that a vector field consists of a choice of tangent vector for each x € M).
We can use parametrized functions from our manifold to itself to construct vector fields.

Lemma 4 (Prop 9.7 (Lee, 2013)) If f : (—1,1) x M — M 1is a smooth function on
smooth manifold M with the property that f(0,z) = x for all x € M, then the function
v(x) = %f(t, x)|t=0 18 a smooth vector field.

Lemma 5 Letvy,...,vg: M — TM be smooth vector fields on an m-dimensional manifold
M.

1. The set U of all x in M such that vi(z),...,v.(z) are linearly independent is open.’
2. The (sub)spaces span(vi(z), ..., vg(x)) C Ty M form a sub-vector bundle of the tangent
bundle of U.

We put the two lemmas above together to give the statement that will form the basis
for one type of neural frames that we introduce in the next section.

Corollary 6 Suppose that F = {f; : (=1,1) x M — M |i = 1,...,k} is a collection
of smooth maps such that f;(0,2) = = for all x € M, and let vy(x) = %fi(t,:v)\t:(). If
vi(z),...,vk(x) are linearly independent in T, M for all x € M, then fi,..., fr define a
k-dimensional vector bundle on M which we denote by Vr and vi(x), ... ,vx(x) is a k-frame
of this vector bundle.

The geometric machinery we have introduced in this section will provide the framework
for neural frames, which we introduce below. We note however that this framework is
supposed to act as a guide, not a guarantee. Indeed, by necessity, we will have to violate
certain assumptions when running experiments. For example, many popular deep learning
architectures are not actually smooth everywhere and some of our augmentations will not
be smooth either (largely due to the discrete nature of digital images). However, we have
tried to choose functions that are at least moderately well-behaved.

H.1. Stable rank and multiplication of matrices

It is worth mentioning that while true linear algebraic rank has the property that the rank
of a product AB is at most the minimum of the ranks of A and B, this fails for stable rank.
However, the extent of this failure is controlled by the behavior of the top singular values
of A, B and AB — precisely:

Lemma 7 If A and B are l x m and m X n matrices respectively, then

[[Allspecl Bllspee

AB) <
r(4B) < (SR

)" min{r(4). 7(B)}. (4)

3. although possibly empty.
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We include Lemma 7 since when taking A = dFj;1 and B = dF<;, so that AB = dF<;11,
Lemma 7 seems somewhat explanatory of the general decreasing trend in the curves of, for
example, Figure 2 (right). Note that by the multiplicative property of the spectral norm,
the first factor on the right hand side of equation 4 is always > 1.

Appendix I. Proofs

The statement of Lemma 4 and the proof below is very similar to those of Proposition 9.7
in (Lee, 2013), however note that our hypotheses on f are weaker.

Proof [Proof of Lemma 4] First, by Proposition 3.14 in (Lee, 2013) there is a natural
decomposition of tangent bundles

T((-1,1) x M) ~T(-1,1) x TM (5)

and so by Proposition 3.21 in (Lee, 2013) the differential of f can be naturally identified as
a smooth map

df : T(~1,1) x TM — TM. (6)
Now as T'(—1,1) ~ (—1,1) x R (for example combining Proposition 3.9 and 3.13 in (Lee,
2013)), letting z : M — T'M denote the zero section we can define a smooth map %hzo
as

M % (-1, 1) x Rx TM ~T(-1,1) x TM L 7m

: (7)
sending = — (0,1, z(x)) — df ((0,1), z(x))

(one can check in coordinates that this is indeed a partial derivative with respect to ¢,
hence the notation). It remains to check that if 7 : TM — M is the projection, we have
w(% t=0) = z, and this follows from the hypothesis that f(0,2) =x forallz € M. R

Proof [Proof of Lemma 5] The statement is local on M. We may therefor assume that
M C R™ is an open subset of some euclidean space, in which case we have a canonical
identification TM ~ M x R™. Since a section of the projection 7 : M x R™ — M is
equivalent to a function M — R™, we may now identify v1,...,vr as smooth functions

v1,...,0; : M — R™, whose product is a smooth map

(v1,...,08) : M — (R™)* (8)

Finally, let my : (R™)¥ — R be the k x k minors of m x k matrices, where J C {1,...,m}
ranges over subsets of cardinality k¥ — these are polynomials and hence smooth. The set

{(wi,...,wg) € (Rm)k

|wi,...,wy are linearly independent }

(9)

can be identified as the locus where [[; m (w1, ..., wy) # 0; since the non-vanishing locus
of a smooth function is open, we have proved part (i) of the lemma.
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For part (ii), by the very definition of U the functions vy, ..., vy define a global isomor-
phism

¢ : U x R¥ = span(vy,. .., v;)
where p(z, (c1,...,¢c1)) = Z civi(x). (10)

Using this, it is straightforward to check that span(vy, ..., vx) is a vector bundle over U. B

Remark 8 All of the above proofs work even if the v; are continuous (smoothness is not
required). The proof of (ii) in fact shows the stronger statement that span(vy,...,vg) s
a trivial vector bundle over U. It is worth mentioning that in the global context where
Lemmoa 5 is stated, there are examples where it is impossible that U = M, even when k = 1:
for example, the famous “hairy ball theorem” says that when M = S? (a 2-sphere), every
globally defined vector field v : M — T'M wvanishes at at least one point.

We sketch here a statement making precise the sense that for almost all sets of k < dim M
vector fields vy,...,v; : M — T M the locus

{z € M|vi(x),...,v(z) are linearly independent} (11)

is a dense open set with measure 0 complement. Let I'(M,TM) be the real vector space
of vector fields on M. We will make use of the relative k-fold product Hﬁ/[ i1 M of TM
over M this is simply the space of k-tuples of tangent vectors wi, ..., wg € TM such that
m(w;) = m(w;) € M for all 4, j. The relative product contains a subspace N C H?M i1 ITM
consisting of linearly dependent k-tuples (wi,...,wy). Note that this subspace is not a
submanifold: on each fiber Hle T, M it is a vanishing locus of a product [ ; ms(wy,...,ws)
of minors as appearing in the above proof.* However, it does admit a stratification

NoC N C...,C N1 =N (12)

such that N;\ N;_1 is a (not necessarily closed) submanifold of HIX/I i TMfori=1,... k-
1. Namely, one defines N; to consist of the (wq, ..., w;) whose associated m x k matrix has
rank less than or equal to 1.

Claim: Let V C I'(M,TM) be a finite dimensional linear subspace, and assume that
for each x € M the natural linear map ¥ : V — T, M defined as ¥(v) = v(x) is surjective.
Then, for almost every (vi,...,v;) € V¥ the set defined in equation 11 is a dense open set
with measure 0 complement.

Note that in Claim I, the fact that ¥ is surjective for each x € M does not imply that
V is equal to I'(M,TM) (for example, I'(M, T M) will generally be infinite dimensional).
Rather, for any v € T, M there is a vector field that takes value v at . We will not provide
a full proof of this claim, merely a sketch. To begin, consider the natural map

k
o:VEx M~ [] TM (13)
M,i=1

4. That is, one can verify that N is singular using the Jacobian criterion.
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defined by ®((vy,...,v),z) — (vi(x),...,vk(x)). If N were a smooth closed submanifold
of H]fw’i:l TM (as stated above, it isn’t, this is just a thought experiment to motivate a
proof sketch), then we could proceed as follows: the condition on ¥ could be used to show
that the map ® is transverse to N. Then, the parametric transversality theorem (Theorem
6.35 in (Lee, 2013)) would imply that for almost all (vy,...,v;) € V¥, the resulting map

k
o:M— [ ™™ (14)
Mi=1

defined by o(x) = ®((v1,...,v),x) is transverse to N. Noting that N has codimension 1,
we would conclude that its preimage o~ '(N) C M is a closed submanifold of codimension
1 (hence a set of measure 0). Since the set defined in 11 is M \ 0~ !(N) this would complete
the proof.

Again, this proof sketch is merely a heuristic as we know that IV is not smooth. However,
there exist stratified transversality theorems (hence the discussion of a stratification of N),
and replacing our heuristic application of the more well known parametric transversality
theorem with one of these (for example the main theorem of (Trotman, 1978/79), see also
references therein) yields a proof strategy.

Proof [Proof of Lemma 7] We first reduce to the case where all matrices are square: if not,
letting p = max{l,m,n} we may embed A and B in the upper left block of p x p matrices,

and direct calculation shows
A 0 B 0 AB 0
(65 o) (5 0)= (% o) ()

Moreover, such padding by zeros does not alter singular values, hence leaves all stable ranks
in sight unchanged.

From now on we assume A, B and thus AB are nxn matrices. Let s(A) = (s(A)1,...,s(A),)
be the n-dimensional vector of sorted singular values of A (and similarly for B and AB).
By Theorem IV.2.5 in (Bhatia, 1996),

s(AB)? <, s(A)?*s(B)? (16)

where <,, denotes weak submajorization, and the product on the right hand side is coor-
dinatewise (a.k.a. Hadamard) multiplication. From this and the definition of weak subma-
jorization in Section II.1 (Bhatia, 1996)) it follows that

n n

Y s(AB)} <) s(A)is(B)} < s(A)F ) _s(B)
i=1 i=1 i=1 (17)

n
s(B);
=1

1
s(B)

= (s(A)15(B)1)*

where the first inequality follows from the definition of weak submajorization in Section II.1
(Bhatia, 1996)) and the second inequality uses the fact that s(A4); > --- > s(4),.° We now

5. Alternatively, this is the p = 0o, ¢ = 1 Holder’s inequality.
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divide both sides of 17 by s(AB)? to obtain

1
r(AB) = AB) > s(AB);

(2

s(A)1s(B)1)?
e 1

HA||SpeC||BHspec)2
=(———=——] r(B).
( | AB ||spec

By a symmetric argument,’

| Allspec|| Bllspec 2
< | =" .
r(AB) < ( e ) r(A) (19)

Proof [Proof of Proposition 3] This follows directly from Theorem 3.26 in (Kirillov, 2008),
which shows that the Lie algebra of G, is the kernel of the natural map g — 7, M. Hence if
this natural map is injective, G, has 0-dimensional Lie algebra and is thus a 0-dimensional
closed subgroup of G, i.e. a discrete subgroup. |

Appendix J. Experimental details

We ran all of our experiments on an Nvidia A100 GPU. The specific hyperparameters that
we used in training can be found in Table 13.

J.1. Augmentation frames

In Table 1 we describe the augmentations that we use in the experiments with augmentation
frames in this paper, the software library used to implement them, and the parameter
settings that we used to approximate the tangent vector corresponding to each.

J.2. Handling edge effects in image translation and rotation

Because images have finite support, pixels with zero value appear at the edges when the
image is rotated by 6 degrees (where 6 # 0°, 90°, 180°, or 270°). Thus, these augmentations
violate our goal of only using augmentations that produce naturalistic images. To handle
this situation in practice, we increase the size of the image so that we can crop out fractional
numbers of pixels (after rotation). In detail we:

1. resize the image to x8 its original size,
2. rotate the image by 5 degrees,

3. crop out empty pixels at the corners by removing 20 pixels around the border,

W

. resize the image back to its original size.

6. For example, use the facts that (AB)T = BT AT and transposing doesn’t change singular values.
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Table 1: Augmentation transformations and the library and parameters used when imple-

menting them.

Augmentation Library Default parameters
JPEG transform  imgaug library (Jung et al., 2020)  Compression 70%
Brightness Torchvision Brightness factor 1.02
Crop and resize Torchvision Resize x4, crop off 1 pixel,
Interpolation: bilinear, nearest,
linear
Contrast Torchvison Contrast factor 1.05
Gamma transform Torchvision Gamma 1.02
Hue Torchvision Hue factor .01
Saturation Torchvision Saturation factor 1.1
Sharpness Torchvision Sharpness factor 1.2
Downscale Torchvsion Resize x0.9, return to original
Interpolation: bilinear, nearest
linear
Rotation + translation Torchvision Resize x4, rotate 2 degrees,
centers (0,0), (50,50), (=50, 50)
Gaussian blur Torchvision Kernel size 3 x 3, 0 = 2.0

Log correction
Sigmoid transform

Kornia (E. Riba and Bradski, 2020)

Kornia

J.3. Hidden Layers Used for Each Architecture

Gain 1.05
Cutoff 0.5, gain 5

A significant amount of this work depends on querying the hidden representations of dif-
ferent models. In Tables 2-10 we list the hidden layers used in each model type in the

experiments.

Table 2: Layers for torchvision ViT Base 16.

Layer name

Layer number

encoder.
encoder.
encoder
encoder.
encoder.
encoder.

getitem_

layers.
layers.
.layers.
layers.
layers.
layers.

5

encoder_layer_1.mlp
encoder_layer_3.mlp
encoder_layer_5.mlp
encoder_layer_7.mlp
encoder_layer_9.mlp
encoder_layer_11.mlp

N O TR W N
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Table 3: Layers for torchvision Swin T.

Layer name Layer number
features.1.0.mlp 1
features.3.0.mlp 2
features.5.0.mlp 3
features.5.2.mlp 4
features.5.4.mlp )
features.7.0.mlp 6
features.7.1.mlp 7
flatten 8

Table 4: Layers for torchvision ResNeXT50 32x4d.

Layer name Layer number

layer1.0.add
layer2.0.add
layer3.0.add
layer4.0.add
flatten

U W N =

Appendix K. What Can Frame CKA Tell Us?

In Section 3 we noted that frame CKA can illuminate some small-scale properties of a
model’s representations that are hard to detect with standard CKA. In Figure 16 we show
that frame CKA detects the difference in representations between models with adversarial
training and models without. Namely, neural frame CKA exhibits that inter-architecture
similarity increases with adversarial robustness, in the sense that similarity between layers
of different models increases as the € used in adversarial training increases. For example,
the similarity between layers is larger between € = 3 and € = 5 than between ¢ = 0.1 and
€ = 5. This was only previously shown with an expensive deconfounding variant of CKA in
(Jones et al., 2022).

In another example, we compare the intra-layer similarity between a ResNet50 and a
Vision Transformer. Prior work with CKA had noted that CKA tends to show significant
differences between blocks in ResNets but less intra-layer differences in vision transformers.
In Figure 16 we show that frame CKA (using augmentation frames) picks up a different
signal than standard CKA. We see that frame CKA actually shows greater differences
between layers in the ViT suggesting that the outcome of a comparison of these two model
types may depend on the scale at which one compares their representations. We note that
our observations are consistent with findings in Section G.
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Table 5: Layers for torchvision MobileNetV3 (small).

Layer name Layer number

features.1.block.2
features.3.add
features.b5.add
features.7.block.3
features.9.block.3
features.11.add
flatten
classifier.0
classifier.1
classifier.2

© 00 N T W -

—
)

Table 6: Layers for torchvision InceptionV3.

Layer name Layer number

Conv2d_1la_3x3.relu
Conv2d_2b_3x3.relu
Conv2d_4a_3x3.relu
Mixed_bb.cat
Mixed_bd.cat
Mixed_6a.cat
Mixed_6c¢c.cat
Mixed_6e.cat
Mixed_7a.cat
Mixed_7b.cat_2
flatten

©O© 00 N T W=

— =
)
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Figure 9: (Left) The stable rank of an augmentation frame (by layer) for a ResNet18
trained from scratch. Different colored curves correspond to the number of it-
erations of training that the model has undergone. (Right) The stable rank of
different layers of the model as a function of the number of training iterations.
Shaded regions in both plots indicate 95% confidence intervals over 40 random
ImageNet images.
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Figure 10: (Left) The stable rank of an augmentation frame (by layer) during early it-
erations of a ResNet18 trained from scratch. (Right) The stable rank of the
ResNet18 model (by layer) evaluated on a noise frame. In both plots, different
colored curves correspond to the number of iterations of training that the model
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Figure 11: The stable rank, by layer, for a range of different CNN architectures. Shaded
regions indicate 95% confidence intervals over 40 random ImageNet images.

Table 7: Layers for torchvision DenseNet121.

Layer name

Layer number

features.denseblockl.denselayer2.cat 1
features.denseblock2.denselayerl.cat 2
features.denseblock2.denselayer7.cat 3
features.denseblock?2.cat 4
features.denseblock3.denselayer6.cat )
features.denseblock3.denselayerl2.cat 6
features.denseblock3.denselayer18.cat 7
features.denseblock3.cat 8
features.denseblock4.denselayer6.cat 9
features.denseblock4.denselayerl2.cat 10
features.denseblock4.cat 11
flatten 12
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Figure 12: The stable rank, by layer, for a range of different transformer architectures
Shaded regions indicate 95% confidence intervals over 40 random ImageNet im-
ages.

Table 8: Layers for timm resnetv2 101x1 (BiT).

Layer name Layer number

.add
.add
.add

stages.0.blocks.
stages.1l.blocks.
stages.2.blocks.
stages.2.blocks.4.add
stages.2.blocks.8.add
stages.2.blocks.12.add
stages.2.blocks.16.add
stages.2.blocks.20.add
stages.3.blocks.2.add
head.global_pool.flatten
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Figure 13: (First and third rows) A subset of the sample perturbations, from left to right
and top to bottom: brightness, contrast, crop with bilinear interpolation, hue,
sharpness, crop with linear interpolation, rotation, saturation, jpeg compression.
(Second and fourth rows) The difference between the original and perturbed
images (above).

Table 9: Layers for torchvision ConvNeXT small.

Layer name Layer number

features.1.0.block.0
features.3.0.block.0
features.5.0.block.0
features.5.8.block.0
features.5.16.block.0
features.7.1.block.0
classifier.1

N 3O W N
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Figure 14: (First row) The original ImageNet image and perturbations of this image sam-
pled using the Boomerang method and stable diffusion. (Second row) The
difference between the original image and each perturbation.

Table 10: Layers for torchvision AlexNet.

Layer name Layer number

features.1
features.4
features.7
features.9
features.11
classifier.2
classifier.b
flatten

0 3 O T W N~

Table 11: Layers for torchvision ResNet50.

Layer name Layer number

layerl.2.relu_2
layer2.3.relu_2
layer3.5.relu_2
layer4.2.relu_2
flatten

U W N =~
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Table 12: Layers for torchvision ResNet18.

Layer name Layer number

layerl.1l.relu_1
layer2.1.relu_1
layer3.1.relu_1
layer4.0.relu_1
flatten

T W N =

Table 13: Hyperparameters used when training the ResNet18 on ImageNet.

Training hyperparameters

Optimzer SGD

Learning rate 0.5

Learning rate scheduler cyclic
Learning rate peak epoch 2
Momentum 0.9

Batch size 1024

Epochs 16

Weight decay  5e—5
Label smoothing 0.1
BlurPool? Yes
Pretrained? No
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Figure 15: The frame CKA scores between layers in the same model when augmentation
frames are used. (Top) an ImageNet trained vanilla ResNet50 (Marcel and
Rodriguez, 2010), (Middle) an adversarially trained ImageNet ResNet50 with
¢ =5, (Bottom) an ImageNet trained ResNet50 with Deep Augmentation. One
can see that both heavy augmentation and adversarial training cause a model’s
representations to increasingly vary between layer. This effect appears to be
stronger for adversarial training than heavy augmentation.
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Figure 16: Heatmaps for frame CKA with augmentation frames for three different mod-
els (all trained on ImageNet) compared to a ResNet-50 trained on ImageNet
with € = 5 adversarial training: (Top) a ResNet50 trained with e = 0.1 adver-
sarial training, (Middle) a ResNet50 trained with e = 3 adversarial training,
(Bottom) and the same ResNet50 trained with € = 5 adversarial training.
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Figure 17: Heatmaps for frame CKA with augmentation frames for ResNet50 vs. ResNet50
trained on ImageNet (Top) and ViT vs ViT (Dosovitskiy et al., 2020) trained
on ImageNet (Bottom).
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